
CEM MiNiFi C++ Agent 1.24.05

MiNiFi C++ Agent Installation
Date published: 2020-10-14
Date modified: 2024-07-30

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

CEM MiNiFi C++ Agent | Contents | iii

Contents

Install the MiNiFi C++ agent.. 4
Before you begin installing MiNiFi C++ agent...4

System requirements for MiNiFi C++... 4
Before you begin MiNiFi agent installation on Windows...5

Install your MiNiFi C++ agent.. 5
Install the C++ agent on Windows from command line... 5
Install the C++ agent on Windows using the MSI.. 6

MiNiFi C++ agent configurations..11
Configuring your MiNiFi C++ agent...11
Configuring communication with secured EFM..13
Configuring MiNiFi C++ repositories..13
Encrypting sensitive data..15

Integrating with the Windows certificate store..18
Starting MiNiFi agent...19
Troubleshooting MiNiFi C++ agent...19

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

Install the MiNiFi C++ agent

Learn how to install the MiNiFi C++ agent. You need to install and configure the MiNiFi C++ agent and then start it.
You can also do the same on Windows.

Before you begin installing MiNiFi C++ agent
To start using the MiNiFi C++ agent, you need to install it. Learn how to obtain the MiNiFi C++ software bit, install
the agent, and configure it. Also learn the system requirements to do so.

System requirements for MiNiFi C++
Carefully review the system requirements for MiNiFi C++ before you begin installing it.

Operating system support in CEM MiNiFi C++ Agent 1.24.05 release

Operating System Version

RHEL and compatible 8.x, 9.x

Debian 11, 12

Ubuntu 20.04, 22.04, 24.04

Windows 8, 10, Server 2012, Server 2012 R2, Server 2016, Server 2019

Operating system support in CEM MiNiFi C++ Agent 1.21.10 - 1.24.04 releases

Operating System Version

RHEL/CentOS 7.x, 8.x

Debian 10, 11

Ubuntu 18.04, 20.04

Windows 8, 10, Server 2012, Server 2012 R2, Server 2016, Server 2019

Operating system support in CEM MiNiFi C++ Agent 1.21.06 and 1.21.08 releases

Operating System Version

RHEL/CentOS 7.x, 8.x

Debian 10

Ubuntu 18.04, 20.04

Windows 8, 10, Server 2012, Server 2012 R2, Server 2016, Server 2019

Operating system support in releases before CEM MiNiFi C++ Agent 1.21.06

Operating System Version

RHEL/CentOS 7.x, 8.x

Debian 9

Ubuntu 16.04, 18.04

Windows 8, 10, Server 2012, Server 2012 R2, Server 2016, Server 2019

4

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

Before you begin MiNiFi agent installation on Windows
You must go through the prerequisites before you begin installation of MiNiFi agent on Windows.

Requirements

Apache NiFi MiNiFi C++ is built on Window Server 2016, 2019, and Windows 10 operating systems. Since the
project is CMake focused, Cloudera recommends building the Microsoft Installer (MSI) or Windows Installer through
the ms_build.bat script. In order to build the MSI, please install the WiX Toolset.

The project previously required OpenSSL to be installed. If you follow Cloudera build procedures, you do not
need to install that dependency. Further, any MSI distributable requires that systems install the Visual Studio 2010
redistributables.

Building through the build script

The preferred way of building the project is through the win_build_vs.bat script found in the root source folder.

You must supply a single command, the build directory. Typically you create a directory with CMake and build the
MSI in that directory referencing your CMake tree. Simply supply the win_build_vs.bat an argument like build as the
name of your build directory and it will create this directory building the project within it. Alternatively, you can use
the win_build_vs.bat build /K /T /P command to build Kafka, skip tests, and build the CMake at the same time.

If WiX Toolset is installed, cpack creates your MSI in the chosen build directory.

You can also build a 64 bit MSI by adding the /64option. To do so, you require the 64-bit version of the Visual Studio
redistributables mentioned in system requirements.

Note: The 64-bit MSI will not run on 32-bit Microsoft Windows platforms. However, the 32-bit MSI will
work across distributions.

Install your MiNiFi C++ agent
To install your MiNiFi C++ agent, you need to download the software for the agent and extract it.

Procedure

1. Download the tar.gz or zip files for the MiNiFi C++ agent.

wget {cpp.tar.gz}

2. To install the MiNiFi C++ agent, extract the file to your desired home directory.

Install the C++ agent on Windows from command line
Learn how to install MiNiFi C++ agent from command line.

Procedure

1. To install the MiNiFi C++ agent from the Command Line with the desired extensions, list all the extensions you
would like to install:

msiexec /i nifi-minifi-cpp.msi AGREETOLICENSE=Yes ADDLOCAL=CM_C_bin,CM_C
_tzdata,InstallService,InstallVSRedistributableFiles,InstallConf,CM_C_ht
tp_curl,CM_C_sql /quiet

5

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

2. Optional. In order to exclude some extensions but otherwise install all other extensions:

msiexec /i nifi-minifi-cpp.msi AGREETOLICENSE=Yes ADDLOCAL=ALL REMOVE=CM
_C_sql /quiet

For all extension identifiers (for example, CM_C_sql), follow the same pattern. Take the extension name (for
example, minifi-sql), replace the minifi- prefix with CM_C_ and replace all dashes with underscores. For
example, minifi-http-curl becomes CM_C_http_curl.

Note: For the agent to be able to connect to the EFM server, you must have the minifi-http-curl extension
installed.

For more information and configuration options for msiexec, see https://docs.microsoft.com/en-us/windows-
server/administration/windows-commands/msiexec.

Install the C++ agent on Windows using the MSI
Learn how to install and configure the MiNiFi C++ agent on Windows by using the provided MSI.

Procedure

1. Open the Apache NiFi MiNiFi Setup wizard, and click Next.

The Apache NiFi MiNiFi License page appears.

6

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/msiexec
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/msiexec

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

2. Check the Click here to accept this license option, and click Next.

The Custom Setup page appears.

7

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

3. Select the extensions you need to install.

By default, all extensions are enabled.

4. Click Next.

The Service Account Information page appears.

8

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

5. Enter a user for the windows service that is installed and a password.

9

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

6. Click Next.

The Agent Properties page appears as shown in the following image:

7. Check the Enable interactive Command and Control option.

After you enable this option, you can edit your properties.

8. Edit the following properties:

• Agent Class
• Agent Identifier
• Server Heartbeat URL
• Server Ack URL
• Agent Heartbeat

9. Click Next.

10

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

10. Click Install.

MiNiFi C++ agent configurations
Learn about different configurations that you can perform for your MiNiFi C++ agent.

Configuring your MiNiFi C++ agent
After you install the MiNiFi C++ agent, you need to update the configuration files.

About this task

MiNiFi C++ is configured through two files: minifi.properties is used for general configuration and config.yml is
used for configuring your flow.

Note: MiNiFi C++ does not auto-generate or overwrite settings in conf/minifi.properties, and it does not
support the NiFi Properties Overrides syntax in config.yml.

Follow these steps to configure the MiNiFi C++ agent:

Procedure

1. From the MiNiFi home directory, open the minifi.properties configuration file.

11

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

2. Configure the agent class so that you can logically group MiNiFi C++ instances according to their functionality.

nifi.c2.agent.class=[***AGENT_CLASS***]

Replace [***AGENT_CLASS***] with the name of your agent class, for example: nifi.c2.agent.class=my_agent
_class

Note: Leading and trailing whitespaces are accepted for Agent Class names so consider this when
configuring agents.

3. Configure the ID of the agent. If you do not specify an agent ID, MiNiFi generates a unique ID per agent instance.

nifi.c2.agent.identifier=[***AGENT_ID***]

Replace [***AGENT_ID***] with the ID of your choice, for example: nifi.c2.agent.identifier=minifi_cpp_13

4. Set the nifi.c2.enable property to true to inform MiNiFi that run time flow instructions will be received from EFM.

nifi.c2.enable=true

5. Configure your EFM server endpoint:

nifi.c2.rest.url=http://[***EFM SERVER_IP ADDRESS***]:10090/efm/api/c2-pr
otocol/heartbeat
nifi.c2.rest.url.ack=http://[***EFM SERVER_IP ADDRESS***]:10090/efm/api/c
2-protocol/acknowledge

Replace [***EFM SERVER_IP ADDRESS***] with the IP address of the EFM server endpoint, for example with
efm-host.corp.local

6. Configure your heartbeat interval:

nifi.c2.agent.heartbeat.period=[***HEARTBEAT_INTERVAL***]

Replace [***HEARTBEAT_INTERVAL***] with the time period you want to set as the frequency for the the
agent to send a heartbeat to EFM.

For example: nifi.c2.agent.heartbeat.period=5000

5 sec is also a valid value.

7. Configure the metrics for your MiNiFi C++ agent.

For more information, see Metrics in the Apache NiFi - MiNiFi - C++ C2 Readme.

nifi.c2.root.class.definitions=metrics
nifi.c2.root.class.definitions.metrics.name=metrics
nifi.c2.root.class.definitions.metrics.metrics=runtimemetrics,loadmetrics
,processorMetrics
nifi.c2.root.class.definitions.metrics.metrics.runtimemetrics.name=Runtime
Metrics
nifi.c2.root.class.definitions.metrics.metrics.runtimemetrics.classes=De
viceInfoNode,FlowInformation
nifi.c2.root.class.definitions.metrics.metrics.loadmetrics.name=LoadMet
rics
nifi.c2.root.class.definitions.metrics.metrics.loadmetrics.classes=Queu
eMetrics,RepositoryMetrics
nifi.c2.root.class.definitions.metrics.metrics.processorMetrics.name=Proc
essorMetric
nifi.c2.root.class.definitions.metrics.metrics.processorMetrics.classes=
GetFileMetrics

12

https://github.com/apache/nifi-minifi-cpp/blob/main/C2.md#metrics

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

8. Restart the agent.

For the list of supported MiNiFi C++ processors, see MiNiFi C++ agent processor support.

Related Information
MiNiFi C++ agent processor support

Metrics in the Apache NiFi - MiNiFi - C++ C2 Readme

Configuring communication with secured EFM
To communicate with secured EFM, you need to configure additional properties.

About this task

If you are configuring a MiNiFi C++ agent, the file is conf/minifi.properties.

Procedure

For the C++ agent, configure the following additional properties in the minifi.properties file to communicate with a
secured EFM:

Security Properties
enable tls
nifi.remote.input.secure=true
if you want to enable client certificate base authorization
nifi.security.need.ClientAuth=true
setup the client certificate and private key PEM files
nifi.security.client.certificate=
nifi.security.client.private.key=
setup the client private key passphrase file
nifi.security.client.pass.phrase=./conf/password
setup the client CA certificate file
nifi.security.client.ca.certificate=

Configuring MiNiFi C++ repositories
Learn how to configure and encrypt MiNiFi C++ repositories.

Similarly to NiFi, the MiNiFi C++ agent uses repositories to store state. There are three kinds of repositories:

• The Content repository is used to store the contents of each flow file.
• The Flow File repository contains flow file metadata, like the current state and attributes of every flowfile, and a

content repository identifier.
• The Provenance repository can track changes and store all the events of all flowfiles. It is not well maintained, and

it is disabled by default.

Configuring repository storage locations

Persistent repositories use a configurable path to store data. The repository locations and their defaults are defined
below. By default the MINIFI_HOME environment variable is used. If you do not specify this variable, the root
installation folder is used. You may specify your own path replacing these defaults in the minifi.properties file.

nifi.database.content.repository.directory.default=${MINIFI_HOME}/content_re
pository
nifi.flowfile.repository.directory.default=${MINIFI_HOME}/flowfile_reposito
ry
nifi.provenance.repository.directory.default=${MINIFI_HOME}/provenance_re
pository

13

https://docs.cloudera.com/cem/1.5.1/release-notes-minifi-cpp/topics/cem-cpp-processors.html
https://github.com/apache/nifi-minifi-cpp/blob/main/C2.md#metrics

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

You can also use a single database to store multiple repositories with the minifidb:// scheme. This could help with
migration and centralize agent state persistence. In the scheme, the final path segment designates the column family in
the repository, while the preceding path indicates the directory where the rocksdb database is created.

For example: In minifidb:///home/user/minifi/agent_state/flowfile, a directory is created at /home/user/minifi/
agent_state populated with rocksdb-specific content. In that repository, a logically separate subdatabase is created
under the name flowfile.

nifi.flowfile.repository.directory.default=minifidb://${MINIFI_HOME}/agent_s
tate/flowfile nifi.database.content.repository.directory.default=minifidb://
${MINIFI_HOME}/agent_state/content
nifi.state.manangement.provider.local.path=minifidb://${MINIFI_HOME}/agen
t_state/processor_states

Note: You should not use the same directory with and without the minifidb:// scheme simultaneously.
Moreover, the default name is restricted and should not be used.

Configuring repository backends

You can configure all three repositories to be volatile or persistent. Configuring volatile repositories means that their
state is kept in memory and flushed upon restart. This can increase the performance, but can also cause data loss in
case of restart while data is being processed by the agent.

Content repository

By default, the content repository uses a RocksDB backend, which is a persistent, in-process key-
value store. There is another, filesystem-based alternative backend for this repository. In most
use cases, the RocksDB backend offers better performance and transactional guarantees over the
filesystem backend, but it has a limitation: it cannot store flow file contents larger than 4 GB.

You can configure the repository backends in the minifi.properties file as follows:

nifi.content.repository.class.name

Possible values:

• DatabaseContentRepository: RocksDB backend - This is the default value.
• FilesystemRepository: file system backend - Use it if you work with flow files larger than 4 GB.
• VolatileContentRepository: in-memory, non-persistent storage backend - You should only use it

for testing.

Flow File repository

By default, the flow file repository uses a RocksDB backend, which is a persistent, in-process key-
value store.

You can configure the repository backends in the minifi.properties file as follows:

nifi.flowfile.repository.class.name

Possible values:

• FlowFileRepository: RocksDB backend - this is the default value
• VolatileFlowFileRepository: in-memory, non-persistent storage backend - you should only use it

for testing.

Provenance repository

Cloudera does not recommend changing the provenance repository backend. If you need NiFi-style
provenance data, contact your Cloudera representative with the feature request.

You can configure the repository backends in the minifi.properties file as follows:

nifi.provenance.repository.class.name

14

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

Possible values:

• NoOpRepository: disable provenance - this is the default value
• ProvenanceRepository: RocksDB backend - You should not use this backend repository as it is

not thoroughly tested. Cloudera advises caution if you decide to use it.
• VolatileProvenanceFileRepository: in-memory, non-persistent storage backend - You should

only use it for testing.

Other configuration options for volatile repositories:

configuration options
maximum number of entries to keep in memory
nifi.volatile.repository.options.flowfile.max.count=10000

maximum number of bytes to keep in memory
nifi.volatile.repository.options.flowfile.max.bytes=1M

maximum number of entries to keep in memory
nifi.volatile.repository.options.provenance.max.count=10000
maximum number of bytes to keep in memory
nifi.volatile.repository.options.provenance.max.bytes=1M

maximum number of entries to keep in memory
nifi.volatile.repository.options.content.max.count=100000
maximum number of bytes to keep in memory
nifi.volatile.repository.options.content.max.bytes=1M

limits locking for the content repository
nifi.volatile.repository.options.content.minimal.locking=true

Systems that have limited memory must be cognisant of the above options. Limiting the maximum count for the
number of entries limits memory consumption but it also limits the number of events that can be stored. If you limit
the amount of volatile content you are configuring, you may have excessive session rollback due to invalid stream
errors that occur when a claim cannot be found.

Repository encryption

You can encrypt the repository starting with the CEM Agents 1.21.06 release.

You can provide the RocksDB-backed repositories with a key to request their encryption (using AES-256-CTR) in
the conf/bootstrap.conf file:

nifi.flowfile.repository.encryption.key=805D7B95EF44DC27C87FFBC4DFDE376DAE60
4D55DB2C5496DEEF5236362DE62E
nifi.database.content.repository.encryption.key=
nifi.state.management.provider.local.encryption.key=

In the above configuration, the first line makes the Flow File repository use the specified 256-bit key. The second line
triggers the generation of a random 256-bit key persisted back into conf/bootstrap.conf, which the Content repository
then uses for encryption. This way, you can request encryption without being concerned about what key to use.
Finally, as the last line is commented out, it makes the state manager use plaintext storage and not trigger encryption.

When multiple repositories use the same directory (as with minifidb:// scheme), the repositories should either be all
plaintext or all encrypted with the same key.

Encrypting sensitive data
You can prevent accidental exposure of passwords by encrypting sensitive configuration properties in the minifi.p
roperties file. Learn how to encrypt sensitive data.

15

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

MiNiFi comes with a tool called encrypt-config (encrypt-config.exe on Windows) which can be found in the bin
directory of the installation, next to the main minifi binary. It enables the encryption of sensitive configuration
properties in the minifi.properties file along with the encryption of the flow configuration (config.yml by default).

The security of the encryption depends on the security of the bootstrap.conf file, which contains the encryption key.

Note: This feature is available starting with the release of MiNiFi C++ 1.20.09.

The terminologies used in this section are as follows:

• minifi home

The directory as specified to encrypt-config by the --minifi-home option.
• configuration directory

The <minifi home>/conf directory.
• properties file

The <minifi home>/conf/minifi.properties file.
• flow configuration

The file specified in the properties file with the key nifi.flow.configuration.file, or if not specified it defaults to
<minifi home>/conf/config.yml.

• bootstrap file

The file <minifi home>/conf/bootstrap.conf.
• sensitive property

All property in the properties file that we wish to encrypt.

Encryption of the configuration properties

If you have a minifi.properties file in your MiNiFi configuration directory /var/tmp/minifi-home/conf containing the
following sensitive properties:

minifi-properties
...
nifi.security.client.pass.phrase=my_pass_phrase
...
nifi.rest.api.user.name=admin
nifi.rest.api.password=password123
...

you can run the encrypt-config tool as shown in the following example:

$./bin/encrypt-config --minifi-home /var/tmp/minifi-home

Generating a new encryption key...
Wrote the new encryption key to /var/tmp/minifi-home/conf/bootstrap.conf
Encrypted property: nifi.security.client.pass.phrase
Encrypted property: nifi.rest.api.password
Encrypted 2 sensitive properties in /var/tmp/minifi-home/conf/minifi.propert
ies

The tool performs the following actions:

1. Generates a new encryption key.
2. Creates a bootstrap.conf file in your configuration directory, and write the encryption key to this file.
3. Encrypts the sensitive properties using this encryption key.
4. Adds a something.protected encryption marker after each encrypted property.

16

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

After running the tool, the bootstrap.conf and minifi.properties files look like as shown in the following examples:

bootstrap.conf
nifi.bootstrap.sensitive.key=77cd3f88ab997f7ae99b13c70877c5274c3b7b495f601f
290042b14e7db4d542

minifi.properties
...
nifi.security.client.pass.phrase=STBmfU0uk5hgSYG5O3uJM3HeZjrYJz//||vE/V65Qi
MgSatzScaPYkraVrpWnBExVgVX/CwyXx
nifi.security.client.pass.phrase.protected=xsalsa20poly1305
...
nifi.rest.api.user.name=admin
nifi.rest.api.password=q8XNjJMoVABXz7sks5O6nhaTqqRay4gF||U3762djgMVguHI6GjRl
+iCCDSkIdTFzKDCXi
nifi.rest.api.password.protected=xsalsa20poly1305
...

You should protect the bootstrap.conf file to make sure it is only readable by the user who runs MiNiFi.

Additional sensitive properties

By default, encrypt-config encrypts a (short) list of default sensitive properties. If you want more properties to
be encrypted, you can add a nifi.sensitive.props.additional.keys setting with a comma-separated list of additional
sensitive properties to your minifi.properties file before running the encrypt-config tool. For example,

minifi.properties
...
nifi.sensitive.props.additional.keys=nifi.rest.api.user.name,controller.soc
ket.host,controller.socket.port
...

The tool encrypts the additional properties. You can also do this after you have already encrypted some properties.
In that case, the tool encrypts the additional properties using the existing encryption key and leaves the other, already
encrypted, sensitive properties.

Modifying sensitive properties

If you later need to modify the value of a sensitive property which was encrypted earlier, perform the following steps:

1. Replace the encrypted value with the new unencrypted value.
2. Delete the something.protected=... line which was added by the tool.
3. Re-run the encrypt-config tool.

The tool encrypts the modified property using the existing encryption key in bootstrap.conf and leaves the other,
already encrypted, sensitive properties.

Encryption of the flow definition

Pass the flag --encrypt-flow-config to encrypt-config so that it also encrypts the flow configuration file, not just the
sensitive properties.

Updating the encryption key

If you want to change the encryption key, perform the following steps:

1. If the files are already encrypted, there should be a nifi.bootstrap.sensitive.key=... line in the bootstrap.conf file
(that is, have access to the original key), otherwise you have to manually replace all encrypted data (sensitive
properties and flow configuration) with their original unencrypted values (or some other new value).

17

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

2. If present, rename the nifi.bootstrap.sensitive.key=... property in bootstrap.conf to nifi.bootstrap.sensitive.key.old
=... (that is, add .old suffix to the property name).

3. If you have a specific encryption key you would like to use, add it to the bootstrap.conf file (add the line nifi.boo
tstrap.sensitive.key=<your encryption key here>). If you provide no encryption key (no nifi.bootstrap.sensitive
.key property in bootstrap.conf, or no bootstrap.conf at all), a new key is randomly generated and written to boot
strap.conf.

4. Re-run the encrypt-config tool.

Take special care when changing the encryption key and the flow configuration is encrypted, so that you also re-
encrypt it before deleting the old key (you get a warning if you do not request its re-encryption).

$ cat /var/tmp/minifi-home/conf/bootstrap.conf

nifi.bootstrap.sensitive.key.old=0728061a041edb09445ae4dbd95f11bd255bb0b467
b8efb239e665aea5ace46b
nifi.bootstrap.sensitive.key=46af2c11a3f24c8c875ab4bee65e18a75f825fc3a4e0
3abdc8ce49d405b0b730

$./bin/encrypt-config --minifi-home /var/tmp/minifi-home

Old encryption key found in conf/bootstrap.conf
Using the existing encryption key found in conf/bootstrap.conf
Successfully decrypted property "nifi.security.client.pass.phrase" using old
 key.
Encrypted property: nifi.security.client.pass.phrase
Encrypted 1 sensitive property in conf/minifi.properties
WARNING: you did not request the flow config to be updated, if it is curre
ntly encrypted and the old key is removed, you won't be able to recover the
flow config.

If you forgot to specify the --encrypt-flow-config flag, you can re-run encrypt-config with the flag, and it re-encrypts
the flow configuration file, as well.

It is always safe to re-run encrypt-config. If it does not find anything new to encrypt, it does not do anything.

When you have successfully re-encrypted all sensitive properties and the flow configuration file(s), you can delete the
nifi.bootstrap.sensitive.key.old line from the bootstrap file.

Automatic encryption

Specify the property nifi.flow.configuration.encrypt=true, in the properties file to have the new flow configuration
written to the disk encrypted after a flow update (originating from a C2 server). It requires that you have a conf/boo
tstrap.conf in your minifi home, containing an encryption key (nifi.bootstrap.sensitive.key). This master key is also
used on agent startup to decrypt the flow configuration file.

Integrating with the Windows certificate store
Learn how to enable MiNiFi C++ to get certificates from truststore of the OS.

If you want MiNiFi to communicate with EFM (C2) securely using HTTPS, you need a server certificate that EFM
uses to identify itself and a client certificate that MiNiFi uses to identify itself, as well as a private key corresponding
to the client certificate.

Manual setup of the client and server certificates on the MiNiFi side:

nifi.remote.input.secure=true
nifi.security.need.ClientAuth=true
nifi.security.client.certificate=C:\opt\nifi\data\ssl\client-certificate.pem
nifi.security.client.private.key=C:\opt\nifi\data\ssl\client-certificate.key
#nifi.security.client.pass.phrase=

18

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

nifi.security.client.ca.certificate=C:\opt\nifi\data\ssl\server-certificat
e.pem
#nifi.security.use.system.cert.store=

If both client and server certificates are in the LocalMachine (= "Local Computer") system certificate store (in MY =
"Personal" and ROOT = "Trusted Root Certification Authorities", respectively), then you can simply do:

nifi.remote.input.secure=true
nifi.security.need.ClientAuth=true
#nifi.security.client.certificate=
#nifi.security.client.private.key=
#nifi.security.client.pass.phrase=
#nifi.security.client.ca.certificate=
nifi.security.use.system.cert.store=true

Ensure that the client certificate is exportable.

If you need to select the client certificate by CN, you can add the following property:

nifi.security.windows.client.cert.cn=<myCertificateIssuedToName>

If you need to select the client certificate by Extended (= "Enhanced") Key Usage, you can add the following
property:

nifi.security.windows.client.cert.key.usage=Client Authentication, Server Au
thentication

You can also use a different system store location or a different system store for the client and server certificates, if
needed:

instead of LocalMachine
nifi.security.windows.cert.store.location=CurrentUser
instead of MY
nifi.security.windows.client.cert.store=TrustedPeople

instead of ROOT
nifi.security.windows.server.cert.store=TrustedPublisher

Starting MiNiFi agent
After MiNiFi is installed and configured, you can start it. Learn how to start your MiNiFi agent.

Procedure

1. From a terminal window, navigate to the MiNiFi installation directory.

2. To start MiNiFi in the foreground, enter:

bin/minifi.sh run

3. To start MiNiFi in the background, enter:

bin/minifi.sh start

Troubleshooting MiNiFi C++ agent
You might need to perform extra configuration steps for the MiNiFi C++ agent.

19

CEM MiNiFi C++ Agent Install the MiNiFi C++ agent

If you are using CENTOS7 operating system, you might get the following error when you run the agent:

PID 15860 is stale, removing pid file at /grid/0/cloudera_flow_management/cp
p-minifi/bin/.minifi.pid

Starting MiNiFi with PID 10075 and pid file /grid/0/cloudera_flow_manageme
nt/cpp-minifi/bin/.minifi.pid

-bash-4.2$ [2019-07-infol 14:36:04.369] [main] [info] Using MINIFI_HOME=/
grid/0/cloudera_flow_management/cpp-minifi from environment.

[2019-07-infol 14:36:04.369] [org::apache::nifi::minifi::Properties] [info]
 Using configuration file located at /grid/0/cloudera_flow_management/cpp-m
inifi/conf/minifi-log.properties, from ./conf/minifi-log.properties
setting default dir to /grid/0/cloudera_flow_management/cpp-minifi/content_
repository

Could not find platform independent libraries <prefix>

Could not find platform dependent libraries <exec_prefix>

Consider setting $PYTHONHOME to <prefix>[:<exec_prefix>]
Fatal Python error: Py_Initialize: Unable to get the locale encoding

ImportError: No module named 'encodings'

The error occurs when you use an incorrect path for Python. To troubleshoot, update the following property values:

• PYTHONHOME=/usr
• PYTHONPATH=/usr/lib64/python3.4

20

	Contents
	Install the MiNiFi C++ agent
	Before you begin installing MiNiFi C++ agent
	System requirements for MiNiFi C++
	Before you begin MiNiFi agent installation on Windows

	Install your MiNiFi C++ agent
	Install the C++ agent on Windows from command line
	Install the C++ agent on Windows using the MSI

	MiNiFi C++ agent configurations
	Configuring your MiNiFi C++ agent
	Configuring communication with secured EFM
	Configuring MiNiFi C++ repositories
	Encrypting sensitive data

	Integrating with the Windows certificate store
	Starting MiNiFi agent
	Troubleshooting MiNiFi C++ agent

