Cloudera Streaming Analytics 1.5.0

SQL and Table API

Date published: 2019-12-17
Date modified: 2021-09-29

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Streaming Analytics | Contents | iii

Flink SQL and Table APl ...t 4
SQL and Table APl SUPPOITEA FERIUMES.........c.ciuiirieiriieieee ettt 5
DataStream APl interoperability........ccccovviiieie i 5
Converting DataStreams 10 TaDIES........ccviiiiiiieriesesee e sttt se e e e e seesesaesnesrestesnesrenean 6
Converting Tables t0 DalaSIIEAMS........ccvieierirerieseesieee st et e s s e s e stesreste e seestetesee s esaesee e eseesesaessesressesaesrenses 6

ST 0001 (=0 [0 = = T 1Y/ == S 7
SQL catalogs fOr FIINK........c.ooiieee e 8
[TV LS o= = oo ST PROR 8

QU o (o= = oo SRR 9
SCheMa REGISITY CALAIOQ. ... eeeeeeeeieeeee ettt ettt b e bt bt sb et e s b s e e et et se e e et e e e e e e eneenas 9

SOQL CONNECLONS FOF FIIMK......oitieiieiee et e et e s re e e e sreetesaeetesae e tesae e beeas e seeanenreenes 10

(G 111 W0 00T o (o TSP 10

Data types for KafKa CONMNECLON...........ciiiiiiie et st et sbesne e 11

SOQL StatementsS in FHNK.......oooeeiieecee e 16
CREATE SEBIEIMENTS.cotiiteeie ettt sttt st ettt e b e et e sbeeeesaeeeesaeeseesaeeseesaeesbesaeesbeensesbeensenbesnsenseanes 16
DROP SEAIEIMENTS.......eeiteiiie ettt ettt ettt ste st e sae e eesbeeatesbe e besbeenbeeseebeeaeesbeeaeesaeeneesaeenbesaeebesaeenbesneanee 17
ALTER SEBIEIMENTS. ..ottt ettt sttt sttt e et e et et e e st et e eaeesbeeaeesbeeaeesaeemeesaeeeesaeesbesaeenbesseenbesaeanbenns 18

L S IS = 1 1 1= 1TSS 18

SOL QUENTES IN FHNK...eiiiiie ettt st e s sare e s nne e sreeeas 19

Cloudera Streaming Analytics Flink SQL and Table API

In Cloudera Streaming Analytics, you can enhance your streaming application with analytical queries using Table
APl or SQL API. These areintegrated in ajoint APl and can aso be embedded into regular DataStream applications.
The central concept of the joint APl isa Table that serves as the input and output of your streaming data queries.

There are also two planners that trandlate Table/SQL queries to Flink jobs: the old planner and the Blink planner.
Cloudera Streaming Analytics only supports the Blink planner for Table/SQL applications.

Adding the following Maven dependency to the Flink configuration file allows you to use the Table API with the
Blink planner.

<dependency>
<gr oupl d>or g. apache. f | i nk</ gr oupl d>
<artifactld>flink-table-api-java-bridge 2.12</artifactld>
<versi on>1. 13. 0-csal. 5. 0. 0</ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>or g. apache. f | i nk</ gr oupl d>
<artifactld>flink-table-planner-blink 2.12</artifactld>
<versi on>1.13. 0-csal. 5. 0. 0</ versi on>
<scope>pr ovi ded</ scope>

</ dependency>

SQL programsin Flink follow a structure similar to regular DataStream applications:

Create a StreamTableEnvironment with the Blink planner.
Register catalogs and tables.

Run the queries/updates.

Run the StreamTableEnvironment.

AW

Y ou can see an example of the structure here:

St reamExecut i onEnvi ronnent streanEnv = StreanExecuti onEnvi ronment. get Execut i
onEnvi ronment () ;

Envi ronment Settings tabl eSettings = Environnent Setti ngs
. newl nst ance()
. useBl i nkPl anner ()
.build();

St r eaniTabl eEnvi ronnment tabl eEnv = StreamTabl eEnvi r onnent
.Create(streantnv, tableSettings);

t abl eEnv. sql Updat e(" CREATE TABLE ...");
Tabl e table = tabl eEnv. sql Query("SELECT ... FROM ...");

Dat aSt r eankRow> stream = t abl eEnv. t oAppendStrean(tabl e, Row. cl ass);
streamprint();

t abl eEnv. execute("Print");

The Table API exposes different flavors of TableEnvironment to the end users that cover different feature sets. To
ensure smooth interaction between other DataStream applications, CSA only supports using StreamT ableEnvironme
nt.

Cloudera Streaming Analytics DataStream API interoperability

StreamT ableEnvironment wraps a regular StreamExecutionEnvironment. This allows you to seamlessly go from
streams to tables and back within the same pipeline.

Y ou can create StreamT ableEnvironment with the following code entry:
St r eanmExecut i onEnvi ronnent streankEnv = ...
Envi ronment Settings tabl eSettings = Environnment Settings
. newl nst ance()

. useBl i nkPl anner ()
.bui ld();

St r eaniTabl eEnvi ronnment tabl eEnv = St reamTabl eEnvi r onnent
.create(streantnv, tableSettings);

When combining regular DataStream and Table/SQL applications, make sure to always call the .execute command on
the StreamTableEnvironment instead of the regular StreamExecutionEnvironment to ensure correct execution.

SQL and Table API supported features
The following SQL and Table API features are supported in Cloudera Streaming Analytics.

StreamT ableEnvironment (Blink Planner) Catalogs

¢ DataStream conversions: e In-memory - Flink default catalog
« Row * Hive '
< Tuple ¢ SchemaRegistry
e Kudu

¢ Temporary views

¢ SQL update and Query operations

¢ Creating and using catalogs

e Listing catalogs, tables, databases and functions

SQL update statements SQL query statements

« CREATETABLE * Basic operations
¢ Computed columns e Scan, Project, Filter
* Watermark definitions * Basic aggregations
« Table connectors . Group By
« Kafka e Group By Window
¢ Kudu e Distinct (only windowed)
¢ Hive (through catalog) e Joins
* Dataformats (Kafka) + Timewindowed stream-stream join
¢ JSON e User defined scalar functions (scalar udf)
e Avro
e Csv
¢« INSERTINTO
¢ VALUES

¢ SELECT queries

DataStream API interoperability

The DataStream API interoperability offers you new waysto build your Flink streaming application logic as you can
convert the DataStreams to Tables, and the Tables back to Datastreams. This means that you can run SQL queries
on your DataStreams. Y ou can also convert the result back to other streams, or insert them into one of the supported
table sinks.

The following DataStream type conversions are supported:

5

Cloudera Streaming Analytics DataStream API interoperability

» DataStream<Row>
» DataStream<TupleX<...>>

When converting DataStreams to Tables you need to define the StreamTableEnvironment for the conversion.
Cloudera recommends creating the tables with names asit is easier to refer to them in SQL. Y ou should also take the
processing and event time into consideration as crucial elements of Flink streaming applications.

StreamTableEnvironment is used to convert a DataStream into a Table. Y ou can use the fromDataStream and crea
teTemporaryView methods for the conversion. Cloudera recommends that you use the createTemporaryView method
asit provides away to assign a name to the created table. Named tables can be referenced directly in SQL afterwards.

Both of these methods take an optional, but recommended, string parameter to define field name mappings. The string
must contain a comma separated list of the desired column names. If the string is not specified, the column names are
set to fO, f1, ...fn.

Dat aSt r ean<Tupl e2<Integer, String>> stream= ...

Tabl e tabl e = tabl eEnv. fronDat aSt reanm(stream "col 1, col 2");

t abl eEnv. cr eat eTenpor aryVi ew(" MyTabl eNane", stream "col _1, col _2");

Y ou need to take into consideration the event timestamps and watermarks when converting DataStreams.

The processing time attribute must be defined as an additional (logical) column marked with the
.proctime property during schema definition.

Dat aSt r eam<xRow> stream = . ..

Tabl e tabl e = tabl eEnv. fronDat aStrean(stream "col _1, col _2, t
s_col . proctine");

For more information on time handling in SQL, see the Apache Flink documentation.

Even time attributes are defined by the .rowtime property during schema definition. This can either
replace an existing field or create anew one, but in either case, the field holds the event timestamp
of the current record.

Dat aSt r ean<Tupl e2<Ti mest anp, String>> stream = ...
stream assi gnTi mest anpsAndWat er mar ks(. . .)

Tabl e table = tabl eEnv. fronDat aStrean(stream "event_ts.rowine,
col _2");

For more information on time handling in SQL, see the Apache Flink documentation.

Tables are updated dynamically as the result of streaming queries. To convert them into DataStreams, you can either
append them or retract them based on the SQL query you have chosen.

The Table changes as new records arrive on the query’ s input streams. These Tables can be converted back into Data
Streams by capturing the change of the query output.

There are two modes to convert a Table into a DataStream:

» Append Mode: This mode can only be used if the dynamic Table is only modified by INSERT changes. For
example, it is append-only and previously emitted results are never updated.

6

https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/streaming/time_attributes.html
https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/streaming/time_attributes.html

Cloudera Streaming Analytics

* Retract Mode: This mode can always be used. It encodes INSERT and DEL ETE changes with a boolean flag.
True marksinserts, and false marks deletes.

Both toA ppendStream and toRetractStream methods take the conversion class or conversion type information as
parameters. For the recommended Row conversions, you need to provide the Row.class. For Tuple conversions, you
need to provide the Tuple Typelnformation object manually.

Tabl e tabl e = tabl eEnv. sql Query("SELECT nane, age FROM People");

Dat aSt r eankRow> appendStream = t abl eEnv. t oAppendStrean(tabl e, Row. cl ass);
Dat aSt r ean<Tupl e2<Bool ean, Row>> retract Stream = tabl eEnv.toRetract Strean{ta
bl e, Row. cl ass);

Dat aSt r ean<Tupl e2<Stri ng, |nteger>> tupleStream = tabl eEnv.t oAppendSt r ean(
tabl e,
new TypeH nt <Tupl e2<String, Integer>>() {}.getTypelnfo()

Note: For adetailed discussion about dynamic tables and their properties, see the Apache Flink
documentation.

Supported data types

Y ou should review the supported data types before designing your application to have al the information regarding
SQL type mappings, timestamp and date types.

Java to SQL type mappings

STRING String String

BOOLEAN boolean/Boolean boolean/Boolean
BYTES byte[] byte[]
DECIMAL(38,18) BigDecimal BigDecimal

TINYINT byte/Byte byte

SMALLINT short/Short short/Short

INT int/Integer int/Integer

BIGINT long/Long long/Long

FLOAT float/Float float/Float

DOUBLE double/Double double/Double

MAP Maps of supported types using MapTypelnfo | Maps of supported types
ARRAY primitive/object arrays primitive/object arrays*
ROW Row Row

Timestamp and Date types

The Table API supports awide variety of conversions between java.sql , java.time and SQL types. For smooth
operation, it is recommended to use java.sgl time classes whenever possible.

To DataStream

SQL Type From DataStream Tuple Row

DATE java.sgl.Date java.sgl.Date javatime.LocalDate

DataStream API interoperability

https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/streaming/dynamic_tables.html
https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/streaming/dynamic_tables.html

Cloudera Streaming Analytics SQL catalogs for Flink

To DataStream

SQL Type From DataStream Tuple Row

javatime.Loca Date* javatime.Loca Date*

TIME(0) javasgl.Time javasgl.Time javatime.Loca Time
javatime.Local Time* javatime.Loca Time*

TIMESTAMP(3) javasgl.Timestamp java.sgl.Timestamp javatime.LocaDateTime

javatime.LocalDateTime (no .row | javatime.Loca DateTime*
time support)*

TIMESTAMP_WITH_LOCAL javatime.Instant* javatime.lnstant* javatime.Instant
_TIME_ZONE

E Note: For information about the limitations regarding DataStream conversion, see the Release Notes.

SQL catalogs for Flink

Cloudera Streaming Analytics supports Hive, Kudu and Schema Registry catalogs to provide metadata for the stored
datain a database or other external systems. Y ou can choose the SQL catal ogs based on your Flink application
design.

For more information about Flink Catal ogs, see the Apache Flink documentation.

In-memory catalog

A generic in-memory catalog is enabled by default. However when the in-memory catalog is used, all objects are only
available for the lifetime of the session.

Hive catalog

You can add Hive asacatalog in Flink SQL by adding Hive dependency to your project, registering the Hive table in
Javaand setting it either globally in Cloudera Manager or the custom environment file.

The Hive catalog serves two purposes:

e Itisapersistent storage for pure Flink metadata
« Itisaninterface for reading and writing existing Hive tables

Maven Dependency

<dependency>
<gr oupl d>or g. apache. f | i nk</ gr oupl d>
<artifactld>flink-connector-hive 2. 12</artifactld>
<versi on>1. 13. 0-csal. 5. 0. 0</ ver si on>

</ dependency>

The following example shows how to register and use the Hive catalog from Java:

String H VE = "hive";

String DB = "defaul t";

String HHVE CONF_ DIR = "/etc/hivel/ conf";

String H VE_VERSION = "3.1.3000";

Hi veCat al og catal og = new Hi veCatal og(H VE, DB, H VE_CONF_DIR H VE_VERSI ON

)1
t abl eEnv. r egi st er Cat al og(Hl VE, cat al og);

8

https://docs.cloudera.com/csa/1.5.0/release-notes/topics/csa-known-issues.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/table/catalogs.html

Cloudera Streaming Analytics SQL catalogs for Flink

t abl eEnv. useCat al og(Hl VE) ;

Note: According to the latest recommended setup on CDP, the Hive service hosts only the Hive Metastore
B Server. Make sure that a Gateway role isinstalled, or the HMS itself is deployed on the node where the Flink
commands are submitted.

Note: Do not use Flink to create general purpose batch tables in the Hive metastore that you expect to

B be used from other SQL engines. While these tables will be visible, Flink uses the additional properties
extensively to describe the tables, and thus other systems might not be able to interpret them. Use Hive
directly to create these tables instead.

Y ou can add Kudu as a catalog in Flink SQL by adding Kudu dependency to your project, registering the Kudu table
in Java, and enabling it in the custom environment file.

The Kudu connector comes with a catal og implementation to handle metadata about your Kudu setup and perform
table management. By using the Kudu catalog, you can access all the tables already created in Kudu from Flink SQL
queries.

The Kudu catalog only allows to create or access existing Kudu tables. Tables using other data sources must be
defined in other catalogs, such asin-memory catalog or Hive catalog.

Maven Dependency

<dependency>
<gr oupl d>or g. apache. f | i nk</ gr oupl d>
<artifactld>flink-connector-kudu 2. 12</artifactld>
<versi on>1. 13. 0-csal. 5. 0. 0</ ver si on>

</ dependency>

The following example shows how to register and use the Kudu catalog from Java:

String KUDU MASTERS="host 1: port 1, host 2: port 2"
KuduCat al og cat al og = new KuduCat al og(KUDU_MASTERS) ;
t abl eEnv. r egi st er Cat al og(" kudu", catal og);

t abl eEnv. useCat al og(" kudu");

tabl eEnv. | i st Tabl es();

For more information about the Kudu connector and catal og, see the official documentation.

E Note: For information about the limitations regarding Kudu catal og, see the Release Notes.

The Schema Registry catalog allows you to access Kafka topics with registered schemas as Flink SQL tables. You
can add Schema Registry asacatalog in Flink SQL by adding the dependency to your project, registering it in Java,
and enabling it in the custom environment file.

Each Kafka topic will be mapped to a table with TableSchema that matches the Avro schema
Maven Dependency

<dependency>
<gr oupl d>or g. apache. f | i nk</ gr oupl d>
<artifactld>flink-avro-cloudera-registry</artifactld>
<versi on>1.13. 0-csal. 5. 0. 0</ versi on>

</ dependency>

https://github.com/apache/bahir-flink/tree/master/flink-connector-kudu#datastream-api
https://docs.cloudera.com/csa/1.5.0/release-notes/topics/csa-known-issues.html

Cloudera Streaming Analytics SQL catalogs for Flink

The following example shows how to register and use the Schema Registry catalog from Java:

SchemaRegi stryd ient client = new SchemaRegi stryd i ent (

| mut abl eMap. of (
SchenmaRegi stryd i ent. Confi gurati on. SCHEMA REG STRY_URL. nane(),

"http://<your_ host name>: 7788/ api / v1"

¥
Map<String, String> connectorProps = new Kaf ka()
. property(Consumer Conf i g. BOOTSTRAP_SERVERS CONFI G,
"<your _host nane>: 9092")

.startFronEarliest()
.toProperties();

t abl eEnv. r egi st er Cat al og(
"registry", new C ouderaRegi stryCatal og("registry", client, connectorPr

ops
)
t abl eEnv. useCat al og("regi stry");

IE Note: The SSL related properties have to be set independently for both the SchemaRegistryClient and Kafka.

B Note: For information about the limitations regarding Schema Registry, see the Release Notes.

In Flink SQL, the connector describes the external system that stores the data of atable. Cloudera Streaming
Analytics offers you Kafka and Kudu as SQL connectors. Y ou heed to further choose the data formats and table

schema based on your connector.

Some systems support different data formats. For example, atable that is stored in Kafka can encode its rows with
CSV, JSON, or Avro. The table schema defines the schema of atable that is exposed to SQL queries. It describes how
sources and sinks map the data format to the table schema.

Kudu connector
The Kudu connector in Cloudera Streaming Analytics offers compatibility with other supported
catalogs, and capability to convert your Kudu tables into DataStreams. Y ou need to add the Kudu
dependency to your project, set up the catalog, and you can either use SQL queries or the Kudu
catalog directly to create tables.

Cloudera Streaming Analytics provides Kafka as not only a DataStream connector, but also enables Kafkain the
Flink SQL feature. This meansif you have designed your streaming application to have Kafka as source and sink,
you can retrieve your output datain tables. When using the Kafka connector, you are required to specify one of the

supported message formats.

Maven dependency

<dependency>
<gr oupl d>or g. apache. f | i nk</ gr oupl d>
<artifactld>flink-connector-kafka 2.12</artifactld>
<versi on>1. 13. 0-csal. 5. 0. 0</ ver si on>

</ dependency>

For more information about the Kafka connector, see the Apache Flink documentation.

10

https://docs.cloudera.com/csa/1.5.0/release-notes/topics/csa-known-issues.html
https://github.com/apache/bahir-flink/blob/master/flink-connector-kudu/README.md
https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/connect.html#kafka-connector

Cloudera Streaming Analytics

SQL catalogs for Flink

The following example shows a CREATE TABLE statement with Kafka connector:

CREATE TABLE source_table (

id BIGNT,
ts BIG NT,

item d STRI NG
quantity | NT

) WTH (

)

connector. type' =
connect or. ver si on' =
connect or. t opi c' =
connect or. st art up- node'
connector. properties. bootstrap. servers' = '<hostnanme>: <port>'

connector. properties.group.id = "test',
format.type'

= 'json'

' kaf ka',
"uni versal ',
"input_topic',

= '|atest-offset',

On a secured environment where Kerberos and SSL is enabled, the following example can be used:

CREATE TABLE source_table (

cl STRI NG
) WTH (

' connector. type'

connect or

connector.
connector.
connector.

connect or.
connect or.
connector.
connector.

ver si on'
t opi c'

st art up- node'

. properties.
properties.
properties.
properties.
properties.

boot st rap. servers'
group.id'

security. protocol"

sasl . ker ber os. servi ce. nang'
ssl.truststore. | ocation'

' <absol ute path _to_ jks>',
'format.type'

)

= 'kaf ka',

"uni versal ',
'source_topic',
"earliest-offset',
' <host >: <port >',
"test',
"SASL_SSL',

" kaf ka',

CSv

i Important: The Kerberos related properties should be passed to the run command when submitting your job:

flink run -myarn_cluster -d \
-yD security. kerberos. | ogin. principal =<princi pal > \
-yD security. kerberos. | ogi n. keyt ab=<I ocal path_to_keytab> \
-c com cl ouder a. stream ng. exanpl es. fl i nk. Kaf kaSecurel T \

flink-sql-tests-1.0-SNAPSHOT. | ar

When reading data using the Kafka table connector, you must specify the format of the incoming messages so that
Flink can map incoming data to table columns properly.

The JSON format enables you to read and write JSON data. Y ou must add the JSON dependency to your project and
define the format type in CREATE table to JSON.

The expected JSON schemawill be derived from the table schema by default. Specifying the JSON schema manually

is not supported.

Maven dependency

<dependency>

<gr oupl d>or g. apache. f | i nk</ gr oupl d>
<artifactld>flink-json</artifactld>
<versi on>1. 12. 0-csal. 4. 0. 0</ ver si on>
<scope>pr ovi ded</ scope>

11

Cloudera Streaming Analytics SQL catalogs for Flink

</ dependency>

For more information about the JSON format, see the Apache Flink documentation.

The following example shows the Kafka connector with JSON data type:

CREATE TABLE source_table (
cl | NT,
c2 STRI NG
c3 DECI MAL(38, 18),
c4 TI MESTAMP(3),

) WTH (
' connector. type' = 'kafka',
' connect or. versi on' = 'universal',
' connect or. t opi c' = '"input_topic',
‘connector.startup-node’ = 'latest-offset’,
' connector. properties. bootstrap.servers' = '<hostnanme>: <port>',
' connector. properties.group.id = 'test',
"format.type' = 'json'
)

The CSV format allows your applications to read data from, and write data to different external sourcesin CSV. You
must add the CSV dependency to your project and define the format type in CREATE table to CSV.

The CSV format will derive format schema from the table schema by default. The format schema can be defined with
Flink types also, but this functionality is not supported yet.

Maven dependency

<dependency>
<gr oupl d>or g. apache. f | i nk</ gr oupl d>
<artifactld>flink-csv</artifactld>
<version>1.12. 0-csal. 4. 0. 0</ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

For more information about the JSON format, see the Apache Flink documentation.

The following example shows the Kafka connector with CSV data type:

CREATE TABLE source_table (
cl | NT,
c2 STRI NG
c3 TI MESTAMP(3)
) WTH (
connect or. type'
connect or. ver si on'

' kaf ka',
' connect or. t opi c'

uni versal ',
sink_topic',
<host >: <port>',
test',

csv'

connect or. properties. bootstrap. servers'
connector. properties.group.id
format.type'

The Apache Avro format enables you to read and write Avro data. Y ou must add the Avro dependency to your project
and define the format type in CREATE table to Avro. Y ou a so need to specify the fields of the Avro record within
the table.

The format schema can be defined either as afully qualified class name of an Avro specific record or as an Avro
schema string. If aclass name is used, the class must be available in the classpath during runtime.

12

https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/connect.html#json-format
https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/connect.html#csv-format

Cloudera Streaming Analytics SQL catalogs for Flink

When using the Avro schema string, you must specify the fields of the Avro record. The schema must correspond to
the schema of the table in Flink.

For a detailed description of Avro schemas, see the Apache Avro documentation.

Maven dependency

<dependency>
<gr oupl d>or g. apache. f | i nk</ gr oupl d>
<artifactld>flink-avro</artifactld>
<versi on>1. 12. 0-csal. 4. 0. 0</ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

The following example shows how to use an Avro schema string when creating a Kafka connector table. It is
specified as a JSSON object, having record as type, a name, and the specification of its fields. Note the correspondence
of various data types, especially the decimal and array fields.

Example

CREATE TABLE source_t abl g(
string_field STRI NG
long field Bl G NT,
decinmal _field DEC MAL(38, 18),
int_arr_field ARRAY<INT>

) WTH (
' connector. type' = ' kafka'
' connector. version' = 'universal'
' connect or. t opi c' = '"input_topic',
' connector. properties. group.id = "test',
' connector. properties. bootstrap. servers' = ' <host name>: <port >
"format.type' = "avro'
‘format. avro-schema' =
|
"type": "record",
"name": "test",
"fields" :
{"name": "string_field", "type": "string"},
{"name": "long_field", "type": "long"},
{"name": "decimal field", "type"
{"type": "bytes",
"| ogi cal Type": "deci nal ",
"precision": 38,
"scal e": 18}},
{"name": "int_arr _field", "type"
{"type":"array",
"itens":"int"}}
|
}

Before creating your table with Avro format for the Kafka connector, you should review the supported basic data
types that you can use in the application.

string STRING
boolean BOOLEAN
bytes BYTES

int INT

13

https://avro.apache.org/docs/current/spec.html

Cloudera Streaming Analytics SQL catalogs for Flink

long BIGINT
float FLOAT
double DOUBLE

Ij Note: Time, Date, Timestamp are not yet supported.

To specify afield with additional properties, such as the decimal or array fieldsin the example, the type field must be
anested object which has atype field itself, as well as the needed properties.

An example of a property that must be set thisway isafield’ slogical type. Some types cannot be directly represented
by an Avro datatype, so they use one of the supported types as an underlying representation. The logical type
attribute tells how it should be interpreted. For example, the decimal type — described below — is stored as bytes,
whileitslogical typeisdecimal.

Decimal type

» Only 38 precision and 18 scale are supported
* Flink datatypeis DECIMAL(38,18)
» To specify in the Avro schema: {"name": "decimal_field", "type": {"type": "bytes",
"logical Type": "decima", "precision”: 38, "scale": 18}}
Array type
Avro alows arrays of supported basic types, except:
e String
e Decima
» Constructed types (nesting of arrays, rows, maps)
For example, defining an Array of long values:

e Inthetable definition: arr_field ARRAY<BIGINT>
» Avro schema:

{“name”:”arr _field, "type": {"type":"array",
"items":"long"}}}

Row type

Flink rows can be specified as records in the Avro schema. Fields must be named both in the SQL
of the table definition, aswell asin the Avro schema string.

* Field names must match between the table declaration and the Avro schema’ s record
description.

« Thetwo namefieldsin the Avro schema have the following structure:

» oneontheoutsideisthe name of the field

« oneinsideisthetype object, pertaining to the record definition
» Decimal fields are not supported within rows.
» Rows can be nested, Arrays are also alowed as fields of the Row.

Example table definition:

CREATE TABLE source(row field ROMf1 I NT,f2 STRING f3 BOOLEAN>)
WTH (...)

14

Cloudera Streaming Analytics SQL catalogs for Flink

Corresponding Avro schema:

'format. avro-schem' =

{
"type": "record",
"nane":. "test",
"fields" : [
{"name": "row field", "type": {
"type":"record",
"name":"row field",
"fields": [
{"name":"f1", "type":"int"},
{"name":"f2", "type":"string"},
{"name":"f3", "type":"bool ean"}]
1}
}l
Map type
Only Maps with String keys are supported. The value field can be any type of the supported ones,
except decimal.

* Inthetable definition: map_field MAP<STRING,BIGINT>
* Inthe Avro schema:

{"name": "map_field", "type": {"type":"mp",
"val ues":"long"}}

Nullability

To set afield nullable in the Avro schema, create a union of the field' s type and null. A nullable
integer field would be defined as: {"name": "int_field", "type": ["int", "null"]}

Y ou can avoid defining the Avro schema for Kafka table sources and sinks, when the schemais stored in Cloudera
Schema Registry.

Such topics are accessible through automatically generated tables from the read-only registry catalog.
Maven dependency

<dependency>
<gr oupl d>or g. apache. f | i nk</ gr oupl d>
<artifactld>flink-avro-cloudera-registry</artifactld>
<version>1. 12. 0-csal. 4. 0. 0</ ver si on>

</ dependency>

If you need to define a table outside the registry catalog, the following example can be used:

CREATE TABLE source_table (

id Bl G NT,
name STRI NG
description STRI NG
) WTH (
' connector.type' = 'kafka'
' connector.version' = 'universal',
'connector.topic' = 'nmessage',
'connector.startup-node' = 'latest-offset’,
' connector. properties. bootstrap. servers' = '<hostnane>: <port >'
'connector.properties.group.id = 'test',
"format.type' = 'registry'
"format.registry.properties.schema.registry.url' = "http(s)://

<host nanme>: <port >/ api /vl

15

Cloudera Streaming Analytics SQL Statementsin Flink

)

Cloudera Schema Registry connector for Flink stores the schemaversion info in the Kafka messages by default. This
means that the format.registry.properties.store.schema.version.id.in.header property is set to false by default.

The schema name in the registry is usually the same as the Kafka topic name, but can be overridden by the format.r
egistry.schema-name property.

Note: The schema used in this case must be already registered in the Schema Registry, otherwise an error
will occur.

You can usethe CREATE / ALTER / INSERT / DROP statements to modify objects in the chosen catalog. The
statements are executed with the sglUpdate() method of the TableEnvironment.

St .reamTabI eEnvi ronnment tabl eEnv = StreaniTabl eEnvi ronnment . creat e(env, setting
S);

t abl eEnv. sql Updat e(" CREATE TABLE t1(cl STRING WTH (...)");

t abl eEnv. sql Updat e(" DROP TABLE t1");

Y ou can use CREATE statements to register database, table, and function objectsinto catalogs. Y ou should add the
connector, the name of the table, the schema and the data format to the statement based on your application design.
Y ou can further customize your table statement with computed columns to reflect time in a Flink application.

For more information about CREATE statements, see the Apache Flink documentation.

Y ou can connect the Flink Table API and the Flink SQL programs with external systems to read and write streaming
tables. Thetable declaration issimilar to aSQL CREATE TABLE statement. The followings can be defined
upfront for connecting to an external system:

¢ Name of thetable

e Schemaof thetable
e Connector

« Dataformat

Y ou can see an example of the defined parameters:

t abl eEnvi r onnment . sql Updat e(
" CREATE TABLE MyTable (\n" +
. -- declare table schema \n" +
"y WTH (\n" +

" 'connector.type' ="'...', -- connector specific properties\n" +
S W o B

" 'update-node' = 'append', -- declare update npde\n" +

" 'format.type' ="'...'", -- format specific properties\n" +

W o

"))

16

https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/sql/create.html

Cloudera Streaming Analytics SQL Statementsin Flink

A computed column isavirtual column that is generated using the syntax “column_name AS computed_column
_expression”. Computed columns are commonly used in Flink for defining time attributesin CREATE TABLE
statements.

The WATERMARK defines the event time attributes of atable, and allows computed columns to calculate the
watermark in the following form: WATERMARK FOR rowtime_column_name AS watermark_strategy expres
sion. The expression return type must be TIMESTAMP(3).

CREATE TABLE |temlransacti ons (
transactionld Bl G NT,
ts Bl G NT,
itemd STRI NG
quantity | NT,
event _time AS CAST(from unixtine(floor(ts/1000)) AS Tl MESTAMP(3)),
WATERVARK FOR event tinme AS event tinme - | NTERVAL '5' SECOND

) WTH (
' connect or. t ype' = 'kafka',
' connect or. version' = 'universal "',
' connect or. t opi c' = '"transaction.log. 1",
'connector.startup-node' = 'earliest-offset',
' connector. properties. bootstrap.servers' = '<hostnanme>: <port>',
‘connector. properties.group.id = 'test',
"format.type' = 'json'
)

t abl eEnvi r onnment . sql Updat e(" CREATE DATABASE sanpl e_dat abase") ;
t abl eEnvi r onnment . useDat abase(" sanpl e_dat abase") ;

package com cl ouder a. udf s;
public static class HashCode extends Scal ar Function {
public int eval (String s) {
return s. hashCode();
}

}
t abl eEnvi ronment . sql Updat e(" CREATE FUNCTI ON hashcode AS
' com cl ouder a. udf s. HashCode") ;

Y ou can remove the database, table, and function objects from catalogs with DROP statements. Y ou should also
include the IF EXIST statement beside the DROP statement to avoid errors due to non existing objects.

Use IF EXISTS statement to avoid errors on non-existing objects.

For more information about DROP statements, see the Apache Flink documentation.

t abl eEnv. sql Updat e(" DROP TABLE| DATABASE| FUNCTI ON [| F EXI STS] obj ect _nane");

17

https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/sql/drop.html

Cloudera Streaming Analytics SQL Statementsin Flink

Y ou can use the ALTER statements to modify already registered databases, tables, and function definitionsin the
chosen catalogs. There are different limitations for databases, tables and functions when altering them.

For more information about ALTER statements, see the Apache Flink documentation.

Database properties can be changed, but databases cannot be renamed. Y ou can use DROP and CREATE instead of
renaming.

t abl eEnv. sqgl Updat e(" CREATE DATABASE sanpl e_dat abase");
t abl eEnv. sql Updat e(" ALTER DATABASE sanpl e_dat abase SET (' keyl' = valuel')");

Tables can be renamed and table properties can also be changed.

t abl eEnv. sql Updat e(" CREATE TABLE sanpl e_table(cl STRING WTH (' keyl' ='val ue
1|) II) ;

t abl eEnv. sql Updat e(" ALTER TABLE sanpl e_tabl e SET (' keyl' =" value2')");

t abl eEnv. sql Updat e(" ALTER TABLE sanpl e_t abl e RENAME TO sanpl e_t abl e2");

New identifiers, which are full classpath for JAVA/SCALA objects, can be assigned to registered functions.

t abl eEnv. sqgl Updat e(" CREATE FUNCTI ON nyudf AS 'com exanpl e. MyUdf"' ") ;
t abl eEnv. sqgl Updat e(" ALTER FUNCTI ON nyudf AS ' com exanple. MyUdf"' ") ;

Data can be inserted into sink tables in various ways. Y ou can use the INSERT clause to insert the query result into a
table, or you can use the VALUE clause to insert data into tables directly from SQL.

Y ou can use the INSERT clause with different source tables, or the VALUES clause. The following examples show
how to use INSERT and VALUES at the sametime:

t abl eEnv. sql Updat e(" CREATE TABLE source table (cl STRING WTH (...)");

t abl eEnv. sql Updat e(" CREATE TABLE sink_table (c1 STRRNG WTH (...)");

t abl eEnv. sql Updat e("1 NSERT | NTO source_table VALUES ('foo')");

Tabl e el enents = tabl eEnv. fronDat aStreanm(env. fronEl ement s("bar"));

t abl eEnv. sqgl Updat e(" | NSERT | NTO source_table SELECT fO from" + el enments);
t abl eEnv. sql Updat e("1 NSERT | NTO si nk_table SELECT * from source_table");
Tabl e tabl e = tabl eEnv. sql Query("SELECT * FROM si nk_t abl e");

t abl eEnv. t oAppendStrean(t abl e, Row. cl ass). print ToErr();

For more information about INSERT statements, see the Apache Flink documentation.

18

https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/sql/alter.html
https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/sql/insert.html

Cloudera Streaming Analytics SQL Queriesin Flink

E Note: The following composite types are supported:

e Toconstruct an array in the SQL insert statement: ARRAY[1,2,3]

e Toconstruct arow: ROW[1,'asd',1.2]

e Toconstruct amap: MAP['keyl''vall 'key2' 'val2]

e If you get an error such as Unsupported cast from 'MAP to 'MAP, (or ROW to ROW, ARRAY to
ARRAY), it can be because the inner types are not matching. Make sure that when inserting, you properly
cast the values that build up the composite type. Example: INSERT INTO t VALUES (map['www',
cast(13 ashigint)])

A Table can be used for subsequent SQL and Table API queries, to be converted into a DataSet or DataStream,
and to be written to a TableSink. Y ou need to specify the SELECT queries with the sglQuery() method of the
TableEnvironment to return the result of the SELECT query asaTable.

SQL and Table API queries can be seamlessly mixed, and are holistically optimized and translated into asingle
program.

In order to accessa Tablein a SQL query, it must be registered in the TableEnvironment. A Table can be registered
from the following ways:

e TableSource

« Table

» CREATE TABLE statement
e DataStream

e DataSet

Alternatively, users can also register catalogs in a TableEnvironment to specify the location of the data sources.

Thefollowing is an example of SQL query in Java:

Dat aSt r ean<Tupl e2<String, |Integer>> transactionStream= ...
t Env. cr eat eTenporaryVi ewm " Transacti ons", transactionStream "account, anoun

t");

Tabl e bal ance = t Env. sql Query(

"SELECT account, sun{anount) as bal ance FROM Transacti ons GROUP BY accoun
tn
Ik

Dat aSt r ean<Tupl e2<Bool ean, Row>> bal anceStream = t Env. t oRet ract St rean{(bal
ance, Row. cl ass);

For the detailed documentation and the example code for the different query types, see the Apache Flink
documentation.

E Note: For information about the supported queriesin SQL and Table API, see the Supported Features.

19

https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/sql/queries.html
https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/sql/queries.html
https://docs.cloudera.com/csa/1.5.0/flink-sql-table-api/topics/csa-supported-sql.html

	Contents
	Flink SQL and Table API
	SQL and Table API supported features

	DataStream API interoperability
	Converting DataStreams to Tables
	Converting Tables to DataStreams
	Supported data types

	SQL catalogs for Flink
	Hive catalog
	Kudu catalog
	Schema Registry catalog
	SQL connectors for Flink
	Kafka connector
	Data types for Kafka connector
	JSON format
	CSV format
	Avro format
	Supported basic data types

	Schema Registry Avro format

	SQL Statements in Flink
	CREATE Statements
	DROP Statements
	ALTER Statements
	INSERT Statements

	SQL Queries in Flink

