Cloudera Streaming Analytics 1.3.0

Application Development

Date published: 2019-12-17
Date modified: 2021-03-25

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Streaming Analytics | Contents | iii

FIINK appliCation SIFUCLUN €. ...oveeeieecie ettt s 4
Source, operator and SinK iN DataStream APl 4
FIINK 8pPliCATION EXAMPIE......oeiteiitireetereet ettt et b e b et e et b et b et b e ebese et e se et e seebeseene e 6
Testing and validating Flink applications............ccccvevviiieie e 6
Configuring FIINK appliCatioNS..........cceiieiiieiie i 7
Setting parallelism and MaxX Parall&liSM...........oo b 8
Configuring Flink appliCation FESOUICES...........coueirereetieiere ettt sttt b e bbb s bbb e beseeseanean 8
Configuring ROCKSDB state DaCken d............ooueiiiiiiee e e 10

Enabling checkpoints for Flink appliCations...........cocu i e enea 10

Cloudera Streaming Analytics Flink application structure

Y ou must understand the parts of application structure to build and develop a Flink streaming application. To create
and execute the Flink application, you need to create the application logic using the DataStream API.

A Flink application consists of the following structural parts:

» Creating the execution environment

* Loading datato a source

e Transforming theinitial data

e Writing the transformed datato a sink

» Triggering the execution of the program

St r eanExecut i onEnvi ronnent env = StreanExecuti onEnvi ronnent . get Executi onEnvi
ronnment () ;

env execute("Flink Streani ng Secured Job Sanple")

The getExecutionEnvironment() static call guarantees that the pipeline always uses the correct environment based

on the location it is executed on. When running from the IDE, alocal execution environment, and when running
from the client for cluster submission, it returnsthe Y ARN execution environment. The rest of the main class defines
the application sources, processing flow and the sinks followed by the execute() call. The execute call triggersthe
actual execution of the pipeline either locally or on the cluster. The StreamExecutionEnvironment class is needed to
configure important job parameters for maintaining the behavior of the application and to create the DataStream.

Flink Project Template

Simple Tutorial: Application logic

Stateful Tutorial: Build a Flink streaming application
Apache Flink document: DataStream API overview

A DataStream represents the data records and the operators. There are pre-implemented sources and sinks for Flink,
and you can a so use custom defined connectors to maintain the dataflow with other functions.

Dat aStreanxkStri ng> source = env. addSour ce(consuner)
. nane(" Kaf ka Source")
. ui d(" Kaf ka Source")
.map(record -> record.getld() + "," + record.get Name() +
.getDescription())
. name(" ToQut put Stri ng");
Stream ngFi | eSi nk<String> sink = Streani ngFil eSi nk
. f or RowFor mat (new Pat h(par ans. get Requi red(K_ HDFS OUTPUT)), new Si npl eSt
ri ngencoder <Stri ng>("UTF-8"))
Lbuild();
sour ce. addSi nk(si nk)
. hame("FS Si nk")
.uid("FS Sink");
source. print();

+ record

https://docs.cloudera.com/csa/1.3.0/quickstart/topics/csa-flink-archetype.html
https://github.com/cloudera/flink-tutorials/blob/master/flink-simple-tutorial/README.md#application-logic
https://github.com/cloudera/flink-tutorials/blob/master/flink-stateful-tutorial/README.md#implementing-the-flink-application
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/datastream_api.html

Cloudera Streaming Analytics Flink application structure

Choosing the sources and sinks depends on the purpose of the application. As Flink can be implemented in any kind
of an environment, various connectors are available. In most cases, Kafkais used as a connector asit has streaming
capabilities and can be easily integrated with other services.

Sour ces
Sources are where your program reads its input from. Y ou can attach a source to your program by
using StreamExecutionEnvironment.addSource(sourceFunction). Flink comes with a number of pre-
implemented source functions. For the list of sources, see the Apache Flink documentation.
Streaming Analytics in Cloudera supports the following sources:
« HDFS
» Kafka
Operators
Operators transform one or more DataStreams into a new DataStream. When choosing the operator,
you need to decide what type of transformation you need on your data. The following are some
basic transformation:
° M ap
Takes one element and produces one element.
dat aSt ream map()
* FaMap
Takes one element and produces zero, one, or more elements.
dat aStream f | at Map()
* Filter
Evaluates a boolean function for each element and retains those for which the function returns
true.
dataStream filter()
 KeyBy
Logically partitions a stream into digoint partitions. All records with the same key are assigned
to the same partition. This transformation returns a KeyedStream
dat aStream keyBy() // Key by field "soneKey"
dat aStream keyBy() // Key by the first elenment of a Tuple
e Window
Windows can be defined on already partitioned KeyedStreams. Windows group the datain each
key according to some characteristic (e.g., the data that arrived within the last 5 seconds).
dat aSt ream keyBy() . wi ndow(Tunbl i ngEvent Ti meW ndows. of (Ti ne. s
econds(5))); // Last 5 seconds of data
For the full list of operators, see the Apache Flink documentation.
Sinks

Data sinks consume DataStreams and forward them to files, sockets, external systems, or print
them. Flink comes with a variety of built-in output formats that are encapsul ated behind operations
on the DataStreams. For the list of sources, see the Apache Flink documentation.

Streaming Analytics in Cloudera supports the following sinks:

 Kafka
e HBase

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/#datastream-transformations

Cloudera Streaming Analytics Testing and validating Flink applications

* Kudu
« HDFS

Apache Flink document: Operators

Apache Flink document: Window operator
Apache Flink document: Generating watermarks
Apache Flink document: Working with state
Apache Flink document: User defined functions

Thefollowing is an example of aFlink application logic from the Secure Tutorial. The application isusing Kafkaas a
source and writing the outputs to an HDFS sink.

public cl ass Kaf kaToHDFSAvroJdob {
private static Logger LOG = Logger Fact ory. get Logger (Kaf kaToHDFSAvr oJob. cl
ass) ;
public static void main(String[] args) throws Exception {
Par anet er Tool parans = Utils. parseArgs(args);

St r eamExecut i onEnvi ronnent env = StreanExecuti onEnvironnent . get Executi on
Envi ronment () ;

Kaf kaDeseri al i zat i onSchenma<Message> schema = Cl ouder aRegi st r yKaf kaDeseri al
i zati onSchenma
. bui | der (Message. cl ass)
.setConfig(Uils.readSchemaRegi stryProperties(parans))
.build();
Fl i nkKaf kaConsunmer <Message> consunmer = new Fl i nkKaf kaConsuner <Message>(
par ans. get Requi red(K_KAFKA TOPI C), schema, Uil s.readKaf kaProperties(parans)

)

Dat aStreanxStri ng> source = env. addSour ce(consuner)
. nanme(" Kaf ka Source")
. ui d("Kaf ka Source")
.map(record -> record.getld() + "," + record.getName() + "," + record.g
et Descri ption())
. name(" ToQut put String");
Stream ngFi | eSi nk<String> sink = Streani ngFil eSi nk
. f or RowFor mat (new Pat h(par ans. get Requi red(K_HDFS_QOUTPUT)), new Si npl e
StringEncoder <Stri ng>("UTF-8"))
Lbuild();
sour ce. addSi nk(si nk)
.nane("FS Sink")
.uid("FS Sink");
source.print();

env. execute("Flink Stream ng Secured Job Sanple");

}
}

After you have built your Flink streaming application, you can create a simple testing method to validate the correct
behaviour of your application.

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/event_timestamps_watermarks.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/state/state.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/user_defined_functions.html

Cloudera Streaming Analytics Configuring Flink applications

Pipelines can be extracted to static methods and can be easily tested with the JUnit framework.

A simple JUnit test can be written to verify the core application logic. The test isimplemented in the test class and
should be regarded as an integration test of the application flow.

The test mimics the application main class with only minor differences:

1. Create the StreamExecutionEnvironment the same way.

2. Usethe env.fromElements(..) method to pre-popul ate a DataStream with some testing data.
3. Feed the testing data to the static data processing logic as before.

4. Verify the correctness once the test is finished.

@est
public void testPipeline() throws Exception {
final String alertMsk = "42";
St r eanExecut i onEnvi ronnent env = StreanExecuti onEnvi ronment . get Exec
uti onEnvi ronnent () ;
HeapMetrics alertl = testStats(0.42);
HeapMetrics regularl = testStats(0.452);
HeapMetrics regular2 = testStats(0.245);
HeapMetrics alert2 = testStats(0.9423);

Dat aSt r eanSour ce<HeapMetri cs> testlnput = env.fronkEl enments(alerti,
alert2, regularl, regular2);
HeapMbni t or Pi pel i ne. conput eHeapAl ert s(testlnput, ParameterTool.fro
mArgs(new String[]{"--al ert Mask", al ertMask}))
. addSi nk(new Si nkFuncti on<HeapAl ert>() {

@verride
public void i nvoke(HeapAl ert val ue) {
t est Qut put . add(val ue) ;

})
.setParallelisnml);
env. execut e();
assert Equal s(Set s. newHashSet (HeapAl ert . naskRat i ovat ch(al ert Mask, al
ertl),
HeapAl ert. maskRat i oMat ch(al ert Mask, alert2)), testQutput);

private HeapMetrics testStats(double ratio) {
return new HeapMetrics(HeapMetrics. OLD GEN, 0, O, ratio, 0, "test
host");

}

Simple Tutorial: Testing the data pipeline
Stateful Tutorial: Test and validate the streaming pipeline

Cloudera Streaming Analytics includes Flink with configuration that works out of the box. It is not mandatory to
configure Flink to production, but you can use the available configurations to optimize the application behavior in
production. Cloudera Manager includes all the necessary configurations for Flink that can also be accessed from the
flink-conf.yaml file.

https://github.com/cloudera/flink-tutorials/blob/master/flink-simple-tutorial/README.md#testing-the-data-pipeline
https://github.com/cloudera/flink-tutorials/blob/master/flink-stateful-tutorial/README.md#testing-and-validating-our-pipeline

Cloudera Streaming Analytics Configuring Flink applications

The max parallelism is the most essential part of resource configuration for Flink applications as it defines the
maximum jobs that are executed at the sametimein parallel instances. However, you can optimize max paralelismin
case your production goals differ from the default settings.

In aFlink application, the different tasks are split into several parallel instances for execution. The number of parallel

instances for atask is called paralelism. Parallelism can be defined at the operator, client, execution environment and
system level. Cloudera recommends setting parallelism to alower value at first use, and increasing it over timeif the

job cannot keep up with the input rate.

To configure the max parallelism, setMaxParallelismis called as it controls the number of key-groups created by the
state backends. A key-group is a partition of an operator state. The number of key-groups determines how datais
going to be distributed among the parallel operators. If the key-groups are not distributed evenly, the data distribution
isalso uneven.

Consider the following aspects when setting the max parallelism:

¢ The number should be large enough to accommodate expected future load increases as this setting cannot be
changed without starting from an empty state.

» |If Pisthe selected parallelism for the job, the max parallelism should be divisible by P to get even state
distribution.

» Please note that larger max parallelism settings have greater cost on the state backend side, for large scale
production jobs benchmarking the size of the state based on the maximum parallelism is useful before changing
this parameter.

Based on these criteria, Cloudera recommends setting the max paralellism to factorias or other numbers with alarge
number of divisors (120, 180, 240, 360, 720, 840, 1260), which will make parallelism tuning easier.

1 million record / sec / core 100 000 records/ sec/ core 10 000 records/ sec / core

Generally, Flink automatically identifies the required resources for an application based on the parallelism settings.
However, you can adjust the configurations based on your requirements by specifying the number of task managers
and their memory alocation for individual Flink applications or for the entire Flink deployment.

To control the resources of individual TaskManager processes and the amount of work allocated to them, Cloudera
recommends starting the configuration with the following options:
Number of Task Slots

The number of task slots controls how many parallel pipeline/operator instances can be executed in
asingle TaskManager. Together with the parallelism setting, you can ultimately define how many
TaskManagerswill be allocated for the job. For example, if you set the job parallelism to 12 and
the taskmanager.numberOf TaskSlots to 4, there will be 3 TaskManager containers for the job as the
value of parallelism will be divided with the number of task dlots.

Y ou can set the number of task slotsin Cloudera Manager under the Configuration tab.

TaskManager Number of Task Slots FLINK-1 (Service-Wide) O Undo

taskmanager.numberOfTaskSlots 4

&% taskmanager_number_of_task_slots

Cloudera Streaming Analytics Configuring Flink applications

TaskManager Process Memory Size

The taskmanager.memory.process.size option controls the total memory size of the TaskManager
containers. For applications that store data on heap or use large state sizes, it is recommended towe
should increase the process size accordingly. Y ou can set the number of task slotsin Cloudera
Manager under the Configuration tab.

TaskManager Process Memory Size FLINK-1 (Service-Wide)

taskmanager.memory.process.size

2 iB v
£ taskmanager_memory_process_size [G J

For more information about the TaskManager memory management, see the Apache Flink
documentation. Y ou can also check the TaskManager configuration of your running application on
the Flink Dashboard to review the configured values before making adjustments.

Memory

Flink Mamory Model Configured Vases Metric

e, Framawork Hos 126 MB

Bin Flon iy &0.9 ME | 654 8
Task Heap 538 MB

T Mansged ety 635 MB P —

9 taom by

Framework Off-Heap 128 M8

R Task Off-Heap

Tt OB Mep Mot ke 150 B
s 128 KB/ 158 MB

Ll VM Mataspace 56 MB

648 ME 256 W

JWd Crvorbwad 208 MB

Network buffers for throughput and latency

Flink uses network buffersto transfer data from one operator to another. These buffers are filled up with data during
the specified time for the timeout. In case of high data rates, the set time is usually never reached. For cases when
the datarate is high, the throughput can be further increased with setting the buffer timeout to an intentionally higher
value due to the characteristics of the TCP channel. However, thisin turn increases the latency of the pipeline.

Yarn Related Configurations

Flink on YARN jobs are configured to tolerate a maximum number of failed containers before they terminate. You
can configure the Y ARN maximum failed containers setting in proportion to the total parallelism and the expected
lifetime of the job.

High Availability is enabled by default in CSA. This eliminates the JobManager as a single point of failure. You can
also tune the application resilience by setting the Y ARN maximum application attempts, which determines how many
times the application will retry in case of failures.

Furthermore, you can use a Y ARN queue with preemption disabled to avoid long running jobs being affected when
the cluster reaches its capacity limit.

Reference values for the configurations

Configuration Parameter Recommended value

TM container memory -ytm / taskmanager.heap.size TM Heap + Heap-cutoff
Managed Memory Fraction taskmanager.memory.managed.fraction 04-0.9
Max parallelism pipeline.max-parallelism 120,720,1260,5040

Cloudera Streaming Analytics

Configuring Flink applications

Configuration

Buffer timeout

execution.buffer-timeout

Recommended value

1-100

YARN queue

-yqu

A queue with no preemption

YARN max failed containers

yarn.maximum-failed-containers

3*num_containers

YARN max AM failures

yarn.application-attempts

3-5

Configuring RocksDB state backend

Y ou can use RocksDB as a state backend when your Flink streaming application requires alarger state that doesn’t fit
easily in memory. The RocksDB state backend uses a combination of fast in-memory cache and optimized disk based
|ookups to manage state.

Y ou can configure the state backend for your streaming application by using the state.backend parameter directly or
in Cloudera Manager under the Configuration tab:

State Backend FLINK-1 (Service-Wide) 'O Undo

state.backend

of state_backend () FILESYSTEM

(® ROCKSDB

Y ou can adjust how much memory RocksDB should use as a cache to increase lookup performance by setting the
memory managed fraction of the TaskManagers in Cloudera Manager under the Configuration tab:

TaskManager Managed Memory Fraction FLINK-1 (Service-Wide)

taskmanager.memory.managed.fraction 0.4 '

27 taskmanager_managed_memory_fraction

The default fraction value is 0.4, but with larger cache requirements you need to increase this value together with the
total memory size.

Enabling checkpoints for Flink applications

To make your Flink application fault tolerant, you need to enable automatic checkpointing. When an error or afailure
occurs, Flink will automatically restarts and restores the state from the last successful checkpoint. Checkpointing is
not enabled by default.

Whileit is possible to enable checkpointing programmatically through the StreamExecutionEnvironment, Cloudera
recommends to enable checkpointing either using the configuration file for each job, or as adefault configuration for
all Flink applications through Cloudera Manager.

To enable checkpointing, you need to set the execution.checkpointing.interval configuration option to avalue larger
than 0. It is recommended to start with a checkpoint interval of 10 minutes (600000 milliseconds).

Y ou can acces the configuration options of checkpointing in Cloudera Manager under the Configuration tab.

10

Cloudera Streaming Analytics Configuring Flink applications

Enable Checkpoint Compression [] FLINK-1 (Service-Wide)

execution.checkpointing.snapshot-compression
& execution_snapshot_compression

Externalized Checkpoint Retention FLINK-1 (Service-Wide)
execution.checkpointing.externalized-checkpoint- @ RETAIN_ON_CANCELLATION
retention -

& externalized_checkpoint_retention O DELETE_ON_CAMNCELLATION
Checkpointing Interval (milliseconds) FLINK-1 (Service-Wide)

execution.checkpointing.interval ‘ ‘
& checkpointing_interval

Max Concurrent Checkpoints FLINK-1 (Service-Wide)
execution.checkpointing. max-concurrent-checkpoints ‘ 1 J
@8 max_concurrent_checkpoints

Min Pause Between Checkpoints (milliseconds) FLINK-1 (Service-Wide)

execution.checkpointing. min-pause ‘
&5 checkpointing_min_pause

0|

Checkpointing Mode FLINK-1 (Service-Wide)

execution.checkpointing. mode

@2 checkpointing_mode (® EXACTLY_ONCE

() AT_LEAST_ONCE

Checkpointing Timeout (milliseconds) FLINK-1 (Service-Wide)

execution.checkpointing.timeout

@2 checkpointing_timeout 60000

11

	Contents
	Flink application structure
	Source, operator and sink in DataStream API
	Flink application example

	Testing and validating Flink applications
	Configuring Flink applications
	Setting parallelism and max parallelism
	Configuring Flink application resources
	Configuring RocksDB state backend
	Enabling checkpoints for Flink applications

