
Cloudera Streaming Analytics 1.8.0

SQL Stream Job Lifecycle
Date published: 2019-12-17
Date modified: 2022-09-28

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Streaming Analytics | Contents | iii

Contents

Creating and naming SQL jobs.. 4

Running SQL Stream jobs.. 5

Configuring SQL job settings..7
Adjusting logging configuration in Advanced Settings...9
Configuring YARN queue for SQL jobs... 11

Managing SQL jobs and queries.. 11
Loading SQL queries to SQL Editor... 11
Loading jobs to SQL Editor...12
Stopping SQL jobs... 13
Restarting SQL jobs... 14
Editing SQL jobs.. 16
Deleting SQL jobs.. 16

Sampling data for a running job.. 17
Configuring sampling sink... 18

Managing session for SQL jobs.. 20
Executing SQL jobs in production mode...21

Enhancing the developer experience.. 23

Cloudera Streaming Analytics Creating and naming SQL jobs

Creating and naming SQL jobs

You need to create or select an already existing SQL job on the Streaming SQL Console to be able to submit SQL
queries.

The landing page of Streaming SQL Console is the Getting Started window. You can use the Getting Started
window to quickly create a new job or select an already existing job that you can reload to the Console page.

You have the following options to name your SQL job:

• Use the predefined name in the Job Name field when opening the Streaming SQL Console
• Use the Generate Job Name button to generate a new random name for your job
• Manually provide the name of the job to the Job Name field

You can also select a previously created job from the list, and the job details will be loaded to the SQL Editor on the
Console page.

On the Console page of Steaming SQL Console, you can create a job using the + New Job button.

After a new job is created, you can save the job and its settings using the Save button. When you make a change to
the SQL query, job settings or create a Materialized View, you have the option to save the changes with the job. You
can also revert your changes to the latest saved version of the job using the Revert button.

4

Cloudera Streaming Analytics Running SQL Stream jobs

You can also see the status of the job next to the jobs name on the panel. The following statuses are indicated when
managing jobs:

• Unsaved job - new job creation is in progress, the job hasn’t been saved yet or has unsaved changes
• Executing - the submitted query is executed
• Running - the query is executed, and the job is successfully running
• Stopped - due to some errors the job creation failed, the SQL job has been stopped

Running SQL Stream jobs

Every time you run an SQL statement in the SQL Stream console, it becomes a job and runs on the deployment as a
Flink job. You can manage the running jobs using the Jobs tab on the UI.

About this task

There are two logical phases to run a job:

1. Parse: The SQL is parsed and checked for validity and then compared against the virtual table schema(s) for
correct typing and key/columns.

2. Execution: If the parse phase is successful, a job is dynamically created, and runs on an open slot on your cluster.
The job is a valid Flink job.

Before you begin

• Make sure that you have registered a Data Provider if you use the Kafka service on your cluster.
• Make sure that you have added Kudu, Hive or Schema Registry as a catalog if you use them for your SQL job.

Procedure

1. Navigate to the Streaming SQL Console.

a) Go to your cluster in Cloudera Manager.
b) Select SQL Stream Builder from the list of services.
c) Click SQLStreamBuilder Console .

The Streaming SQL Console opens in a new window.

2. Provide a name for the SQL job.

a) Optionally, you can click Generate Random Name to generate a name for the SQL job.

3. Create a table using one of the following options:

• Using the Add Kafka or Webhook table wizard.
• Using the Templates.
• Add your custom CREATE TABLE statement to the SQL window.

5

Cloudera Streaming Analytics Running SQL Stream jobs

4. Add a SQL query to the SQL Editor.

Note: You cannot start a job without adding a SQL statement in the SQL editor window. In case, there
are no SQL statements provided and you click Execute , the following error message is displayed: You
must provide a SQL query.

When starting a job, the number of slots consumed on the specified cluster is equal to the parallelism setting. The
default is one slot. To change the parallelism setting and more job related configurations, click Job Settings.

5. Click Execute.

The Logs window updates the status of SSB.

6

Cloudera Streaming Analytics Configuring SQL job settings

6. Click Results to check the sampled data.

You can pause or restart the sampling of a SQL job with the Pause and Refresh buttons. The status of the polling
can also be seen next to the Pause button. The Results tab also allows you to change the order of the samples, and
to filter the samples using different types of conditions that you can also combine. For changing the order, click on
the name of the column, the direction of the ordering is indicated next to the column name by arrows.

For filtering, you can either click the button next to the column name or under the row of the column
name. The filtering value can be changed by typing the values directly to the filtering row, the conditions need to
be changed using the filtering arrow.

7. Click Events to check the job related information.

Results
A job is generated that runs the SQL continuously on the stream of data from a table, and pushes the results to a table,
to the Results tab or to a Materialized View.
Related Information
Registering Data Providers in SSB

Creating Tables for SQL Stream jobs

Monitoring SQL Stream jobs

Configuring SQL job settings

If you need to further customize your SQL Stream job, you can add more advanced features to configure the job
restarting method and time, threads for parallelism, sample behavior, exatly once processing and restoring from
savepoint.

7

https://docs.cloudera.com/csa/1.8.0/ssb-data-providers/topics/csa-ssb-data-sources.html
https://docs.cloudera.com/csa/1.8.0/ssb-creating-tables/topics/csa-ssb-using-tables.html
https://docs.cloudera.com/csa/1.8.0/ssb-monitoring-sql-jobs/topics/csa-ssb-monitoring-sql-jobs.html

Cloudera Streaming Analytics Configuring SQL job settings

Before running a SQL query, you can configure advanced features by clicking on the Settings tabs at the SQL
window.

Execution Mode

You can select the execution mode for the SQL job that can be a session or a per-job mode. For
more information, see the Executing SQL jobs in production mode documentation.

Job parallelism (threads)

The number of threads to start to process the job. Each thread consumes a slot on the cluster. When
the Job Parallelism is set to 1, the job consumes the least resources. If the data provired supports
parallel reads, increasing the parallelism can raise the maximum throughput. For example, when
using Kafka as a data provider, setting the parallelism to the equal number as the partitions of the
topic can be a starting point for performance tuning.

Restore From Savepoint

You can enable or disable restoring a SQL job from a Flink savepoint after stopping it. The
savepoint is saved under hdfs:///user/flink/savepoints by default.

8

https://docs.cloudera.com/csa/1.8.0/ssb-job-lifecycle/topics/csa-ssb-production-mode.html

Cloudera Streaming Analytics Configuring SQL job settings

Sample Count

The number of sample entries shown under the Results tab. To have an unlimited number of sample
entries, add 0 to the Sample Count value.

Sample Window Size

The number of sample entries to keep in under the Results tab. To have an unlimited number of
sample entries, add 0 to the Sample Window Size value.

Sample Behavior

You have the following options to choose the behavior of the sampled data under the Results tab:

• Sample all messages
• Sample one message every second
• Sample one message every five seconds

Enable Checkpointing

You can enable and disable checkpointing for a SQL job. By default the checkpointing is enabled.

Checkpoint Mode

Switching between checkpointing modes. You can choose between At Least Once or Exactly Once.

Checkpoint Interval

The time in milliseconds between checkpointing attempts.

Checkpoint Timeout

The maximum time in milliseconds until a checkpointing attempt is timed out.

Tolerable Checkpoint Failures

The number of checkpointing attempts until the job is aborted.

Failure Restart Strategy

Switching between restarting strategies when a job fails. You can choose between enabling and
disabling auto recovery. By default auto recovery is enabled for checkpointing.

Adjusting logging configuration in Advanced Settings
You can customize the logging configurations for the SQL Stream Builder (SSB) job on the Streaming SQL Console
in per-job mode or session mode. Adjusting the log configuration enables you to control the log levels of all the
underlying libraries: Flink, Hadoop, Kafka, Zookeeper, other common libraries, and connectors to get more or less
information in your job’s log.

About this task

The customization of the log configuration works differently based on the job deployment mode:
Session mode

The execution.target is set to YARN-SESSION mode, this is the default execution mode.

The log configuration is set at the start time if the Flink YARN session is applied to every job
execution. For example, the current log configuration is applied if and only if the Flink YARN
session is not set on the Session tab of the Compose page.

Note: The Reset Session button only resets the SSB Session, not the underlying Flink
YARN session. To do that, you have to kill the YARN application that is indicated
under Flink Yarn Session on the Session tab.

Per-job mode

The execution.target is set to YARN-PER-JOB mode.

9

Cloudera Streaming Analytics Configuring SQL job settings

When you change the default execution mode to per-job, the currently applied log configuration is
going to be used for the job. To configure the execution mode, you need to start the SQL query with
the following line:

SET 'execution.target'='yarn-per-job';

Procedure

1. Click Create Job or select a previous job on the Getting Started page.

You are redirected to the Console page.

2. Select Job Settings from the Compose page.

3. Click Advanced.

4. Modify the settings based on your requirements.

5. Close the Job Settings window.

6. Click Save to save the job settings.

10

Cloudera Streaming Analytics Managing SQL jobs and queries

7. Add and execute a SQL statement.

8. Click SQL Jobs.

9. Search for the job you have executed previously.

10. Click Flink Dashboard.

The Flink Dashboard opens in a new window.

11. Click Task Managers > Logs .

The log information appears in the log window based on your custom configurations.

Configuring YARN queue for SQL jobs
You can configure the YARN application queue with a custom value for a SQL job using the Streaming SQL
Console.

With YARN queues, you can deploy applications to a specific subset of nodes with separate or limited resources,
according to configuration. This enables you to have a separate execution environment with limited resources to
experiment with new applications without impacting any production operation.

The YARN application queue can only be configured in a per-job execution target using the production mode of SQL
Stream Builder. This means that the default value of the YARN queue does not change, and you can only customize it
to the specific job that is executed in the production mode.

The default value of YARN application queue can be configured in Cloudera Manager. After accessing the SQL
Stream Builder service on your cluster, you need to open the configurations, and search for YARN application queue
where you can change the default value. This default value is overwritten when using the SET statement in production
mode for specifying the YARN queue for a SQL job.

For more information about running jobs in production mode, see the Executing SQL jobs in production mode
section.

You can configure the YARN application queue using the SET statement in Streaming SQL Console as the following
code example shows:

--PROD
set 'execution.target' = 'yarn-per-job';
set 'yarn.application.queue' = 'my-queue';
select * from datagen_table_1648801198

Managing SQL jobs and queries

You can restart a SQL Stream job after stopping it. After stopping a job, you can update or change the configurations.
You can navigate through the job life cycle using the Streaming SQL Console. To manage your SQL jobs and
queries, you can either use the different windows on the Console page or directly access the list of jobs and queries on
the SQL Jobs and History pages.

Loading SQL queries to SQL Editor
You can reuse an already submitted SQL query from the Console page or the History page of Streaming SQL
Console.

When you need to reuse a SQL query for a new job, you can load it and execute it in the SQL Editor. You can use the
Query History button on the Console page or you can select the History page from the main menu of Streaming SQL
Console.

For Console page

11

https://docs.cloudera.com/cdf-datahub/7.2.16/how-to-ssb/topics/csa-ssb-production-mode.html

Cloudera Streaming Analytics Managing SQL jobs and queries

For History page

You can view the full submitted statement by hovering the mouse over the items. You can load the query to the editor
from the Console page by clicking on the query in the Query History window. From the History page, you need to
click on the query, and select Paste to Active Job.

Loading jobs to SQL Editor
You can reload the already executed jobs regardless of success to the SQL Editor to make further and additional
changes, and execute them again.

You can load the running and stopped jobs to the SQL Editor in case you need to stop them, restart them or change
their configurations. You have the following options to load the SQL jobs to the SQL Editor on the Console page:

12

Cloudera Streaming Analytics Managing SQL jobs and queries

• On the Console page, click on SQL Jobs button, and click on a specific job from the list.
•

On the SQL Jobs page, click on the button next to the job status, and select Load Job.

Note: In case the SQL job has not been executed yet, you can load it to the SQL Editor by selecting the Go
back to job option.

The details of the job are reloaded to the SQL Editor with the latest saved configuration and Materialized Views.

Stopping SQL jobs
As a SQL Stream job processes streaming data, you need to stop the job to finish the process, and not let the job run
for an unlimited time. You can stop a running job either on the Console page or the SQL Jobs page.
Stopping job from Console page

If the job is currently loaded to the SQL Editor, you need to click on the Stop button to terminate
the job.

If the job is not loaded to the SQL Editor, you need to click on the SQL Jobs button to open the list

of SQL jobs window. Without selecting the running job, click on the button next to the job
status, and select Stop.

13

Cloudera Streaming Analytics Managing SQL jobs and queries

Stopping job from SQL Jobs page

On the SQL Jobs page, you need to click on the button next to the job status, and select
Stop.

You can filter down the list of job only to the running jobs by selecting Running from the filter.

For changing the order, click on the name of the column, the direction of the ordering is indicated

next to the column name by arrows. For further filtering, you can either click the button
next to the column name or under the row of the column name. The filtering value can be changed
by typing the values directly to the filtering row, the conditions need to be changed using the
filtering arrow.

Restarting SQL jobs
You can restart an already running job when it is active in the SQL Editor. You can also restart a stopped job by
executing it again either from the Console page or the SQL Jobs page.

14

Cloudera Streaming Analytics Managing SQL jobs and queries

Restarting a running SQL job

If the job is currently loaded to the SQL Editor, you need to click on the Restart button to restart the job.

Executing a stopped SQL job

Executing stopped job from Console page

You need to click on the SQL Jobs button to open the list of SQL jobs window. Without selecting

the stopped job, click on the button next to the job status, and select Execute.

Executing job from SQL Jobs page

On the SQL Jobs page, you need to click on the button next to the job status, and select
Execute.

You can filter down the list of job only to the stopped jobs by selecting Stopped from the filters.

15

Cloudera Streaming Analytics Managing SQL jobs and queries

For changing the order, click on the name of the column, the direction of the ordering is indicated

next to the column name by arrows. For further filtering, you can either click the button
next to the column name or under the row of the column name. The filtering value can be changed
by typing the values directly to the filtering row, the conditions need to be changed using the
filtering arrow.

Note: If you are using Materialized Views, the same Materialized View parameters will be selected. Make
sure that the configured parameters are still appropriate for the job if the source schemas have been modified.

Editing SQL jobs
You can edit every detail of your SQL jobs after stopping and reloading it to the SQL Editor on the Console page.

Before editing, you must stop the running SQL job. After modifying the properties of the job, you need to save and
execute them again to apply the changes.

1. Load the stopped job to the SQL Editor either from the Console or SQL Jobs page.
2. Click Job Settings to edit any configuration of the selected SQL job.

You can modify the job settings, Materialized Views and SQL query when editing a job.
3. Click Save.
4. Click Execute.

Note: Before saving a job, you can revert any type of job related change using the Revert Changes button.

Deleting SQL jobs
You can delete running and stopped jobs from the Console and SQL Jobs page. The deleted job no longer appears on
the Streaming SQL Console.
Deleting job from Console page

You need to click on the SQL Jobs button to open the list of SQL jobs window. Without selecting

the stopped job, click on the button next to the job status, and select Delete.

16

Cloudera Streaming Analytics Sampling data for a running job

Deleting job from SQL Jobs page

On the SQL Jobs page, you need to click on the button next to the job status, and select
Delete Job.

You can filter down the list of jobs by selecting Stopped or Running from the filters.

For changing the order, click on the name of the column, the direction of the ordering is indicated

next to the column name by arrows. For further filtering, you can either click the button
next to the column name or under the row of the column name. The filtering value can be changed
by typing the values directly to the filtering row, the conditions need to be changed using the
filtering arrow.

Sampling data for a running job

You can sample data from a running job to the Streaming SQL Console without writing it to any sink to inspect the
data and to make sure the job is running correctly, and producing the results you expect.

17

Cloudera Streaming Analytics Sampling data for a running job

About this task

Sampling the results to your browser allows you to inspect the queried data and iterate on your query. You can sample
100 rows in the Results tab under the SQL Editor on the Console page. Even if you do not specify any sink to the
SQL job, the results automatically appear in the Results tab.

Procedure

1. Navigate to the Streaming SQL Console.

a) Go to your cluster in Cloudera Manager.
b) Select SQL Stream Builder from the list of services.
c) Click SQLStreamBuilder Console .

The Streaming SQL Console opens in a new window.

2. Create a new job or select an existing job on the Getting Started window.

3. Execute the job.

The samples are automatically polled to the Console under the Results tab until the samples reach the maximum
number of result or you stop the job.

Results
Sample results are displayed in the results window. If there is no data meeting the SQL query, sampling stops after a
few attempts.

Configuring sampling sink
The sample.sink.parameters configuration allows you to configure the sink used to retrieve sample results of a SQL
query.

The parameter introduces key/value pairs which the system can use to configure the sink.

The current implementation uses a Kafka sink as the physical medium for storing the sample results, which means
that you can use the configuration parameters of Kafka producers to configure the sink. You can configure any Kafka
producer parameter based on your requirements.

For more information about Kafka producer configurations, see the Apache Kafka documentation.

As an example, the following parameters are configured for the sampling sink:

• max.request.size
• request.timeout.ms

The sample sink configuration in the example can be used when there is a need to increase the amount of data allowed
to be sent with the producer to the Kafka sink. For example, the default configuration of the amount of data is set
to 1M (1048576), which needs to be increased as more result records are expected. In this case, you need to set the

18

https://kafka.apache.org/documentation/#producerconfigs

Cloudera Streaming Analytics Sampling data for a running job

sample sink configuration to a bigger amount in Cloudera Manager, for example 2M (2097152), as shown in the
following image:

Configuring sampling parameter in Cloudera Manager

1. Go to your cluster in Cloudera Manager.
2. Select SQL Stream Builder from the list of services.
3. Select Configuration.
4. Search for sink using the search bar.

The sample.sink.parameters configuration is listed.
5. Click the plus icon to add the Producer configuration.
6. Add parameters to the sampling configuration.

For example, max.request.size and request.timeout.ms parameter.
7. Set the value based on your requirements.
8. Click Save.

Sample sink configuration per job

When you configure the sample.sink.parameters in Cloudera Manager for SQL Stream Builder (SSB), the
configuration is implemented on every sampling job no matter which user submits the SQL query. However, you can
choose to configure the session to contain the specific sample.sink.parameter that only applies to the jobs submitted
within the session.

To configure the sample.sink.parameters for a session, you need to use the SET commands in the SQL window on the
Streaming SQL Console. You need to use the “sample.sink” prefix before the parameters to indicate that the setting is
applicable only for the sample sink. For example to increase the size of records to the Producer of the Kafka sample
sink, you need to add the Kafka parameter name after the “sample.sink” prefix and add a needed value:

SET sample.sink.max.request.size=2097152

This means that the command sets the max.request.size parameter to 2097152 for the current session only.

19

Cloudera Streaming Analytics Managing session for SQL jobs

Managing session for SQL jobs

By default, the SQL Stream jobs are running in a session cluster. This means that multiple Flink jobs run in the same
YARN session sharing the cluster, allocated resources, the Job Manager and Task Managers. The session starts
when you open the Streaming SQL Console. You can reset the session, and set the properties of the session using the
Streaming SQL Console.

Resetting a session

When you reset your session, every configuration, temporary table and view, default database and catalog will be lost.

1. Navigate to the Streaming SQL Console.

a. Go to your cluster in Cloudera Manager.
b. Click on SQL Stream Builder from the list of Services.
c. Click on the SQLStreamBuilder Console.

The Streaming SQL Console opens in a new window.
2. Click Create Job or select a previous job on the Getting Started page.You are redirected to the Console page.

You are redirected to the Console page.
3. Select Session.
4. Click Reset.

Configuring properties for a session

You can configure the session properties using the SET statement in the SQL window.

1. Navigate to the Streaming SQL Console.

a. Go to your cluster in Cloudera Manager.
b. Click on SQL Stream Builder from the list of Services.
c. Click on the SQLStreamBuilder Console.

The Streaming SQL Console opens in a new window.

20

Cloudera Streaming Analytics Managing session for SQL jobs

2. Use the SET statement in the SQL Editor to configure a session property.

Example:

SET state.backend=rocksdb

You can review all of the configurable parameters on the Properties tab of the Session window.

3. Click Execute.

Executing SQL jobs in production mode
As by default the SQL jobs are running in a session cluster, there is a risk in case of a cluster failure that every job
is affected within that cluster. However, you can set a per-job production mode in SQL Stream Builder to create a
dedicated environment for your production jobs.

Production mode means that the deployed SQL job (Flink job) runs in a separate SQL session and on a dedicated
YARN cluster configured specifically for that particular job. You can set the execution mode in the Job Settings
window, although the YARN execution target can be overwritten using a SET statement in the SQL Editor.

21

Cloudera Streaming Analytics Managing session for SQL jobs

Setting production mode in Job Settings

To set the production mode for your SQL jobs in the Jobs Setting page, you need to select the execution mode with
the following steps:

1. Navigate to the Streaming SQL Console.

a. Go to your cluster in Cloudera Manager.
b. Click on SQL Stream Builder from the list of Services.
c. Click on the SQLStreamBuilder Console.

The Streaming SQL Console opens in a new window.
2. Click Create Job or select a previous job on the Getting Started page.

You are redirected to the Console page.
3. Click Job Settings.
4. Select PROD - Job runs in isolated Cluster at Execution Mode.
5. Add a SQL statement to the SQL Editor you want to execute.
6. Click Execute.

Setting YARN execution target in SQL Editor

To set the YARN execution mode for your SQL jobs in the SQL Editor, you need to use the SET statement, and
execute the SQL query after defining the execution target and properties in the same window:

set 'execution.target' = 'yarn-per-job';
set 'logging.configuration.file' = '/tmp/log4j.properties';
select * from datagen_table_1631781644;

In the above example, the execution target is set to per-job to create a new YARN application for the job. Setting
the execution target to per-job allows you to have an individual cluster for the specific job. The additional properties
that you configure using the SET statement overwrites the properties that are configured for the running session.
However, when you set properties for the production mode, the settings of the session cluster are not affected.

Note: You can override the execution mode set in the Job Settings window using the SET statement in the
SQL Editor.

1. Navigate to the Streaming SQL Console.

a. Go to your cluster in Cloudera Manager.
b. Click on SQL Stream Builder from the list of Services.
c. Click on the SQLStreamBuilder Console.

The Streaming SQL Console opens in a new window.
2. Click Create Job or select a previous job on the Getting Started page.

You are redirected to the Console page.
3. Set the execution mode to per-job.

set 'execution.target' = 'yarn-per-job';

4. Add additional configuration to the production job.
5. Add a SQL statement you want to execute.

Example:

set 'execution.target' = 'yarn-per-job';
set 'state.backend' = 'rocksdb';
select * from faker_table_1631781644;

6. Click Execute.

22

Cloudera Streaming Analytics Enhancing the developer experience

Enhancing the developer experience

You can change the views of the Console page to have a better developer experience. The SQL Editor also has some
SQL developer features that makes searching code and writing SQL queries easier.

The following features are available for Streaming SQL Console to enhance the developer experience of SSB:
VIM mode

You can edit the SQL statements and queries either in default or in VIM mode. To use the VIM
editor, you need to enable it with Vim mode toggle. For more information about the VIM editor, see
the official VIM documentation.

Using Themes

You can customize the color coding of the SQL Editor by selecting one of the supported themes.

Hide Tables and main menu

You can close the Tables panel next to the SQL Editor to create a bigger Editor window for your
SQL queries. Additionally, the left main menu can also be closed to have the SQL Editor in full
page size.

Switch to Vertical Layout

You can switch to a vertical layout of the SQL Editor which means that the Editor window and the
Logs/Results window are next to each other.

23

https://www.vim.org/about.php

Cloudera Streaming Analytics Enhancing the developer experience

Sidebar of SQL Editor

You can see the miniature version of the SQL code at the sidebar of the SQL Editor window. This
is helpful when you have longer SQL syntaxes in a batch, and need to quickly jump in the middle
or at the end of the code. In addition, the sidebar also shows the appearance of specific values in the
code. For example, if you want to see where a given value appears, you can click in the SQL Editor
at the given value, and its occurrence is highlighted in the sidebar.

Autocomplete for SQL

24

Cloudera Streaming Analytics Enhancing the developer experience

When you start typing SQL statements to the SQL Editor, an autocomplete window appears to help
you with the SQL syntax. You can select any statement from the list by using the enter key on your
keyboard.

25

	Contents
	Creating and naming SQL jobs
	Running SQL Stream jobs
	Configuring SQL job settings
	Adjusting logging configuration in Advanced Settings
	Configuring YARN queue for SQL jobs

	Managing SQL jobs and queries
	Loading SQL queries to SQL Editor
	Loading jobs to SQL Editor
	Stopping SQL jobs
	Restarting SQL jobs
	Editing SQL jobs
	Deleting SQL jobs

	Sampling data for a running job
	Configuring sampling sink

	Managing session for SQL jobs
	Executing SQL jobs in production mode

	Enhancing the developer experience

