Cloudera Streaming Analytics 1.8.0

Flink SQL

Date published: 2019-12-17
Date modified: 2022-09-28

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Streaming Analytics | Contents | iii

FIINK SQL OVEIN VIBW......cceeee ettt et et nne e st e e snne e snee e sneeenes 4
o T 0SG5S 4
TSI PP 4
e LT S0 = =SSR 4
Other SUPPOITE SEELEIMENES.euiieeeerteiirtiest ettt re ettt b bbb bbbt bbb et s b e e b e e e e e b e b st bene 5
Dz = R I 0= TP TP 5
DYNAMIC SQL HINES......iictiitetiietire sttt bbbt bbbt bt bbb e bbb b b 6
SQL EXBMPIES...... ittt stttk b et b et b et b e s e b e s e bt s e bt s e e bt s R e Rt R e R e b e e b e e bt b e st b e e ebeneene e 6
Enriching streaming data With JOIN.........cccceiii e 9
Joining streaming and BoUNded taDIES...........ccucicieeeececr e e e 10

Example: joining Kafka and Kudu tablES.............cociiiiinieie ettt 11

Cloudera Streaming Analytics Flink SQL Overview

Flink SQL Overview

AsHink SQL isused in SQL Stream Builder, you can execute the supported Flink DDL, DML and query statements
directly from the SQL window in Streaming SQL Console.

Flink DDL

Flink SQL supports Data Definition Language (DDL) statements to create, modify and remove objects within adata
structure.

The following table summarizes the supported DDL statementsin SQL Stream Builder:

CREATE TABLE Creating table for the SQL query. You « Adding WATERMARK and PRIMARY
can create tables based on the supported KEY information
connectors. « Creating table with LIKE clause
CREATE VIEW Creating custom views using columns from « Adding queries, expressions and joins
tables. There is no physical databehind a
view.
CREATE FUNCTION Creati ng User Defined Function (UDF) fora . Usi ng Javamnpt or Java |angu&e
query. « Using Functions tab on Streaming SQL
Console
DROP TABLE Deleting atable, view or function. + Using Streaming SQL Console
functionality to delete table, view or
DROP VIEW function
DROP FUNCTIONS
ALTER TABLE Modifying table, view or function properties. |« Using RENAME TO or SET for table
ALTER VIEW . Using RENAME TO or ASfor view and
function
ALTER FUNCTION

For more information about Flink SQL, see the Apache Flink documentation.

Flink DML

Flink SQL supports Data Manipulation Language (DML) statements to manipul ate the data itself with adding,
deleting or modyfing.

The following table summarizes the supported DML statementsin SQL Stream Builder:

DML Description

INSERT INTO Inserting query resultsinto a specified table. Inserting columns or valuesinto atable

e Adding OVERWRITE to overwrite the
existing datain the table

For more information about Flink SQL, see the Apache Flink documentation.

Flink Queries
Flink SQL supports queriyng data with SELECT statement and using different types of operations.
Y ou can query data from atable using the SELECT statement.

4

https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/dev/table/sql/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/dev/table/sql/overview/

Cloudera Streaming Analytics

Flink SQL Overview

Description

Qe

SELECT

Querying data from atable using different
operations.

Selecting al datain atable

Selecting data using different types of
operations

Operation Description

WHERE Querying data based adding filters. « Using boolien expression

JOIN Joining data from tablesbased on aequivalent |« g ng temporal joins based on event time
column. or processing time

e Usinglookupjoin

GROUP BY Grouping results using built-in or user defined |« Using with streaming table procudes
functions. updated results

ORDER BY Ordering results to be sort based on aspecified | « Using with streaming table the primary
expression. sorting key needs to be time

For more information about Flink SQL, see the Apache Flink documentation.

Other supported statements

Beside the supported DDL, DML and SELECT, the supported statements also include DESCRIBE, SHOW and SET
that you can use in SQL Stream Builder.

The following table summarizes the supported statements for in SQL Stream Builder:

Operation Description

DESCRIBE TABLES

Describing the schema of atable

SHOW TABLES

SHOW VIEWS

catalogs

SHOW FUNCTIONS

SHOW DATABASES

SHOW CATALOGS

Showing alist of existing tables, views, functions, databases or

SET

Setting properties of session

For more information about Flink SQL, see the Apache Flink documentation.

Data Types

Thelogical type of avalueto declare input and output types of operations in atable ecosystem is described by data
types. Flink support a set of pre-defined data types that can be also used in SQL Stream Builder (SSB).

The following list summarizes the pre-defined data typesin Flink and SQL Stream Builder:

* CHAR

* VARCHAR

* STRING

» BOOLEAN

* BINARY

* VARBINARY
« BYTES

https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/dev/table/sql/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/dev/table/sql/overview/

Cloudera Streaming Analytics Flink SQL Overview

« DECIMAL - Supportsfixed precision and scale.

 TINYINT

e SMALLINT
* INTEGER

* BIGINT

« FLOAT

» DOUBLE

« DATE

e TIME - Only supports a precision of 0.

 TIMESTAMP

e TIMPESTAMP_LTZ

e INTERVAL - Only supportsinterval of MONTH and SECOND(3).

« ARRAY

* MULTISET
« MAP

« ROW

* RAW

» Structured types - Only exposed in user-defined functions.
For more information about Data Typesin Flink SQL, see the Apache Flink documentation.

SQL hints are supported for SQL Stream Builder (SSB) that allows you to use the dynamic table options. With the
dynamic table options, you can alter any option of atable on aquery level.

The dynamic table options of Flink SQL allows you to specify and override options for atablein a SQL query. The
hint is formatted as a SQL comment containing an OPTIONS() clause, for example:

/*+ OPTIONS(* keyl' =" val uel’, ‘key2' =value2') */
Y ou need to place the clause directly afte the table name where you need to change the options. Y ou can use separate
clauses for separate tables within a SQL query.

For example, you can use the following SQL hint to dynamically configure a Kafka consumer group at run time:

SELECT t1.colum_a, t2.colum_b
FROM t abl eNanme_A /*+ OPTI ONS(‘ properties. group.id =" ny_consuner_group’) */ A

St1l
JO N tabl eName_B /*+ OPTI ONS(*‘ properties.group.id = my_other_consuner_group
") */ ASt2

ON tl.colum_a = t2.colum_b
Any option of atablethat is accessible in the DDL of a connector can be overridden using the SQL hints. The options
of aconnector can be viewed on the Connector page of Streaming SQL Console.

For more information about the SQL Hints, see the official Apache Flink documentation.

Y ou can use the SQL examples for frequently used functions, syntax and techniquesin SQL Stream Builder (SSB).
SSB uses Calcite Compatible SQL, but to include the functionality of Flink you need to customize certain SQL
commands.

https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/dev/table/types/#data-types
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/dev/table/sql/queries/hints/

Cloudera Streaming Analytics Flink SQL Overview

-- show all tables

SHOW t abl es;

-- describe or show schema for table
DESCRI BE paynents;

DESC paynent s;

-- eventTimestanp is the Kafka tinestanp
-- as unix tinmestanp. Magically added to every schena.
SELECT max(event Ti mest anp) FROM sol ar _i nput s;

-- make it human readabl e
SELECT CAST(nmax(event Ti nest anp) AS varchar) as TS FROM sol ar _i nput s;

-- date math with interval
SELECT * FROM paynent s
WHERE event Ti mest anp > CURRENT_TI MESTAMP-interval '10' second;

-- hourly paynent vol une

SELECT SUM CAST(anount AS numeric)) AS paynment _vol une,

CAST(TUVBLE_END(event Ti mest anp, interval '1' hour) AS varchar) ASts
FROM paynent s

GROUP BY TUMBLE(event Ti mestanp, interval '1' hour);

-- detect multiple auths in a short w ndow and
-- send to | ock account topic/ncroservice

SELECT card,

MAX(anount) as theanount,

TUMBLE _END(event Ti nestanp, interval '5 mnute) as ts
FROM paynent s

WHERE | at |'S NOT NULL

AND lon |'S NOT NULL

GROUP BY card, TUMBLE(eventTi mestanp, interval '5" ninute)
HAVI NG COUNT(*) > 4 -- >4==fraud

-- unnest each array el enent as separate row
SELECT b.*, u.*

FROM bgp_avro b,

UNNEST(b. pat h) AS u(pathiten

B Note: Arraysstart at 1 not O.

-- union two different tables
SELECT * FROM cl i ckstream
VWHERE useragent = ' Chrone/62.0.3202. 84 Mobile Safari/537.36'

Cloudera Streaming Analytics Flink SQL Overview

UNI ON ALL
SELECT * FROM cl i ckstream
WHERE useragent = 'Version/ 4.0 Chrone/58.0.3029.83 Mbile Safari/537. 36

-- sinple math

SELECT 42+1 FROM nyl ogs;

-- inline

SELECT (anpunt +10) *upcharge AS total anobunt
FROM paynent s

WHERE account _type = 'nerchant'

-- convert Cto F
SELECT (tenp-32)/1.8 AS tenp_fahrenheit
FROM r eact or _core_sensors;

-- daily mles accunulator, 100:1

-- send to persistent storage nicroservice

-- for upsert of niles tally

SELECT card,

SUM anount)/ 100 AS mil es,

TUMBLE _END(event Ti mestanp, interval '1' day)

FROM paynent s

GROUP BY card, TUMBLE(eventTi mestanp, interval '1' day);

-- join multiple streans
SELECT o. nane,
sum(d. clicks),
hop_end(r.event Ti mestanp, interval '20' second, interval '40" second)
FROM click_streamo join orgs r on o.org_id =r.org_id
join nodels d on d.org id =r.org_id
GROUP BY o. nane,
hop(r.event Ti mestanp, interval '20' second, interval '40' second)

-- join with tenporal table where LatestRates is a tenporal table

SELECT

0. anobunt, o.currency, r.rate, o.anmount * r.rate
FROM

Orders AS o

JO N Lat est Rates FOR SYSTEM TI ME AS OF o.proctine ASr
ON r.currency = 0.currency

Joins are considered "hyperjoins' because SQL Stream Builder has the ability to join multiple tables in asingle query,
and because the Kafkatable is created from a data provider, these joins can span multiple clusters/connect strings, but
also multiple types of sources (join Kafka and a database for instance).

SELECT us_west . user_score+ap_sout h. user _score
FROM kaf ka_i n_zone_us_west us_west

FULL QUTER JA N kafka_in_zone_ap_south ap_south
ON us_west.user _id = ap_south. user _id;

Cloudera Streaming Analytics Enriching streaming data with join

-- concatenation
SELECT 'testne_'||nane FROM | ogs;

-- select the datatype of the field
SELECT event Ti nest anp, TYPEOF(event Ti mest anp) as nytype FROM ai r pl anes;

Typical escaping and quoting is supported.
* Nested columns

SELECT foo. bar® FROMtable; -- nust quote nested col um
o Literals
SELECT "sone string literal" FROM nytable; -- a literal

-- convert EPOCH tinme to tinestanp
sel ect EPOCH TO TI MESTAMP(1593718981) from ev_sanpl e_fraud;

-- convert EPOCCH nilliseconds to tinestanp
sel ect EPOCHM LLI S TO Tl MESTAMP(1593718838150) from ev_sanpl e_fraud;

In SQL Stream builder, you can enrich your streaming data with values from a slowly changing dataset using join
statements.

Join statementsin SQL serves to combine columns and rows from two or more tables based on a shared column.
When you join tables from a slowly changing source such as HDFS, Kudu, Hive and so on, you can simply use the
regular JOIN syntax of SQL. The following example shows aregular INNER JOIN where the ORDERStableis
joined with PRODUCT table based on the PRODUCTID:

SELECT * FROM Orders
I NNER JO N Product
ON Orders. productld = Product.id

A regular join can only be used with bounded tables. In a streaming context datais produced continuously, and with
aregular join both sides of the join would need to be buffered indefinitely to store al of the events that would match
with the result of the SQL query. To get results from a given amount of time and to join streaming tables, atime
boundary needs to be specified. This means the tables not only need to be joined by a key or column, but also on a
time attribute.

Cloudera Streaming Analytics Enriching streaming data with join

When joining streaming tables, the time attribute can be defined in the SQL syntax using BETWEEN and an interval
value:

SELECT *

FROM Orders o, Shipnents s

WHERE o0.id = s.order _id

AND o. order _time BETWEEN s.ship tine - INTERVAL '4' HOUR AND s.ship tine

In this case, ORDERStable is joined with the SHIPMENTS table and the results are going to be generated based on
the ID column as long as the order time and shipment time is within four hours of each other. The condition of this
scenario is that the events in the streams happen almost at the same time with minimal delay, so the time boundary
can be defined between an approximate interval.

When you want to join a streaming table with a slowly changing table, time attributes can differ as one of the tables
stores data over along period of time, while the streaming table receives new data continuiously. To join these types
of tables, atime needs to be defined that can serve as areference point for both types of tables.

Beside regular join and interval join, in Flink SQL you are able to join a streaming table and a slowly changing
dimension table for enrichment. In this case, you need to use atempora join where the streaming table is joined with
aversioned table based on a key, and the processing or event time.

A versioned tableis atable that contains a time attribute, and reflects the records from a table at a specific point of
time. When you use append-only or regularly updated sources, the values related to a key are updated over along
period of time. For example, atable can contain the currency rates since last month. At every change of the currency
rate, a new value is added to the stream, therefore to the table. With creating a versioned table of the currency rate,
you can specify which rate you need in an exact point of time: use the currency rates from 12:00.

For more information of Version Tables, see the official Apache Flink documentation.

After determining the version of the bounded table, you also need to define atime for the streaming table. In Flink,
event time and processing time can be specified. When using event time, you need to create atemporal join.

Event timeis the time that each individual event occurred on its producing device. To have an event time attribute in
your SQL query, you need to define a timestamp column with awatermark definition column when creating the table:

CREATE TABLE orders (

order_id STRI NG

price DECI MAL(32, 2),

currency STRI NG,

order _tinme TIMESTAMP(3),

WATERMARK FOR order _tinme AS order _tine
) WTH (

)

When you want to use event timein a JOIN, you need to refer to the event time column as defined for the table in the
FOR SYSTEM_TIME AS OF part of the SQL query:

SELECT
order _id,
price,
currency,

conversion_rate,
order tine,

10

https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/dev/table/concepts/versioned_tables/

Cloudera Streaming Analytics Enriching streaming data with join

FROM or der s
LEFT JO N currency_rates FOR SYSTEM TI ME AS OF orders.order_tine
ON orders.currency = currency_rates. currency

Asaspecial case of temporal join, you can use the processing time as atime attribute. In Flink, processing timeis
the system time of the machine, also known as “wall-clock time”. When you use the processing timein a JOIN SQL
syntax, Flink translates into alookup join and uses the latest version of the bounded table. The following example
shows the join syntax that needs to be used for enriching streaming data:

SELECT o.order_id, o.total, c.country, c.zip
FROM Orders AS o
JA N Custoners FOR SYSTEM TI ME AS OF PROCTI ME()
ON o.custoner_id =c.id

In the above example, CUSTOMERS serves as the lookup table. The FOR SYSTEM_TIME AS OF PROCTIME
() syntax indicates that you always want to look up in the latest version of the table. With including the processing
time in the SQL syntax, you can query the latest version of alookup table, and enrich your streaming data with the
corresponding value.

Note: When using SQL Stream Builder, you can simply use the PROCTIME() function as the version of
E the lookup table when performing alookup join. This means that you do not need to create and reference a
processing time column in your probe stream anymore.

In SQL Stream Builder, the following connectors are supported as lookup tables:

e Kudu
* Hive
- JDBC

Using lookup join, you can join Kafka and Kudu tables to enrich the streaming data of Kafka with information from
the Kudu tables. In the this example, Orders of a Kafka streaming table are enriched with metadata information from
aKudu table.

Asaprerequisite for the example, the following steps were completed in SQL Stream Builder:

* Registering Kafka as a Data Provider.

* Registering Kudu as a Catal og.

e Creating Orders Kafkatable.

e Creating ItemMeta Kudu table.

» Generating datafor Kafka and Kudu tables.

The tables in the example contain the following information:

Kafka - Orders order_number

price
order_time
item_id

e o o o

Kudu - ltemMeta . id
* info

11

Cloudera Streaming Analytics Enriching streaming data with join

In the scope of this example, the ORDERS table will be joined with latest version of the ITEMMETA table based on
theitem ID, and the selected information is sampled under the Results tab of the Streaming SQL Console:

SELECT order _time, itemid, info, price

FROM Or der s

JA N kudu. def aul t _dat abase. Itemveta FOR SYSTEM TI ME AS OF PROCTI ME()
Nitemid =id

After running the SQL query, the results are continuously sampled to the Streaming SQL Console, the rows of
ORDER TIME, ITEM_ID and PRICE are enriched with INFO column from the ITEMMETA Kudu table;

Streaming SQL Console © admin~-

Console

Run SQL against unbounded streams of data and create persistent SQL streaming jobs

Compose ~ Tables Functions Histor SQL Jobs

SQL Job Name flamboyant_dijkstra C Random Name

Sink Virtual Table None ~

defeultmode solarized dark & Sample =

Logs

[20/04/2021, 17:58:03][INFO] StreamBuilder is ready.

12

	Contents
	Flink SQL Overview
	Flink DDL
	Flink DML
	Flink Queries
	Other supported statements
	Data Types
	Dynamic SQL Hints
	SQL Examples

	Enriching streaming data with join
	Joining streaming and bounded tables
	Example: joining Kafka and Kudu tables

