Admin API

Date published: 2020-10-30
Date modified: 2022-09-21

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

| Contents | iii

6 01 g TN S 4
Admin API Syntax and General USAge.........ccceceeiiriiieesie e 5
Admin APl Syntax Parameters.........ccoeeiieiieeiin e s 6
Python Admin API Data Format and ReSPONSE.........cccceevevevieenieciee e 7
CURL Data Format and APl Key EXamples........ccoeveviieevee i 7
AdMIN API DEIMO.....cooiiiiiieiie ettt sttt be e s aeenneesaee e 8

USING AdMiN APl DEMO: EXBMPIES..........ooovoeevvveeessesssssseesssssssssessssssssssseesssssssssseesssssssssssessssssssssses oo 9
Data type detailS.......coviiieiiececee e s 13
LS S PP PPF PRSP 14
L] 011 o LRSS RTRUPPOPRRRRR 14
ROIES....ee et e e a et te e te e nae e areenreennne s 15
BT 0 1 41 1P PRRRR 17
Filter ASSOCIAIONS APoeeieee e e ee e 18

Admin APl

provides URL accessto ArcViz server objects, such as users, groups, roles, datasets, segments, filter associations,
connections, and visuals. This allows you to automate deployment operations, such as creating and managing roles,
without logging into the ArcViz server console for access to command-line utilities.

When running the Admin API interface, enforces the same security rules as when using the graphical user interface,
ArcViz. For example, a user must have Manage roles and users system-level permissions to create new users or
update existing users.

We designed the Admin API for simple object access: Create, Read, Update, and Delete. Hence, CRUD. It does not
support high-level operations, such as adding tables to the dataset.

e Enabling Admin API Support

e Admin APl syntax and general usage

e Admin APl syntax parameters

e Setting Up a Session

» Python admin API dataformat and response examples
e CURL dataformat and API key examples

e Admin APl demo

e Examples
» Datatype details
e Users
« Groups
* Roles
e Segments
» Filter Associations API
* Workspaces

Admin APl Syntax and General Usage
Admin APl Syntax Parameters

Python Admin API Data Format and Response
CURL Data Format and APl Key Examples
Admin APl Demo

Using Admin APl Demo: Examples
Datatype details

Users

Groups

Roles

Segments

Filter Associations API

Workspaces

Admin APl Syntax and General Usage

The Admin APl has a consistent pattern for each data type.

The Admin API has the following basic access syntax:

[http |

htt ps]:/host: port/arc/adni napi/version/data_ type[/object id][?

opti ons]

The parameters of thisline arein Admin API syntax parameters.

The HTTP method specifies the following operation types:

GET

POST

DELETE

List of an item identified through the object_id or object_name, or al items, with default summary
information. The URL option 'detail=true' returns all data details.

Update: The fieldsin the request data update the item with matching object _id.

Create: If the URL or request data does not specify the object_id, ArcViz creates a new dataitem.

Validate:

To verify that the connection is successful, issue the POST command two times;

1. Issuethe POST command with the validate flag set to true.

[
{

"id":18,

"name": " ArcEngi ne Dev",
"type": "arcengi ne",
"val idate": "true",
"info": {

" PARANVE" :

"HOST": "l ocal host",

"PORT": "21051",

"USERNAME": "adm n",

"SETTI NGS" :

"ANALYTI CAL_VI EW MAX_REFRESH THREADS": "1",
"MAX_PARTI TI ONS_FOR_REFRESH | NSERT": " 1"

}

2. On success, issue the same POST command without the validate flag. This step saves the data.

Delete the specified item.

Admin APl Syntax Parameters

While you can use all standard HT TP access methods, we recommend the python request modules approach for
HTTP operations. Note the following common setup:

i mport json

i mport requests

api _url = [http|htttps]://host:port/arc/adm napi/version
login_url = [http]|https]:/host:port/arc/apps/login

Admin APl Syntax Parameters

The Admin APl has a consistent pattern for each data type.

The Admin API has the following basic access syntax:

[http | https]:/host:port/arc/adm napi/version/data_type[/object_id][?
opti ons]

host
The host of the ArcViz instance.

port
The port of the ArcViz instance.

version
The current APl version isvl. Thisincrementsif the item data format changes. Whenever possible,
we intend to support older versions for backward compatibility.

data_type
One of the ArcViz artifacts: users, groups, roles, datasets, connections, visuals, segments, filter
associations, or workspaces.

object_id
Theid of the individual object, such as a specific user, visual, or a specific dataset. Y ou can either
use the object_id or the object_name in the syntax, not both.

object_name
The name of the individual object, such as a specific user, visual, or a specific dataset. Y ou can
either use the object_id or the object_name in the syntax, not both.

options
Further request options, such aslevel of information details when 'detail=true'.

api_url
The address of the APl management system, in the form [http|htttps]://host:port/arc/adminap
i/version.

login_url

To authenticate the end user, address of the login URL, in the form [http|https]:/host:port/arc/apps/lo
gin.

Python Admin APl Data Format and Response

provides examples of python Admin API data format and response.

The response data for GET operationsisalist of JSON items. For POST operations, such as UPDATE and CREA
TE, theinput format is a structure with adatafield that contains the JSON list of items. The UPDATE and CREATE
operations process one item at atime, so thelist is exactly one entry long.

The response data for POST operations is the updated item, matching a GET with detail=1 for theitem, as
demonstrated in Example 1: Setting the name for role ID=1 to 'System Admin' on page 7.

For item updates, it is only necessary to specify the fields you are updating. merges the supplied fields in the input
datawith the existing item's data, as demonstrated in Example 2: Checking role ID=2; updating by adding a new user
onpage’.

payl oad = {' nane':' System Admi n'}
session. post(api _url + '/roles/1', data={'data':json.dunps([payload])})

Note that the APl URL has the following form:
[http| htttps]://host:port/arc/adm napi/version

For syntax of other parameters, see Admin APl syntax parameters.

response = session.get(api _url + '/roles/2?detail =1")
role = response.json()[0]
if '"new_user' not in role["users']:
payl oad = {'users':role['users'] + ['new user']}
session. post(api _url + '/roles/2', data={'data':json.dunps([payload])})

For the definition of fields for each data type, see Data type details.

Admin APl Syntax Parameters
Datatype details

provides examples of APl Key in CURL dataformat.

When you add the APIK ey to the request header and avoid explicit login, all interactions become smpler. The
examplesin this article use an APIKey obtained through the Manage API Keys interface, on the host: port/arc/apps/
apikeys browser page of the DataViz installation The actual APIKey and the method of retrieving the key depends on
the user system.

See Example 1 to learn how to get all roles information, and Example 2 to change the description of arole.

To use CURL to obtain afull dump of al roles, use the following command.

Admin APl Demo

Note that the output is piped to the standard python JSON dumper for easier reading; it is not necessary for CURL
access.

curl -s \
-X GET \
-H "Aut hori zati on: api key Api Key" \
api _url/roles?detail =1> | python -mj son.tool

Note that the login URL has the form [http|https]:/host: port/arc/apps/login. For syntax of other parameters, see Admin
API syntax parameters.

To change the description for role ID 3, use the following command.

For CURL to supply data through the POST method, use the application/x-www-form-urlencoded content type.

curl -s \
- X PGOST \
-H "Cont ent - Type: application/x-ww-formurl encoded" \
-H "Aut hori zati on: api key Api Key" \
-d 'data=[{"desc":"Updated description again"}]"' \
api _url/roles/3

For the definition of fields for each data type, see Datatype details. For syntax of other parameters, see Admin API
syntax parameters.

Admin APl Syntax Parameters
Datatype details

We areincluding asimple GUI demo to demonstrate how the URL-based Admin APl can easily display the data
format for each item type.

Note:
E ¢ Usethe demo with some caution: the system does not confirm DELETE operations, and it is hot meant for
implementing system configuration changes. It is simply aworking example of the Admin API.
« Thedemo isnot enabled by default. It must be enabled, much as the actual Admin APl URL support must
be enabled, for each item.

Use the following statement to enable the demo:
AD!\/I N API DEMO LIST = ['visuals', 'datasets', 'connections', 'users', 'grou
>%, ’rol es', 'segnents', 'filterassociations']

Alternatively, use the wild card to specify all options:
ADM N _API _DEMO LIST = ['"*']

To fully enable all APIsand all demo tabs, use the wild card character in the settings entries for both ADMIN_AP
|_DEMO_LIST and ADMIN_API_URL_LIST:

(']
("]

okt

ADM N_API _DEMD LI ST
ADM N_API _URL_LI ST

Admin APl Demo

After enabling the demo, you can access it through the following URL :

host _pat h/ ar c/ apps/ api denp

Using Admin APl Demo: Examples
'sSURL-based Admin API can easily display the data format for each item type.

The demo has atab for each enabled item type, and supports al the API functions: Fetch (one), Fetch All, Create,
Update, and Delete.

The following examples demonstrate some of the functions available through the demo.

Fetching All User Information

To get information on all users, simply click Fetch. returnsthelist of registered users, as demonstrated by the
following screenshot.

[\ ARcADIA DATA

Fetching Single User Information, With Detail

Visuals Datasets

FETCH (]

"1d*: 1,
“username”: “admin",
"is_superuser": true

"id": 2,

"username": “userl",
"is_superuser”: false
=1d": 3;

“username": “user2",
"is_superuser": false
"id": 4,

"username”: “a.b@arc.com”,
“is_superuser”: false

"id": 5,
“username”: “user3d",
"is_superuser”: false

Filter Associations

URL: GET /arc/adminapi/users

The following steps shows how to extract information on asingle item using its ID or name. The following imageis a
screen shot of extracting information on asingle item using its 1D, and contains the actions available for single items:

Update, Clone, and Delete.

Under the Users tab, enter the ID.
Select the Detail option to get the full data for that item, in this case user ID 1.

Click Fetch.

Admin APl Demo

A ARCADIA DATA

Visuals Datasets Connections Users Groups Roles Segments Filter Associations Workspaces

FETCH ‘ UPDATE CLONE pELeTE | (ID/Name 1 | Detail v

(URL: GET /arc/adminapi/v1/users/1?detail=1 |

[
{
"id": 1,
"username": "admin",
"is_superuser": true,
"is_active": true,
“date_joined": "2018-02-17 03:39:34 UTC",
"last_login": "2018-89-84 22:55:14 UTC"
"first_name": ",
"last_name": "",
“groups": [
{
tid"s v,
"name"': ""
}
1

r
"roles": [I

The following image is a screen shot of extracting information on asingle item using its name. In this case nameis
admin.

[\ ARCADIA DATA

Visuals Datasets Connections Users Groups Roles Segments Filter Associations Workspaces

FETCH UPDATE CLONE oLeTe | (ID/Name admin | Detail#

URL: GET /arc/adminapi/v1/users Tname=admin&detail=1)

[
{
Thi g 9l
"username": “admin",
"is_superuser": true,
"is_active": true,
"date_joined": "2018-82-17 03:39:34 UTC",
"last_login": "2818-89-84 22:55:14 UTC",
"first_name": "",
"last_name": "",
"groups": [
{
"ig": "™,
"nmame": "
}
]

"roles": []

10

Admin APl Demo

Cloning an Item

When you Clone an item, the resulting screen shows a duplicate of theitem, but clearsthe ID field. Thisis a partial
operation; see Creating a New Item on page 11.

[\ ARCADIA DATA

Visuals Datasets Connections Users Groups Roles Segments Filter Associations

FETCH CREATE D Detail URL: POST /arc/adminapi/users

"username”: “user2"”,
"is_superuser”: false,
"is_active™: true,
"date_joined”: "2014-12-88 22:27:27 UTC",
"last_login": "2017-04-06 82:06:21 UTC",
“groups": [],
“roles”: [
{
"1d®: 5§,
"name": “For user2"
}
]
}
1

Creating a New Item
If you click Create at thistime (after Cloning an Item on page 11), returns an error, because a user with this name
aready exists.

When you change the username, you must also supply the initial password. Here, we created a new user by changing
the username and adding an extra line that specifies the password:

"username": "user2-copy",
"password": "initial-pw',

J\ ARCADIA DATA

Visuals Datasets Connections Users Groups Roles Segments Filter Associations

FETCH CREATE s} Detail URL: GET /arc/adminapi/users/3?detail=1

"username": "user2-copy"”,
“password": "initial-pw",
“is_superuser”: false,
"is_active": true,
"date_joined": "2014-12-08 22:27:27 uUTC",
"last_login™: "2017-84-06 02:86:21 UTC",
“groups": [1,
“roles": [
{
=id*: 5,
“name”: “For user2"
}
1
}
1

11

Admin APl Demo

When you click Create now, notifiesyou that your update is successful, and refreshes the interface to show the
results consistent with fetching detailed information for a specific user, as described in Fetching Single User
Information, With Detail on page 9.

Note that for security reasons, the password is not included in the fetched user details.

[\ ARcADIA DATA

. . Success . .
Visuals Datasets Connectioc Filter Associations
Update Success!

FETCH UPDATE CLONE DELETE D12 Detail URL: POST farc/adminapi/users

L e
"username"”: “user2-copy",
"is_superuser”: false,
"is_active™: true,
“date_joined": “2017-04-89 98:39:59 UTC",
"last_login": "2017-84-09 @@:39:59 UTC",
"groups”: (1,
“roles": [
{
LER R L
“name”: “For user2"
}
]
}
|

Changing Passwords

To change the user's password, you must supply both the current password (password) and the new password (new_
password).

Edit the user detail by adding the following two lines of code, and click Update.

"password": "initial-pw',
"new_password": "updated-pw',

12

Data type details

[\ ARcADIA DATA

Visuals Datasets Connections Users Groups Roles Segments Filter Associations

FETCH UPDATE CLOME DELETE 1D 12 Detail @ URL: POST farc/adminapi/users/12

“idv: 12,
“username” : “user2-copy”,
"password”: "initial-pw",
"new_password”: "updated-pw",
"is_superuser”: false,
"is_active": true,
"date_joined": "2017-04-09 @@:39:59 UTC",
"last_login™: "2017-24-29 @@:39:59 UTC",
“groups”: [
i
"id™: 6,
“name”: “Clone of group Test-D"
}
1,
“roles": [
{
"id™: 5,
“name”: “For user2"
}
1
}
]

Data type details

provides URL accessto ArcViz server objects.
The Admin API uses specific JSON definitions for each Data Type:

e Users

e Groups

* Roles

e Segments

» Filter associations API
» Workspaces

Note that we deliberately chose not to document the details of creating datasets, connections, and visuals. They are all
highly complex structures, and should be created directly in the application, through the graphical user interface.

For the GET requests, many returned fields are only informational, and cannot be updated through subsequent POST
requests.

Some fields are themselves complex structures that contain sub-fields. The update logic that merges the supplied
input fields with the existing data applies to the top-level fields only. For example, the role type contains a privsfield,
whichisalist of individual privilege records. To update the privs field, you must supply the entire list, not merely the
individual list element.

Related Information
Users

Groups

Roles

Segments
Filter Associations API

13

Workspaces

Users

provides URL access to the ArcViz server object, users.

When creating a new user, you must supply the password field. Y ou must also supply the password field when
updating a user's password. Like in the GUI, aregular user (non-admin) can only change their own password, and
must supply the current password in the old_password field.

Supplying None (or null in the APl demo page, the javascript version of None) for the password makes the user
account unusable for login.

For thelist of groups and roles, the name is supplied for information only. When updating the users's groups or roles,
only the ID fields are necessary.

The examplesin this article use an API Key obtained through the Manage API Keys interface, on the host:port/arc
lapps/apikeys browser page of the DataViz installation. The actual APl Key and the method of retrieving the key
depends on the user system.

Hereisa CURL example for setting the roles for user ID=3to IDs5, 7, and 8.

curl -s \

- X PCOST \

-H "Cont ent - Type: application/x-wwformurl encoded" \
-H "Aut hori zati on: api key api _key" \

-d 'data=[{"roles": [{"id":5}, {"id":7}, {"id":8}] }]' \
api _url + '/users/3

Note that the APl URL has the form [http|htttps]://host:port/arc/adminapi/version.
The JSON fields for user's data type are defined as follows:

Table 1: JSON Fields for Users Data Type

Field Detail Only Updatable Description
No No

id User ID

username No Yes Username, limited to a phanumeric, period, underscore, and dash

is_superuser No No Indicates the admin userm, who has full permissions

is_active Yes No TRUE: user can long through the Ul
FALSE: user cannot login through the Ul, but trusted authentication
works

date_joined Yes No Shows the creation date for this user's metadata entry

last_login Yes No Shows the last login date for this user

groups Yes Yes List of groups to which this user belongs; each entry shows group ID
and group name

roles Yes Yes List of roles to which this user belongs; each entry showsrole ID and
role name

Groups

provides URL accessto the ArcViz server object, groups.

14

Roles

Like the users data type, the names for list of groups and roles are supplied for information only. When updating the
users's groups or roles, only the ID fields are necessary.

The JSON fields for group's data type are defined as follows:

Table 2: JSON Fields for Groups Data Type

Field Detail Only Updatable Description
No No

id Group ID
name No Yes Group name
users Yes Yes List of usersin this group; each entry shows the user id and username
roles Yes Yes List of roles to which this group belongs; each entry showsrole ID
and role name
Roles

provides URL accessto the ArcViz server object, roles.

To support installations that store the users and groups information outside the ArcViz environment (such as LDAP),
the role membership lists for users and groups only store names. During role update and create operations, ArcViz
accepts the user and group names 'asis, without validating them.

Each entry in the privslist corresponds to asingle privilege row in the ArcViz role edit screen. Each row contains
fieldsfor the privilege type (ptype), an identifier section, and alist of permissions (perms) for the identified objects,
such as datasets or data connections. Each privilege type has a specific identifier, and set of possible permissions.
ArcViz stores the dataset | Ds and connection |Ds within the identifier sections as a STRING, and uses the special
vaue "-1" to indicate "All datasets" or "All connections'.

This article includes the following topics:

» Defining Roles Data Type on page 15
* Privileges Types on page 15
» Creating Roles on page 16

Defining Roles Data Type
The JSON fields for role's data type are defined as follows:

Table 3: JSON Fields for Roles Data Type

Field Detail Only Updatable Description
No No

id Role D

name No Yes Role name

desc No Yes Role description

users No Yes List of usernames that belong to thisrole

groups No Yes List of groups that belong to thisrole

privs Yes Yes List of privilege structures for thisrole, as described in Privileges
Types on page 15

Privileges Types
The Role-Based Access Control system supports the following permission types:

15

Roles

* ptype: "system”
I dentifier

None

Permissions

Permission Name

Description

sys_editperm Manage roles and users
sys styles Manage styles and settings
sys viewlogs View query logs

sys editconn Manage data connections

e ptype: "dataconn”
I dentifier

Field Name

dclist

Description

List of data connection IDs, or -1 for | "dclist" : ["-1"]
'All data connections'

Permissions

Permission Name

Description

|

dc_aviews Manage analytical views
dc_upload Import data
dc_expore Create datasets and explore tables
e ptype: "dataset"
I dentifier
dcid Data connection ID for this "dcid" : "-1"
privilege, or -1 for 'All'
dslist List of dataset IDsfor this privilege "ddlist" : ["1","2","3"]
Permissions

Permission Name

Description

dc_aviews Manage analytical views
dc_upload Import data
dc_expore Create datasets and explore tables

Creating Roles

The following code creates a new role with groups dataconn_managers and arcviz_admins. The role has system-level
permissions to view logs, and to create new datasets. It aso has full permissionson al connections and all datasets.

The actual API Key and the method of retrieving the key depends on the user system.

curl -s \
- X PCST \

-H " Cont ent - Type:

-H "Aut hori zati on: api key api _key" \

-d 'data=[{
"nane":
"desc":
"groups”

"Connecti on manager",

appl i cation/ x-ww+formurl encoded" \

"Data connection management",

: ["dat aconn_nmanager s",

"arcvi z_adm ns"],

16

Segments

"privs": [
{"ptype": "systent,
"perns": ["sys_view ogs", "sys_editconn"]
}

{:'ptype": "dat aconn",
"delist": ["-1"],

"perns": ["dc_aviews", "dc_upload", "dc_explore"]
}1
{"ptype": "dataset",

"dcid": "-1",

"dslist": ["-1"],

"perns": ["ds_nmmnage", "ds_appedit", "ds_appview']

]
1"\
127. 0. 0. 1: 7999/ ar ¢/ adm napi / rol es

When viewing this role through the ArcViz user interface, it appears on the edit screen like this:

[\ ARCADIA DATA

Activity Log Users & Groups Manage Roles Manage APl Keys Email Templates Custom Styles Custom Colors Custom Dates Static Assets Site Settings
Roles / Role Detal

Connection manager

Name Connection manager
Description Data connection management

Privileges & Members

& o
I o
& " ¢ " & &
$ & & @@6@ c‘:f? F eg) o
& a7 - S &L
R A A R A A A & F wg,ﬁ“
& & & & LA R & "y ¥ 5
PO R R S R A g S R S L
Gomponent Type € F Y E S E S
System | o W
All connections B - " * ’ 8
All & - F - v 8
datasets

provides URL access to the ArcViz server object, segment.
The segment datafield is a complex structure that matches the Ul Segment edit screen.
This article includes the following topics:

¢ Segment Data Type on page 17
« DataField Detail on page 18

Segment Data Type
The JSON fields for role's data type are defined as follows:

17

Filter Associations APl

Table 4: JSON Fields for Segment Data Type

Segment ID

name No Yes Segment name

dataset_id No No Dataset ID for the segment

created Yes No Shows the creation date for this segment

created by Yes No Username of the segment creator

updated Yes No Shows the most recent update for this segment

updated_by Yes No Username of the segment updater

data Yes Yes Segment definition data, as described in Data Field Detail on page
18

Data Field Detall
The segment datafield is acomplex structure with the following specification:

Field Description

entities List of dimension expressions emitted by the entity-type segments

group Name of the group to which this segment belongs

filters List of filter expressions that define this segment

applyToNewVisuals Specify if new visuals on the dataset should start with filters defined in
this segment

Filter Associations API

provides URL access to the ArcViz server object, filter association.
Thefilter association datafield is a complex structure that matches the Ul Filter Association edit screen.
This article includes the following topics:

» Segment Data Types on page 18
« DataField Detail on page 19

Segment Data Types
The JSON fields for role's data type are defined as follows:

Table 5: JSON Fields for Filter Association Data Type

Field Detail Only Updatable Description

Filter association 1D
name No Yes Filter association name
dataset_id No No Dataset ID for the filter association
created Yes No Shows the creation date for this filter association
created_by Yes No Username of the filter association creator
updated Yes No Shows the most recent update for this filter association
updated_by Yes No Username of the filter association updater

Workspaces

Field Detail Only Updatable Description

users List of user IDsto which the filter association applies

groups Yes Yes List of group IDs to which this filter association applies

data Yes Yes List of segments that make up this filter association, as described in
Data Field Detail on page 19

Data Field Detail
The filter association datafield isacomplex structure with the following specification:

Field Description

id ID of segment applied to filter association

group Name of the group to which the identified segment belongs

negate Indicates that the filter association defines the rows NOT IN the
segment, rather than IN the segment

Workspaces

provides URL access to the ArcViz server object, workspaces.

In addition to the standard public workspace that all users share, and the single private workspace that each user has,
users with Create Workspace privilege can create custom workspaces. These workspaces may be shared by specific
users and user groups, so they can develop and view dashboards that are inherently useful to their line of business.
Within each of these workspaces, each user has a defined access level: View Only, Edit, or Manage.

This article includes the following topics:

» Workspace Data Types on page 19
» Access Control List in Workspaces on page 20
» Creating Workspaces on page 20

Workspace Data Types
The JSON fields for workspace data type are defined as follows:

Table 6: JSON Fields for Workspace Data Type

Field Detail Only Updatable Description

Workspace ID

name No Yes Workspace name

desc No Yes Workspace description

editable Yes No Permission to update only a non system-managed workspace (Custom
workspace). The system managed workspaces are Public and Private
workspaces.

private_user_id Yes No 1D of the user for private workspaces

acl Yes Yes Access Control List (ACL) for aworkspace

Workspaces

Access Control List in Workspaces
The workspace ACL isalist of privilege entries. Each entry contains three items. The following acl syntax shows two
entries:

"acl": [
[entry type, access_|evel, group_nane],
[entry type, access | evel, user_nane]]

Entry Encoding

entry_type 1= User, 2 =Group
access level 1=View, 2 = Edit, 3= Manage
user_name/group_name User or group name of the entry_type

Creating Workspaces

The following code creates a new workspace Test workspace and provides View access to a special group Ever
yone and Manage access to user admin.

The actual APIKey and the method of retrieving the key depends on the user system.

curl -s \
- X PGOST \
-H "Cont ent - Type: application/x-ww+formurl encoded" \
-H "Aut hori zati on: api key api key" \

-d '"data=[{
"nanme": "Test workspace",
"desc": "Workspace created via adm n api",
"acl": [[2, 1, "Everyone"], [1, 3, "admi n"]]
1"\

127. 0. 0. 1: 7999/ ar ¢/ adni napi / wor kspaces

When viewing this workspace through the ArcViz GUI, it appears on the workspace edit modal window like this:

20

Workspaces

Create Workspace

Name Test Workspace

Description Workspace created via admin apl

& | typeusemame = type group name, type 'Everyone’ for all ADD |
- admin 2 ViewOnly O Edit ® Manage 4
i Everyone ® ViewOnly © Edit © Manage x

MOTE: Users must also have appropriate privileges to the underlying dataset(s)

& DELETE WORKSPACE CLOSE SAVE

21

	Contents
	Admin API
	Admin API Syntax and General Usage
	Admin API Syntax Parameters
	Python Admin API Data Format and Response
	CURL Data Format and API Key Examples
	Admin API Demo
	Using Admin API Demo: Examples

	Data type details
	Users
	Groups
	Roles
	Segments
	Filter Associations API
	Workspaces

