
Cloudera Streaming Analytics 1.8.0

Creating Tables
Date published: 2019-12-17
Date modified: 2022-09-28

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Streaming Analytics | Contents | iii

Contents

Concept of tables in SSB... 4

Creating Kafka tables.. 6
Creating Kafka tables using Console wizard...6
Creating Kafka tables using Templates... 8
Configuring Kafka tables... 9

Schema tab..9
Event Time tab... 10
Data Transformations tab... 13
Properties tab.. 15
Deserialization tab.. 16
Assigning Kafka keys in streaming queries...19
Performance & Scalability..19

Creating Flink tables using Templates...20

Creating Webhook tables...21

Managing time in SSB... 23

Cloudera Streaming Analytics Concept of tables in SSB

Concept of tables in SSB

The core abstraction for Streaming SQL is a Table which represents both inputs and outputs of the queries. SQL
Stream Builder (SSB) tables are an extension of the tables used in Flink SQL to allow a bit more flexibility to the
users. When creating tables in SSB, you have the option to either add them manually, import them automatically or
create them using Flink SQL depending on the connector you want to use.

A Table is a logical definition of the data source that includes the location and connection parameters, a schema, and
any required, context specific configuration parameters. Tables can be used for both reading and writing data in most
cases. You can create and manage tables either manually or they can be automatically loaded from one of the catalogs
as specified using the Data Providers section.

In SELECT queries the FROM clause defines the table sources which can be multiple tables at the same time in case
of JOIN or more complex queries.

When you execute a query, the results go to the table you specify after the INSERT INTO statement in the SQL
window. This allows you to create aggregations, filters, joins, and so on, and then route the results to another table.
The schema for the results is the schema that you have created when you ran the query.

For example:

INSERT INTO air_traffic -- the name of the table sink
SELECT
lat,lon
FROM
airplanes -- the name of the table source
WHERE
icao <> 0;

Table types in SSB
Kafka Tables

Apache Kafka Tables represent data contained in a single Kafka topic in JSON, AVRO or CSV
format. It can be defined using the Streaming SQL Console wizard or you can create Kafka tables
from the pre-defined templates.

Tables from Catalogs

SSB supports Kudu, Hive and Schema Registry as catalog providers. After registering them using
the Streaming SQL Console, the tables are automatically imported to SSB, and can be used in the
SQL window for computations.

Note: You cannot edit the properties of the already existing tables that are
automatically imported from the catalogs. To distinguish between editable and not
editable tables, in other words, user defined and catalog tables, the Edit and Delete
table options are not available on the Tables page.

Flink Tables

Flink SQL tables represent tables created by the standard CREATE TABLE syntax. This supports
full flexibility in defining new or derived tables and views. You can either provide the syntax by
directly adding it to the SQL window or use one of the predefined DDL templates.

Webhook Tables

Webhooks can only be used as tables to write results to. When you use the Webhook Tables the
result of your SQL query is sent to a specified webhook.

4

Cloudera Streaming Analytics Concept of tables in SSB

Table management on Console page

After creating your tables for the SQL jobs, you can review and manage them on the Console page next to the SQL
Editor. The created tables are organized based on the teams a user is assigned to.

The + Add Table button can be used to create Apache Kafka and Webhook tables using an add table wizard. For any
other supported tables of SQL Stream Builder (SSB), you can either manually add the CREATE TABLE statement to
the SQL Editor or choose one of the predefined templates using the Template selector. After selecting the template
of a connector, the CREATE TABLE statement is loaded to the SQL Editor.

The created tables are listed at the left panel, regardless if they are added using the wizard or created with Flink DDL.
The tables appear based on which team is selected active for the user. The search bar can be used to find a specific
table or shorten the list of tables by searching for a connector type.

The details of a table can be seen by clicking on the arrow next to the name of the table.

5

Cloudera Streaming Analytics Creating Kafka tables

When you hover over a table, expanded or not, the following buttons appear which can be used to manage your
tables.

• Show DDL - the DDL format of the table appears

• You can use the copy button on the DDL window if you need to reuse the CREATE TABLE statement. You
can also paste the DDL in the SQL Editor to edit the CREATE TABLE statement, and create a new table with
changed attributes.

• Paste in Editor - the name of the table is added to the SQL editor
• Delete Table - removing table from SQL Stream Builder

Creating Kafka tables

You have the option to create Kafka tables using the Console wizard, the built-in templates or directly adding a
custom CREATE TABLE statement with the required properties in the SQL window.

Creating Kafka tables using Console wizard
After registering a Kafka data provider, you can use the Add table wizard in Streaming SQL Console to create a
Kafka table.

Before you begin

• Make sure that you have registered Kafka as a Data Provider.
• Make sure that you have created topics in Kafka.

Important: When creating the topic for the Kafka sink, make sure to not use log compaction as it can
cause the SQL job to fail.

• Make sure there is generated data in the Kafka topic.

6

Cloudera Streaming Analytics Creating Kafka tables

• Make sure that you have the right permissions set in Ranger.

Procedure

1. Navigate to the Streaming SQL Console.

a) Go to your cluster in Cloudera Manager.
b) Select SQL Stream Builder from the list of services.
c) Click SQLStreamBuilder Console .

The Streaming SQL Console opens in a new window.

2. Click Create Job or select a previous job on the Getting Started page.

You are redirected to the Console page.

3. Click Add table > Apache Kafka .

The Kafka Table window appears.

7

Cloudera Streaming Analytics Creating Kafka tables

4. Provide a Table Name.

Note: You will use this name in the FROM clause when running the SQL statement.

5. Select a registered Kafka provider as Kafka cluster.

6. Select the Data format.

• You can select JSON as data format.
• You can select AVRO as data format.

Note: You can only select the AVRO format when Schema Registry is used.

7. Select a Kafka topic from the list.

Note: The automatically created topics for the websocket output is also listed here. Select the topic you
want to use for the SQL job.

8. Determine the Schema for the Kafka table.

a) Add a customized schema to the Schema Definition field.
b) Click Detect Schema to read a sample of the JSON messages and automatically infer the schema.

Note: If there are no messages in the topic, then no schema will be inferred.

9. Customize your Kafka Table with the following options:

a) Configure the Event Time if you do not want to use the default Kafka Timestamps.

1. Disable the Use Kafka Timestamps feature.
2. Provide the name of the Input Timestamp Column.
3. Add a name for the Event Time Column.
4. Add a value to the Watermark Seconds.

b) Configure an Input Transform on the Data Transformations.

Note: The Input Transformation is only supported for JSON data formats.

c) Configure any Kafka properties required on the Properties tab.
d) Select a policy for deserialization errors on the Deserialization tab.

For more information about how to configure the Kafka table, see the Configuring Kafka tables section.

10. Click Create and Review.

Results
The Kafka Table is ready to be used for the SQL job either at the FROM or at the INSERT INTO statements.

Creating Kafka tables using Templates
The built-in templates allow you to simply and easily create tables by filling out the imported CREATE TABLE
statement in the SQL window with detailed description of the properties.

You can create tables directly from the SQL window on the Console page by using the pre-defined connector
templates.

When using the predefined templates, you have the following options for the Kafka table:
CDP Kafka

8

Cloudera Streaming Analytics Creating Kafka tables

Automatically using the Kafka service that is registered in the Data Providers, and runs on the same
cluster as the SQL Stream Builder service. You can choose between JSON, Avro and CSV data
types.

Kafka

When connecting to a Kafka service that is not hosted in your cluster. You can choose between
JSON, Avro, CSV and raw data types.

Upsert Kafka

Connecting to a Kafka service in the upsert mode. This means that when using it as a source, the
connector produces a changelog stream, where each data record represents an update or delete
event. The value in the data records is interpreted as an update of the last value for the same key.
When using the table as a sink, the connector can consume a changelog stream, and write insert/
update_after data as normal Kafka message valuea. Null values are represented as delete.

You can access and import the Templates from Streaming SQL Console:

1. Navigate to the Streaming SQL Console.

a. Go to your cluster in Cloudera Manager.
b. Click on SQL Stream Builder from the list of Services.
c. Click on the SQLStreamBuilder Console.

The Streaming SQL Console opens in a new window.
2. Click Create Job or select a previous job on the Getting Started page.

You are redirected to the Console page.
3. Click Templates at the SQL Editor.
4. Select the template you want to use.

The template is imported to the SQL window.
5. Customize the fields of the template.
6. Click Execute.

The table is created based on the selected template, and appears next to the SQL Editor.

Configuring Kafka tables
The user defined Kafka table can be configured based on the schema, event time, input transformations and other
Kafka specific properties using either the Kafka wizard or DDL.
Related Information
Dynamic SQL Hints

Schema tab
When using the Add Kafka table wizard on the Streaming SQL Console, you can configure the schema under the
Schema tab.

Schema is defined for a given Kafka source when the source is created. The data contained in the Kafka topic can
either be in JSON or AVRO format.

When specifying a schema you can either paste it to the Schema Definition field or click the Detect schema button to
identify the schema used on the generated data. The Detect Schema functionality is only available for JSON data.

If the schema of the Kafka table where the output data is queried is not known at the time of adding the table, you can
select the Dynamic Schema option. This is useful when you want to insert data to the table, and there is no guarantee
that the input schema matches with the output schema. If you select the Dynamic Schema option when adding a table,
you can only use that table as a sink.

9

https://docs.cloudera.com/csa/1.8.0/ssb-using-flink-sql/topics/csa-ssb-sql-hints.html

Cloudera Streaming Analytics Creating Kafka tables

Note: If your schema contains a field named timestamp, this causes a schema validation error as timestamp is
a reserved word used for Kafka internal timestamps.

Event Time tab
When using the Add Kafka table wizard on the Streaming SQL Console, you can configure the event time under the
Event Time tab.

You can specify Watermark Definitions when adding a Kafka table. Watermarks use an event time attribute and have
a watermark strategy, and can be used for various time-based operations. The Event Time tab provides the following
properties to configure the event time field and watermark for the Kafka stream:

• Input Timestamp Column: name of the timestamp column in the Kafka topic from where the watermarks are
mapped to the Event Time Column of the Kafka table

• Event Time Column: default or custom name of the resulting timestamp column where the watermarks are going
to be mapped in the created Kafka table

• Watermark seconds: number of seconds used in the watermark strategy. The watermark is defined by the current
event timestamp minus this value.

You have the following options to configure the watermark strategy for the Kafka tables:

• Using the default Kafka Timestamps setting
• Using the default Kafka Timestamps setting, but providing custom name for the Event Time Column
• Not using the default Kafka Timestamps setting, and providing all of the Kafka timestamp information manually
• Not using watermark strategy for the Kafka table

Using the default Kafka Timestamp setting

By default, the Use Kafka Timestamps feature is enabled when you create the Kafka table. In the Event Time
Column, the new event time field is extracted from the Kafka message header with the 'EVENTTIMESTAMP'
predefined column name.

After saving your changes, you can view the created DDL syntax for the table next to the SQL Editor on the Console
page.

The following DDL example shows the default setting of the Event Time Column and Watermark Seconds where the
corresponding fields were not modified.

'eventTimestamp' TIMESTAMPS(3) METADATA FROM 'timestamp',
WATERMARK FOR 'eventTimestamp' AS 'eventTimestamp' - INTERVAL '3' SECOND

10

Cloudera Streaming Analytics Creating Kafka tables

Using the default Kafka Timestamp setting with custom Event Time Column name

When you want to modify the timestamp field of the DDL from the stream itself, you must provide a custom name of
the Event Time Column. You can also add a custom value to the Watermark Seconds. The following example shows
that 'ETS' is the custom name for the Event Time Column, and '4' is the custom value for the Watermark Seconds.

The Event Time Column can only be modified if the following requirements are met for the timestamp field of the
Input Timestamp Column:

• The column type must be "long".
• The format must be in epoch (in milliseconds since January 1, 1970).

The DDL syntax should reflect the changes made for the watermark strategy as shown in the following example:

'ets' TIMESTAMP(3) METADATA FROM 'timestamp',
WATERMARK FOR 'ets' - INTERVAL '4' SECOND

Manually providing the Kafka timestamp information

When you want to manually configure the watermark strategy of the Kafka table, you can provide the timestamp
column name from the Kafka source, and add a custom column name for the resulting Kafka table. Make sure that
you provide the correct column name for the Input Timestamp Column that exactly matches the column name in the
Kafka source data.

To manually provide information for the watermark strategy, disable the Use Kafka Timestamps feture using the
toggle, and provide the following information to the column name fields:

• Input Timestamp Column: name of the timestamp field in the Kafka source
• Event Time Column: predefined 'EVENTTIMESTAMP' name or custome column name of the timestamp field in

the created Kafka table

As an example, you have a timestamp column in the source Kafka topic named as 'TS', and want to add a new
timestamp column in your Kafka table as 'EVENT_TIME'. You provide the original timestamp column name in the
Input Timestamp Column as 'TS', and add the custom 'EVENT_TIME' name to the Event Time Column.

11

Cloudera Streaming Analytics Creating Kafka tables

This results in that the watermarks from the 'TS' column is going to be mapped to the 'EVENT_TIME' column of the
created Kafka table. As 'EVENT_TIME' will become the timestamp column name in the Kafka table, you must use
the custom name (in this example the 'EVENT_TIME') when querying the Kafka stream. This configuration of the
timestamp columns are optional.

The Event Time Column can only be modified if the following requirements are met for the timestamp field of the
Input Timestamp Column:

• The column type must be "long".
• The format must be in epoch (in milliseconds since January 1, 1970).

Not using watermark strategy for Kafka table

In case you do not need any watermark strategies, disable the Use Kafka Timestamps feture using the toggle, and
leave the column and seconds field empty.

Note: Flink validates the input and output schemas of the data. You can only insert data into a Kafka topic,
if the input and output data matches based on the schema defined for the topic. When customizing the
timestamp column, make sure that the output data has the same schema.

12

Cloudera Streaming Analytics Creating Kafka tables

Note: When configuring the timestamp for the Kafka tables, you must consider the timezone setting of your
environment as it can effect the results of your query. For more information, see the Known Issues in the
Release Notes.

Data Transformations tab
When using the Add Kafka table wizard on the Streaming SQL Console, you can apply input transformation under
the Transformations tab. Input transformations can be used to clean or arrange the incoming data from the source
using javascript functions.

You can apply input transformations on your data when adding a Kafka table as a source to your queries. Input
transformations can be used to clean or arrange the incoming data from the source using javascript functions.

Input Transforms are a powerful way to clean, modify, and arrange data that is poorly organized, has changing
format, and has data that is not needed or otherwise hard to use. With the Input Transform feature of SQL Stream
Builder, you can create a javascript function to transform the data after it has been consumed from a Kafk topic, and
before you run SQL queries on the data.

You can use Input Transforms in the following situations:

• The source is not in your control, for example, data feed from a third-party provider
• The format is hard to change, for example, a legacy feed, other teams of feeds within your organization
• The messages are inconsistent
• The data from the sources do not have uniform keys, or without keys (like nested arrays), but are still in a valid

JSON format
• The schema you want does not match the incoming topic

Note: When using Input Transforms the schema you define for the Kafka table is applied on the output of
the transformed data.

•

You can use the Input Transforms on Kafka tables that have the following characteristics:

• Allows one transformation per source.
• Takes record as a JSON-formatted string input variable. The input is always named record.
• Emits the output of the last line to the calling JVM. It could be any variable name. In the following example,

out and emit is used as a JSON-formatted string.

A basic input transformation looks like this:

var out = JSON.parse(record.value); // record is input, parse JSON f
ormatted string to object
 // add more transformatio
ns if needed
JSON.stringify(out); // emit JSON formatted
 string of object

Kafka record metadata access

There are cases when it is required to access additional metadata from the Kafka record to implement the correct
processing logic. SQL Stream Builder has access to this information using the Input Transforms functionality.

13

https://docs.cloudera.com/csa/1.8.0/release-notes/topics/csa-known-issues.html

Cloudera Streaming Analytics Creating Kafka tables

The following attributes are supported in the headers:

record.topic
record.key
record.value
record.headers
record.offset
record.partition

For example, an input transformation can be expressed as the following:

var out = JSON.parse(record);
out['topic'] = message.topic;
out['partition'] = message.partition;
JSON.stringify(out);

For which you define a schema manually, or use the Detect Schema feature:

{
 "name": "myschema",
 "type": "record",
 "namespace": "com.cloudera.test",
 "fields": [
 {
 "name": "id",
 "type": "int"
 },
 {
 "name": "topic",
 "type": "string"
 },
 {
 "name": "partition",
 "type": "string"
 }
]
}

The attribute record.headers is an array that can be iterated over:

var out = JSON.parse(record);
var header = JSON.parse(record.headers);
var interested_keys = ['DC']; // should match schema defini
tion

out['topic'] = record.topic;
out['partition'] = record.partition;
Object.keys(header).forEach(function(key) {
 if (interested_keys.indexOf(key) > -1){ // if match found for schema,
set value
 out[key] = header[key];
 }
});
JSON.stringify(out);

For which you define a schema as follows:

{
 "name": "myschema",
 "type": "record",
 "namespace": "com.cloudera.test",
 "fields": [

14

Cloudera Streaming Analytics Creating Kafka tables

 {
 "name": "id",
 "type": "int"
 },
 {
 "name": "topic",
 "type": "string"
 },
 {
 "name": "partition",
 "type": "string"
 },
 {
 "name": "DC",
 "type": "string"
 }
]
}

Creating Data Transformations
Input Transforms are a powerful way to clean, modify, and arrange data that is poorly organized, has changing
format, has data that is not needed or otherwise hard to use. With the Input Transfrom feature of SQL Stream Builder,
you can create a javascript function to transform the data after it has been consumed from a Kafk topic, and before
you run SQL queries on the data.

Procedure

1. Navigate to the Streaming SQL Console.

a) Go to your cluster in Cloudera Manager.
b) Select SQL Stream Builder from the list of services.
c) Click SQLStreamBuilder Console .

The Streaming SQL Console opens in a new window.

2. Click Create Job or select a previous job on the Getting Started page.

You are redirected to the Console page.

3. Open the Kafka table configurations.

You can add the Input Transform to the Kafka table when you create the Kafka table:

a) Choose Apache Kafka from the Add table drop-down.

You can add the Input Transform to an already existing Kafka table:

a) Select the edit button for the Kafka table you want to add a transformation.

The Kafka table wizard appears.

4. Click Data Transformation.

You have the following options to insert your Input Transform:

a) Add your javascript transformation code to the Data Transformation box.

Make sure the output of your transform matches the Schema definition detected or defined for the Kafka table.
b) Click Install default template and schema.

The Install Default template and schema option fills out the Data Transformation box with a template that you
can use to create the Input Transform, and matches the schema with the format.

5. Click Review and Create.

Properties tab
When using the Add Kafka table wizard on the Streaming SQL Console, you can configure the properties under the
Properties tab.

15

Cloudera Streaming Analytics Creating Kafka tables

You can specify certain properties to define your Kafka source in detail. You can also add customized properties
additionally to the default ones. To create properties, you need to give a name to the property and provide a value for
it, then click Actions.

Deserialization tab
When creating a Kafka table, you can configure how to handle errors due to schema mismatch using DDL or the
Kafka wizard.

You can configure every supported type of Kafka connectors (local-kafka, kafka or upsert) how to handle if
a message fails to deserialize which can result in job submission error. You can choose from the following
configurations:

Fail

In this case an exception is thrown, and the job submission fails

16

Cloudera Streaming Analytics Creating Kafka tables

Ignore

In this case the error message is ignored without any log, and the job submission is successful

Ignore and Log

In this case the error message is ignored, and the job submission is successful

Save to DLQ

In this case the error message is ignored, but you can store it in a dead-letter queue (DLQ) Kafka
topic

Using the Kafka wizard

When you create the Kafka table using the wizard on the Streaming SQL Console, you can configure the error
handling with the following steps:

1. Navigate to the Streaming SQL Console.

a. Go to your cluster in Cloudera Manager.
b. Select SQL Stream Builder from the list of services.
c. Click SQLStreamBuilder Console .

2. Click Create Job or select a previous job on the Getting Started page.

You are redirected to the Console page.
3. Select Add tables > Apache Kafka .

The Add Kafka table window appears

17

Cloudera Streaming Analytics Creating Kafka tables

4. Select Deserialization tab.

5. Choose from the following policy options under Deserialization Policy:

• Fail
• Ignore
• Ignore and Log
• Save to DLQ

If you choose the Save to DLQ option, you need to create a dedicated Kafka topic where you store the error
message. After selecting this option, you need to further select the created DLQ topic.

• Click Create and Review.

Using DDL

When you create the Kafka table using DDL on the Streaming SQL Console, you can configure the error handling
with the following optional arguments:

18

Cloudera Streaming Analytics Creating Kafka tables

1. Navigate to the Streaming SQL Console.

a. Go to your cluster in Cloudera Manager.
b. Select SQL Stream Builder from the list of services.
c. Click Web UI > SQLStreamBuilder Console .

2. Click Create Job or select a previous job on the Getting Started page.

You are redirected to the Console page.
3. Choose one of the Kafka template types from Templates.
4. Select any type of data format.

The predefined CREATE TABLE statement is imported to the SQL Editor.
5. Fill out the Kafka template based on your requirements.
6. Search for the deserialization.failure.policy.
7. Provide the value for the error handling from the following options:

a. ‘error’
b. ‘ignore’
c. ‘ignore_and_log’
d. ‘dlq’

If you choose the dlq option, you need to create a dedicated Kafka topic where you store the error message.
After selecting this option, you need to further provide the name of the created DLQ topic.

8. Click Execute.

Assigning Kafka keys in streaming queries
Based on the Sticky Partitioning strategy of Kafka, when null keyed events are sent to a topic, they are randomly
distributed in smaller batches within the partitions.

As the results of the SQL Stream queries by default do not include a key, when written to a Kafka table, the Sticky
Partitioning strategy is used. In many cases, it is useful to have more fine-grained control over how events are
distributed within the partitions. You can achieve this in SSB by configuring a custom key based on your specific
workload.

For example:

SELECT sensor_name AS _eventKey --sensor_name becomes the key in the output
kafka topic
FROM sensors
WHERE eventTimestamp > current_timestamp;

To configure keys in DDL-defined tables (those that are configured using the Templates), refer to the official Flink
Kafka SQL Connector documentation for more information (specifically the key.format and key.fields options).

Performance & Scalability
The Kafka and SQL Stream Builder integration enables you to use the Kafka-specific syntax to customize your SQL
queries based on your deployment and use case.

You can achieve high performance and scalability with SQL Stream Builder, but the proper configuration and design
of the source Kafka topic is critical. SQL Stream Builder can read a maximum of one thread per Kafka partition. You
can achieve the highest performance configuration when setting the SQL Stream Builder threads equal to or higher
than the number of Kafka partitions.

If the number of partitions is less than the number of SQL Stream Builder threads, then SQL Stream Builder has idle
threads and messages show up in the logs indicating as such. For more information about Kafka partitioning, see the
Kafka partitions documentation.

19

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/connectors/kafka.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/connectors/kafka.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/kafka-overview/topics/kafka-overview-partitions.html

Cloudera Streaming Analytics Creating Flink tables using Templates

Creating Flink tables using Templates

You can use the predefined templates to create tables by choosing one of the connector templates on the Console
page of Streaming SQL Console. The Flink SQL templates are predefined examples of CREATE TABLE statements
which you can fill out with your job specific values.

You can create tables using the predefined templates in SQL Stream Builder. The predefined templates consist of
the CREATE TABLE statement, and every connection property that is needed for the given connector. You only
need to fill out the templates and execute them in the Streaming SQL Console to create the table. When filling out
the templates, you can add configuration based on what is specified in the given connector template. You can also
customize the table name, column names and timestamp information for a template.

You can choose from the following templates based on the connector type:

Blackhole

The BlackHole connector can be used to write all input records into. It is designed for high
performance testing and UDF to output, not a substantive sink.

Datagen

The Data generator connector can be used to sample randomly generated data in SSB. You can use
this connector to try out and test SQL queries as records are generated until the job is running.

Faker

The Faker connector can be used to generate fake data based on the Java faker expression. You can
use this connector to try out and test SQL queries as records are generated until the job is running.

Filesystem

The filesystem connector can be used to access partitioned files in file systems, and enables reading
and writing from a local or distributed file system such as local, HDFS, S3 and so on. You only
need to specify the data format that is used in the file system. You can choose from the following
formats:

• Avro
• JSON
• CSV
• ORC
• Parquet

JDBC

The JDBC connector enables reading data from and writing data into any relational databases with a
JDBC driver. You can use PostgreSQL, MySQL and Hive as databases for the connector.

Debezium CDC

You can use the Debezium CDC connector to stream changes in real-time from MySQL,
PostgreSQL, Oracle, Db2 and SQL Server into Kafka. Debezium provides a unified format schema
for changelog and supports serializing messages using JSON and Avro.

You can access and import the Templates from Streaming SQL Console:

1. Navigate to the Streaming SQL Console.

a. Go to your cluster in Cloudera Manager.
b. Click on SQL Stream Builder from the list of Services.
c. Click on the SQLStreamBuilder Console.

The Streaming SQL Console opens in a new window.
2. Click Create Job or select a previous job on the Getting Started page.

You are redirected to the Console page.

20

Cloudera Streaming Analytics Creating Webhook tables

3. Click Templates at the SQL Editor.
4. Select the template you want to use.

The template is imported to the SQL window.
5. Customize the fields of the template.
6. Click Execute.

The table is created based on the selected template, and appears next to the SQL Editor.

For full reference on the Flink SQL DDL functionality, see the official Apache Flink documentation.

Creating Webhook tables

You can configure the webhook table to perform an HTTP action per message (default) or to create code that controls
the frequency (for instance, every N messages). When developing webhook sinks, it is recommended to check your
webhook before pointing at your true destination.

Procedure

1. Navigate to the Streaming SQL Console.

a) Go to your cluster in Cloudera Manager.
b) Select SQL Stream Builder from the list of services.
c) Click SQLStreamBuilder Console .

The Streaming SQL Console opens in a new window.

2. Click Create Job or select a previous job on the Getting Started page.

You are redirected to the Console page.

21

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/sql/create.html

Cloudera Streaming Analytics Creating Webhook tables

3. Select Add table > Webhook .

The Webhook Table window appears.

4. Provide a name to the Table.

5. Enter an HTTP endpoint. The endpoint must start with http:// or https://.

Note: You can use hookbin for testing of the webhook sink. Paste the hookbin endpoint into the text
field, and inspect the output on the hookbin site. Once you have the right output result, then point it at
your final endpoint.

6. Add a Description about the webhook sink.

7. Select POST or PUT in the HTTP Method select box.

8. Choose to Disable SSL Validation, if needed.

22

Cloudera Streaming Analytics Managing time in SSB

9. Enable Request Template, if needed.

a) If you selected Yes, then the template defined in the Request Template tab is used for output.

This is useful if the service you are posting requires a particular data output format. The data format must
be a valid JSON format, and use "${columnname}" to represent fields. For example, a template for use with
Pagerduty looks like this:

{
 "incident":{
 "type":"incident",
 "title":"${icao} is too high!",
 "body":{
 "type":"incident_body",
 "details":"Airplane with id ${icao} has reached an altitude of
 ${altitude} meters."
 }
 }
}

10. In the Code editor, you can specify a code block that controls how the webhook displays the data.

For a webhook that is called for each message the following code is used:

// Boolean function that takes entire row from query as Json Object
function onCondition(rowAsJson)
{return true; // return false here for no-op, or plug in custom
 logic}
onCondition($p0)

Note: The rowAsJson is the result of the SQL Stream query being run in the {"name":"value"} format.

11. Add HTTP headers using the HTTP Headers tab, if needed.

Headers are name:value header elements. For instance, Content-Type:application/json, etc.

12. Click Create.

Results
The Webhook table is ready to be used after the INSERT INTO statement in your SQL query.

Managing time in SSB

Time attributes define how streams behave for time based operations such as window aggregations or joins. For
Kafka tables you can use the Event Time tab to create source provided or user provided timestamp and watermarks.
For other tables you can define time related attributes in the Flink DDL or directly in the SQL query. You can use
timestamps that are already provided in the source or you can use custom timestamps.

Source-provided timestamps

Source-provided timestamps are inserted directly into the data stream by the source connector. This query uses the
source-provided order_time field to perform a temporal join on multiple Kafka topics:

-- Table of orders
CREATE TABLE orders (
 order_id STRING,
 price DECIMAL(32,2),
 currency STRING,
 order_time TIMESTAMP(3),
 WATERMARK FOR order_time AS order_time
) WITH (/* ... */);

23

Cloudera Streaming Analytics Managing time in SSB

-- Table of currency rates
CREATE TABLE currency_rates (
 currency STRING,
 conversion_rate DECIMAL(32, 2),
 update_time TIMESTAMP(3),
 WATERMARK FOR update_time AS update_time
) WITH (/* ... */);
-- Event time temporal join to enrich orders with currencies
SELECT
 order_id,
 price,
 currency,
 conversion_rate,
 order_time,
FROM orders
LEFT JOIN currency_rates FOR SYSTEM TIME AS OF orders.order_time
ON orders.currency = currency_rates.currency

User-provided timestamps

You can also specify timestamps contained in the data stream itself. For example, if your schema includes a field
called "order_time", it is possible to construct a query such as:

-- Table of orders
-- Converts order_time_string field to timestamp
CREATE TABLE orders (
 order_id STRING,
 price DECIMAL(32,2),
 currency STRING,
 order_time_string STRING,
 order_time as to_timestamp(order_time_string),
 WATERMARK FOR order_time AS order_time
) WITH (/* ... */);

When an invalid timestamp is found in the stream (for example, NaN), the timestamp of the message is going to be 0.
This way the message is excluded from the current window.

When your data does not include a timestamp in a suitable format, it is possible to compute a new timestamp column
from another existing column using the Input Transform feature of SSB.

24

	Contents
	Concept of tables in SSB
	Creating Kafka tables
	Creating Kafka tables using Console wizard
	Creating Kafka tables using Templates
	Configuring Kafka tables
	Schema tab
	Event Time tab
	Data Transformations tab
	Creating Data Transformations

	Properties tab
	Deserialization tab
	Assigning Kafka keys in streaming queries
	Performance & Scalability

	Creating Flink tables using Templates
	Creating Webhook tables
	Managing time in SSB

