cloudera

Apache Kudu Guide

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or

service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logos mentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from Cloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.

395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Kudu 1.5.0 / CDH 5.13.x
Date: February 4, 2021

Table of Contents

Apache KUdU OVEIrVIEW......ccceuiiieeiiieeiiieniiieneiinnirieeeiensessnssensnsssssnsssssnsssssnsssssnsesss®d

(U To [R T aY o | =T N =Y 4 o o PSSR 8
EXQMPIE USE CaSES..uuuitiiiiieiiieiiieiiitttteeteeeeeesesset tataeeeeeeeeeessasuaattaaeeeaaessesasssssstasaaeeeesessasaassssananneeeaseesssssnnsssssnnneees 9
] X =Te B T} (o] ' T4 e o TR PSP PP PUPPRP 9

Apache Kudu Concepts and Architecture........cccccerreeiireniiiiecirieicreeceneenccreneeeneneen. 10

(000 (V10 T D | - 1) o] DU P TP 10
Raft CONSENSUS AlZOITTNML.cciiiiiiiii et e e e e e e e st e e e e e e aba e e e e eaaaseeeeesnasseeeeansseeeeannnseeeeann 10
L] <1 LT PP SUPROPURRRTPRRINt 10
=] o1 L= PRSP 10
I o1 1= A=Y V= PR UPRR 10
1Y o =1 PP 11
(07] =1 (o =0 -1 o1 [T PRSP 11
(o T={ x| I 2=T o] [ToF: | 4 e Yo VORI 11
ATCHITECTUNAl OVEIVIEW....eiiiiiiieiee ettt et e e st e e e et e e e e sate e e e e s abeaeeesanbtaeeesssbaeeesaanbeneessanseneeesannes 11

Apache Kudu ReqUIr@meENnts.......ccccceeeieeireeiieniernncieeiernnerencsrnerescssnsersssssssssnssssnsssnsessd 3

Overview of Apache Kudu Installation and Upgrade in CDH...........cccccerveuerrrenneneee... 14

PlatfOrmM REOUITEMENTS.....cceiiicitiiieeeee e eeeeectr e e e e e e et e e eeeeeeeeeeeeeeettatraaeeeeeeeeeeeaaassrsssesaeaeeeesesasssrssseneeeens 14
TaE = g Yal U Lo [V F U UPPRR 14
(1T =d =Y [TV = (U [V PP 14

Apache Kudu Usage Limitations.........ccceeveiieeiiieniieeiiieiieecernerencsrneressssnsesnsssenesnsess D

Yol 1Y e R DTS o g T T Y1 =Y o o [PRSP 15
PartitioNING LImMiTations. oo e e e e e e e e e e e e et et et ettt e et bt et s b bbbt s e e e e e e e eeeeeeeeeeaaaeeeaees 16
Scaling Recommendations and Limitations........cccuuiiiiiiiiie et e e e e e e e e erarra e e e e e e e e e e e esnnnnes 16
Server ManagemMeENt LiMitatioNS. e i e s e s e e e e e e e aeaeaaaaaaeeeeeereeeaeraaaaae 16
Cluster Management LiIMItations.......iiicuiiieieiiiee et e s e e e et e e e e e s aba e e e e s abaeeeeesaraeeeesnbeeeeesnnsees 17
Replication and Backup LimMitations.......iiiciiieeiieiiiee sttt ettt e e et e e st e e e e esata e e e e ssabteeeeeensaaeeesenseneeesanns 17
Impala INtegration LiMitatioNs.........ueiiii i e e e e e e e e e e e e e e et ra e e e e e e eeeeeessansnsnreees 17
Spark INtegration LiMIitatioNS......ccci i e e e e e e e e e e e s e st et eeeeeaeeeesesnnsssrrereeeaaeeeeeannns 17

SECUITLY LIMITatiONS.ccieiiiiiiiiiiiiiit ettt e a s s s e s s seeeeeeeeeaeeeeeeeeeeseeesenesennsensnsnnnnnn 18

Apache Kudu Configuration..........ccccceiieeiiieeiiiiiiiiieiinieiiiieieneesienensenesssesenssssenseess 19

Configuring the KUAU IMaster.....ccci ittt e e e e e e e et e e e e e e e e e e e e e s aabbataeeaeaaaeeesesasnsssarsneseaaeesesnnns 19
(00T) {7 ={U T =4 - o] [YT V=T PRSP 20

Apache Kudu Administration........cccceieeiiieiiiiiiniieiiiiiieinieienesnneeressessernsnsssesnsens 21

Starting and StOPPING KUAU PrOCESSES.uiiiiiiiiieiiiiiieeeeeit et e e et e e et e e e st e e e e s bbeeeeessbaeaeessssteeeeessssaeeeesnssees 21
e [V IRV =T oI 1 (=] o - [LTRSS 21
0L [V Y Lo Ry =T = o B L L (=T o Lol SRR 21
KUAU TADIEt SEIVEIr WD INTEITOUCE.cccuveeeeiiiieeeee ettt ettt e e et e e st e e ettt e e e st ea s s asteaesnssaeesnnsneasnssneas 21
COMMON WED INEEIFACE POAGES........oveeeeeieeeeie e eeee e ettt e e e e e et e e ettt e e e ettt e e et e e e easssae e ssaaaaansseaeasasseaeassaaesasssaeennsses 21
U Te [I Y 1= 4 TSR SRR 22
LISEING AVGIIADIE IELIICS.vveeeeeeeeeeee ettt e et e et e e et e e e et e e ettt e e e e ats e s e eassaeeaatseaeeaatsaaeeasssaeeaatssaeesassaeeansnes 22
CONECHING MELIICS VIO HTTP.....oeeeeeeeeeeee e e et e e e e et e et a e e ettt e e ettt e e e assea e e sttt e s ansssaeeasstasastsaeaaasssaesssaaasasseaennnsneas 22
CONECING MELIICS TO O LOG.......cccccueeeeeeeeeeeeee ettt e ettt e e et e e et e e e et e e et e e e ettt e e e aass e e eaats s e e estsaeeeasssaeeaasasasessssaeeassnes 23
ComMMON KUAU WOTKFIOWS. ... eiiiiiiiiiiiiee sttt ettt ettt ettt e st e e st e e st e e sabte e sabteessbaeesnbeeesabseesnbaeesnses 23
Migrating to MUItiDIE KUGU IMOSTEIS.......cccuuveeeeieeeeeiiee et et e ettt e ettt e e ettt e e sttt e e st e e s astseaesssteaesstsaaessasneasnssnens 24
Recovering from a Dead Kudu Master in a Multi-Master DeplOymMeNt...............oceeccueeieecreeeeeiiieeesiiraeesieaaessieeeesitaaaeessseens 27
Removing Kudu Masters from a Multi-Master DePIOYMENT..............c..eueeicuueeeeeiiieeeiiieeesiee et e ste e estaa e s siieaeessiieaeesaaeeas 30
(0T Lo 1TaTe WA o R (=Tl o (o Ry 1 1o L L= SRR 31
Monitoring CIUSEEr HEAITN WIth KSCK........ccc.vveieeieee ettt ettt e e et e e e e e st a e st e e e stseeesnatneaenssnens 32
Bringing a Tablet That Has Lost a Majority of Replicas BACK ONIINe.............ccccuueeeeceeeeeiiieeeeciieeeeeaeestaeeesieaeescaa e e e 33
Rebuilding @ KUdU FIlESYStOM LAYOUL........cc.ueeeeeeieeeeeiiee et ettt et e e e e e sttt e e et e e e aatteaeasstaaesntsaaessatneessssnens 34
Physical Backups Of QN ENTITE NOGE.........ccc.ueeeeeeeeeeeee ettt e et e et e e et e e e et e e e ettt e e ettt e e e et aaeeasssaaestsaeasasssaeensseas 34
Scaling Storage on Kudu Master and Tablet Servers in the CIOUM.............ccccuueieeeuieeeiciieeeeiie et siea e 35

Managing Kudu Using Cloudera Manager.......cccccceecereeerenerencreecrnncreecrnscsencrnscsensess 30

Installing and Upgrading the KUAU SEIVICE........ccuuviiii ittt e e e e e eta e e e e eeatae e e e eearaeaeeeanes 36
Enabling Core DUMP fOr the KUdU SEIVICE.......uii ittt ettt e site e e sbee e e 36
Verifying the Impala Dependency 0N KUU........uuiiiiiiiiii ittt e e e e s e sare e e s e saae e e s e snneees 36
Using the Charts Library With the KUdU SEIVICE......cii i e e e e e eee s 36

Developing Applications With Apache Kudu........ccccceceieeiireiiiniiiecienciiecieeccneeenene. 38

Viewing the APl DOCUMENTATION.iiii ittt e e e e e e e et e e e e e st a e e e e e e bbaeeeesabaeeeesnbaeeeeennnees 38
(e [V g g o] TSI AN oY o] [ToF 14 o] o -SSR 38
Y AT o I AN o] - ot TSR UR PP 39
S TUT] o FTaYd o o TR - AV T O 1T o | RO 39
U e [Y7 o Vo o T 1= o SRR 39
Example Apache Impala Commands With KUU........cc.uuiiiiiiiiiiiiiiiiiee ettt e e et e e aaaee e 40

Kudu INtegration WIith SPark..........e i e s nanrraaaeeeeaeas 40

Using Apache Impala with Kudu........ccceerieiirieiiriiirecrreccreecrreeccreeecereeeeeneneeenn 43

Impala Database ContainmMENt IMOUEL.........ooii it ete e e e et e e e ssabaeeeesearneeeeeans 43
Internal and External IMPala Tables. ... e e e e e e e e e st e e e e e e e e e e e e nnnnanneeees 43
Using Impala To QUErY KUAU Tables......cii ittt ettt e et e e e e et e e e e e seaateeeeeennraeeeeensaeeaeaans 44
Querying an Existing Kudu Table from IMPQIQ..............c..eoiueeiieiiieeeee ettt ettt e 44
Creating a New Kudu Table FrOmM IMPQIQ................oooeueeeeeeeeeeeeeeie et e et e e ettt e ettt e e e ettt e e e etaa e e e tsaaeesasasesesassseeeannes 44
POIEEIONING TADIS.......eeeeieeeeeeee ettt ettt ettt a ettt et s et e et e et e st e et e et e e it e enaneenaneenanes 45
Optimizing Performance for Evaluating SQL PreQiCOLeS.ccueeriueesiieeieesitesiesesiee ettt esite sttt esiaeesiseesssesitaesseesieasseees 49
INSEIEING O ROW..ceiiiiiiiieeeee ettt ettt e e ettt ettt e ettt e sttt e e st e e e et e e stn e e s st e e e anneeenannees 49
(8o o[a Lo B I x VoY SRS 50
UPDSEIEING 0 ROW........eeiiiiiiieeeeeee ettt ettt ettt ettt e e et e e ettt e s et e e e et e s e st e s st e e e et e s e aaaneeenannees 50
W L=l Lo I I o o] =SSP 51
DEIELING G ROW.....cneeeeeeeee ettt ettt ettt ettt e e it e a e et e st e et e st e et e et e et e s ateenateesneenanes 52
Failures During INSERT, UPDATE, UPSERT, GNd DELETE OPEIQLIONS.ccuvveeeereeeeeiieeeesrieeeesisieeesisaaeesssaaessisaeassisssaassassens 52
AILEIING TADIE PrOPEILIES.c...eveeeeeeetei ettt ettt ettt e e et s e e et e ettt et e it et e st e st e s steeneaensneennes 52
Dropping a Kudu TabIe USING IMPGIG..............oeeeeeeeeeeeeeeeeee et e et e et e et e e ettt e e ettt e e et eeeats e e e eaassaaestsaaasasssaeessseas 53
NYTolU g AV e oIy [[T =1 4 o T USRI 53
KNOWN 1SSUES @Nd LIMItatiONS....eiiiiiiiiiie ittt e e e e e ettt e e e e tba e e e senstaeeesennsaeeeeeansseeeesannseeesann 53
T =] o1 RSP 54

(T Lo [T Yol U] 4 | AP, 1.

Kudu Authentication With KEIrDEIOS.......uiiiuiiiiiiie ittt st s ee e s bt e e sbaeesbeeesbeeeans 55
Internal Private Key INFIASTIUCTUIE (PKI)..........coocoueeeeeeeeeeeeeeeeeeeeee et ettt e e et e ettt e e e et e e e et e e eetaaaeeessaeeeaassaeeenees 55
AULNENEICALION TOKENS. ...c..veeeieieieeeiee ettt ettt ettt ettt et e st e st e st e st e e ste e st e e s ateesateesabeesatesesteetsaennneensses 55
Client Authentication t0 SECUIe KUGU CIUSTOIS..........cccuueeeesiieeeeeieee et e st e et e e st e e sttt e e e ettaa e sastaasssseeessnsteassasees 56
Y or= | £=1 11 1 425 UUPRUROt 56
= g Yol Vo o] o DO P PPPPPPPP 56
Coarse-grained AUTNOTIZAtION.......uuiii i et e e e et e e e et te e e e e sbb e e e e e sabaeeeessbaeaeeennnaeeas 56
VAV o O LI =Y ol Y/ o) d o o PSSR PUUT 57
LUV I I Y=Y F- o1 f (o] o PP OPPPPPPRN: 57
oY= 2 Y=To F- ot o] o FOU USSR 57
Configuring a Secure Kudu Cluster using Cloudera Manager.........cccccuueeeiiiiiieeeeiiiieeeeeiireeeeesveeeeesnsreeeesssnseeas 57
Configuring a Secure Kudu Cluster using the Command LiNe..........ceuviiiiiiiiiiiiiiiiiieeee e e e 59

Apache Kudu Schema Design......c.cccccereeiieeiiieniieniiinncieenerncnenccrnscrescssessressssnsessnscsnss. 00
RN LER el T=To ol a =T 0 o - RO RUUURRRRRRRRRIN 60

(070 (U1 T T D LTy =4 o TSRS 60
(000) 0o T 1y Tole T [T OSSP RUPUPN 61

COIUMIN COMPIESSION.eeveeee et e et e e e e e ettt e e e e e e ettt e e e e e e sttt e aaaesaa st aseaaeaeasaassssaaaaaeeeaaassasasaaaaeeesssstssnenaeeaaaas 61

R YAV)V D 1T =4 o TP PPPPPPPPPPPPPRPPRIN 62
PLIMQIY KEY INUEX.....ccueeieiieeeeeeeeee ettt ettt ettt ettt ae ettt e et e st e et e et e st e et e ettt et e e nateesaneenanes 62
CONSIACIALIONS fOr BACKSIIl INSEITS......ccc.eveeeeeeie ettt e ettt e e ettt e et e e ettt e e e ettt e e ettt a e e ettt s e e aassaaestsenasasssaeeansseas 62
o= L A To] o] [o ¥ =S O TSP PPPPPPPPPPPPPPPPPRTIN 62
RONGE POITItIONING.c.ccceeveeiieeeiiieieieeeeeeeeeteeeteeeet ettt s e e e e a s s e s s s s s s s e aasasasasasasasasasanans 63
L2 Lok oI o T 1o o SR 63
VL 1LY I e T a (o 1 e T PSP UPPRN 63
POTEIEION PrUNING.........eeiieieeeeeeeeeete ettt e e ettt e e e e e ettt e e e e e sass et eeaessasaassae e e e e e eesasssteaaaessaansstaneaessssssnssssnesassannas 64
PAIEItIONING EXQIMPICS.cooeeeeeeeeeeeeeeeeeeeeee ettt e ettt e e e e e e ettt et e e e e ettt e e e e e e s eatssaaaaaeeeaassasasaaaeeeessstsneeaaaeaanas 64
Yol T=T 0 g T AN =T =Y o T TSR STPPTPRR 67
SChema DeSiZN LIMITatiONS......ciiiiiiiiiie ittt ettt sttt e s bt e e st b e e s aba e e sabbeesabaeesabbeesabbeesabaeesnnes 67

Apache Kudu Transaction Semantics.....c..cccceciiieeiiieniiiieniiiieiinieienennenenienensenensess. 08

Single Tablet WIITe OPErations........cccuiiiiiiiiiee e et ee e e e e e e e et e e e e e e e e e e e s naabraaasaaaeaeeesaaasnnssssseseaaaessanannes 68
WItiNg 0 MUIIPIE TABIETS. ... uveieeeieee e e et e e et e e e e et a e e e e seabaeeeeeebtaeeessntaeeeesanseneaeeannes 68
T Lo MO =T e 4o o T (S or=T o) PRSP 69
KNOWN 1SSUES @Nd LIMItatioNS....eeiiiiiiiiiee ittt ettt e ettt e e e ettt e e e e s abbaeeesensbaeeesennsaeeeeeansseeeesansseeesans 70
WWVFTEES. ..ttt ettt ettt a4 ettt e e ettt e e e e et e et e e e an e e et e e e eea e e e e e e e e e eeeas 70
L=z o K el [X S R 71

Apache Kudu Background Maintenance Tasks......ccccceceerenerrnerencrencrencrencnnnceenennsea 72

Troubleshooting Apache Kudu.........cccciieiiieiiieiieniiieniieeniieneieecienerecnencerescsessesnseees 74

Issues Starting or Restarting the Master or Tablet SEIVET.........cooiiiii it 74
Errors DUring HOIE PUNCRING TESE.......ccc.uueiuieieieeeeeeee ettt ettt ettt ettt ettt et et e et e st e et esineeneas 74
NTP ClOCK SYNCRAIONIZATION ISSUES.......cc.eveeeeeeseeeeeeeee ettt e et e et e e ettt e e st e e e ettt e e e aasstaeeatsaa e e et eaeeaastaaeatsaaaeasnsaeenssseas 74
DiSK SPACE USAEE ... tiieiuiiieiiit ettt ettt ettt ettt s et e sttt e sttt e sttt e s abe e e s abe e e sabe e e st e e e eabe e e shb e e e eabe e e sabeeeaabeeeeabeeenateeeeabeeen 75
Reporting Kudu Crashes USINg Breakpad.........occuuiieiiiiiiieeiiiiiieeeeiiiee e eciitee e s ssitree e setteeeessataeeessntaneessnnseneeesanns 76
TroubleshOOoting PerfOrManCE ISSUEBS.......cuuiiie ettt ettt e e ettt e e e e ettt e e e e e etteeeeeettaeeeeeaabsaeeeeaasseeeeeasseseeeanns 77
Q0 Lo [V g [o SR 77
SIOW NAME RESOIULION QNG NSCU........eeeeeeeeeeee ettt et et e e ettt e e st e e et e e e st e e e astnaeenasaeeaans 78
6 EF=Y o1 [AV E Y T USRS 79
ClassNotFoundException: com.cloudera.kudu.hive.KuduStorageHaNAIer.................ccoovevivieisciiinieieiiieieee e 79
Runtime error: Could not create thread: Resource temporarily unavailable (error 11)......ccccoeeviveeieiiieeeeennen. 79
Tombstoned or STOPPED tablet rePliCas......ueiiiiiiiiei ettt et e e et e e e e e tte e e e e eeabaeeeeesnbanaeeeanns 79
Corruption: checksum error 0N CFile DIOCK........ccoiiiiieeieee e e e e e e e et e e e ee e e e e e eeaenns 79

More Resources for Apache Kudu.........ccoieeiiieeiiiiiiiiieiiiiecininecnienieneecenenenennes. 80

Appendix: Apache License, Version 2.0.........ccccieeeiieeniiieniiieniiieninnenienensssenessenss 81

Apache Kudu Overview

Apache Kudu is a columnar storage manager developed for the Hadoop platform. Kudu shares the common technical
properties of Hadoop ecosystem applications: It runs on commodity hardware, is horizontally scalable, and supports
highly available operation.

Apache Kudu is a top-level project in the Apache Software Foundation.

Kudu's benefits include:

Fast processing of OLAP workloads.

Integration with MapReduce, Spark, Flume, and other Hadoop ecosystem components.

Tight integration with Apache Impala, making it a good, mutable alternative to using HDFS with Apache Parquet.
Strong but flexible consistency model, allowing you to choose consistency requirements on a per-request basis,
including the option for strict serialized consistency.

Strong performance for running sequential and random workloads simultaneously.

Easy administration and management through Cloudera Manager.

High availability. Tablet Servers and Master use the Raft consensus algorithm, which ensures availability as long
as more replicas are available than unavailable. Reads can be serviced by read-only follower tablets, even in the
event of a leader tablet failure.

Structured data model.

By combining all of these properties, Kudu targets support applications that are difficult or impossible to implement
on currently available Hadoop storage technologies. Applications for which Kudu is a viable solution include:

Reporting applications where new data must be immediately available for end users

Time-series applications that must support queries across large amounts of historic data while simultaneously
returning granular queries about an individual entity

Applications that use predictive models to make real-time decisions, with periodic refreshes of the predictive
model based on all historical data

Kudu-Impala Integration

Apache Kudu has tight integration with Apache Impala, allowing you to use Impala to insert, query, update, and delete
data from Kudu tablets using Impala's SQL syntax, as an alternative to using the Kudu APIs to build a custom Kudu
application. In addition, you can use JDBC or ODBC to connect existing or new applications written in any language,
framework, or business intelligence tool to your Kudu data, using Impala as the broker.

CREATE/ ALTER/ DROP TABLE - Impala supports creating, altering, and dropping tables using Kudu as the persistence
layer. The tables follow the same internal/external approach as other tables in Impala, allowing for flexible data
ingestion and querying.

| NSERT - Data can be inserted into Kudu tables from Impala using the same mechanisms as any other table with
HDFS or HBase persistence.

UPDATE/ DELETE - Impala supports the UPDATE and DELETE SQL commands to modify existing data in a Kudu
table row-by-row or as a batch. The syntax of the SQL commands is designed to be as compatible as possible with
existing solutions. In addition to simple DELETE or UPDATE commands, you can specify complex joins in the FROM
clause of the query, using the same syntax as a regular SELECT statement.

Flexible Partitioning - Similar to partitioning of tables in Hive, Kudu allows you to dynamically pre-split tables by
hash or range into a predefined number of tablets, in order to distribute writes and queries evenly across your
cluster. You can partition by any number of primary key columns, with any number of hashes, a list of split rows,
or a combination of these. A partition scheme is required.

Parallel Scan - To achieve the highest possible performance on modern hardware, the Kudu client used by Impala
parallelizes scans across multiple tablets.

¢ High-efficiency queries - Where possible, Impala pushes down predicate evaluation to Kudu, so that predicates
are evaluated as close as possible to the data. Query performance is comparable to Parquet in many workloads.

Example Use Cases

Streaming Input with Near Real Time Availability

A common business challenge is one where new data arrives rapidly and constantly, and the same data needs to be
available in near real time for reads, scans, and updates. Kudu offers the powerful combination of fast inserts and
updates with efficient columnar scans to enable real-time analytics use cases on a single storage layer.

Time-Series Application with Widely Varying Access Patterns

A time-series schema is one in which data points are organized and keyed according to the time at which they occurred.
This can be useful for investigating the performance of metrics over time or attempting to predict future behavior
based on past data. For instance, time-series customer data might be used both to store purchase click-stream history
and to predict future purchases, or for use by a customer support representative. While these different types of analysis
are occurring, inserts and mutations might also be occurring individually and in bulk, and become available immediately
to read workloads. Kudu can handle all of these access patterns simultaneously in a scalable and efficient manner.

Kudu is a good fit for time-series workloads for several reasons. With Kudu's support for hash-based partitioning,
combined with its native support for compound row keys, it is simple to set up a table spread across many servers
without the risk of "hotspotting" that is commonly observed when range partitioning is used. Kudu's columnar storage
engine is also beneficial in this context, because many time-series workloads read only a few columns, as opposed to
the whole row.

In the past, you might have needed to use multiple datastores to handle different data access patterns. This practice
adds complexity to your application and operations, and duplicates your data, doubling (or worse) the amount of
storage required. Kudu can handle all of these access patterns natively and efficiently, without the need to off-load
work to other datastores.

Predictive Modeling

Data scientists often develop predictive learning models from large sets of data. The model and the data might need
to be updated or modified often as the learning takes place or as the situation being modeled changes. In addition,
the scientist might want to change one or more factors in the model to see what happens over time. Updating a large
set of data stored in files in HDFS is resource-intensive, as each file needs to be completely rewritten. In Kudu, updates
happen in near real time. The scientist can tweak the value, re-run the query, and refresh the graph in seconds or
minutes, rather than hours or days. In addition, batch or incremental algorithms can be run across the data at any
time, with near-real-time results.

Combining Data In Kudu With Legacy Systems

Companies generate data from multiple sources and store it in a variety of systems and formats. For instance, some
of your data might be stored in Kudu, some in a traditional RDBMS, and some in files in HDFS. You can access and query
all of these sources and formats using Impala, without the need to change your legacy systems.

Related Information

¢ Apache Kudu Concepts and Architecture on page 10
e OQOverview of Apache Kudu Installation and Upgrade in CDH on page 14

e Kudu Security on page 55
e More Resources for Apache Kudu on page 80

Apache Kudu Concepts and Architecture

Columnar Datastore

Kudu is a columnar datastore. A columnar datastore stores data in strongly-typed columns. With a proper design, a
columnar store can be superior for analytical or data warehousing workloads for the following reasons:

Read Efficiency

For analytical queries, you can read a single column, or a portion of that column, while ignoring other columns. This
means you can fulfill your request while reading a minimal number of blocks on disk. With a row-based store, you
need to read the entire row, even if you only return values from a few columns.

Data Compression

Because a given column contains only one type of data, pattern-based compression can be orders of magnitude
more efficient than compressing mixed data types, which are used in row-based solutions. Combined with the
efficiencies of reading data from columns, compression allows you to fulfill your query while reading even fewer
blocks from disk.

Raft Consensus Algorithm

The Raft consensus algorithm provides a way to elect a leader for a distributed cluster from a pool of potential leaders.
If a follower cannot reach the current leader, it transitions itself to become a candidate. Given a quorum of voters,
one candidate is elected to be the new leader, and the others transition back to being followers. A full discussion of
Raft is out of scope for this documentation, but it is a robust algorithm.

Kudu uses the Raft Consensus Algorithm for the election of masters and leader tablets, as well as determining the
success or failure of a given write operation.

Table

A table is where your data is stored in Kudu. A table has a schema and a totally ordered primary key. A table is split
into segments called tablets, by primary key.

Tablet

A tablet is a contiguous segment of a table, similar to a partition in other data storage engines or relational databases.
A given tablet is replicated on multiple tablet servers, and at any given point in time, one of these replicas is considered

the leader tablet. Any replica can service reads. Writes require consensus among the set of tablet servers serving the
tablet.

Tablet Server

A tablet server stores and serves tablets to clients. For a given tablet, one tablet server acts as a leader and the others
serve follower replicas of that tablet. Only leaders service write requests, while leaders or followers each service read
requests. Leaders are elected using Raft consensus. One tablet server can serve multiple tablets, and one tablet can
be served by multiple tablet servers.

http://raftconsensus.github.io/

Master

The master keeps track of all the tablets, tablet servers, the catalog table, and other metadata related to the cluster.
At a given pointin time, there can only be one acting master (the leader). If the current leader disappears, a new master
is elected using Raft consensus.

The master also coordinates metadata operations for clients. For example, when creating a new table, the client
internally sends the request to the master. The master writes the metadata for the new table into the catalog table,
and coordinates the process of creating tablets on the tablet servers.

All the master's data is stored in a tablet, which can be replicated to all the other candidate masters.

Tablet servers heartbeat to the master at a set interval (the default is once per second).

Catalog Table

The catalog table is the central location for metadata of Kudu. It stores information about tables and tablets. The
catalog table is accessible to clients through the master, using the client API. The catalog table cannot be read or written
directly. Instead, it is accessible only through metadata operations exposed in the client API. The catalog table stores
two categories of metadata:

Contents of the Catalog Table

Tables Table schemas, locations, and states

Tablets The list of existing tablets, which tablet servers have replicas of each tablet, the tablet's current
state, and start and end keys.

Logical Replication

Kudu replicates operations, not on-disk data. This is referred to as logical replication, as opposed to physical replication.
This has several advantages:

¢ Although inserts and updates transmit data over the network, deletes do not need to move any data. The delete
operation is sent to each tablet server, which performs the delete locally.

e Physical operations, such as compaction, do not need to transmit the data over the network in Kudu. This is
different from storage systems that use HDFS, where the blocks need to be transmitted over the network to fulfill
the required number of replicas.

¢ Tablets do not need to perform compactions at the same time or on the same schedule. They do not even need
to remain in sync on the physical storage layer. This decreases the chances of all tablet servers experiencing high
latency at the same time, due to compactions or heavy write loads.

Architectural Overview

The following diagram shows a Kudu cluster with three masters and multiple tablet servers, each serving multiple
tablets. It illustrates how Raft consensus is used to allow for both leaders and followers for both the masters and tablet
servers. In addition, a tablet server can be a leader for some tablets and a follower for others. Leaders are shown in
gold, while followers are shown in grey.

Apache Kudu Concepts and Architecture

Figure 1: Kudu Architectural Overview

12 | Apache Kudu Guide

Kudu network architecture

Master tablet Tablet 1 Tablet 2 Tablet n
| | \
| : I
! |
Master Master tablet ! Tablet 1 ! | Tablet n Tablet
Server A LEADER i LEADER \ ! Server W
| l !
1
1
i
! | |
|
Master | Tablet 1 ! Tabist 2 | Tablet
Server B ! LLOWER | LLOWER ' Server X
! 1
1 I \
I
|
1
1
|
: | i
I
Master ! Tablet 1 : Tablet 2 i Tablet n Tablst
Server C i LLOWER | 1 LLOWER ! LEADER Server Y
1
! ! l
1
1
| | |
! 1
i : Tablet 2 i Tablet n Tablet
! i LEADER : LLOWER ServerZ
| i |
1

Apache Kudu Requirements

Starting with Kudu 1.5.0 / CDH 5.13, Kudu is fully integrated in the CDH 5 parcel and packages. As such, for the complete
list of hardware and software requirements for Kudu, see the Product Compatibility Matrix for Apache Kudu.

https://www.cloudera.com/documentation/enterprise/release-notes/topics/rn_consolidated_pcm.html#pcm_kudu

Overview of Apache Kudu Installation and Upgrade in CDH

Starting with Apache Kudu 1.5.0 / CDH 5.13, Kudu ships with CDH 5. In a parcel-based configuration, Kudu is part of
the CDH parcel rather than a separate parcel. The Kudu packages are also bundled into the CDH package.

Platform Requirements

Before you proceed with installation or upgrade:

e Review Product Compatibility Matrix - Apache Kudu.
e Review the CDH and Cloudera Manager installation options described in Cloudera Manager Deployment.

Installing Kudu

E’; Note: Kudu is not supported in single-user mode.

On a cluster managed by Cloudera Manager, Kudu is installed as part of CDH and does not need to be installed separately.
With Cloudera Manager, you can enable or disable the Kudu service, but the Kudu component remains present on the
cluster. For instructions, see Installing Cloudera Manager and CDH.

On an unmanaged cluster, you can install Kudu packages manually. For instructions, see Kudu Installation.

Upgrading Kudu

Before you proceed with an upgrade, review the Upgrade Notes for Kudu 1.5.0 / CDH 5.13.0.

On a managed cluster,

e |f you have just upgraded Cloudera Manager from a version that did not include Kudu, then Kudu will not be
installed automatically. You will need to add the Kudu service manually. Upgrading Cloudera Manager does not
automatically upgrade CDH or other managed services.

e Parcels: If you are upgrading CDH and were previously using the standalone Kudu parcel (version 1.4.0 and lower),
then you must deactivate this parcel and activate the latest CDH parcel that includes Kudu. For instructions, see
Upgrading to CDH 5.x Using Parcels.

e Packages: If you are upgrading CDH and were previously using the Kudu package (version 1.4.0 and lower), then
you must uninstall the kudu package and upgrade to the latest CDH package that includes Kudu. For instructions,
see Upgrading to CDH 5.x Using Packages.

On an unmanaged cluster, you can upgrade Kudu packages manually. For instructions, see Upgrade Kudu Using the
Command Line.

https://www.cloudera.com/documentation/enterprise/latest/topics/installation_installation.html

Apache Kudu Usage Limitations

Schema Design Limitations
Primary Key

¢ The primary key cannot be changed after the table is created. You must drop and recreate a table to select a
new primary key.

e The columns which make up the primary key must be listed first in the schema.

¢ The primary key of a row cannot be modified using the UPDATE functionality. To modify a row’s primary key,
the row must be deleted and re-inserted with the modified key. Such a modification is non-atomic.

e Columns with DOUBLE, FLOAT, or BOOL types are not allowed as part of a primary key definition. Additionally,
all columns that are part of a primary key definition must be NOT NULL.

e Auto-generated primary keys are not supported.

e Cells making up a composite primary key are limited to a total of 16KB after internal composite-key encoding
is done by Kudu.

Cells

No individual cell may be larger than 64KB before encoding or compression. The cells making up a composite key
are limited to a total of 16KB after the internal composite-key encoding done by Kudu. Inserting rows not conforming
to these limitations will result in errors being returned to the client.

Columns

e By default, Kudu will not permit the creation of tables with more than 300 columns. We recommend schema
designs that use fewer columns for best performance.

e DECI MAL, CHAR, VARCHAR, DATE, and complex types such as ARRAY are not supported.
¢ Type and nullability of existing columns cannot be changed by altering the table.

¢ Dropping a column does not immediately reclaim space. Compaction must run first.

Tables
¢ Tables must have an odd number of replicas, with a maximum of 7.
¢ Replication factor (set at table creation time) cannot be changed.

¢ There is no way to run compaction manually, but dropping a table will reclaim the space immediately.

Other Usage Limitations

¢ Secondary indexes are not supported.
e Multi-row transactions are not supported.
¢ Relational features, such as foreign keys, are not supported.

¢ Identifiers such as column and table names are restricted to be valid UTF-8 strings. Additionally, a maximum
length of 256 characters is enforced.

If you are using Apache Impala to query Kudu tables, refer to the section on Impala Integration Limitations on page
17 as well.

Partitioning Limitations

Tables must be manually pre-split into tablets using simple or compound primary keys. Automatic splitting is not
yet possible. Kudu does not allow you to change how a table is partitioned after creation, with the exception of
adding or dropping range partitions.

Data in existing tables cannot currently be automatically repartitioned. As a workaround, create a new table with
the new partitioning and insert the contents of the old table.

Tablets that lose a majority of replicas (such as 1 left out of 3) require manual intervention to be repaired.

Scaling Recommendations and Limitations

Recommended maximum number of tablet servers is 100.
Recommended maximum number of masters is 3.

Recommended maximum amount of stored data, post-replication and post-compression, per tablet server is 8
TiB.

Recommended number of tablets per tablet server is 1000 (post-replication) with 2000 being the maximum
number of tablets allowed per tablet server.

Maximum number of tablets per table for each tablet server is 60, post-replication (assuming the default replication
factor of 3), at table-creation time.

Recommended maximum amount of data per tablet is 50 GiB. Going beyond this can cause issues such a reduced
performance, compaction issues, and slow tablet startup times.

The recommended target size for tablets is under 10 GiB

Server Management Limitations

Production deployments should configure a least 4 GiB of memory for tablet servers, and ideally more than 16
GiB when approaching the data and tablet scale limits.

Write ahead logs (WALs) can only be stored on one disk.
Disk failures are not tolerated and tablets servers will crash as soon as one is detected.

Failed disks with unrecoverable data requires formatting of all Kudu data for that tablet server before it can be
started again.

Data directories cannot be added/removed; they must be reformatted to change the set of directories.
Tablet servers cannot be gracefully decommissioned.
Tablet servers cannot change their address or port.

Kudu has a hard requirement on having an up-to-date NTP. Kudu masters and tablet servers will crash when out
of sync.

Kudu releases have only been tested with NTP. Other time synchronization providers such as Chrony may not
work.

Cluster Management Limitations
e Rack awareness is not supported.
e Multi-datacenter is not supported.
¢ Rolling restart is not supported.

¢ All masters must be started at the same time when the cluster is started for the very first time.

Replication and Backup Limitations

e Kudu does not currently include any built-in features for backup and restore. Users are encouraged to use tools
such as Spark or Impala to export or import tables as necessary.

Impala Integration Limitations

e When creating a Kudu table, the CREATE TABLE statement must include the primary key columns before other
columns, in primary key order.

Impala cannot update values in primary key columns.

Impala cannot create Kudu tables with DECI MAL, VARCHAR, or nested-typed columns.

Kudu tables with a name containing upper case or non-ASCII characters must be assigned an alternate name when
used as an external table in Impala.

Kudu tables with a column name containing upper case or non-ASCll characters cannot be used as an external
table in Impala. Columns can be renamed in Kudu to work around this issue.

I = and LI KE predicates are not pushed to Kudu, and instead will be evaluated by the Impala scan node. This may
decrease performance relative to other types of predicates.

Updates, inserts, and deletes using Impala are non-transactional. If a query fails part of the way through, its partial
effects will not be rolled back.

The maximum parallelism of a single query is limited to the number of tablets in a table. For good analytic
performance, aim for 10 or more tablets per host or use large tables.

Impala Keywords Not Supported for Creating Kudu Tables

e PARTI TI ONED
e LOCATI ON
¢ ROANFORVAT

Spark Integration Limitations

e Spark 2.2 (and higher) requires Java 8 at runtime even though Kudu Spark 2.x integration is Java 7 compatible.
Spark 2.2 is the default dependency version as of Kudu 1.5.0.

¢ Kudu tables with a name containing upper case or non-ASCll characters must be assigned an alternate name when
registered as a temporary table.

¢ Kudu tables with a column name containing upper case or non-ASCII characters must not be used with SparkSQL.
Columns can be renamed in Kudu to work around this issue.

<> and ORpredicates are not pushed to Kudu, and instead will be evaluated by the Spark task. Only LI KE predicates
with a suffix wildcard are pushed to Kudu. This means LI KE " FOO6 will be pushed, but LI KE " FOOYBAR' won't.

Kudu does not support all the types supported by Spark SQL. For example, Dat e, Deci mal , and complex types
are not supported on Kudu.

Kudu tables can only be registered as temporary tables in SparkSQL.

Kudu tables cannot be queried using HiveContext.

Security Limitations

Data encryption at rest is not directly built into Kudu. Encryption of Kudu data at rest can be achieved through
the use of local block device encryption software such as dncr ypt .

Authorization is only available at a system-wide, coarse-grained level. Table-level, column-level, and row-level
authorization features are not available.

Kudu does not support configuring a custom service principal for Kudu processes. The principal must follow the
pattern kudu/ <HOST>@<DEFAULT. REALM>.

Kudu integration with Apache Flume does not support writing to Kudu clusters that require authentication.

Apache Kudu Configuration

To configure the behavior of each Kudu process, you can pass command-line flags when you start it, or read those
options from configuration files by passing them using one or more - - f | agf i | e=<f i | e> options. You can even
includethe--f 1l agfi | e option within your configuration file to include other files. Learn more about gflags by reading
its documentation.

You can place options for masters and tablet servers in the same configuration file, and each will ignore options that
do not apply.

Flags can be prefixed with either one or two - characters. This documentation standardizes on two: - - exanpl e_f | ag.

Only the most common configuration options are documented in this topic. For a more exhaustive list of configuration
options, see the Kudu Configuration Reference. To see all configuration flags for a given executable, run it with the
- - hel p option.

Experimental Flags

Some configuration flags are marked 'unsafe' and 'experimental’. Such flags are disabled by default. You can access
these flags by enabling the additional flags, - - unl ock_unsaf e_f | ags and- - unl ock_experi nent al _f| ags. Note
that these flags might be removed or modified without a deprecation period or any prior notice in future Kudu releases.
Cloudera does not support using unsafe and experimental flags. As a rule of thumb, Cloudera will not support any
configuration flags not explicitly documented in the Kudu Configuration Reference Guide.

Configuring the Kudu Master

To see all available configuration options for the kudu- mast er executable, run it with the - - hel p option:

$ kudu-master --help

Table 1: Supported Configuration Flags for Kudu Masters

Flag Valid Options Default Description

--mast er _addr esses string | ocal host Comma-separated list of all
the RPC addresses for
Master

consensus-configuration. If
not specified, assumes a
standalone Master.

--fs data dirs string List of directories where the
Master will place its data
blocks.

--fs_wal _dir string The directory where the

Master will place its
write-ahead logs.

--log_dir string /tnp The directory to store
Master log files.

For the complete list of flags for masters, see the Kudu Master Configuration Reference.

https://gflags.github.io/gflags/
http://kudu.apache.org/docs/configuration_reference.html
http://kudu.apache.org/docs/configuration_reference.html#configuration_reference_unsupported
http://kudu.apache.org/docs/configuration_reference.html#kudu-master_stable

Apache Kudu Configuration

Configuring Tablet Servers

To see all available configuration options for the kudu- t ser ver executable, run it with the - - hel p option:

$ kudu-tserver --help

Table 2: Supported Configuration Flags for Kudu Tablet Servers

--fs_data_dirs string List of directories where the
Tablet Server will place its
data blocks.

--fs_wal_dir string The directory where the

Tablet Server will place its
write-ahead logs.

--log_dir string /tmp The directory to store Tablet
Server log files

--tserver_master_addrs string 127.0.0.1: 7051 Comma separated addresses
of the masters that the
tablet server should connect
to. The masters do not read
this flag.

--block_cache_capacity_mb | integer 512 Maximum amount of
memory allocated to the
Kudu Tablet Server’s block
cache.

--memory_limit_hard_bytes | integer 4294967296 Maximum amount of
memory a Tablet Server can
consume before it starts
rejecting all incoming writes.

For the complete list of flags for tablet servers, see the Kudu Tablet Server Configuration Reference.

20 | Apache Kudu Guide

http://kudu.apache.org/docs/configuration_reference.html#kudu-tserver_stable

Apache Kudu Administration

This topic describes how to perform common administrative tasks and workflows with Apache Kudu.

Starting and Stopping Kudu Processes

Start Kudu services using the following commands:

sudo service kudu-naster start
sudo service kudu-tserver start

To stop Kudu services, use the following commands:

sudo service kudu-master stop
sudo service kudu-tserver stop

Configure the Kudu services to start automatically when the server starts, by adding them to the default runlevel.

sudo chkconfi g kudu-nmaster on # RHEL / Cent OS
sudo chkconfig kudu-tserver on # RHEL / Cent OS
sudo update-rc.d kudu-master defaults # Ubuntu

sudo update-rc.d kudu-tserver defaults # Ubuntu

Kudu Web Interfaces

Kudu tablet servers and masters expose useful operational information on a built-in web interface.

Kudu Master Web Interface

Kudu master processes serve their web interface on port 8051. The interface exposes several pages with information
about the state of the cluster.

e Alist of tablet servers, their host names, and the time of their last heartbeat.
e Alist of tables, including schema and tablet location information for each.

e SQL code which you can paste into Impala Shell to add an existing table to Impala’s list of known data sources.

Kudu Tablet Server Web Interface

Each tablet server serves a web interface on port 8050. The interface exposes information about each tablet hosted
on the server, its current state, and debugging information about maintenance background operations.

Common Web Interface Pages
Both Kudu masters and tablet servers expose the following information via their web interfaces:
e HTTP access to server logs.
e An/rpcz endpoint which lists currently running RPCs via JSON.
¢ Details about the memory usage of different components of the process.
e The current set of configuration flags.

e Currently running threads and their resource consumption.

¢ A JSON endpoint exposing metrics about the server.

e The version number of the daemon deployed on the cluster.

These interfaces are linked from the landing page of each daemon’s web Ul.

Kudu Metrics

Kudu daemons expose a large number of metrics. Some metrics are associated with an entire server process, whereas
others are associated with a particular tablet replica.

Listing Available Metrics

The full set of available metrics for a Kudu server can be dumped using a special command line flag:

$ kudu-tserver --dunmp_metrics_json
$ kudu-master --dunp_netrics_json

This will output a large JSON document. Each metric indicates its name, label, description, units, and type. Because

the output is JSON-formatted, this information can easily be parsed and fed into other tooling which collects metrics
from Kudu servers.

For the complete list of metrics collected by Cloudera Manager for a Kudu service, look for the Kudu metrics listed
under Cloudera Manager Metrics .

If you are using Cloudera Manager, see Cloudera Manager Metrics for Kudu for the complete list of metrics collected
by Cloudera Manager for a Kudu service.

Collecting Metrics via HTTP

Metrics can be collected from a server process via its HTTP interface by visiting / met ri cs. The output of this page is
JSON for easy parsing by monitoring services. This endpoint accepts several GET parameters in its query string:

e /nmetrics?metrics=<substringl>, <substring2>, ..- Limits the returned metrics to those which contain
at least one of the provided substrings. The substrings also match entity names, so this may be used to collect
metrics for a specific tablet.

e /netrics?incl ude_schema=1 - Includes metrics schema information such as unit, description, and label in the
JSON output. This information is typically omitted to save space.

e /netrics?conpact =1 - Eliminates unnecessary whitespace from the resulting JSON, which can decrease
bandwidth when fetching this page from a remote host.

e /netrics?include_raw_hi st ograms=1 - Include the raw buckets and values for histogram metrics, enabling
accurate aggregation of percentile metrics over time and across hosts.

For example:

$ curl -s "http://exanpl e-ts: 8050/ netrics?i ncl ude_schema=1&netri cs=connecti ons_accept ed’

"type": "server",

"id": "kudu.tabl etserver",
"attributes": {},
"metrics": [

{
"nanme": "rpc_connections_accepted",
"l abel ": "RPC Connections Accepted",
"type": "counter",

"unit": "connections",

"description": "Number of incoming TCP connections nade to the RPC
server",
"val ue": 92

$ curl -s '"http://exanpl e-ts: 8050/ metrics?metri cs=l og_append_| at ency’

{
"type": "tablet",
"id": "cOebf 9f ef 1b847e2a83c7bd35¢c2056b1",
"attributes": {
"tabl e_nanme": "lineitent,
"partition": "hash buckets: (55), range: [(<start>), (<end>))",
"table_id": ""
oo
"metrics": [
{
"name": "l og_append_| atency",
"total _count": 7498,
"mn": 4,
"mean": 69. 3649,
"percentile_75": 29,
"percentile_95": 38,
"percentile_99": 45,
"percentile_99 9": 95,
"percentile_99 99": 167,
"max": 367244,
"total sunt: 520098
}
]
}

Collecting Metrics to a Log

Kudu can be configured to periodically dump all of its metrics to a local log file using the - - net ri cs_l og_i nterval _ns
flag. Set this flag to the interval at which metrics should be written to a log file.

The metrics log will be written to the same directory as the other Kudu log files, and with the same naming format.
After any metrics log file reaches 64MB uncompressed, the log will be rolled and the previous file will be gzip-compressed.

The log file generated has three space-separated fields:

e The first field is the word net ri cs.
¢ The second field is the current timestamp in microseconds since the Unix epoch.

e The third is the current value of all metrics on the server, using a compact JSON encoding. The encoding is the
same as the metrics fetched via HTTP described above.

o Important: Although metrics logging automatically rolls and compresses previous log files, it does
not remove old ones. Since metrics logging can use significant amounts of disk space, consider setting
up a system utility to monitor space in the log directory and archive or delete old segments.

Common Kudu Workflows

The following sections describe some common workflows for Kudu users:

Migrating to Multiple Kudu Masters

For high availability and to avoid a single point of failure, Kudu clusters should be created with multiple masters. Many
Kudu clusters were created with just a single master, either for simplicity or because Kudu multi-master support was
still experimental at the time. This workflow demonstrates how to migrate to a multi-master configuration. It can also
be used to migrate from two masters to three with straightforward modifications.

o Important:

¢ This workflow is unsafe for adding new masters to an existing multi-master configuration that
already has three or more masters. Do not use it for that purpose.

e This workflow presumes you are familiar with Kudu configuration management, with or without
Cloudera Manager.

e All of the command line steps below should be executed as the Kudu UNIX user. The example
commands assume the Kudu Unix user is kudu, which is typical.

Prepare for the migration

1. Establish a maintenance window (one hour should be sufficient). During this time the Kudu cluster will be
unavailable.

2. Decide how many masters to use. The number of masters should be odd. Three or five node master configurations
are recommended; they can tolerate one or two failures respectively.

3. Perform the following preparatory steps for the existing master:

¢ |dentify and record the directories where the master’s write-ahead log (WAL) and data live. If using Kudu
system packages, their default locations are / var /| i b/ kudu/ mast er, but they may be customized using
thefs_wal _dir andfs_dat a_dirs configuration parameters. The command below assume that
fs_wal _dir is/data/ kudu/ master/wal andfs_data_dirs is/dat a/ kudu/ mast er/ dat a. Your
configuration may differ. For more information on configuring these directories, see the Kudu Configuration
docs.

¢ Identify and record the port the master is using for RPCs. The default port value is 7051, but it may have been
customized using the r pc_bi nd_addr esses configuration parameter.

¢ |dentify the master’s UUID. It can be fetched using the following command:

$ sudo -u kudu kudu fs dunp uuid --fs_wal _dir=<master_wal _dir>
[--fs_data_dirs=<nmaster_data_dir>] 2>/dev/null

master_data_dir
The location of the existing master’s previously recorded data directory.

For example:

$ sudo -u kudu kudu fs dunmp uuid --fs_wal _dir=/var/lib/kudu/ master 2>/dev/null
4aab798a69e94f ab8d77069edf f 28cel

¢ (Optional) Configure a DNS alias for the master. The alias could be a DNS cname (if the machine already has
an A record in DNS), an A record (if the machine is only known by its IP address), or an aliasin/ et ¢/ host s.
The alias should be an abstract representation of the master (e.g. nast er - 1).

o Important:

Without DNS aliases it is not possible to recover from permanent master failures without
bringing the cluster down for maintenance, and as such, it is highly recommended.

https://www.cloudera.com/documentation/enterprise/latest/topics/kudu_configuration_cli.html
https://www.cloudera.com/documentation/enterprise/latest/topics/kudu_configuration_cli.html

4. If you have Kudu tables that are accessed from Impala, you must update the master addresses in the Apache Hive
Metastore (HMS) database.

¢ If you set up the DNS aliases, run the following statement in Impala-shell, replacing mast er - 1, mast er - 2,
and mast er - 3 with your actual aliases.

ALTER TABLE t abl e_nane
SET TBLPROPERTI ES
(' kudu. mast er _addresses' = 'master-1, master-2, master-3');

¢ If you do not have DNS aliases set up, see Step #11 in the Performing the migration section for updating HMS.
5. Perform the following preparatory steps for each new master:

e Choose an unused machine in the cluster. The master generates very little load so it can be collocated with
other data services or load-generating processes, though not with another Kudu master from the same
configuration.

e Ensure Kudu is installed on the machine, either using system packages (in which case the kudu and
kudu- mast er packages should be installed), or some other means.

e Choose and record the directory where the master’s data will live.
e Choose and record the port the master should use for RPCs.

¢ (Optional) Configure a DNS alias for the master (e.g. mast er - 2, nast er - 3, etc).

Perform the migration

1. Stop all the Kudu processes in the entire cluster.

2. Format the data directory on each new master machine, and record the generated UUID. Use the following
commands:

$ sudo -u kudu kudu fs format --fs_wal _dir=<master_wal _dir>
[--fs_data_dirs=<nmaster_data_dir>]

$ sudo -u kudu kudu fs dunp uuid --fs_wal _dir=<naster_wal _dir>
[--fs_data_dirs=<master_data_dir>] 2>/dev/null

master_data_dir
The new master’s previously recorded data directory.

For example:

$ sudo -u kudu kudu fs format --fs_wal _dir=/datal/kudu/ master/ wal
--fs_data_dirs=/datal/ kudu/ nast er/ dat a

$ sudo -u kudu kudu fs dunp uuid --fs_wal _dir=/datalkudu/ master/wal
--fs_data_dirs=/datal/ kudu/ mast er/ data 2>/ dev/ nul |

f 5624e05f 40649b79a757629a69d061e

3. If you are using Cloudera Manager, add the new Kudu master roles now, but do not start them.

¢ If using DNS aliases, override the empty value of the Mast er Addr ess parameter for each role (including
the existing master role) with that master’s alias.

e Add the port number (separated by a colon) if using a non-default RPC port value.
4. Rewrite the master’s Raft configuration with the following command, executed on the existing master:

$ sudo -u kudu kudu local _replica cmeta rewite_raft_config --fs_wal _di r=<master_wal _dir>
[--fs_data_dirs=<naster_data_dir>] <tablet_id> <all_nasters>

master_data_dir

The existing master’s previously recorded data directory

tablet_id

This must be set to the string, 00000000000000000000000000000000.
all_masters

A space-separated list of masters, both new and existing. Each entry in the list must be a string of the form
<uui d>: <host name>: <port >.

uuid

The master’s previously recorded UUID.

hostname

The master’s previously recorded hostname or alias.
port

The master’s previously recorded RPC port number.

For example:

$ sudo -u kudu kudu local _replica cneta rewite_raft_config

--fs_wal _dir=/datal/ kudu/ master/wal --fs_data_dirs=/datal/kudu/ master/data
00000000000000000000000000000000 4aab798a69e94f ab8d77069edf f 28ce0: mast er- 1: 7051
f 5624e05f 40649b79a757629a69d061e: nast er - 2: 7051

988d8ac6530f 426cbe180be5ba52033d: mast er - 3: 7051

5. Modify the value of the mast er _addr esses configuration parameter for both existing master and new masters.
The new value must be a comma-separated list of all of the masters. Each entry is a string of the form,
<host name>: <port >.

hostname
The master's previously recorded hostname or alias.
port

The master's previously recorded RPC port number.

6. Start the existing master.
7. Copy the master data to each new master with the following command, executed on each new master machine.

o Important: If your Kudu cluster is secure, in addition to running as the Kudu UNIX user, you must
authenticate as the Kudu service user prior to running this command.

$ sudo -u kudu kudu local _replica copy_fromrenote --fs_wal _di r=<master_data_dir>
<t abl et _i d> <exi sting_naster>

master_data_dir

The new master's previously recorded data directory.

tablet_id

Must be set to the string, 00000000000000000000000000000000.

existing_master

RPC address of the existing master. It must be a string of the form <host nane>: <port >.
hostname

The existing master's previously recorded hostname or alias.

port

The existing master's previously recorded RPC port number.
Example

$ sudo -u kudu kudu local _replica copy_fromrenote --fs_wal _dir=/data/ kudu/ mast er/ wal
--fs_data_dirs=/datal/ kudu/ master/data 00000000000000000000000000000000 naster-1: 7051

8. Start all the new masters.

o Important: If you are using Cloudera Manager, skip the next step.

9. Modify the value of the t ser ver _nast er _addr s configuration parameter for each tablet server. The new value
must be a comma-separated list of masters where each entry is a string of the form <host nane>: <port >

hostname
The master's previously recorded hostname or alias
port

The master's previously recorded RPC port number

10 Start all the tablet servers.
1. If you have Kudu tables that are accessed from Impala and you didn’t set up DNS aliases, update the HMS database
manually in the underlying database that provides the storage for HMS.

¢ The following is an example SQL statement you would run in the HMS database:

UPDATE TABLE_PARAMS
SET PARAM VALUE =
'mast er- 1. exanpl e. com nast er - 2. exanpl e. com nmast er - 3. exanpl e. com
WHERE PARAM KEY = ' kudu. mast er. addresses' AND PARAM VALUE = 'ol d-master';

¢ Invalidate the metadata by running the command in Impala-shell:

I NVALI DATE METADATA,

To verify that all masters are working properly, consider performing the following sanity checks:

e Using a browser, visit each master’s web Ul and navigate to the / mast er s page. All the masters should now be
listed there with one master in the LEADERrole and the others in the FOLLONERrole. The contents of / mast er s

on each master should be the same.

e Runa Kudu system check (ksck) on the cluster using the kudu command line tool. For more details, see Monitoring
Cluster Health with ksck on page 32.

Recovering from a Dead Kudu Master in a Multi-Master Deployment

Kudu multi-master deployments function normally in the event of a master loss. However, it is important to replace
the dead master; otherwise a second failure may lead to a loss of availability, depending on the number of available
masters. This workflow describes how to replace the dead master.

Due to KUDU-1620, it is not possible to perform this workflow without also restarting the live masters. As such, the
workflow requires a maintenance window, albeit a potentially brief one if the cluster was set up with DNS aliases.

https://issues.apache.org/jira/browse/KUDU-1620

o Important:

¢ Kudu does not yet support live Raft configuration changes for masters. As such, it is only possible
to replace a master if the deployment was created with DNS aliases or if every node in the cluster
is first shut down. See the previous multi-master migration workflow for more details on deploying
with DNS aliases.

¢ The workflow presupposes at least basic familiarity with Kudu configuration management. If
using Cloudera Manager, the workflow also presupposes familiarity with it.

e All of the command line steps below should be executed as the Kudu UNIX user, typically kudu.

Prepare for the recovery
1. If the cluster was configured without DNS aliases perform the following steps. Otherwise move on to step 2:

a. Establish a maintenance window (one hour should be sufficient). During this time the Kudu cluster will be
unavailable.
b. Shut down all Kudu tablet server processes in the cluster.

2. Ensure that the dead master is well and truly dead. Take whatever steps needed to prevent it from accidentally
restarting; this can be quite dangerous for the cluster post-recovery.

3. Choose one of the remaining live masters to serve as a basis for recovery. The rest of this workflow will refer to
this master as the "reference" master.

4. Choose an unused machine in the cluster where the new master will live. The master generates very little load so
it can be co-located with other data services or load-generating processes, though not with another Kudu master
from the same configuration. The rest of this workflow will refer to this master as the "replacement" master.

5. Perform the following preparatory steps for the replacement master:

e Ensure Kudu is installed on the machine, either via system packages (in which case the kudu and kudu- nast er
packages should be installed), or via some other means.

e Choose and record the directory where the master’s data will live.

6. Perform the following preparatory steps for each live master:

¢ Identify and record the directory where the master’s data lives. If using Kudu system packages, the default
value is /var/lib/kudu/master, but it may be customized viathefs_wal _di r andfs_dat a_di r s configuration
parameter. Please note if you’'ve setf s_dat a_di r s to some directories other than thevalue of f s_wal _dir,
it should be explicitly included in every command below where f s_wal _di r is also included. For more
information on configuring these directories, see the Kudu Configuration docs.

¢ Identify and record the master’s UUID. It can be fetched using the following command:

$ sudo -u kudu kudu fs dunp uuid --fs_wal _dir=<master_wal _dir>
[--fs_data_dirs=<nmaster_data_dir>] 2>/dev/null

master_data_dir
live master’s previously recorded data directory

Example

$ sudo -u kudu kudu fs dump uuid --fs_wal _dir=/datalkudu/ mast er/ wal
--fs_data_dirs=/datal/ kudu/ master/data 2>/ dev/ nul |
80a82c4h8a9f 4c819bab744927ad765¢

7. Perform the following preparatory steps for the reference master:

https://www.cloudera.com/documentation/enterprise/latest/topics/kudu_configuration_cli.html

¢ |dentify and record the directory where the master’s data lives. If using Kudu system packages, the default
valueis/var/ i b/ kudu/ mast er, but it may be customized usingthefs_wal dir andfs_data dirs
configuration parameter. If you have set fs_dat a_di r s to some directories other than the value of
fs_wal _dir, itshouldbe explicitly included in every command below where f s_wal _di r is also included.
For more information on configuring these directories, see the Kudu Configuration docs.

¢ Identify and record the UUIDs of every master in the cluster, using the following command:

$ sudo -u kudu kudu | ocal replica cneta print_replica_uuids --fs_wal _dir=<nmaster_data_dir>
<tabl et _id> 2>/ dev/null

master_data_dir

The reference master’s previously recorded data directory.

tablet_id

Must be set to the string, 00000000000000000000000000000000.

Example

$ sudo -u kudu kudu local _replica cnmeta print_replica_uuids

--fs_wal _dir=/datal/kudu/ master/wal --fs_data_dirs=/datal/kudu/ master/data
00000000000000000000000000000000 2>/ dev/ nul |

80a82c4h8a9f 4c819bab744927ad765¢c 2a73eeee5d47413981d9alc637ccel70

1c3f 3094256347528d02ec107466aef 3

8. Using the two previously-recorded lists of UUIDs (one for all live masters and one for all masters), determine and
record (by process of elimination) the UUID of the dead master.

Perform the recovery

1. Format the data directory on the replacement master machine using the previously recorded UUID of the dead
master. Use the following command sequence:

$ sudo -u kudu kudu fs format --fs_wal dir=<master_wal _dir>
[--fs_data_dirs=<nmaster_data_dir>] --uuid=<uuid>

master_data_dir

The replacement master’s previously recorded data directory.
uuid

The dead master’s previously recorded UUID.

For example:

$ sudo -u kudu kudu fs format --fs_wal _dir=/datal/kudu/ master/wal
--fs_data_dirs=/datal/ kudu/ master/data --uui d=80a82c4b8a9f 4c819bah744927ad765c¢c

2. Copy the master data to the replacement master with the following command.

o Important: If your Kudu cluster is secure, in addition to running as the Kudu UNIX user, you must
authenticate as the Kudu service user prior to running this command.

$ sudo -u kudu kudu local _replica copy_fromrenote --fs_wal _dir=<master_wal _dir>
[--fs_data_dirs=<master_data_dir>] <tablet_id> <reference_naster>

master_data_dir

The replacement master’s previously recorded data directory.

https://www.cloudera.com/documentation/enterprise/latest/topics/kudu_configuration_cli.html

tablet_id

Must be set to the string, 00000000000000000000000000000000.

reference_master

The RPC address of the reference master. It must be a string of the form <host nanme>: <port >.
hostname

The reference master’s previously recorded hostname or alias.

port

The reference master’s previously recorded RPC port number.

For example:

$ sudo -u kudu kudu local _replica copy_fromrenote --fs_wal _dir=/data/ kudu/ mast er/ wal
--fs_data_dirs=/datal/ kudu/ mast er/ data 00000000000000000000000000000000 nast er-2: 7051

3. If you are using Cloudera Manager, add the replacement Kudu master role now, but do not start it.

e Override the empty value of the Mast er Addr ess parameter for the new role with the replacement master’s
alias.

¢ If you are using a non-default RPC port, add the port number (separated by a colon) as well.

4. e [fthe cluster was set up with DNS aliases, reconfigure the DNS alias for the dead master to point at the
replacement master.

e If the cluster was set up without DNS aliases, perform the following steps:

1. Stop the remaining live masters.

2. Rewrite the Raft configurations on these masters to include the replacement master. See Step 4 of
Perform the Migration for more details.

5. Start the replacement master.

6. Restart the remaining masters in the new multi-master deployment. While the masters are shut down, there will
be an availability outage, but it should last only as long as it takes for the masters to come back up.

To verify that all masters are working properly, consider performing the following sanity checks:

¢ Using a browser, visit each master’s web Ul and navigate to the / mast er s page. All the masters should now be
listed there with one master in the LEADERrole and the others in the FOLLOWER role. The contents of / mast er s
on each master should be the same.

e RunaKudu system check (ksck) on the cluster using the kudu command line tool. For more details, see Monitoring
Cluster Health with ksck on page 32.

Removing Kudu Masters from a Multi-Master Deployment

In the event that a multi-master deployment has been overallocated nodes, the following steps should be taken to
remove the unwanted masters.

o Important:

¢ In planning the new multi-master configuration, keep in mind that the number of masters should
be odd and that three or five node master configurations are recommended.

¢ Dropping the number of masters below the number of masters currently needed for a Raft
majority can incur data loss. To mitigate this, ensure that the leader master is not removed during
this process.

Prepare for removal

1.

3.
4,

Establish a maintenance window (one hour should be sufficient). During this time the Kudu cluster will be
unavailable.

. Identify the UUID and RPC address current leader of the multi-master deployment by visiting the / mast er s page

of any master’s web Ul. This master must not be removed during this process; its removal may result in severe
data loss.

Stop all the Kudu processes in the entire cluster.

If you are using Cloudera Manager, remove the unwanted Kudu master from your cluster's Kudu service.

Perform the removal

1.

6.

Rewrite the Raft configuration on the remaining masters to include only the remaining masters. See Step 4 of
Perform the Migration for more details.

. Remove the data directories and WAL directory on the unwanted masters. This is a precaution to ensure that they

cannot start up again and interfere with the new multi-master deployment.

. Modify the value of the mast er _addr esses configuration parameter for the masters of the new multi-master

deployment. See Kudu Configuration docs for the steps to modify a configuration parameter. If migrating to a
single-master deployment, the mast er _addr esses flag should be omitted entirely.

. Start all of the masters that were not removed.

o Important: If you are using Cloudera Manager, skip the next step.

. Modify the value of the t ser ver _nmast er _addr s configuration parameter for the tablet servers to remove any

unwanted masters. See Kudu Configuration docs for the steps to modify a configuration parameter.

Start all of the tablet servers.

To verify that all masters are working properly, consider performing the following sanity checks:

Using a browser, visit each master’s web Ul and navigate to the / mast er s page. All the masters should now be
listed there with one master in the LEADERrole and the others in the FOLLOAER role. The contents of / mast er s
on each master should be the same.

Run a Kudu system check (ksck) on the cluster using the kudu command line tool. For more details, see Monitoring
Cluster Health with ksck on page 32.

Changing Master Hostnames

When replacing dead masters, use DNS aliases to prevent long maintenance windows. If the cluster was set up without
aliases, change the host names as described in this section.

Prepare for Hostname Changes

To prepare to change a hostname:

1. Establish a maintenance window during which the Kudu cluster will be unavailable. One hour should be sufficient.
2. On the Masters page in Kudu Web Ul, note the UUID and RPC address of each master.

3. Stop all the Kudu processes in the cluster.

4. Set up the new hostnames to point to the masters and verify all servers and clients properly resolve them.

Perform Hostname Changes

To change hostnames:

1. Rewrite each master’s Raft configuration with the following command, executed on each master host:

$ sudo -u kudu kudu local _replica cnmeta rewite raft_config --fs_wal _di r=<master_wal _dir>
[--fs_data_dirs=<naster_data_dir>] 00000000000000000000000000000000 <al | _rmast ers>

https://www.cloudera.com/documentation/enterprise/latest/topics/kudu_configuration_cli.html
https://www.cloudera.com/documentation/enterprise/latest/topics/kudu_configuration_cli.html

For example:

$ sudo -u kudu kudu local _replica cneta rewite_raft_config

--fs_wal _dir=/datal/ kudu/ naster/wal --fs_data_dirs=/datalkudu/ naster/data

00000000000000000000000000000000 4aab798a69e94f ab8d77069edf f 28ce0: new nast er - nane- 1: 7051
f 5624e05f 40649b79a757629a69d061e: new nast er - name- 2: 7051

988d8ac6530f 426cbel80be5ba52033d: new nast er - nane- 3: 7051

2. Update the master address:

¢ Inan environment not managed by Cloudera Manager, change the gf | ag file of the masters so the
mast er _addr esses parameter reflects the new hostnames.

¢ Inan environment managed by Cloudera Manager, specify the new hostname in the Master Address
(server.address) field on each Kudu role.

3. Change the gf | ag file of the tablet servers to update the t ser ver _nmast er _addr s parameter with the new
hostnames. In an environment managed by Cloudera Manager, this step is not needeed.

4. Start the masters.

5. To verify that all masters are working properly, perform the following sanity checks:

a. In each master’s Web Ul, click Masters on the Status Pages. All of the masters should be listed there with
one master in the LEADER role field and the others in the FOLLOWER role field. The contents of Masters on
all master should be the same.

b. Run the below command to verify all masters are up and listening. The UUIDs are the same and belong to
the same master as before the hostname change:

$ sudo -u kudu kudu master |ist
new nmast er - nane- 1: 7051, new nast er - name- 2: 7051, new nast er - nane- 3: 7051

6. Start all of the tablet servers.

7. Run a Kudu system check (ksck) on the cluster using the kudu command line tool. See Monitoring Cluster Health
with ksck on page 32 for more details. After startup, some tablets may be unavailable as it takes some time to
initialize all of them.

8. If you have Kudu tables that are accessed from Impala, update the HMS database manually in the underlying
database that provides the storage for HMS.

a. The following is an example SQL statement you run in the HMS database:

UPDATE TABLE_PARAMSSET PARAM VALUE =

' new mast er - nanme- 1: 7051, new nast er - nane- 2: 7051, new nmast er - name- 3: 7051"
WHERE PARAM KEY = ' kudu. nmast er _addr esses'

AND PARAM VALUE = 'master-1: 7051, master-2: 7051, master-3: 7051";

b. Ini npal a-shel |, run:

I NVALI DATE METADATA,

c. Verify updating the metadata worked by running a simple SELECT query on a Kudu-backed Impala table.

Monitoring Cluster Health with ksck

The kudu CLI includes a tool called ksck which can be used for monitoring cluster health and data integrity. ksck will
identify issues such as under-replicated tablets, unreachable tablet servers, or tablets without a leader.

ksck should be run from the command line, and requires you to specify the complete list of Kudu master addresses:

$ sudo -u kudu kudu cluster ksck
mast er - 01. exanpl e. com nmast er - 02. exanpl e. com nmast er - 03. exanpl e. com

To see the full list of the options available with ksck, either use the - - hel p flag or see Kudu command line reference
documentation.

If the cluster is healthy, ksck will print a success message, and return a zero (success) exit status.

Connected to the Master
Fetched info fromall 1 Tablet Servers
Tabl e I ntegrationTest Bi gLi nkedLi st is HEALTHY (1 tablet(s) checked)

The nmetadata for 1 table(s) is HEALTHY
(0 ¢

If the cluster is unhealthy, for instance if a tablet server process has stopped, ksck will report the issue(s) and return
a non-zero exit status:

Connected to the Master

WARNI NG Unabl e to connect to Tabl et Server 8a0b66a756014def 82760a09946d1f ce

(tserver-01. exanpl e. com 7050): Network error: could not send Ping RPCto server: dient
connection negotiation failed: client connection to 192.168.0.2: 7050: connect: Connection
refused (error 61)

WARNI NG Fetched info fromO Tablet Servers, 1 weren't reachable

Tabl et ce3c2d27010d4253949a989b9d9bf 43c of table 'Integrati onTestBi gLi nkedLi st'

is unavailable: 1 replica(s) not RUNNI NG
8a0b66a756014def 82760a09946d1f ce (tserver-01. exanpl e.com 7050): TS unavai | abl e [LEADER]

Tabl e I ntegrationTestBi gLi nkedLi st has 1 unavail abl e tablet(s)

1 out of 1 table(s) are not in a healthy state

error fetching info fromtablet servers: Network error: Not all Tablet Servers are
reachabl e
tabl e consi stency check error: Corruption: 1 table(s) are bad

FAI LED
Runtime error: ksck discovered errors

To verify data integrity, the optional - - checksum scan flag can be set, which will ensure that the cluster has consistent
data by scanning each tablet replica and comparing results. The - - t abl es and - - t abl et s flags can be used to limit
the scope of the checksum scan to specific tables or tablets, respectively.

For example, use the following command to check the integrity of data in the | nt egr ati onTest Bi gLi nkedLi st
table:

$ sudo -k kudu kudu cluster ksck --checksum scan --tables IntegrationTestBigLi nkedLi st
mast er - 01. exanpl e. com mast er - 02. exanpl e. com nast er - 03. exanpl e. com

Bringing a Tablet That Has Lost a Majority of Replicas Back Online

If a tablet has permanently lost a majority of its replicas, it cannot recover automatically and operator intervention is
required. The steps below may cause recent edits to the tablet to be lost, potentially resulting in permanent data loss.
Only attempt the procedure below if it is impossible to bring a majority back online.

Suppose a tablet has lost a majority of its replicas. The first step in diagnosing and fixing the problem is to examine the
tablet's state using ksck:

$ sudo -u kudu kudu cluster ksck --tabl et s=e822cab6c0584bc0858219d1539al17e6
mast er - 00, nast er-01, nast er-02
Connected to the Master
Fetched info fromall 5 Tablet Servers
Tabl et €822cab6c0584bc0858219d1539al17e6 of table 'ny_table' is unavailable: 2 replica(s)
not RUNNI NG
638a20403e3e4ae3b55d4d07d920e6de (tserver-00: 7150): RUNNI NG
9a56f a85a38a4edc99c6229cha68aeaa (tserver-01:7150): bad state
St at e: FAI LED
Data state: TABLET_DATA READY

https://kudu.apache.org/docs/command_line_tools_reference.html#cluster-ksck
https://kudu.apache.org/docs/command_line_tools_reference.html#cluster-ksck

Last status: <failure message>
c311f ef 7708a4cf 9bblla3edchbcaab8c (tserver-02: 7150): bad state
St at e: FAI LED
Data state: TABLET_DATA READY
Last status: <failure nmessage>

This output shows that, for tablet e822cab6c0584bc0858219d1539a17e6, the two tablet replicas ont ser ver - 01
and t ser ver - 02 failed. The remaining replica is not the leader, so the leader replica failed as well. This means the
chance of data loss is higher since the remaining replica on t ser ver - 00 may have been lagging. In general, to accept
the potential data loss and restore the tablet from the remaining replicas, divide the tablet replicas into two groups:

1. Healthy replicas: Those in RUNNI NGstate as reported by ksck
2. Unhealthy replicas

For example, in the above ksck output, the replica on tablet server t ser ver - 00 is healthy while the replicas on
tserver-01andtserver- 02 are unhealthy. On each tablet server with a healthy replica, alter the consensus
configuration to remove unhealthy replicas. In the typical case of 1 out of 3 surviving replicas, there will be only one
healthy replica, so the consensus configuration will be rewritten to include only the healthy replica.

$ sudo -u kudu kudu renpte_replica unsafe_change_config tserver-00: 7150 <tablet-id>
<t server - 00- uui d>

where <t abl et -i d>ise822cab6c0584bc0858219d1539al17e6 and <t ser ver - 00- uui d>isthe uuid oft ser ver - 00,
638a20403e3e4ae3b55d4d07d920e6de.

Once the healthy replicas' consensus configurations have been forced to exclude the unhealthy replicas, the healthy
replicas will be able to elect a leader. The tablet will become available for writes though it will still be under-replicated.
Shortly after the tablet becomes available, the leader master will notice that it is under-replicated, and will cause the
tablet to re-replicate until the proper replication factor is restored. The unhealthy replicas will be tombstoned by the
master, causing their remaining data to be deleted.

Rebuilding a Kudu Filesystem Layout

Kudu does not allow removing directories or changing the write-ahead-log (WAL) or metadata directories. To start a
server with such directory configuration changes, the WAL and data directories on the server must be deleted and
rebuilt, destroying the copy of the data for each tablet replica hosted on the local server. Kudu will automatically
re-replicate tablet replicas removed in this way, provided the replication factor is at least three and all other servers
are online and healthy.

E,i Note: These steps use a tablet server as an example, but the steps are the same for Kudu master
servers.

1. The first step to rebuilding a server with a new directory configuration is emptying all of the server’s existing
directories. For example, if a tablet server is configured with - - f s_wal _di r =/ dat a/ 0/ kudu- t ser ver - wal
and - -fs_data_dirs=/data/ 1/ kudu-tserver,/dat a/ 2/ kudu- t server, the following commands will
remove the contents in the write-ahead-log (WAL) directory and data directories:

$ rm-rf /data/O0/kudu-tserver-wal/* /data/l/kudu-tserver/* /datal2/kudu-tserver/*

2. If using Cloudera Manager, update the configurations for the rebuilt server to include only the desired directories.
Make sure to only update the configurations of servers to which changes were applied rather than of the entire
Kudu service.

3. After the WAL and data directories are deleted, the server process can be started with the new directory
configuration. Kudu will create the appropriate sub-directories when starting up.

Physical Backups of an Entire Node

Kudu does not yet provide any built-in backup and restore functionality. However, it is possible to create a physical
backup of a Kudu node, either tablet server or master, and restore it later.

4,

. Stop all Kudu processes in the cluster. This prevents the tablets on the backed up node from being rereplicated

elsewhere unnecessarily.

. If creating a backup, make a copy of the WAL, metadata, and data directories on each node to be backed up. It is

important that this copy preserve all file attributes as well as sparseness.

. If restoring from a backup, delete the existing WAL, metadata, and data directories, then restore the backup via

move or copy. As with creating a backup, it isimportant that the restore preserve all file attributes and sparseness.
Start all Kudu processes in the cluster.

Scaling Storage on Kudu Master and Tablet Servers in the Cloud

If you find that the size of your Kudu cloud deployment has exceeded previous expectations, or you simply wish to
allocate more storage to Kudu, use the following set of high-level steps as a guide to increasing storage on your Kudu
master or tablet server hosts. You must work with your cluster's Hadoop administrators and the system administrators
to complete this process. Replace the file paths in the following steps to those relevant to your setup.

1.

v b WN

6.

Run a consistency check on the cluster hosts. For instructions, see Monitoring Cluster Health with ksck on page
32.

. On all Kudu hosts, create a new file system with the storage capacity you require. For example, / new/ dat a/ di r .
. Shutdown cluster services. For a cluster managed by Cloudera Manager cluster, see Starting and Stopping a Cluster.
. Copy the contents of your existing data directory,/ cur r ent / dat a/ di r, to the new filesystem at/ new dat a/ di r .
. Move your existing data directory, / cur r ent / dat a/ di r, to a separate temporary location such as

[tmp/datal/dir.
Create anew/ current/data/ dir directory.

nkdir /current/data/dir

7.
8.
9.

Mount / new dat a/ di r as/ current/ dat a/ di r. Make changes to f st ab as needed.
Perform steps 4-7 on all Kudu hosts.
Startup cluster services. For a cluster managed by Cloudera Manager cluster, see Starting and Stopping a Cluster.

10 Run a consistency check on the cluster hosts. For instructions, see Monitoring Cluster Health with ksck on page

32.

1. After 10 days, if everything is in working order on all the hosts, get approval from the Hadoop administrators to

remove the / backup/ dat a/ di r directory.

https://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_start_stop_cluster.html
https://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_start_stop_cluster.html

Managing Kudu Using Cloudera Manager

This topic describes the tasks you can perform to manage the Kudu service using Cloudera Manager. You can use the
Kudu service to upgrade the Kudu service, start and stop the Kudu service, monitor operations, and configure the Kudu
master and tablet servers, among other tasks. Depending on your deployment, there are several different configuration
settings you may need to modify.

For detailed information about Apache Kudu, view the Apache Kudu Guide.

Installing and Upgrading the Kudu Service

You can install Kudu through the Cloudera Manager installation wizard, using either parcels or packages. For instructions,
see Installing Kudu.

For instructions on upgrading Kudu using parcels or packages, see Upgrading Kudu.

Enabling Core Dump for the Kudu Service

If Kudu crashes, you can use Cloudera Manager to generate a core dump to get more information about the crash.

1. Go to the Kudu service.

. Click the Configuration tab.

. Search for core dunp.

. Check the checkbox for the Enable Core Dump property.

. (Optional) Unless otherwise configured, the dump file is generated in the default core dump directory,
/var /| og/ kudu, for both the Kudu master and the tablet servers.

i A WN

¢ To configure a different dump directory for the Kudu master, modify the value of the Kudu Master Core
Dump Directory property.

¢ To configure a different dump directory for the Kudu tablet servers, modify the value of the Kudu Tablet
Server Core Dump Directory property.

6. Click Save Changes.

Verifying the Impala Dependency on Kudu

In a Cloudera Manager deployment, once the Kudu service is installed, Impala will automatically identify the Kudu
Master. However, if your Impala queries don't work as expected, use the following steps to make sure that the Impala
service is set to be dependent on Kudu.

1. Go to the Impala service.

. Click the Configuration tab.

. Search for kudu.

. Make sure the Kudu Service property is set to the right Kudu service.
. Click Save Changes.

g b WN

Using the Charts Library with the Kudu Service

By default, the Status tab for the Kudu service displays a dashboard containing a limited set of charts. For details on
the terminology used in these charts, and instructions on how to query for time-series data, display chart details, and
edit charts, see Charting Time-Series Data.

The Kudu service's Charts Library tab also displays a dashboard containing a much larger set of charts, organized by
categories such as process charts, host charts, CPU charts, and so on, depending on the entity (service, role, or host)
that you are viewing. You can use these charts to keep track of disk space usage, the rate at which data is being
inserted/modified in Kudu across all tables, or any critical cluster events. You can also use them to keep track of
individual tables. For example, to find out how much space a Kudu table is using on disk:

1. Go to the Kudu service and navigate to the Charts Library tab.
2. On the left-hand side menu, click Tables to display the list of tables currently stored in Kudu.

3. Click on a table name to view the default dashboard for that table. The Total Tablet Size On Disk Across Kudu
Replicas chart displays the total size of the table on disk using a time-series chart.

Hovering with your mouse over the line on the chart opens a small pop-up window that displays information
about that data point. Click the data stream within the chart to display a larger pop-up window that includes
additional information for the table at the point in time where the mouse was clicked.

Developing Applications With Apache Kudu

Apache Kudu provides C++ and Java client APls, as well as reference examples to illustrate their use. A Python APl is
included, but it is currently considered experimental, unstable, and is subject to change at any time.

Warning: Use of server-side or private interfaces is not supported, and interfaces which are not part
A of public APIs have no stability guarantees.

Viewing the APl Documentation

C++ APl Documentation

The documentation for the C++ client APIs is included in the header files in / usr /i ncl ude/ kudu/ if you installed
Kudu using packages or subdirectories of sr ¢/ kudu/ cl i ent/ if you built Kudu from source. If you installed Kudu
using parcels, no headers are included in your installation. and you will need to build Kudu from source in order to
have access to the headers and shared libraries.

The following command is a naive approach to finding relevant header files. Use of any APIs other than the client APIs
is unsupported.

$ find /usr/include/kudu -type f -nane *.h

Java APl Documentation

View the Java APl documentation online. Alternatively, after building the Java client, Java APl documentation is available
injaval/ kudu-cl i ent/target/api docs/index. htm .

Kudu Example Applications

Several example applications are provided in the kudu-examples Github repository. Each example includes a READVE
that shows how to compile and run it. These examples illustrate correct usage of the Kudu APls, as well as how to set
up a virtual machine to run Kudu. The following list includes a few of the examples that are available today.

java-example
A simple Java application which connects to a Kudu instance, creates a table, writes data to it, then drops the table.
java/collectl

A simple Java application which listens on a TCP socket for time series data corresponding to the Collectl wire
protocol. The commonly-available col | ect| tool can be used to send example data to the server.

java/insert-loadgen
A Java application that generates random insert load.
python/dstat-kudu

An example program that shows how to use the Kudu Python API to load data into a new / existing Kudu table
generated by an external program, dst at in this case.

python/graphite-kudu

An experimental plugin for using graphite-web with Kudu as a backend.

http://kudu.apache.org/apidocs/index.html
https://github.com/cloudera/kudu-examples

demo-vm-setup
Scripts to download and run a VirtualBox virtual machine with Kudu already installed. For more information see
the Kudu Quickstart documentation.

These examples should serve as helpful starting points for your own Kudu applications and integrations.

Maven Artifacts

The following Maven <dependency> element is valid for the Apache Kudu GA release:

<dependency>
<groupl d>or g. apache. kudu</ gr oupl d>
<artifactld>kudu-client</artifactld>
<version>1. 1. 0</versi on>

</ dependency>

Convenience binary artifacts for the Java client and various Java integrations (e.g. Spark, Flume) are also now available
via the ASF Maven repository and the Central Maven repository.

Building the Java Client
Requirements

e JIDK7
e Apache Maven 3.x

e protoc 2.6 or newer installed in your path, or built from thet hi r dpar t y/ directory. Run the following commands
to build pr ot oc from the third-party dependencies:

t hi rdparty/ downl oad-thirdparty. sh
thirdparty/build-thirdparty.sh protobuf

To build the Java client, clone the Kudu Git repository, change to the j ava directory, and issue the following command:
$ nvn install -DskipTests

For more information about building the Java API, as well as Eclipse integration, see j ava/ READVE. nd.

Kudu Python Client

The Kudu Python client provides a Python friendly interface to the C++ client API.

To install and use Kudu Python client, you need to install the Kudu C++ client libraries and headers. See Kudu Installation
for installing Kudu C++ client.

To install the Kudu Python client:

1. Install Cython: sudo pip install cython
2. Downloaded the Kudu Python client from kudu-python: kudu- pyt hon- 1. 2. 0.t ar. gz
3. Install kudu-python: sudo pip install kudu-python

The sample below demonstrates the use of part of the Python client.

i mport kudu
fromkudu. client inport Partitioning
fromdatetine inport datetine

Connect to Kudu master server
client = kudu.connect (host="kudu. master', port=7051)

http://kudu.apache.org/docs/quickstart.html
http://repository.apache.org/
https://mvnrepository.com/artifact/org.apache.kudu
https://pypi.python.org/pypi/kudu-python/1.2.0

Define a schema for a new table

bui | der = kudu. schema_bui |l der ()

bui | der. add_col um(' key').type(kudu.int64).null abl e(Fal se). primary_key()
bui | der. add_col um('ts_val', type_=kudu. uni xtime_m cros, null abl e=Fal se,
conpression='12z4")

schema = buil der. buil d()

Define partitioning schema
partitioning = Partitioning().add_hash_partitions(colum_nanes=['key'], num buckets=3)

Create new table
client.create_tabl e(' python-exanple', schema, partitioning)

Open a table
table = client.tabl e(' python-exanpl e')

Create a new session so that we can apply wite operations
session = client.new session()

Insert a row
op = table.new insert({"key': 1, 'ts_val': datetime.utcnow)})
sessi on. appl y(op)

Upsert a row
op = table.new upsert({'key': 2, '"ts_val': "2016-01-01T00: 00: 00. 000000"})
sessi on. appl y(op)

Updating a row
op = table.new update({'key': 1, '"ts_val': ("2017-01-01", "%-%m %")})
sessi on. appl y(op)

Delete a row
op = table.new del ete({" key': 2})
sessi on. appl y(op)

Flush wite operations, if failures occur, capture print them
try:
session. fl ush()
except kudu. KuduBadSt atus as e:
print(session.get_pending_errors())

Create a scanner and add a predicate
scanner = tabl e.scanner()
scanner. add_predicate(table['ts_val'] == datetine(2017, 1, 1))

Open Scanner and read all tuples

Note: This doesn't scale for |arge scans
result = scanner.open().read_all _tuples()

Example Apache Impala Commands With Kudu

See Using Apache Impala with Kudu on page 43 for guidance on installing and using Impala with Kudu, including several
i npal a- shel I examples.

Kudu Integration with Spark

Kudu integrates with Spark through the Data Source API as of version 1.0.0. Include the kudu- spar k dependency
using the - - packages option:

Spark 1.x - Use the kudu- spar k_2. 10 artifact if you are using Spark 1.x with Scala 2.10:
spark-shel | --packages org.apache. kudu: kudu-spark_2.10:1.1.0
Spark 2.x - Use the kudu- spar k2_2. 11 artifact if you are using Spark 2.x with Scala 2.11:

spar k2-shel | --packages org.apache. kudu: kudu-spark2_2.11:1.4.0

Then import kudu-spark and create a dataframe as demonstrated in the following sample code. In the following
example, replace <kudu. mast er > with the actual hostname of the host running a Kudu master service, and
<kudu_table> with the name of a pre-existing table in Kudu.

i mport org. apache. kudu. spar k. kudu. _

/1 Read a table from Kudu
val df = spark.sqgl Context.read. opti ons(Map("kudu. master" ->
"<kudu. mast er >: 7051", "kudu. t abl e" -> "<kudu_t abl e>")). kudu

/1 Query <kudu_t abl e> using the Spark API...
df .select("id").filter("id" >= 5).show)

/1l ...or register a tenporary table and use SQ
df . regi ster TenpTabl e(" <kudu_t abl e>")
val filteredDF = sql Context.sql ("select id from <kudu_table> where id >= 5").show()

/'l Use KuduContext to create, delete, or wite to Kudu tables
val kuduCont ext = new KuduCont ext (" <kudu. mast er>: 7051", sql Cont ext. spar kCont ext)

/! Create a new Kudu table froma datafrane schema

/1 NB:. No rows fromthe dataframe are inserted into the table
kuduCont ext . creat eTabl e("test _tabl e", df.schema, Seq("key"), new
Creat eTabl eOpti ons() . set NunReplicas(1))

/'l Insert data
kuduCont ext . i nsert Rows(df, "test_table")

/1 Delete data
kuduCont ext . del et eRows(fil teredDF, "test_table")

/1 Upsert data
kuduCont ext . upsert Rows(df, "test_table")

/1 Update data
val alteredDF = df.select("id", $"count" + 1)
kuduCont ext . updat eRows(filteredRows, "test_table"

/1 Data can also be inserted into the Kudu table using the data source, though the

met hods on KuduContext are preferred

/1 NB: The default is to upsert rows; to performstandard inserts instead, set operation
= insert in the options map

/1 NB: Only node Append is supported

df .write.options(Map("kudu. master"-> "<kudu. master>: 7051", "kudu.table"->
"test_table")).node("append"). kudu

/1l Check for the existence of a Kudu table
kuduCont ext . t abl eExi st s("anot her _t abl e")

/Il Delete a Kudu table
kuduCont ext . del et eTabl e(" unwant ed_t abl e")

Using Spark with a Secure Kudu cluster

The Kudu-Spark integration is able to operate on secure Kudu clusters which have authentication and encryption
enabled, but the submitter of the Spark job must provide the proper credentials. For Spark jobs using the default 'client’
deploy mode, the submitting user must have an active Kerberos ticket granted through ki ni t . For Spark jobs using
the 'cluster' deploy mode, a Kerberos principal name and keytab location must be provided through the - - pri nci pal
and - - keyt ab arguments to spar k2- submi t .

Spark Integration Known Issues and Limitations

e Spark 2.2 (and higher) requires Java 8 at runtime even though Kudu Spark 2.x integration is Java 7 compatible.
Spark 2.2 is the default dependency version as of Kudu 1.5.0.

¢ Kudu tables with a name containing upper case or non-ASCll characters must be assigned an alternate name when
registered as a temporary table.

e Kudu tables with a column name containing upper case or non-ASCII characters must not be used with SparkSQL.
Columns can be renamed in Kudu to work around this issue.

e <>and ORpredicates are not pushed to Kudu, and instead will be evaluated by the Spark task. Only LI KE predicates
with a suffix wildcard are pushed to Kudu. This means LI KE " FOO will be pushed, but LI KE " FOOYBAR' won't.

e Kudu does not support all the types supported by Spark SQL. For example, Dat e, Deci mal , and complex types
are not supported on Kudu.

e Kudu tables can only be registered as temporary tables in SparkSQL.

e Kudu tables cannot be queried using HiveContext.

Integration with MapReduce, YARN, and Other Frameworks

Kudu was designed to integrate with MapReduce, YARN, Spark, and other frameworks in the Hadoop ecosystem. See
RowCounter.java and ImportCsv.java for examples which you can model your own integrations on.

https://github.com/cloudera/kudu/blob/master/java/kudu-client-tools/src/main/java/org/apache/kudu/mapreduce/tools/RowCounter.java
https://github.com/cloudera/kudu/blob/master/java/kudu-client-tools/src/main/java/org/apache/kudu/mapreduce/tools/ImportCsv.java

Using Apache Impala with Kudu

Apache Kudu has tight integration with Apache Impala, allowing you to use Impala to insert, query, update, and delete
data from Kudu tablets using Impala's SQL syntax, as an alternative to using the Kudu APIs to build a custom Kudu
application. In addition, you can use JDBC or ODBC to connect existing or new applications written in any language,
framework, or business intelligence tool to your Kudu data, using Impala as the broker.

Prerequisites

¢ To use Impala to query Kudu data as described in this topic, you will require Cloudera Manager 5.10.x and CDH
5.10.x or higher.

e The syntax described in this topic is specific to Impala included in CDH 5.10 and higher, and will not work on
previous versions. If you are using an lower version of Impala (including the | MPALA_KUDU releases previously
available), upgrade to CDH 5.10 or higher.

Note that this topic does not describe Impala installation or upgrade procedures. Refer to the Impala documentation
to make sure you are able to run queries against Impala tables on HDFS before proceeding.

¢ Lower versions of CDH and Cloudera Manager used an experimental fork of Impala which is referred to as
| MPALA_KUDU. If you have previously installed the | MPALA_KUDU service, make sure you remove it from your
cluster before you proceed. Install Kudu 1.2.x (or higher) using either Cloudera Manager or the command-line.

Impala Database Containment Model

Every Impala table is contained within a namespace called a database. The default database is called def aul t, and
you may create and drop additional databases as desired. To create the database, use a CREATE DATABASE statement.
To use the database for further Impala operations such as CREATE TABLE, use the USE statement. For example, to
create a table in a database called i npal a_kudu, use the following statements:

CREATE DATABASE i npal a_kudu;
USE i npal a_kudu;
CREATE TABLE ny_first_table (

The ny_first_tabl e tableis created within the i npal a_kudu database.

The prefix i npal a: : and the Impala database name are appended to the underlying Kudu table name:
i mpal a: : <dat abase>. <t abl e>

For example, to specify the my_fi r st _t abl e table in database i mpal a_kudu, as opposed to any other table with
the same name in another database, refer to the table asi npal a: : i mpal a_kudu. my_fi rst _t abl e. This also
applies to | NSERT, UPDATE, DELETE, and DROP statements.

Internal and External Impala Tables

When creating a new Kudu table using Impala, you can create the table as an internal table or an external table.
Internal

An internal table (created by CREATE TABLE) is managed by Impala, and can be dropped by Impala. When you
create a new table using Impala, it is generally a internal table. When such a table is created in Impala, the
corresponding Kudu table will be named i npal a: : dat abase_nane. t abl e_name. The prefixis alwaysi npal a: : ,
and the database name and table name follow, separated by a dot.

http://www.cloudera.com/documentation/enterprise/latest/topics/impala.html

External

An external table (created by CREATE EXTERNAL TABLE) is not managed by Impala, and dropping such a table
does not drop the table from its source location (here, Kudu). Instead, it only removes the mapping between Impala
and Kudu. This is the mode used in the syntax provided by Kudu for mapping an existing table to Impala.

See the Impala documentation for more information about internal and external tables.

Using Impala To Query Kudu Tables

Neither Kudu nor Impala need special configuration in order for you to use the Impala Shell or the Impala API to insert,
update, delete, or query Kudu data using Impala. However, you do need to create a mapping between the Impala and
Kudu tables. Kudu provides the Impala query to map to an existing Kudu table in the web UL.

e Make sure you are using the i npal a- shel | binary provided by the default CDH Impala binary. The following
example shows how you can verify this using the al t er nat i ves command on a RHEL 6 host. Do not copy and
paste the al t ernati ves --set command directly, because the file names are likely to differ.

$ sudo alternatives --display inpal a-shell

i mpal a-shell - status is auto.
link currently points to
/ opt/ cl ouder a/ par cel s/ CDH 5. 10. 0- 1. cdh5. 10. 0. p0. 25/ bi n/ i npal a- shel |
/ opt/ cl ouder a/ par cel s/ CDH- 5. 10. 0- 1. cdh5. 10. 0. p0. 25/ bi n/ i npal a-shell - priority 10
Current “best' version is
/ opt/ cl ouder a/ par cel s/ CDH 5. 10. 0- 1. cdh5. 10. 0. p0. 25/ bi n/i npal a- shel | .

¢ Although not necessary, it is recommended that you configure Impala with the locations of the Kudu Masters
using the - - kudu_nmast er _host s=<nmast er 1>[: port] flag. If this flag is not set, you will need to manually
provide this configuration each time you create a table by specifying the kudu. mast er _addr esses property
inside a TBLPROPERTI ES clause. If you are using Cloudera Manager, no such configuration is needed. The Impala
service will automatically recognize the Kudu Master hosts.

The rest of this guide assumes that this configuration has been set.

e Start Impala Shell using the i npal a- shel | command. By default, i mpal a- shel | attempts to connect to the
Impala daemon on | ocal host on port 21000. To connect to a different host, use the -i <host : port > option.

To automatically connect to a specific Impala database, use the - d <dat abase> option. For instance, if all your
Kudu tables are in Impala in the database i npal a_kudu, use -d i npal a_kudu to use this database.

¢ To quit the Impala Shell, use the following command: qui t ;

Querying an Existing Kudu Table from Impala

Tables created through the Kudu API or other integrations such as Apache Spark are not automatically visible in Impala.
To query them, you must first create an external table within Impala to map the Kudu table into an Impala database:

CREATE EXTERNAL TABLE ny_mappi ng_t abl e
STORED AS KUDU

TBLPROPERTI ES (

" kudu. t abl e_name' = 'ny_kudu_t abl e’

)i

Creating a New Kudu Table From Impala

Creating a new table in Kudu from Impala is similar to mapping an existing Kudu table to an Impala table, except that
you need to specify the schema and partitioning information yourself. Use the examples in this section as a guideline.
Impala first creates the table, then creates the mapping.

In the CREATE TABLE statement, the columns that comprise the primary key must be listed first. Additionally, primary
key columns are implicitly considered NOT NULL.

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala_tables.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_kudu_service.html#impala_dependency

When creating a new table in Kudu, you must define a partition schema to pre-split your table. The best partition
schema to use depends upon the structure of your data and your data access patterns. The goal is to maximize parallelism
and use all your tablet servers evenly. For more information on partition schemas, see Partitioning Tables on page 45.

E,i Note: In Impala included in CDH 5.13 and higher, the PARTI TI ON BY clause is optional for Kudu
tables. If the clause is omitted, Impala automatically constructs a single partition that is not connected
to any column. Because such a table cannot take advantage of Kudu features for parallelized queries
and query optimizations, omitting the PARTI TI ON BY clause is only appropriate for small lookup
tables.

The following CREATE TABLE example distributes the table into 16 partitions by hashing the i d column, for simplicity.

CREATE TABLE ny _first_table

id BIGNT,
name STRI NG
PRI MARY KEY(i d)

)
PARTI TI ON BY HASH PARTI TI ONS 16
STORED AS KUDY,

By default, Kudu tables created through Impala use a tablet replication factor of 3. To specify the replication factor for
a Kudu table, add a TBLPROPERTI ESclause to the CREATE TABLE statement as shown below where n is the replication
factor you want to use:

TBLPROPERTI ES (' kudu. numtablet_replicas' = "'n")
A replication factor must be an odd number.
Changing the kudu. num t abl et _repl i cas table property using the ALTER TABLE currently has no effect.

The Impala SQL Reference CREATE TABLE topic has more details and examples.

CREATE TABLE AS SELECT

You can create a table by querying any other table or tables in Impala, using a CREATE TABLE ... AS SELECT
statement. The following example imports all rows from an existing table, ol d_t abl e, into a new Kudu table,

new _t abl e. The columns in new_t abl e will have the same names and types as the columns in ol d_t abl e, but you
will need to additionally specify the primary key and partitioning schema.

CREATE TABLE new_t abl e

PRI MARY KEY (ts, nane)

PARTI TI ON BY HASH(nane) PARTI TI ONS 8
STORED AS KUDU

AS SELECT ts, name, value FROM ol d_t abl e;

You can refine the SELECT statement to only match the rows and columns you want to be inserted into the new table.
You can also rename the columns by using syntax like SELECT nane as new_col _narne.

Partitioning Tables

Tables are partitioned into tablets according to a partition schema on the primary key columns. Each tablet is served
by at least one tablet server. Ideally, a table should be split into tablets that are distributed across a number of tablet
servers to maximize parallel operations. The details of the partitioning schema you use will depend entirely on the
type of data you store and how you access it.

Kudu currently has no mechanism for splitting or merging tablets after the table has been created. Until this feature
has been implemented, you must provide a partition schema for your table when you create it. When designing your
tables, consider using primary keys that will allow you to partition your table into tablets which grow at similar rates.

You can partition your table using Impala's PARTI TI ON BY clause, which supports distribution by RANGE or HASH. The
partition scheme can contain zero or more HASH definitions, followed by an optional RANGE definition. The RANGE

definition can refer to one or more primary key columns. Examples of basic and advanced partitioning are shown
below.

E,i Note: In Impala included in CDH 5.13 and higher, the PARTI TI ON BY clause is optional for Kudu
tables. If the clause is omitted, Impala automatically constructs a single partition that is not connected
to any column. Because such a table cannot take advantage of Kudu features for parallelized queries
and query optimizations, omitting the PARTI TI ON BY clause is only appropriate for small lookup
tables.

Monotonically Increasing Values - If you partition by range on a column whose values are monotonically increasing,
the last tablet will grow much larger than the others. Additionally, all data being inserted will be written to a single
tablet at a time, limiting the scalability of data ingest. In that case, consider distributing by HASH instead of, or in
addition to, RANGE.

’ Note: Impala keywords, such as gr oup, are enclosed by back-tick characters when they are used as
El identifiers, rather than as keywords.

Basic Partitioning
PARTITION BY RANGE

You can specify range partitions for one or more primary key columns. Range partitioning in Kudu allows splitting a
table based on specific values or ranges of values of the chosen partition keys. This allows you to balance parallelism
in writes with scan efficiency.

For instance, if you have a table that has the columns st at e, nane, and pur chase_count , and you partition the table
by st at e, it will create 50 tablets, one for each US state.

CREATE TABLE custoners (
state STRI NG
nane STRI NG
purchase_count int,
PRI MARY KEY (state, nane)

)
PARTI TI ON BY RANGE (st ate)

(
PARTI TI ON VALUE = 'al ',
PARTI TI ON VALUE = ' ak' .
PARTI TI ON VALUE = 'ar' .
PARTI TI ON VALUE = 'w',
PARTI TI ON VALUE = ' wy'

)
STORED AS KUDU,

PARTITION BY HASH

Instead of distributing by an explicit range, or in combination with range distribution, you can distribute into a specific
number of partitions by hash. You specify the primary key columns you want to partition by, and the number of
partitions you want to use. Rows are distributed by hashing the specified key columns. Assuming that the values being
hashed do not themselves exhibit significant skew, this will serve to distribute the data evenly across all partitions.

You can specify multiple definitions, and you can specify definitions which use compound primary keys. However, one
column cannot be mentioned in multiple hash definitions. Consider two columns, a and b:

e HASH(a), HASH(b) -- will succeed
e HASH(a, b) -- will succeed
e HASH(a), HASH(a, b) -- will fail

E,i Note: PARTI TI ON BY HASHwith no column specified is a shortcut to create the desired number of
partitions by hashing all primary key columns.

Hash partitioning is a reasonable approach if primary key values are evenly distributed in their domain and no data
skew is apparent, such as timestamps or serial IDs.

The following example creates 16 tablets by hashing the i d column. A maximum of 16 tablets can be written to in
parallel. In this example, a query for a range of sku values is likely to need to read from all 16 tablets, so this may not
be the optimum schema for this table. See Advanced Partitioning on page 47 for an extended example.

CREATE TABLE cust _behavi or (
id Bl G NT,
sku STRI NG
sal ary STRI NG
edu_| evel | NT,
user gender STRI NG
‘group’ STRING
city STRING
post code STRI NG
| ast _purchase_price FLOAT,
| ast _purchase_date BI G NT,
category STRI NG
rating | NT,
fulfilled_date BI G NT,
PRI MARY KEY (id, sku)

)
PARTI TI ON BY HASH PARTI TI ONS 16
STORED AS KUDY,

Advanced Partitioning

You can combine HASHand RANGE partitioning to create more complex partition schemas. You can also specify zero
or more HASH definitions, followed by zero or one RANGE definitions. Each schema definition can encompass one or
more columns. While enumerating every possible distribution schema is out of the scope of this topic, the following
examples illustrate some of the possibilities.

PARTITION BY HASH and RANGE

Consider the basic PARTI TI ON BY HASHexample above. If you often query for a range of sku values, you can optimize
the example by combining hash partitioning with range partitioning.

The following example still creates 16 tablets, by first hashing the id column into 4 partitions, and then applying range
partitioning to split each partition into four tablets, based upon the value of the sku string. At least four tablets (and
possibly up to 16) can be written to in parallel, and when you query for a contiguous range of sku values, there's a
good chance you only need to read a quarter of the tablets to fulfill the query.

By default, the entire primary key (i d, sku) will be hashed when you use PARTI TI ON BY HASH. To hash on only
part of the primary key, and use a range partition on the rest, use the syntax demonstrated below.

CREATE TABLE cust _behavi or (
id Bl G NT,
sku STRI NG,
sal ary STRI NG
edu_l evel | NT,
user gender STRI NG
“group’ STRING,
city STRI NG
post code STRI NG
| ast _purchase_price FLOAT,
| ast _purchase_date BlI G NT,
category STRI NG
rating | NT,
fulfilled date BI G NT,
PRI MARY KEY (id, sku)

PARTI TI ON BY HASH (id) PARTITI ONS 4,
RANGE (sku)
(

PARTI TI ON VALUES < 'g',
PARTITION 'g' <= VALUES < '0',
PARTI TION ' o' <= VALUES < 'u',
PARTI TION 'u" <= VALUES

)
STORED AS KUDU,

Multiple PARTITION BY HASH Definitions

Once again expanding on the example above, let's assume that the pattern of incoming queries will be unpredictable,
but you still want to ensure that writes are spread across a large number of tablets. You can achieve maximum
distribution across the entire primary key by hashing on both primary key columns.

CREATE TABLE cust _behavi or (
id Bl G NT,
sku STRI NG
sal ary STRI NG
edu_l evel | NT,
user gender STRI NG
“group’ STRING
city STRING
post code STRI NG
| ast _purchase_price FLOAT,
| ast _purchase_date Bl G NT,
category STRI NG
rating | NT,
fulfilled_date BI G NT,
PRI MARY KEY (id, sku)

)

PARTI TI ON BY HASH (i d) PARTITIONS 4,
HASH (sku) PARTI TIONS 4

STORED AS KUDU;

The example creates 16 partitions. You could also use HASH (i d, sku) PARTI TI ONS 16. However, a scan for sku
values would almost always impact all 16 partitions, rather than possibly being limited to 4.

Non-Covering Range Partitions
Kudu supports the use of non-covering range partitions, which can be used to address the following scenarios:

¢ In the case of time-series data or other schemas which need to account for constantly-increasing primary keys,
tablets serving old data will be relatively fixed in size, while tablets receiving new data will grow without bounds.

¢ In cases where you want to partition data based on its category, such as sales region or product type, without
non-covering range partitions you must know all of the partitions ahead of time or manually recreate your table
if partitions need to be added or removed, such as the introduction or elimination of a product type.

E,’ Note: See Range Partitioning on page 63 for the caveats of non-covering range partitions.

The following example creates a tablet per year (5 tablets total), for storing log data. The table only accepts data from
2012 to 2016. Keys outside of these ranges will be rejected.

CREATE TABLE sal es_by_year (
year |INT, sale_id INT, amount | NT,
PRI MARY KEY (sale_id, year)

)
PARTI TI ON BY RANGE (year) (

PARTI TI ON VALUE = 2012,
PARTI TI ON VALUE = 2013,
PARTI TI ON VALUE = 2014,
PARTI TI ON VALUE = 2015,

PARTI TI ON VALUE = 2016

)

STORED AS KUDUY,

When records start coming in for 2017, they will be rejected. At that point, the 2017 range should be added as follows:
ALTER TABLE sal es_by_year ADD RANGE PARTI TI ON VALUE = 2017;

In use cases where a rolling window of data retention is required, range partitions may also be dropped. For example,
if data from 2012 should no longer be retained, it may be deleted in bulk:

ALTER TABLE sal es_by_year DROP RANGE PARTI TI ON VALUE = 2012;

Note that just like dropping a table, this irrecoverably deletes all data stored in the dropped partition.

Partitioning Guidelines

e For large tables, such as fact tables, aim for as many tablets as you have cores in the cluster.
e For small tables, such as dimension tables, aim for a large enough number of tablets that each tablet is at least 1
GB in size.

In general, be mindful the number of tablets limits the parallelism of reads, in the current implementation. Increasing
the number of tablets significantly beyond the number of cores is likely to have diminishing returns.

Optimizing Performance for Evaluating SQL Predicates

If the WHERE clause of your query includes comparisons with the operators =, <=, <, >, >=, BETVEEN, or I N, Kudu
evaluates the condition directly and only returns the relevant results. This provides optimum performance, because
Kudu only returns the relevant results to Impala.

For predicates such as! =, LI KE, or any other predicate type supported by Impala, Kudu does not evaluate the predicates
directly. Instead, it returns all results to Impala and relies on Impala to evaluate the remaining predicates and filter
the results accordingly. This may cause differences in performance, depending on the delta of the result set before
and after evaluating the WHERE clause. In some cases, creating and periodically updating materialized views may be
the right solution to work around these inefficiencies.

Inserting a Row

The syntax for inserting one or more rows using Impala is shown below.

I NSERT I NTO nmy_first_table VALUES (99, "sarah");
I NSERT I NTO nmy_first_table VALUES (1, "john"), (2, "jane"), (3, "jinl);

The primary key must not be null.

Inserting In Bulk

When inserting in bulk, there are at least three common choices. Each may have advantages and disadvantages,
depending on your data and circumstances.
Multiple Single INSERT statements

This approach has the advantage of being easy to understand and implement. This approach is likely to be inefficient
because Impala has a high query start-up cost compared to Kudu's insertion performance. This will lead to relatively
high latency and poor throughput.

Single INSERT statement with multiple VALUES subclauses

If you include more than 1024 VALUES statements, Impala batches them into groups of 1024 (or the value of
bat ch_si ze) before sending the requests to Kudu. This approach may perform slightly better than multiple

sequential | NSERT statements by amortizing the query start-up penalties on the Impala side. To set the batch size
for the current Impala Shell session, use the following syntax:

set batch_si ze=10000;

E.l Note: Increasing the Impala batch size causes Impala to use more memory. You should verify the
impact on your cluster and tune accordingly.

Batch Insert

The approach that usually performs best, from the standpoint of both Impala and Kudu, is usually to import the
data using a SELECT FROMsubclause in Impala.

1. If your data is not already in Impala, one strategy is to import it from a text file, such as a TSV or CSV file.
2. Create the Kudu table, being mindful that the columns designated as primary keys cannot have null values.
3. Insertvalues into the Kudu table by querying the table containing the original data, as in the following example:

I NSERT | NTO my_kudu_t abl e
SELECT * FROM | egacy_data_i nport _tabl e;

Ingest using the C++ or Java API
In many cases, the appropriate ingest path is to use the C++ or Java API to insert directly into Kudu tables. Unlike

other Impala tables, data inserted into Kudu tables using the APl becomes available for query in Impala without
the need for any | NVALI DATE METADATA statements or other statements needed for other Impala storage types.

INSERT and Primary Key Uniqueness Violations

In many relational databases, if you try to insert a row that has already been inserted, the insertion will fail because
the primary key will be duplicated (see Failures During INSERT, UPDATE, UPSERT, and DELETE Operations on page 52).
Impala, however, does not fail the query. Instead, it will generate a warning and continue to execute the remainder
of the insert statement.

If you meant to replace existing rows from the table, use the UPSERT statement instead.

I NSERT I NTO nmy_first_table VALUES (99, "sarah");
UPSERT | NTO nmy_first_table VALUES (99, "zoe");

The current value of the row is now zoe.

Updating a Row
The syntax for updating one or more rows using Impala is shown below.

UPDATE ny_first_table SET name="bob" where id = 3;

You cannot change or null the primary key value.

o Important: The UPDATE statement only works in Impala when the underlying data source is Kudu.

Updating In Bulk
You can update in bulk using the same approaches outlined in Inserting In Bulk on page 49.

Upserting a Row

The UPSERT command acts as a combination of the | NSERT and UPDATE statements. For each row processed by the
UPSERT statement:

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala_txtfile.html

e If another row already exists with the same set of primary key values, the other columns are updated to match
the values from the row being 'UPSERTed'.

e Ifthereis no row with the same set of primary key values, the row is created, the same as if the | NSERT statement
was used.

UPSERT Example
The following example demonstrates how the UPSERT statement works. We start by creating two tables, f ool and

f oo2.

CREATE TABLE fool (
id INT PRI MARY KEY,
col 1 STRI NG,
col 2 STRI NG

)
PARTI TI ON BY HASH(id) PARTITIONS 3
STORED AS KUDY,

CREATE TABLE fo02 (
id | NT PRI MARY KEY,
col 1 STRI NG
col 2 STRI NG

)
PARTI TI ON BY HASH(i d) PARTITIONS 3
STORED AS KUDY,

Populate f 001 and f 002 using the following | NSERT statements. For f 002, we leave column col 2 with NULL values
to be upserted later:

I NSERT | NTO fool VALUES (1, "hi", "alice");
I NSERT | NTO foo2 select id, coll, NULL from fool;

The contents of f 002 will be:

SELECT * FROM f002;

R e +o-em - +
| id | coll | col2 |
R e +oem - +
| 1 | hi | NULL |
R e +oem - +

Fetched 1 row(s) in 0.15s
Now use the UPSERT command to now replace the NULL values in foo2 with the actual values from foo1.

UPSERT | NTO foo2 (id, col2) select id, col2 fromfool;

SELECT * FROM f 002;

S E S, +
| id] coll | col2 |
R R +
| 1 | hi | alice |
R R +

Fetched 1 rowm(s) in 0.15s

Altering a Table

You can the ALTER TABLE statement to change the default value, encoding, compression, or block size of existing
columns in a Kudu table.

The Impala SQL Reference ALTER TABLE includes a Kudu Considerations section with examples and a list of constraints
relevant to altering a Kudu table in Impala.

Deleting a Row

You can delete Kudu rows in near real time using Impala.
DELETE FROM ny_first_table WHERE id < 3;

You can even use more complex joins when deleting rows. For example, Impala uses a comma in the FROMsub-clause
to specify a join query.

DELETE ¢ FROM ny_second_table c, stock_synbols s WHERE c. name = s.synbol;

o Important: The DELETE statement only works in Impala when the underlying data source is Kudu.

Deleting In Bulk
You can delete in bulk using the same approaches outlined in Inserting In Bulk on page 49.

Failures During INSERT, UPDATE, UPSERT, and DELETE Operations

| NSERT, UPDATE, and DELETE statements cannot be considered transactional as a whole. If one of these operations
fails part of the way through, the keys may have already been created (in the case of | NSERT) or the records may have
already been modified or removed by another process (in the case of UPDATE or DELETE). You should design your
application with this in mind.

Altering Table Properties

You can change Impala's metadata relating to a given Kudu table by altering the table's properties. These properties
include the table name, the list of Kudu master addresses, and whether the table is managed by Impala (internal) or
externally. You cannot modify a table's split rows after table creation.

o Important: Altering table properties only changes Impala's metadata about the table, not the
underlying table itself. These statements do not modify any Kudu data.

Rename an Impala Mapping Table
ALTER TABLE ny_t abl e RENAME TO ny_new_t abl e;

Renaming a table usingthe ALTER TABLE ... RENAMEstatementonly renamesthe Impala mappingtable, regardless
of whether the table is an internal or external table. This avoids disruption to other applications that may be accessing
the underlying Kudu table.

Rename the underlying Kudu table for an internal table
If atable is an internal table, the underlying Kudu table may be renamed by changing the kudu. t abl e_nane property:

ALTER TABLE ny_internal _table
SET TBLPROPERTI ES(' kudu. t abl e_nanme' = 'new_nane')

Remapping an external table to a different Kudu table
If another application has renamed a Kudu table under Impala, it is possible to re-map an external table to point to a
different Kudu table name.

ALTER TABLE ny_external _table_

SET TBLPROPERTI ES(' kudu. t abl e_name' = 'sone_ot her_kudu_tabl e")

Change the Kudu Master Addresses

ALTER TABLE ny_t abl e SET TBLPROPERTI ES(' kudu. nast er _addr esses' =

" kudu- ori gi nal - mast er. exanpl e. com 7051, kudu- new nast er . exanpl e. com 7051") ;
Change an Internally-Managed Table to External

ALTER TABLE ny_t abl e SET TBLPROPERTI ES(' EXTERNAL' = ' TRUE');

Dropping a Kudu Table using Impala

If the table was created as an internal table in Impala, using CREATE TABLE, the standard DROP TABLE syntax drops
the underlying Kudu table and all its data. If the table was created as an external table, using CREATE EXTERNAL
TABLE, the mapping between Impala and Kudu is dropped, but the Kudu table is left intact, with all its data. To change
an external table to internal, or vice versa, see Altering Table Properties on page 52.

DROP TABLE ny_first_table;

Security Considerations

Kudu 1.3 (and higher) includes security features that allow Kudu clusters to be hardened against access from unauthorized
users. Kudu uses strong authentication with Kerberos, while communication between Kudu clients and servers can
now be encrypted with TLS. Kudu also allows you to use HTTPS encryption to connect to the web Ul. These features
should work seamlessly in Impala as long as Impala’s user is given permission to access Kudu.

For instructions on how to configure a secure Kudu cluster, see Kudu Security on page 55.

Known Issues and Limitations

e When creating a Kudu table, the CREATE TABLE statement must include the primary key columns before other
columns, in primary key order.

¢ Impala cannot update values in primary key columns.
¢ Impala cannot create Kudu tables with DECI MAL, VARCHAR, or nested-typed columns.

e Kudu tables with a name containing upper case or non-ASCII characters must be assigned an alternate name when
used as an external table in Impala.

e Kudu tables with a column name containing upper case or non-ASCll characters cannot be used as an external
table in Impala. Columns can be renamed in Kudu to work around this issue.

e | =and LI KE predicates are not pushed to Kudu, and instead will be evaluated by the Impala scan node. This may
decrease performance relative to other types of predicates.

e Updates, inserts, and deletes using Impala are non-transactional. If a query fails part of the way through, its partial
effects will not be rolled back.

e The maximum parallelism of a single query is limited to the number of tablets in a table. For good analytic
performance, aim for 10 or more tablets per host or use large tables.

Impala Keywords Not Supported for Creating Kudu Tables

e PARTI TI ONED
e LOCATI ON
¢ ROANFORVAT

Next Steps

The examples above have only explored a fraction of what you can do with Impala Shell.

e Learn about the Impala project.
¢ Read the Impala documentation.
¢ View the Impala SQL Reference.

e For in-depth information on how to configure and use Impala to query Kudu data, see Integrating Impala with
Kudu.

e Read about Impala internals or learn how to contribute to Impala on the Impala Wiki.

http://impala.io/
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala_langref.html
https://www.cloudera.com/documentation/enterprise/latest/topics/impala_kudu.html
https://www.cloudera.com/documentation/enterprise/latest/topics/impala_kudu.html
https://github.com/cloudera/Impala/wiki

Kudu Security

Kudu includes security features that allow Kudu clusters to be hardened against access from unauthorized users. Kudu
uses strong authentication with Kerberos, while communication between Kudu clients and servers can now be encrypted
with TLS. Kudu also allows you to use HTTPS encryption to connect to the web UL.

The rest of this topic describes the security capabilities of Apache Kudu and how to configure a secure Kudu cluster.
Currently, there are a few known limitations in Kudu security that might impact your cluster. For the list, see Security
Limitations on page 18.

Kudu Authentication with Kerberos

Kudu can be configured to enforce secure authentication among servers, and between clients and servers. Authentication
prevents untrusted actors from gaining access to Kudu, and securely identifies connecting users or services for
authorization checks. Authentication in Kudu is designed to interoperate with other secure Hadoop components by
utilizing Kerberos.

Configure authentication on Kudu servers using the - - r pc- aut hent i cat i on flag, which can be set to one of the
following options:

e required - Kudu will reject connections from clients and servers who lack authentication credentials.
e optional -Kudu will attempt to use strong authentication, but will allow unauthenticated connections.
¢ di sabl ed - Kudu will only allow unauthenticated connections.

By default, the flag is set to opt i onal . To secure your cluster, set - - r pc- aut henti cati on torequired.

Internal Private Key Infrastructure (PKI)

Kudu uses an internal PKI to issue X.509 certificates to servers in the cluster. Connections between peers who have
both obtained certificates will use TLS for authentication. In such cases, neither peer needs to contact the Kerberos
KDC.

X.509 certificates are only used for internal communication among Kudu servers, and between Kudu clients and servers.
These certificates are never presented in a public facing protocol. By using internally-issued certificates, Kudu offers
strong authentication which scales to huge clusters, and allows TLS encryption to be used without requiring you to
manually deploy certificates on every node.

Authentication Tokens

After authenticating to a secure cluster, the Kudu client will automatically request an authentication token from the
Kudu master. An authentication token encapsulates the identity of the authenticated user and carries the Kudu master's
RSA signature so that its authenticity can be verified. This token will be used to authenticate subsequent connections.
By default, authentication tokens are only valid for seven days, so that even if a token were compromised, it cannot
be used indefinitely. For the most part, authentication tokens should be completely transparent to users. By using
authentication tokens, Kudu is able to take advantage of strong authentication, without paying the scalability cost of
communicating with a central authority for every connection.

When used with distributed compute frameworks such as Apache Spark, authentication tokens can simplify configuration
and improve security. For example, the Kudu Spark connector will automatically retrieve an authentication token during
the planning stage, and distribute the token to tasks. This allows Spark to work against a secure Kudu cluster where
only the planner node has Kerberos credentials.

Client Authentication to Secure Kudu Clusters

Users running client Kudu applications must first run the ki ni t command to obtain a Kerberos ticket-granting ticket.
For example:

$ kinit adm n@XAMPLE- REALM COM

Once authenticated, you use the same client code to read from and write to Kudu servers with and without the Kerberos
configuration.

Scalability

Kudu authentication is designed to scale to thousands of nodes, which means it must avoid unnecessary coordination
with a central authentication authority (such as the Kerberos KDC) for each connection. Instead, Kudu servers and
clients use Kerberos to establish initial trust with the Kudu master, and then use alternate credentials for subsequent
connections. As described previously, the Kudu master issues internal X.509 certificates to tablet servers on startup,
and temporary authentication tokens to clients on first contact.

Encryption

Kudu allows you to use TLS to encrypt all communications among servers, and between clients and servers. Configure
TLS encryption on Kudu servers using the - - r pc- encr ypt i on flag, which can be set to one of the following options:

e required - Kudu will reject unencrypted connections.
e optional - Kudu will attempt to use encryption, but will allow unencrypted connections.
¢ di sabl ed - Kudu will not use encryption.

By default, the flag is set to opt i onal . To secure your cluster, set - - r pc- encrypti on torequired.

E’; Note: Kudu will automatically turn off encryption on local loopback connections, since traffic from
these connections is never exposed externally. This allows locality-aware compute frameworks, such
as Spark and Impala, to avoid encryption overhead, while still ensuring data confidentiality.

Coarse-grained Authorization

Kudu supports coarse-grained authorization checks for client requests based on the client's authenticated Kerberos
principal (user or service). Access levels are granted based on whitelist-style Access Control Lists (ACLs), one for each
level. Each ACL specifies a comma-separated list of users, or may be set to '*' to indicate that all authenticated users
have access rights at the specified level.

The two levels of access which can be configured are:

e Superuser - Principals authorized as a superuser can perform certain administrative functions such as using the
kudu command line tool to diagnose and repair cluster issues.

e User - Principals authorized as a user are able to access and modify all data in the Kudu cluster. This includes the
ability to create, drop, and alter tables, as well as read, insert, update, and delete data. The default value for the
User ACL is "*', which allows all users access to the cluster. However, if authentication is enabled, this will restrict
access to only those users who are able to successfully authenticate using Kerberos. Unauthenticated users on
the same network as the Kudu servers will be unable to access the cluster.

E’; Note: Internally, Kudu has a third access level for the daemons themselves called Service. This is used
to ensure that users cannot connect to the cluster and pose as tablet servers.

Web Ul Encryption

The Kudu web Ul can be configured to use secure HTTPS encryption by providing each server with TLS certificates. Use
the--webserver-certificate-fil eand--webserver-private-key-fil epropertiestospecify the certificate
and private key to be used for communication.

Alternatively, you can choose to completely disable the web Ul by setting - - webser ver - enabl ed flagto f al se on
the Kudu servers.

Web Ul Redaction

To prevent sensitive data from being included in the web Ul, all row data is redacted. Table metadata, such as table
names, column names, and partitioning information is not redacted. Alternatively, you can choose to completely disable
the web Ul by setting the - - webser ver - enabl ed flag to f al se on the Kudu servers.

E,i Note: Disabling the web Ul will also disable REST endpoints such as/ et ri cs. Monitoring systems
rely on these endpoints to gather metrics data.

Log Redaction

To prevent sensitive data from being included in Kudu server logs, all row data will be redacted. You can turn off log
redaction using the - - r edact flag.

Configuring a Secure Kudu Cluster using Cloudera Manager

Warning: If you are upgrading from Kudu 1.2.0 / CDH 5.10.x, you must upgrade both Kudu and CDH

A parcels (or packages) at the same time. If you upgrade Kudu but do not upgrade CDH, new Kudu
features such as Security will not be available. Note that even though you might be able to see the
updated configuration options for Kudu security in Cloudera Manager, configuring them will have no
effect.

Use the following set of instructions to secure a Kudu cluster using Cloudera Manager:
Enabling Kerberos Authentication and RPC Encryption

Important: The following instructions assume you already have a secure Cloudera Manager cluster
with Kerberos authentication enabled. If this is not the case, first secure your cluster using the steps
described at Enabling Kerberos Authentication Using the Cloudera Manager Wizard.

To enable Kerberos authentication for Kudu:

1. Go to the Kudu service.
2. Click the Configuration tab.
3. Select Category > Main.
4. In the Search field, type Kerberos to show the relevant properties.
5. Edit the following properties according to your cluster configuration:
Field Usage Notes
Kerberos Principal Set to the default principal, kudu. Currently, Kudu does not support configuring

a custom service principal for Kudu processes.

https://www.cloudera.com/documentation/enterprise/latest/topics/cm_sg_intro_kerb.html

Field Usage Notes

Enable Secure Authentication Select this checkbox to enable authentication and RPC encryption between
And Encryption all Kudu clients and servers, as well as between individual servers. Only enable
this property after you have configured Kerberos.

6. Click Save Changes.

7. You will see an error message that tells you the Kudu keytab is missing. To generate the keytab, go to the top
navigation bar and click Administration > Security.

8. Go to the Kerberos Credentials tab. On this page you will see a list of the existing Kerberos principals for services
running on the cluster.

9. Click Generate Missing Credentials. Once the Generate Missing Credentials command has finished running, you
will see the Kudu principal added to the list.

Configuring Coarse-grained Authorization with ACLs

1. Go to the Kudu service.

2. Click the Configuration tab.
3. Select Category > Security.
4. In the Search field, type ACL to show the relevant properties.
5. Edit the following properties according to your cluster configuration:
Field Usage Notes
Superuser Access Control List Add a comma-separated list of superusers who can access the cluster. By

default, this property is left blank.

"*'indicates that all authenticated users will be given superuser access.

User Access Control List Add a comma-separated list of users who can access the cluster. By default,
this property is set to '*'.

The default value of '* ' allows all users access to the cluster. However, if
authentication is enabled, this will restrict access to only those users who are
able to successfully authenticate using Kerberos. Unauthenticated users on
the same network as the Kudu servers will be unable to access the cluster.

Add the i mpal a user to this list to allow Impala to query data in Kudu. You
might choose to add any other relevant usernames if you want to give access
to Spark Streaming jobs.

6. Click Save Changes.

Configuring HTTPS Encryption for the Kudu Master and Tablet Server Web Uls
Use the following steps to enable HTTPS for encrypted connections to the Kudu master and tablet server web Uls.

1. Go to the Kudu service.

. Click the Configuration tab.

. Select Category > Security.

. In the Search field, type TLS/SSL to show the relevant properties.

. Edit the following properties according to your cluster configuration:

v b WN

Field Usage Notes

Master TLS/SSL Server Private Set to the path containing the Kudu master host's private key (PEM-format).
Key File (PEM Format) This is used to enable TLS/SSL encryption (over HTTPS) for browser-based
connections to the Kudu master web Ul.

Field

Usage Notes

Tablet Server TLS/SSL Server
Private Key File (PEM Format)

Set to the path containing the Kudu tablet server host's private key
(PEM-format). This is used to enable TLS/SSL encryption (over HTTPS) for
browser-based connections to Kudu tablet server web Uls.

Master TLS/SSL Server Certificate
File (PEM Format)

Set to the path containing the signed certificate (PEM-format) for the Kudu
master host's private key (set in Master TLS/SSL Server Private Key File). The
certificate file can be created by concatenating all the appropriate root and
intermediate certificates required to verify trust.

Tablet Server TLS/SSL Server
Certificate File (PEM Format)

Set to the path containing the signed certificate (PEM-format) for the Kudu
tablet server host's private key (set in Tablet Server TLS/SSL Server Private
Key File). The certificate file can be created by concatenating all the
appropriate root and intermediate certificates required to verify trust.

Enable TLS/SSL for Master Server

Enables HTTPS encryption on the Kudu master web Ul.

Enable TLS/SSL for Tablet Server

Enables HTTPS encryption on the Kudu tablet server Web Uls.

6. Click Save Changes.

Configuring a Secure Kudu Cluster using the Command Line

Important: Follow these command-line instructions on systems that do not use Cloudera Manager.
If you are using Cloudera Manager, see Configuring a Secure Kudu Cluster using Cloudera Manager

on page 57.

The following configuration parameters should be set on all servers (master and tablet servers) to ensure that a Kudu

cluster is secure:

Connection Security

--rpc_aut hentication=required

--rpc_encryption=required

--keytab_fil e=<pat h-to-kerber os- keyt ab>

Web U Security

--webserver_certificate fil e=<path-to-cert-penr
--webserver _private_key_fil e=<pat h-to-key- penw

optional

--webserver_private_key_ password_cnd=<passwor d- cnd>

If you prefer to disable the web U entirely:

--webserver _enabl ed=f al se

Coar se-grai ned authorization
#

This exanple ACL setup allows the 'inpala'" user as well as the
"etl _service_account' principal access to all data in the
Kudu cl uster. The 'hadoopadm n' user is allowed to use adm nistrative

may access data in Kudu via the Inpala service subject to its own

aut hori zation rul es.

#
#
#
tooling. Note that by granting access to 'inpala', other users
#
#

-user _acl =i npal a, et| _servi ce_account

--adm n_acl =hadoopadni n

More information about these flags can be found in the configuration reference documentation.

http://kudu.apache.org/docs/configuration_reference.html

Apache Kudu Schema Design

Kudu tables have a structured data model similar to tables in a traditional relational database. With Kudu, schema
design is critical for achieving the best performance and operational stability. Every workload is unique, and there is
no single schema design that is best for every table. This topic outlines effective schema design philosophies for Kudu,
and how they differ from approaches used for traditional relational database schemas.

There are three main concerns when creating Kudu tables: column design, primary key design, and partitioning.

The Perfect Schema

The perfect schema would accomplish the following:

e Data would be distributed such that reads and writes are spread evenly across tablet servers. This can be achieved
by effective partitioning.

e Tablets would grow at an even, predictable rate, and load across tablets would remain steady over time. This can
be achieved by effective partitioning.

e Scans would read the minimum amount of data necessary to fulfill a query. This is impacted mostly by primary
key design, but partitioning also plays a role via partition pruning.

The perfect schema depends on the characteristics of your data, what you need to do with it, and the topology of your
cluster. Schema design is the single most important thing within your control to maximize the performance of your
Kudu cluster.

Column Design

A Kudu table consists of one or more columns, each with a defined type. Columns that are not part of the primary key
may be nullable. Supported column types include:

e boolean

e 8-bit signed integer

e 16-bit signed integer

e 32-bit signed integer

e 64-bit signed integer

e unixtime_micros (64-bit microseconds since the Unix epoch)
¢ single-precision (32-bit) IEEE-754 floating-point number

¢ double-precision (64-bit) IEEE-754 floating-point number

e UTF-8 encoded string (up to 64KB uncompressed)

¢ binary (up to 64KB uncompressed)

Kudu takes advantage of strongly-typed columns and a columnar on-disk storage format to provide efficient encoding
and serialization. To make the most of these features, columns should be specified as the appropriate type, rather
than simulating a 'schemaless' table using string or binary columns for data which could otherwise be structured. In
addition to encoding, Kudu allows compression to be specified on a per-column basis.

Column Encoding
Depending on the type of the column, Kudu columns can be created with the following encoding types.
Plain Encoding
Data is stored in its natural format. For example, i nt 32 values are stored as fixed-size 32-bit little-endian integers.
Bitshuffle Encoding

A block of values is rearranged to store the most significant bit of every value, followed by the second most significant
bit of every value, and so on. Finally, the result is LZ4 compressed. Bitshuffle encoding is a good choice for columns
that have many repeated values, or values that change by small amounts when sorted by primary key. The bitshuffle
project has a good overview of performance and use cases.

Run Length Encoding

Runs (consecutive repeated values) are compressed in a column by storing only the value and the count. Run length
encoding is effective for columns with many consecutive repeated values when sorted by primary key.

Dictionary Encoding

A dictionary of unique values is built, and each column value is encoded as its corresponding index in the dictionary.
Dictionary encoding is effective for columns with low cardinality. If the column values of a given row set are unable
to be compressed because the number of unique values is too high, Kudu will transparently fall back to plain encoding
for that row set. This is evaluated during flush.

Prefix Encoding

Common prefixes are compressed in consecutive column values. Prefix encoding can be effective for values that
share common prefixes, or the first column of the primary key, since rows are sorted by primary key within tablets.

Each column in a Kudu table can be created with an encoding, based on the type of the column. Starting with Kudu
1.3, default encodings are specific to each column type.

Column Type Encoding Default

int8, intl6, int32 plain, bitshuffle, run length|bitshuffle
int64, unixtinme_mcros plain, bitshuffle, run length|bitshuffle
float, double plain, bitshuffle bitshuffle
bool plain, run | ength run | ength
string, binary plain, prefix, dictionary dictionary

Column Compression
Kudu allows per-column compression using the LZ4, Snappy, or zl i b compression codecs.

By default, columns that are Bitshuffle-encoded are inherently compressed with the LZ4 compression. Otherwise,
columns are stored uncompressed. Consider using compression if reducing storage space is more important than raw
scan performance.

Every data set will compress differently, but in general LZ4 is the most efficient codec, while zI i b will compress to
the smallest data sizes. Bitshuffle-encoded columns are automatically compressed using LZ4, so it is not recommended
to apply additional compression on top of this encoding.

Primary Key Design

Every Kudu table must declare a primary key comprised of one or more columns. Like an RDBMS primary key, the Kudu
primary key enforces a uniqueness constraint. Attempting to insert a row with the same primary key values as an
existing row will result in a duplicate key error.

Primary key columns must be non-nullable, and may not be a boolean or floating- point type.
Once set during table creation, the set of columns in the primary key may not be altered.

Unlike an RDBMS, Kudu does not provide an auto-incrementing column feature, so the application must always provide
the full primary key during insert.

Row delete and update operations must also specify the full primary key of the row to be changed. Kudu does not
natively support range deletes or updates.

The primary key values of a column may not be updated after the row is inserted. However, the row may be deleted
and re-inserted with the updated value.

Primary Key Index

As with many traditional relational databases, Kudu'’s primary key is in a clustered index. All rows within a tablet are
sorted by its primary key.

When scanning Kudu rows, use equality or range predicates on primary key columns to efficiently find the rows.

Considerations for Backfill Inserts

This section discuss a primary key design consideration for timeseries use cases where the primary key is a timestamp,
or the first column of the primary key is a timestamp.

Each time a row is inserted into a Kudu table, Kudu looks up the primary key in the primary key index storage to check
whether that primary key is already present in the table. If the primary key exists in the table, a "duplicate key" error
is returned. In the typical case where data is being inserted at the current time as it arrives from the data source, only
a small range of primary keys are "hot". So, each of these "check for presence" operations is very fast. It hits the cached
primary key storage in memory and doesn’t require going to disk.

In the case when you load historical data, which is called "backfilling", from an offline data source, each row that is
inserted is likely to hit a cold area of the primary key index which is not resident in memory and will cause one or more
HDD disk seeks. For example, in a normal ingestion case where Kudu sustains a few million inserts per second, the
"backfill" use case might sustain only a few thousand inserts per second.

To alleviate the performance issue during backfilling, consider the following options:
* Make the primary keys more compressible.

For example, with the first column of a primary key being a random ID of 32-bytes, caching one billion primary
keys would require at least 32 GB of RAM to stay in cache. If caching backfill primary keys from several days ago,
you need to have several times 32 GB of memory. By changing the primary key to be more compressible, you
increase the likelihood that the primary keys can fit in cache and thus reducing the amount of random disk 1/Os.

e Use SSDs for storage as random seeks are orders of magnitude faster than spinning disks.
e Change the primary key structure such that the backfill writes hit a continuous range of primary keys.

Partitioning

In order to provide scalability, Kudu tables are partitioned into units called tablets, and distributed across many tablet
servers. A row always belongs to a single tablet. The method of assigning rows to tablets is determined by the partitioning
of the table, which is set during table creation.

Choosing a partitioning strategy requires understanding the data model and the expected workload of a table. For
write-heavy workloads, it is important to design the partitioning such that writes are spread across tablets in order to
avoid overloading a single tablet. For workloads involving many short scans, where the overhead of contacting remote
servers dominates, performance can be improved if all of the data for the scan is located on the same tablet.
Understanding these fundamental trade-offs is central to designing an effective partition schema.

o Important: Kudu does not provide a default partitioning strategy when creating tables. It is
recommended that new tables which are expected to have heavy read and write workloads have at
least as many tablets as tablet servers.

Kudu provides two types of partitioning: range partitioning and hash partitioning. Tables may also have multilevel
partitioning, which combines range and hash partitioning, or multiple instances of hash partitioning.

Range Partitioning

Range partitioning distributes rows using a totally-ordered range partition key. Each partition is assigned a contiguous
segment of the range partition keyspace. The key must be comprised of a subset of the primary key columns. If the
range partition columns match the primary key columns, then the range partition key of a row will equal its primary
key. In range partitioned tables without hash partitioning, each range partition will correspond to exactly one tablet.

The initial set of range partitions is specified during table creation as a set of partition bounds and split rows. For each
bound, a range partition will be created in the table. Each split will divide a range partition in two. If no partition bounds
are specified, then the table will default to a single partition covering the entire key space (unbounded below and
above). Range partitions must always be non-overlapping, and split rows must fall within a range partition.

Adding and Removing Range Partitions

Kudu allows range partitions to be dynamically added and removed from a table at runtime, without affecting the
availability of other partitions. Removing a partition will delete the tablets belonging to the partition, as well as the
data contained in them. Subsequent inserts into the dropped partition will fail. New partitions can be added, but they
must not overlap with any existing range partitions. Kudu allows dropping and adding any number of range partitions
in a single transactional alter table operation.

Dynamically adding and dropping range partitions is particularly useful for time series use cases. As time goes on, range
partitions can be added to cover upcoming time ranges. For example, a table storing an event log could add a month-wide
partition just before the start of each month in order to hold the upcoming events. Old range partitions can be dropped
in order to efficiently remove historical data, as necessary.

Hash Partitioning

Hash partitioning distributes rows by hash value into one of many buckets. In single-level hash partitioned tables, each
bucket will correspond to exactly one tablet. The number of buckets is set during table creation. Typically the primary
key columns are used as the columns to hash, but as with range partitioning, any subset of the primary key columns
can be used.

Hash partitioning is an effective strategy when ordered access to the table is not needed. Hash partitioning is effective
for spreading writes randomly among tablets, which helps mitigate hot-spotting and uneven tablet sizes.

Multilevel Partitioning

Kudu allows a table to combine multiple levels of partitioning on a single table. Zero or more hash partition levels can
be combined with an optional range partition level. The only additional constraint on multilevel partitioning beyond
the constraints of the individual partition types, is that multiple levels of hash partitions must not hash the same
columns.

When used correctly, multilevel partitioning can retain the benefits of the individual partitioning types, while reducing
the downsides of each. The total number of tablets in a multilevel partitioned table is the product of the number of
partitions in each level.

Partition Pruning

Kudu scans will automatically skip scanning entire partitions when it can be determined that the partition can be
entirely filtered by the scan predicates. To prune hash partitions, the scan must include equality predicates on every
hashed column. To prune range partitions, the scan must include equality or range predicates on the range partitioned
columns. Scans on multilevel partitioned tables can take advantage of partition pruning on any of the levels
independently.

Partitioning Examples

To illustrate the factors and tradeoffs associated with designing a partitioning strategy for a table, we will walk through
some different partitioning scenarios. Consider the following table schema for storing machine metrics data (using
SQL syntax and date-formatted timestamps for clarity):

CREATE TABLE netrics (
host STRI NG NOT NULL,
nmetric STRING NOT NULL,
time | NT64 NOT NULL,
val ue DOUBLE NOT NULL,
PRI MARY KEY (host, nmetric, tine),

)

Range Partitioning

A natural way to partition the net ri cs table is to range partition on the t i me column. Let’s assume that we want to
have a partition per year, and the table will hold data for 2014, 2015, and 2016. There are at least two ways that the
table could be partitioned: with unbounded range partitions, or with bounded range partitions.

2014-01-01 2015-01-01 2016-01-01 2017-01-01
I I I I

Example 1 Tablet 1 Tablet 2 Tablet 3
Bounds: defauit

Splits: 2015, 2016 values before 2015 | values in 2015 values after 2015
Example 2 Tablet 1 Tablet 2 Tablet 3
Bounds: 2014 to 2017

Splits: 2015 and 2016 values in 2014 | values in 2015 | values in 2016

The image above shows the two ways the net ri cs table can be range partitioned on the t i me column. In the first
example (in blue), the default range partition bounds are used, with splits at 2015- 01- 01 and 2016- 01- 01. This
results in three tablets: the first containing values before 2015, the second containing values in the year 2015, and the
third containing values after 2016. The second example (in green) uses a range partition bound of [(2014-01-01),
(2017-01-01)], and splits at 2015- 01- 01 and 2016- 01- 01. The second example could have equivalently been
expressed through range partition bounds of [(2014- 01- 01), (2015-01-01)],[(2015-01-01), (2016-01-01)],
and [(2016-01-01), (2017-01-01)], with no splits. The first example has unbounded lower and upper range
partitions, while the second example includes bounds.

Each of the range partition examples above allows time-bounded scans to prune partitions falling outside of the scan’s
time bound. This can greatly improve performance when there are many partitions. When writing, both examples
suffer from potential hot-spotting issues. Because metrics tend to always be written at the current time, most writes
will go into a single range partition.

The second example is more flexible, because it allows range partitions for future years to be added to the table. In
the first example, all writes for times after 2016- 01- 01 will fall into the last partition, so the partition may eventually
become too large for a single tablet server to handle.

Hash Partitioning

Another way of partitioning the met r i cs table is to hash partition on the host and et ri ¢ columns.

HASH (host, metric)

Tablet 1 Tablet 2 Tablet 3 Tablet 4

bucket: 0 bucket: 1 bucket: 2 bucket: 3

In the example above, the et ri cs table is hash partitioned on the host and net ri c columns into four buckets.
Unlike the range partitioning example earlier, this partitioning strategy will spread writes over all tablets in the table
evenly, which helps overall write throughput. Scans over a specific host and metric can take advantage of partition
pruning by specifying equality predicates, reducing the number of scanned tablets to one. One issue to be careful of
with a pure hash partitioning strategy, is that tablets could grow indefinitely as more and more data is inserted into
the table. Eventually tablets will become too big for an individual tablet server to hold.

Hash and Range Partitioning

The previous examples showed how the net ri cs table could be range partitioned on the t i me column, or hash
partitioned on the host and net ri ¢ columns. These strategies have associated strength and weaknesses:

Table 3: Partitioning Strategies

Strategy Writes Reads Tablet Growth

range(ti ne) @ all writes go to latest @ time-bounded scans can | @ new tablets can be added
partition be pruned for future time periods

hash(host, netric) @ writes are spread evenly |Bscans on specific hosts and | @ tablets could grow too
among tablets metrics can be pruned large

Hash partitioning is good at maximizing write throughput, while range partitioning avoids issues of unbounded tablet
growth. Both strategies can take advantage of partition pruning to optimize scans in different scenarios. Using multilevel
partitioning, it is possible to combine the two strategies in order to gain the benefits of both, while minimizing the
drawbacks of each.

RANGE (time)
2014-01-01 2015-01-01 2016-01-01 2017-01-01

—
—

N '
Tablet 1 Tablet 5 Tablet 9
values in 2014 | values in 2015 | values in 2016

_bucket: 0 A bucket: 0 A bucket: 0 y
Tablet2 | Tablet6 | Tablet10
values in 2014 | values in 2015 | values in 2016
_bucket: 1 A bucket: 1 A bucket: 1 y

™\ N N\

Tablet3)| Tablet7) Tablet 11

values in 2014 | values in 2015 | values in 2016
kbucket: 2 Lbucket: 2 kbucket: 2 y.

Tablet4)| Tablet8 Y Tablet12

values in 2014 | values in 2015 | values in 2016
kbucket: 3 kaucket: 3 jkbucket: 3 y.

HASH (host, metric)

AN
AN

In the example above, range partitioning on the t i ne column is combined with hash partitioning on the host and
nmet ri ¢ columns. This strategy can be thought of as having two dimensions of partitioning: one for the hash level and
one for the range level. Writes into this table at the current time will be parallelized up to the number of hash buckets,
in this case 4. Reads can take advantage of time bound and specific host and metric predicates to prune partitions.
New range partitions can be added, which results in creating 4 additional tablets (as if a new column were added to

the diagram).

Hash and Hash Partitioning

Kudu can support any number of hash partitioning levels in the same table, as long as the levels have no hashed columns
in common.

HASH (metric)

(" Tablet1 Y Tablet5 Y Tablet9

host bucket: 0 host bucket: 0 host bucket: 0
metric bucket: 0 metric bucket: 1 metric bucket: 2

\ V
(" Tablet 2 g Tablet 6 g Tablet10)
host bucket: 1 host bucket: 1 host bucket: 1

metric bucket: 0 rmetric bucket: 1 metric bucket: 2
\ # <
<

(" Tablet 3 Tablet 7 Tablet 11

host bucket: 2 host bucket: 2 host bucket: 2
metric bucket: 0 rmetric bucket: 1 metric bucket: 2

<*

HASH (host)

\ <
(" Tablet 4 \g Tablet 8 T Tablet12)
host bucket: 3 host bucket: 3 host bucket: 3

metric bucket: 0 rmetric bucket: 1 metric bucket: 2

_LM

In the example above, the table is hash partitioned on host into 4 buckets, and hash partitioned on et ri c into 3
buckets, resulting in 12 tablets. Although writes will tend to be spread among all tablets when using this strategy, it is
slightly more prone to hot-spotting than when hash partitioning over multiple independent columns, since all values
for an individual host or metric will always belong to a single tablet. Scans can take advantage of equality predicates
on the host and net ri ¢ columns separately to prune partitions.

Multiple levels of hash partitioning can also be combined with range partitioning, which logically adds another dimension
of partitioning.

Schema Alterations

You can alter a table’s schema in the following ways:

e Rename the table
e Rename primary key columns
e Rename, add, or drop non-primary key columns

¢ Add and drop range partitions

Multiple alteration steps can be combined in a single transactional operation.

Schema Design Limitations

Kudu currently has some known limitations that may factor into schema design. For a complete list, see Apache Kudu
Usage Limitations on page 15.

Apache Kudu Transaction Semantics

This is a brief introduction to Kudu’s transaction and consistency semantics. Kudu's core philosophy is to provide
transactions with simple, strong semantics, without sacrificing performance or the ability to tune to different
requirements. Kudu'’s transactional semantics and architecture are inspired by state-of-the-art systems such as Spanner
and Calvin. For an in-depth technical exposition of what is mentioned here, see the technical report.

Kudu currently allows the following operations:

e Scans are read operations that can traverse multiple tablets and read information with some consistency or
correctness guarantees. Scans can also perform time-travel reads. That is, you can set a scan timestamp from the
past and get back results that reflect the state of the storage engine at that point in time.

Write operations are sets of rows to be inserted, updated, or deleted in the storage engine, in a single tablet with
multiple replicas. Write operations do not have separate "read sets", that is, they do not scan existing data before
performing the write. Each write is only concerned with the previous state of the rows that are about to change.
Writes are not "committed" explicitly by the user. Instead, they are committed automatically by the system, after
completion.

While Kudu is designed to eventually be fully ACID (Atomic, Consistent, Isolated, Durable), multi-tablet transactions
have not yet been implemented. As such, the following discussion focuses on single-tablet write operations, and only
briefly touches multi-tablet reads.

Single Tablet Write Operations

Kudu employs Multiversion Concurrency Control (MVCC) and the Raft consensus algorithm. Each write operation in
Kudu must go through the following order of operations:

1. The tablet's leader acquires all locks for the rows that it will change.

2. The leader assigns the write a timestamp before the write is submitted for replication. This timestamp will be the
write’s tag in MVCC.

3. After a majority of replicas have acknowledged the write, the rows are changed.

4. After the changes are complete, they are made visible to concurrent writes and reads, atomically.

All replicas of a tablet observe the same process. Therefore, if a write operation is assigned timestamp n, and changes
row x, a second write operation at timestamp m > n is guaranteed to see the new value of x.

This strict ordering of lock acquisition and timestamp assignment is enforced to be consistent across all replicas of a
tablet through consensus. Therefore, write operations are ordered with regard to clock-assigned timestamps, relative
to other writes in the same tablet. In other words, writes have strict-serializable semantics.

In case of multi-row write operations, while they are Isolated and Durable in an ACID sense, they are not yet fully
Atomic. The failure of a single write in a batch operation will not roll back the entire operation, but produce per-row
errors.

Writing to Multiple Tablets

Kudu does not support transactions that span multiple tablets. However, consistent snapshot reads are possible (with
caveats, as explained below). Writes from a Kudu client are optionally buffered in memory until they are flushed and
sent to the tablet server. When a client’s session is flushed, the rows for each tablet are batched together, and sent
to the tablet server which hosts the leader replica of the tablet. Since there are no inter-tablet transactions, each of
these batches represents a single, independent write operation with its own timestamp. However, the client API
provides the option to impose some constraints on the assigned timestamps and on how writes to different tablets
are observed by clients.

https://research.google.com/archive/spanner.html
http://dl.acm.org/citation.cfm?doid=2213836.2213838
http://users.ece.utexas.edu/%7Egarg/pdslab/david/hybrid-time-tech-report-01.pdf

Kudu was designed to be externally consistent, that is, preserving consistency when operations span multiple tablets
and even multiple data centers. In practice this means that if a write operation changes item x at tablet A, and a
following write operation changes item y at tablet B, you might want to enforce that if the change to y is observed,
the change to x must also be observed. There are many examples where this can be important. For example, if Kudu
is storing clickstreams for further analysis, and two clicks follow each other but are stored in different tablets, subsequent
clicks should be assigned subsequent timestamps so that the causal relationship between them is captured.

e CLI ENT_PROPAGATED Consistency

Kudu’s default external consistency mode is called CLI ENT_PROPAGATED. This mode causes writes from a single
client to be automatically externally consistent. In the clickstream scenario above, if the two clicks are submitted
by different client instances, the application must manually propagate timestamps from one client to the other
for the causal relationship to be captured. Timestamps between clients a and b can be propagated as follows:

Java Client

Call AsyncKudud i ent #get Last Pr opagat edTi mest anp() on client a, propagate the timestamp to client b,
and call AsyncKuduCl i ent #set Last Pr opagat edTi mest anp() on client b.

C++ Client

Call Kudud i ent : : Get Lat est Gbser vedTi nest anp() on client a, propagate the timestamp to client b, and
call Kudud i ent : : Set Lat est Obser vedTi nest anp() on client b.

e COW T_WAI T Consistency

Kudu also has an experimental implementation of an external consistency model (used in Google’s Spanner),

called COVMM T_WAI T. COW T_WAI T works by tightly synchronizing the clocks on all machines in the cluster. Then,
when a write occurs, timestamps are assigned and the results of the write are not made visible until enough time
has passed so that no other machine in the cluster could possibly assign a lower timestamp to a following write.

When using this mode, the latency of writes is tightly tied to the accuracy of clocks on all the cluster hosts, and
using this mode with loose clock synchronization causes writes to either take a long time to complete, or even
time out.

The COMM T_WAI T consistency mode may be selected as follows:

Java Client

Call KuduSessi on#set Ext er nal Consi st encyMode(Ext er nal Consi st encyMode. COMM T_WAI T)
C++ Client

Call KuduSessi on: : Set Ext er nal Consi st encyMode(COWM T_WAI T)

n Warning:

COW T_WAI T consistency is an experimental feature. It may return incorrect results, exhibit
performance issues, or negatively impact cluster stability. Its use in production environments is
discouraged.

Read Operations (Scans)

Scans are read operations performed by clients that may span one or more rows across one or more tablets. When a
server receives a scan request, it takes a snapshot of the MVCC state and then proceeds in one of two ways depending
on the read mode selected by the user. The mode may be selected as follows:

Java Client

Call KuduScanner Bui | der #ReadMbode(..)

C++ Client

Call KuduScanner : : Set ReadMode()
The following modes are available in both clients:
READ_LATEST

This is the default read mode. The server takes a snapshot of the MVCC state and proceeds with the read immediately.
Reads in this mode only yield 'Read Committed' isolation.

READ AT_SNAPSHOT

In this read mode, scans are consistent and repeatable. A timestamp for the snapshot is selected either by the
server, or set explicitly by the user through KuduScanner : : Set Snapshot M cr os() . Explicitly setting the timestamp
is recommended.

The server waits until this timestamp is 'safe'; that is, until all write operations that have a lower timestamp have
completed and are visible). This delay, coupled with an external consistency method, will eventually allow Kudu to
have fullstri ct - seri al i zabl e semantics for reads and writes. However, this is still a work in progress and some
anomalies are still possible. Only scans in this mode can be fault-tolerant.

Selecting between read modes requires balancing the trade-offs and making a choice that fits your workload. For
instance, a reporting application that needs to scan the entire database might need to perform careful accounting
operations, so that scan may need to be fault-tolerant, but probably doesn’t require a to-the-microsecond up-to-date
view of the database. In that case, you might choose READ_AT_SNAPSHOT and select a timestamp that is a few seconds
in the past when the scan starts. On the other hand, a machine learning workload that is not ingesting the whole data
set and is already statistical in nature might not require the scan to be repeatable, so you might choose READ_LATEST
instead for better scan performance.

E’; Note:

Kudu also provides replica selection API for you to choose at which replica the scan should be
performed:

Java Client

Call KuduScanner Bui | der #repl i caSel ection(...)
C++ Client

Call KuduScanner : : Set Sel ection(...)

This APl is a means to control locality and, in some cases, latency. The replica selection API has no
effect on the consistency guarantees, which will hold no matter which replica is selected.

Known Issues and Limitations

There are several gaps and corner cases that currently prevent Kudu from being strictly-serializable in certain situations.

Writes

Support for COM T_WAI T is experimental and requires careful tuning of the time-synchronization protocol, such as
NTP (Network Time Protocol). Its use in production environments is discouraged.

Recommendation
If external consistency is a requirement and you decide to use COMM T_WAI T, the time-synchronization protocol
needs to be tuned carefully. Each transaction will wait 2x the maximum clock error at the time of execution, which
is usually in the 100 msec. to 1 sec. range with the default settings, maybe more. Thus, transactions would take at
least 200 msec. to 2 sec. to complete when using the default settings and may even time out.

¢ Alocal server should be used as a time server. We’ve performed experiments using the default NTP time source
available in a Google Compute Engine data center and were able to obtain a reasonable tight max error bound,
usually varying between 12-17 milliseconds.

¢ The following parameters should be adjusted in/ et c/ nt p. conf to tighten the maximum error:
— server ny_server.org iburst mnpoll 1 maxpoll 8
— tinker dispersion 500

— tinker allan 0

Reads (Scans)

¢ On aleader change, READ_AT_SNAPSHOT scans at a snapshot whose timestamp is beyond the last write, may
yield non-repeatable reads (see KUDU-1188).

Recommendation

If repeatable snapshot reads are a requirement, use READ_AT_SNAPSHOT with a timestamp that is slightly in the
past (between 2-5 seconds, ideally). This will circumvent the anomaly described above. Even when the anomaly
has been addressed, back-dating the timestamp will always make scans faster, since they are unlikely to block.

e Impala scans are currently performed as READ_LATEST and have no consistency guarantees.

e |In AUTO BACKGROUND_FLUSHmode, or when using "async" flushing mechanisms, writes applied to a single client
session may get reordered due to the concurrency of flushing the data to the server. This is particularly noticeable
if a single row is quickly updated with different values in succession. This phenomenon affects all client API
implementations. Workarounds are described in the respective APl documentation for Fl ushibde or
AsyncKuduSessi on. See KUDU-1767.

https://issues.apache.org/jira/browse/KUDU-1188
https://issues.apache.org/jira/browse/KUDU-1767

Apache Kudu Background Maintenance Tasks

Kudu relies on running background tasks for many important maintenance activities. These tasks include flushing data
from memory to disk, compacting data to improve performance, freeing up disk space, and more.

Maintenance Manager

The maintenance manager schedules and runs background tasks. At any given point in time, the maintenance manager
is prioritizing the next task based on improvements needed at that moment, such as relieving memory pressure,
improving read performance, or freeing up disk space. The number of worker threads dedicated to running background
tasks can be controlled by setting - - mai nt enance_manager _num t hr eads.

With Kudu 1.4, the maintenance manager features improved utilization of the configured maintenance threads.
Previously, maintenance work would only be scheduled a maximum of 4 times per second, but now maintenance work
will be scheduled immediately whenever any configured thread is available. Make sure that the

- -mai nt enance_manager _num t hr eads property is set to at most a 1:3 ratio for Maintenance Manager threads
to the number of data directories (for spinning disks). This will improve the throughput of write-heavy workloads.

Flushing Data to Disk

Flushing data from memory to disk relieves memory pressure and can improve read performance by switching from
a write-optimized, row-oriented in-memory format in the MenRowSet , to a read-optimized, column-oriented format
on disk.

Background tasks that flush data include FI ushMRSOp and FI ushDel t aMenst or esOp. The metrics associated with
these operations have the prefix f | ush_nr s and f | ush_dns, respectively.

With Kudu 1.4, the maintenance manager aggressively schedules flushes of in-memory data when memory consumption
crosses 60 percent of the configured process-wide memory limit. The backpressure mechanism which begins to throttle
client writes was also adjusted to not begin throttling until memory consumption reaches 80 percent of the configured
limit. These two changes together result in improved write throughput, more consistent latency, and fewer timeouts
due to memory exhaustion.

Compacting On-disk Data

Kudu constantly performs several compaction tasks in order to maintain consistent read and write performance over
time.

e A merging compaction, which combines multiple Di skRowSet s together into a single Di skRowSet , is run by
Conpact RowSet sOp.

e Kudu also runs two types of delta store compaction operations: M nor Del t aConpact i onOp and
Maj or Del t aConpacti onQp.

For more information on what these compaction operations do, see the Kudu Tablet design document.

The metrics associated with these tasks have the prefix conpact _rs, del t a_ni nor _conpact _rs, and
del t a_maj or _conpact _rs, respectively.

Write-ahead Log Garbage Collection

Kudu maintains a write-ahead log (WAL) per tablet that is split into discrete fixed-size segments. A tablet periodically
rolls the WAL to a new log segment when the active segment reaches a size threshold (configured by the

--1 og_segnent _si ze_nb property). In order to save disk space and decrease startup time, a background task called
LogGCOp attempts to garbage-collect (GC) old WAL segments by deleting them from disk once it is determined that
they are no longer needed by the local node for durability.

The metrics associated with this background task have the prefix | og_gc.

https://github.com/apache/kudu/blob/master/docs/design-docs/tablet.md

Tablet History Garbage Collection and the Ancient History Mark

Kudu uses a multiversion concurrency control (MVCC) mechanism to ensure that snapshot scans can proceed isolated
from new changes to a table. Therefore, periodically, old historical data should be garbage-collected (removed) to free
up disk space. While Kudu never removes rows or data that are visible in the latest version of the data, Kudu does
remove records of old changes that are no longer visible.

The specific threshold in time (in the past) beyond which historical MVCC data becomes inaccessible and is free to be
deleted is called the ancient history mark (AHM). The AHM can be configured by setting the
--tabl et _hi story_max_age_sec property.

There are two background tasks that remove historical MVCC data older than the AHM:
e The one that runs the merging compaction, called Conpact RowSet sOp (see above).
¢ A separate background task deletes old undo delta blocks, called UndoDel t aBl ockGCOp. Running

UndoDel t aBl ockGCOp reduces disk space usage in all workloads, but particularly in those with a higher volume
of updates or upserts. The metrics associated with this background task have the prefix undo_del t a_bl ock.

Troubleshooting Apache Kudu

This guide covers basic Apache Kudu troubleshooting information. For more details, see the official Kudu documentation
for troubleshooting.

Issues Starting or Restarting the Master or Tablet Server

Errors During Hole Punching Test

Kudu requires hole punching capabilities in order to be efficient. Hole punching support depends upon your operation
system kernel version and local filesystem implementation.

e RHEL or CentOS 6.4 or later, patched to kernel version of 2.6.32-358 or later. Unpatched RHEL or CentOS 6.4 does
not include a kernel with support for hole punching.

e Ubuntu 14.04 includes version 3.13 of the Linux kernel, which supports hole punching.

e Newer versions of the ext4 and xfs filesystems support hole punching. Older versions that do not support hole
punching will cause Kudu to emit an error message such as the following and to fail to start:

Error during hole punch test. The | og bl ock manager requires a
filesystemw th hole punching support such as ext4 or xfs. On el 6,

kernel version 2.6.32-358 or newer is required. To run w thout hole
punching (at the cost of sone efficiency and scalability), reconfigure
Kudu with --bl ock_nanager=file. Refer to the Kudu docunentation for nore
details. Raw error nessage foll ows.

E,i Note:

ext4 mountpoints may actually be backed by ext2 or ext3 formatted devices, which do not support
hole punching. The hole punching test will fail when run on such filesystems. There are several different
ways to determine whether an ext4 mountpoint is backed by an ext2, ext3, or ext4 formatted device;
see this Stack Exchange post for details.

Without hole punching support, the log block manager is unsafe to use. It won’t ever delete blocks, and will consume
ever more space on disk.

If you can’t use hole punching in your environment, you can still try Kudu. Enable the file block manager instead of the
log block manager by adding the - - bl ock_nanager =fi | e flag to the commands you use to start the master and
tablet servers. The file block manager does not scale as well as the log block manager.

NTP Clock Synchronization Issues

The clock on each Kudu master and tablet server daemon must be synchronized using Network Time Protocol (NTP).
If NTP is not installed or is not running, you may see errors such as the following:

10929 10: 00: 26. 570979 21371 nmaster_main.cc:52] Initializing master server...
F0929 10: 00: 26. 571107 21371 master _nmi n. cc: 53] Check failed: _s.ok() Bad status: Service
unavail abl e: dock is not synchronized:
Error reading clock. dock considered unsynchroni zed. Errno: Invalid argunent

|l et _server_mmin.cc:48] Initializing tablet server...
F0929 10: 00: 26. 572041 21370 tabl et _server_mai n.cc: 49] Check failed: _s.ok() Bad status:
Servi ce unavail able: Cock is not synchronized:
Error reading clock. Cock considered unsynchroni zed. Errno: Success

http://kudu.apache.org/docs/troubleshooting.html
http://kudu.apache.org/docs/troubleshooting.html
https://unix.stackexchange.com/q/60723

To resolve such errors, make sure that NTP is installed on each master and tablet server, and that all NTP processes
synchronize to the same time source.

¢ To install NTP, use the command appropriate for your operating system:

(01 Command
Debian/Ubuntu sudo apt-get install ntp
RHEL/CentOS sudo yuminstall ntp

e If NTP is installed but the clock is reported as unsynchronized, Kudu will not start, and will emit a message such
as:

F0924 20: 24: 36. 336809 14550 hybrid_clock.cc:191 Coul dn't get the current tine: d ock

unsynchroni zed. Status: Service unavailable: Error reading clock. Cock considered
unsynchr oni zed.

You can monitor clock synchronization status by running the nt pt i me command. The relevant value is what is
reported for maxi mum er r or . Note that NTP requires a network connection and may take a few minutes to
synchronize the clock. In some cases a spotty network connection may make NTP report the clock as unsynchronized.
A common, though temporary, workaround for this is to restart NTP with one of the following commands.

oS Command
Debian/Ubuntu sudo service ntp restart
RHEL/CentOS sudo /etc/init.d/ntpd restart

In addition to the clocks being synchronized, the maxi mum cl ock error (notto be mistaken with the estimated

error) must be set to a value relevant to your deployment. The default value is 10 seconds, but it can be configured
using the - - max_cl ock_sync_error _usec flag.

If NTP is installed and synchronized, but the maximum clock error is too high, you will see a message such as:

Sep 17, 8:13:09.873 PM FATAL hybrid_cl ock.cc: 196 Couldn't get the current time: C ock
synchroni zed, but error: 11130000, is past the maxi num all owabl e error: 10000000

or

Sep 17, 8:32:31.135 PM FATAL tabl et _server_main.cc: 38 Check failed: _s.ok() Bad status:

Servi ce unavail abl e: Cannot initialize clock: Cannot initialize Hybridd ock. d ock
synchroni zed but error was too high (11711000 us).

If NTP reports the clock as synchronized, but the maximum error is consistently too high, you can increase the
threshold to a higher value by setting the max_cl ock_sync_error _usec flag. For example, to increase the
maximum error to 20 seconds, set the flag as follows: - - max_cl ock_sync_error _usec=20000000.

Disk Space Usage

When using the log block manager (the default on Linux), Kudu uses sparse files to store data. A sparse file has a
different apparent size than the actual amount of disk space it uses. This means that some tools may inaccurately

report the disk space used by Kudu. For example, the size listed by I s -1 does not accurately reflect the disk space
used by Kudu data files:

$ Is -1h /datal/kudu/tserver/data
total 117M

STW------ 1 kudu kudu 160M Mar 26 19: 37 0b9807b8bl17d48a6a7d5b16bf 4ac4e6d. dat a
STW------ 1 kudu kudu 4.4K Mar 26 19: 37 0b9807b8bl17d48a6a7d5bl16bf 4ac4e6d. net adat a

https://en.wikipedia.org/wiki/Sparse_file

STW------ 1 kudu kudu 32M Mar 26 19: 37 2f 26eeacc7e04b65a009e2c9a2a8bd20. dat a

STW------ 1 kudu kudu 4. 3K Mar 26 19: 37 2f 26eeacc7e04b65a009e2c9a2a8bd20. net adat a
STW------ 1 kudu kudu 672M Mar 26 19: 37 30a2dd2cd3554d8a9613f 588a8d136ff. data
STW------ 1 kudu kudu 4. 4K Mar 26 19: 37 30a2dd2cd3554d8a9613f 588a8d136f f. net adat a
STW------ 1 kudu kudu 32M Mar 26 19: 37 7434c83cbhec74aebaf 5974e4909chf 82. dat a
STW------ 1 kudu kudu 4. 3K Mar 26 19: 37 7434c83c5ec74ae6af 5974e4909cbhf 82. net adat a
STW------ 1 kudu kudu 672M Mar 26 19: 37 772d070347a04f 9f 8ad2ad3241440090. dat a
STW--- - - - 1 kudu kudu 4.4K Mar 26 19: 37 772d070347a04f 9f 8ad2ad3241440090. net adat a
STW------ 1 kudu kudu 160M Mar 26 19: 37 86e50a95531f 46b6a79e671e6f 5f 4151. data
STW------ 1 kudu kudu 4. 4K Mar 26 19: 37 86e50a95531f 46b6a79e671e6f 5f 4151. net adat a
STW--- - - 1 kudu kudu 687 Mar 26 19:26 bl ock_manager _i nstance

Notice that the total size reported is 117MiB, while the first file’s size is listed as 160MiB. Adding the - s optionto | s
will cause | s to output the file’s disk space usage.

The du and df utilities report the actual disk space usage by default.

$ du -h /data/ kudu/tserver/datall8M /data/kudu/tserver/data

The apparent size can be shown with the - - appar ent - si ze flag to du.

$ du -h --apparent-size /datal/kudu/tserver/datal. 7G /data/kudu/tserver/data

Reporting Kudu Crashes Using Breakpad

Kudu uses the Google Breakpad library to generate a minidump whenever Kudu experiences a crash. A minidump file
contains important debugging information about the process that crashed, including shared libraries loaded and their
versions, a list of threads running at the time of the crash, the state of the processor registers and a copy of the stack
memory for each thread, and CPU and operating system version information. These minidumps are typically only a
few MB in size and are generated even if core dump generation is disabled. Currently, generating minidumps is only
possible on Linux deployments.

By default, Kudu stores its minidumps in a subdirectory of the configured glog directory called i ni dunps. This location
can be customized by setting the - - ni ni dunp_pat h flag. Kudu will retain only a certain number of minidumps before
deleting the older ones, in an effort to avoid filling up the disk with minidump files. The maximum number of minidumps
that will be retained can be controlled by setting the - - max_mi ni dunps gflag.

Minidumps contain information specific to the binary that created them and are therefore not useful without access
to the exact binary that crashed, or a very similar binary.

Kudu developers can access the minidump tools in their development environment because they are installed as part
of the Kudu thirdparty build. They can be found in the Kudu development environment under uni nst r unent ed/ bi n.
For example, t hi rdparty/i nst al | ed/ uni nst rument ed/ bi n/ mi ni dunp- 2- cor e.

If minidumps are enabled, it is possible to force Kudu to create a minidump without killing the process. To do that,
send a USRI signal to the kudu-t ser ver or kudu- mast er process. For example:

sudo pkill -USR1 kudu-tserver

Viewing the minidump stack trace with the GNU Debugger

Although a minidump contains no heap information, it does contain thread and stack information. You can convert a
minidump to a core file to view it with GDB.

To convert the minidump (. dnp file) to a core file:

m ni dunp-2-core -o 02chb4a97-ee37- 6454- 73a9d9ch- 590c7dde. core \
02ch4a97- ee37- 6454- 73a9d9cb- 590c7dde. dnmp

https://chromium.googlesource.com/breakpad/breakpad/

To view the core file with GDB (on a parcel deployment):

gdb /opt/cl ouderal parcel s/ KUDU/ | i b/ kudu/ sbi n-r el ease/ kudu- master \
-s /opt/clouderal/parcel s/ KUDU | i b/ debug/ usr/1i b/ kudu/ shi n-rel ease/ kudu- mast er. debug \
02cb4a97- ee37- 6454- 73a9d9cb- 590c7dde. cor e

For more information, see Getting started with Breakpad and Chrome developer tips for minidump file debugging.

Troubleshooting Performance Issues

Kudu Tracing
The Kudu master and tablet server daemons include built-in support for tracing based on the open source Chromium
Tracing framework. You can use tracing to diagnose latency issues or other problems on Kudu servers.
Accessing the Tracing Web Interface

The tracing interface is part of the embedded web server in each of the Kudu daemons, and can be accessed using a
web browser. Note that while the interface has been known to work in recent versions of Google Chrome, other
browsers may not work as expected.

Daemon URL
Tablet Server <t abl et - server- 1. exanpl e. con»: 8050/t raci ng. ht m
Master <mast er - 1. exanpl e. con®: 8051/ traci ng. ht m

Saving Traces

After you have collected traces, you can save these traces as JSON files by clicking Save. To load and analyze a saved
JSON file, click Load and choose the file.

RPC Timeout Traces

If client applications are experiencing RPC timeouts, the Kudu tablet server WARNI NG level logs should contain a log
entry which includes an RPC-level trace. For example:

W)922 00: 56: 52. 313848 10858 i nbound_cal | .cc: 193] Cal

kudu. consensus. ConsensusSer vi ce. Updat eConsensus

from 192. 168. 1. 102: 43499 (request call id 3555909) took 1464nms (client timeout 1000).

W)922 00: 56: 52. 314888 10858 i nbound_call.cc:197] Trace:

0922 00: 56: 50. 849505 (+ Ous) service_pool.cc:97] Inserting onto call queue

0922 00: 56: 50. 849527 (+ 22us) service_pool.cc: 158] Handling cal

0922 00: 56: 50. 849574 (+ 47us) raft_consensus. cc: 1008] Updating replica for 2 ops

0922 00: 56: 50. 849628 (+ 54us) raft_consensus. cc: 1050] Early marking committed up to
term 8 index: 880241

0922 00: 56: 50. 849968 (+ 340us) raft_consensus. cc: 1056] Triggering prepare for 2 ops

0922 00: 56: 50. 850119 (+ 151us) | og.cc:420] Serialized 1555 byte log entry

0922 00: 56: 50. 850213 (+ 94us) raft_consensus.cc: 1131] Marking commtted up to term
8 index: 880241

0922 00: 56: 50. 850218 (+ 5us) raft_consensus.cc: 1148] Updating | ast received op as

term 8 index: 880243

0922 00: 56: 50. 850219 (+ lus) raft_consensus.cc:1195] Filling consensus response to
| eader.

0922 00: 56: 50. 850221 (+ 2us) raft_consensus.cc: 1169] Waiting on the replicates to

finish | ogging

0922 00: 56: 52. 313763 (+1463542us) raft_consensus. cc: 1182] fini shed

0922 00: 56: 52. 313764 (+ lus) raft_consensus. cc: 1190] Updat eReplicas() finished
0922 00: 56:52.313788 (+ 24us) inbound_call.cc:114] Queuei ng success response

These traces can indicate which part of the request was slow. Make sure you include them when filing bug reports
related to RPC latency outliers.

https://chromium.googlesource.com/breakpad/breakpad/%2B/master/docs/getting_started_with_breakpad.md
https://chromium.googlesource.com/chromium/src/%2B/master/docs/linux_minidump_to_core.md
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool

Kernel Stack Watchdog Traces

Each Kudu server process has a background thread called the Stack Watchdog, which monitors other threads in the
server in case they are blocked for longer-than-expected periods of time. These traces can indicate operating system
issues or bottle-necked storage.

When the watchdog thread identifies a case of thread blockage, it logs an entry in the WARNI NGlog as follows:

W)921 23:51:54. 306350 10912 kernel _stack_watchdog. cc: 111] Thread 10937 stuck at
/ dat a/ kudu/ consensus/ | og. cc: 505 for 537ms:

Ker nel stack:
<ffffffffa00b209d>] do_get_write_access+0x29d/ 0x520 [bd2]
<ffffffffa00b2471>] jbd2_journal _get_wite_access+0x31/0x50 [j bd2]
<ffffffffaOOf e6d8>] _ ext4_journal _get_wite_access+0x38/0x80 [ext4]
<ffffffffa00d9bh23>] ext4_reserve_i node_wite+0x73/0xa0 [ext4]
<ffffffffa00d9b9c>] ext4_mark_i node_dirty+0x4c/ 0x1d0 [ext 4]
<ffffffffa00d9e90>] ext4_dirty_i node+0x40/ 0x60 [ext 4]
<ffffffff8llac48b>] _ mark_i node_dirty+0x3b/ 0x160
<ffffffff8119c742>] file_update_tinme+0xf2/0x170
<ffffffff8lllcle0>] _ generic_file_ai o_wite+0x230/0x490
<ffffffff81l11lc4c8>] generic_file_aio_wite+0x88/ 0x100
<ffffffffa00d3fbl>] ext4 file_wite+0x61/0x1le0 [ext4]
<ffffffff81180f5b>] do_sync_readv_writev+0xfb/0x140
<ffffffff8118lee6>] do_readv_writev+0xd6/0x1fO
<ffffffff81182046>] vfs_witev+0x46/0x60
<ffffffff81182102>] sys_pwitev+0xa2/ 0xc0
<ffffffff8100b072>] system call _fastpat h+0x16/0x1lb
<ffffffffffffffff>] OXFfffffffffffeffef
User stack:

@ Ox3alacelOc4 (unknown)

@ 0x1262103 (unknown)

@ 0x12622d4 (unknown)

@ 0x12603df (unknown)

@ 0x8e7bfb (unknown)

@ 0x8f 478b (unknown)

@ 0x8f 55db (unknown)

@ 0x12a7b6f (unknown)

@ 0x3al1b007851 (unknown)

@ Ox3alace894d (unknown)

@ (nil) (unknown)

These traces can be useful for diagnosing root-cause latency issues in Kudu especially when they are caused by underlying
systems such as disk controllers or file systems.
Slow Name Resolution and nscd

For better scalability on nodes hosting many replicas, we recommend that you use nscd (name service cache daemon)
to cache both DNS name resolution and static name resolution (via / et c/ host s).

When DNS lookups are slow, you will see a log message similar to the following:

WD926 11:19:01.339553 27231 net _util.cc:129] Tine spent
kudu-tserver. exanpl e.com real 4.647s user

resol ving address for
0. 000s sys 0.000s

nscd can alleviate slow name resolution by providing a cache for the most common name service requests, such as
for passwords, groups, and hosts.
Refer to your operating system documentation for how to install and enable nscd.

Consult your operating system's documentation for how to install and enable nscd.

Usability Issues

ClassNotFoundException: com.cloudera.kudu.hive.KuduStorageHandler

You will encounter this exception when you try to access a Kudu table using Hive. This is not a case of a missing jar,
but simply that Impala stores Kudu metadata in Hive in a format that is unreadable to other tools, including Hive itself.
and Spark. Currently, there is no workaround for Hive users. Spark users can work around this by creating temporary
tables.

Runtime error: Could not create thread: Resource temporarily unavailable (error 11)

You will encounter this error when Kudu is unable to create more threads, usually on versions older than CDH 5.15 /
Kudu 1.7. It happens on tablet servers, and is a sign that the tablet server hosts too many tablet replicas.

To fix the issue, you can raise the npr oc ulimit as detailed in the documentation for your operating system or distribution.

However, the better solution is to reduce the number of replicas on the tablet server. This may involve rethinking the
table's partitioning schema. For the recommended limits on number of replicas per tablet server, see the known issues
and scaling limitations documentation.

Tombstoned or STOPPED tablet replicas

You may notice some replicas on a tablet server are in a STOPPED state and remain on the server indefinitely. These
replicas are tombstones. A tombstone indicates that the tablet server once held a bona fide replica of its tablet. For
example, in case a tablet server goes down and its replicas are re-replicated elsewhere, if the tablet server rejoins the
cluster, its replicas will become tombstones. A tombstone will remain until the table it belongs to is deleted, or a new
replica of the same tablet is placed on the tablet server. A count of tombstoned replicas and details of each one are
available onthe/ t abl et s page of the tablet server web Ul. The Raft consensus algorithm that Kudu uses for replication
requires tombstones for correctness in certain rare situations. They consume minimal resources and hold no data.
They must not be deleted.

Corruption: checksum error on CFile block

If the data on disk becomes corrupt, you will encounter warnings containing "Corruption: checksum error on CFile
block" in the tablet server logs and client side errors when trying to scan tablets with corrupt CFile blocks. Fixing this
corruption is a manual process.

To fix the issue, first identify all the affected tablets by running a checksum scan on the affected tables or tablets using
the ksck tool.

sudo -u kudu kudu cl uster ksck <master_addresses> -checksum scan -t abl es=<t abl es>
sudo -u kudu kudu cluster ksck <naster_addresses> -checksum scan -t abl et s=<t abl et s>

If there is at least one replica for each tablet that does not return a corruption error, you can repair the bad copies by
deleting them and forcing them to be re-replicated from the leader using the remote_replica delete tool.

sudo -u kudu kudu renote_replica del ete <tserver_address> <tablet_id> "Cfile Corruption"
If all of the replica are corrupt, then some data loss has occurred. Until KUDU-2526 is completed, this can happen if
the corrupt replica became the leader and the existing follower replicas are replaced.

If data has been lost, you can repair the table by replacing the corrupt tablet with an empty one using the
unsafe_replace_tablet tool.

sudo -u kudu kudu tabl et unsafe_replace_tablet <naster_addresses> <tabl et _id>

https://kudu.apache.org/docs/command_line_tools_reference.html#cluster-ksck
https://kudu.apache.org/docs/command_line_tools_reference.html#remote_replica-delete
https://issues.apache.org/jira/browse/KUDU-2526
https://kudu.apache.org/docs/command_line_tools_reference.html#tablet-unsafe_replace_tablet

More Resources for Apache Kudu

The following is a list of resources that may help you to understand some of the architectural features of Apache Kudu
and columnar data storage. The links further down tend toward the academic and are not required reading in order
to understand how to install, use, and administer Kudu.

Kudu Project
Read the official Kudu documentation and learn how you can get involved.
Kudu Documentation

Read the official Kudu documentation, which includes more in-depth information about installation and configuration
choices.

Kudu Github Repository
Examine the Kudu source code and contribute to the project.

Kudu-Examples Github Repository
View and run several Kudu code examples, as well as the Kudu Quickstart VM.
Kudu White Paper
Read draft of the white paper discussing Kudu's architecture, written by the Kudu development team.

In Search Of An Understandable Consensus Algorithm, Diego Ongaro and John Ousterhout, Stanford University.
2014.

The original whitepaper describing the Raft consensus algorithm.
Column-Stores vs. Row-Stores: How Different Are They Really? Abadi, Madden, Hachem. 2008.

A discussion of the characteristics of column-based and row-based datastores and their characteristics under
different workloads and schemas.

Support

Bug reports and feedback can be submitted through the public JIRA, our Cloudera Community Kudu forum, and a public
mailing list monitored by the Kudu development team and community members. In addition, a public Slack instance
is available to communicate with the team.

http://kudu.apache.org/
http://kudu.apache.org/docs/index.html
http://github.com/cloudera/kudu/
http://github.com/cloudera/kudu-examples/
http://kudu.apache.org/kudu.pdf
https://raft.github.io/raft.pdf
http://db.csail.mit.edu/projects/cstore/abadi-sigmod08.pdf
https://issues.apache.org/jira/browse/KUDU/
http://community.cloudera.com/t5/Beta-Releases-Kudu-RecordService/bd-p/Beta
http://mail-archives.apache.org/mod_mbox/kudu-user/
https://getkudu-slack.herokuapp.com/

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and

2. You must cause any modified files to carry prominent notices stating that You changed the files; and

3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,
and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[1" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [nane of copyright owner]

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/licenses/ LI CENSE-2.0

Unl ess required by applicable |aw or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.
See the License for the specific |anguage governi ng permn ssions and
limtations under the License.

	Table of Contents
	Apache Kudu Overview
	Kudu-Impala Integration
	Example Use Cases
	Related Information

	Apache Kudu Concepts and Architecture
	Columnar Datastore
	Raft Consensus Algorithm
	Table
	Tablet
	Tablet Server
	Master
	Catalog Table
	Logical Replication
	Architectural Overview

	Apache Kudu Requirements
	Overview of Apache Kudu Installation and Upgrade in CDH
	Platform Requirements
	Installing Kudu
	Upgrading Kudu

	Apache Kudu Usage Limitations
	Schema Design Limitations
	Partitioning Limitations
	Scaling Recommendations and Limitations
	Server Management Limitations
	Cluster Management Limitations
	Replication and Backup Limitations
	Impala Integration Limitations
	Spark Integration Limitations
	Security Limitations

	Apache Kudu Configuration
	Configuring the Kudu Master
	Configuring Tablet Servers

	Apache Kudu Administration
	Starting and Stopping Kudu Processes
	Kudu Web Interfaces
	Kudu Master Web Interface
	Kudu Tablet Server Web Interface
	Common Web Interface Pages

	Kudu Metrics
	Listing Available Metrics
	Collecting Metrics via HTTP
	Collecting Metrics to a Log

	Common Kudu Workflows
	Migrating to Multiple Kudu Masters
	Prepare for the migration
	Perform the migration

	Recovering from a Dead Kudu Master in a Multi-Master Deployment
	Prepare for the recovery
	Perform the recovery

	Removing Kudu Masters from a Multi-Master Deployment
	Prepare for removal
	Perform the removal

	Changing Master Hostnames
	Prepare for Hostname Changes
	Perform Hostname Changes

	Monitoring Cluster Health with ksck
	Bringing a Tablet That Has Lost a Majority of Replicas Back Online
	Rebuilding a Kudu Filesystem Layout
	Physical Backups of an Entire Node
	Scaling Storage on Kudu Master and Tablet Servers in the Cloud

	Managing Kudu Using Cloudera Manager
	Installing and Upgrading the Kudu Service
	Enabling Core Dump for the Kudu Service
	Verifying the Impala Dependency on Kudu
	Using the Charts Library with the Kudu Service

	Developing Applications With Apache Kudu
	Viewing the API Documentation
	Kudu Example Applications
	Maven Artifacts
	Building the Java Client
	Kudu Python Client
	Example Apache Impala Commands With Kudu
	Kudu Integration with Spark
	

	Integration with MapReduce, YARN, and Other Frameworks

	Using Apache Impala with Kudu
	Impala Database Containment Model
	Internal and External Impala Tables
	Using Impala To Query Kudu Tables
	Querying an Existing Kudu Table from Impala
	Creating a New Kudu Table From Impala
	CREATE TABLE AS SELECT

	Partitioning Tables
	Optimizing Performance for Evaluating SQL Predicates
	Inserting a Row
	Inserting In Bulk
	INSERT and Primary Key Uniqueness Violations

	Updating a Row
	Updating In Bulk

	Upserting a Row
	Altering a Table
	Deleting a Row
	Deleting In Bulk

	Failures During INSERT, UPDATE, UPSERT, and DELETE Operations
	Altering Table Properties
	Dropping a Kudu Table using Impala

	Security Considerations
	Known Issues and Limitations
	Next Steps

	Kudu Security
	Kudu Authentication with Kerberos
	Internal Private Key Infrastructure (PKI)
	Authentication Tokens
	Client Authentication to Secure Kudu Clusters

	Scalability
	Encryption
	Coarse-grained Authorization
	Web UI Encryption
	Web UI Redaction
	Log Redaction
	Configuring a Secure Kudu Cluster using Cloudera Manager
	Configuring a Secure Kudu Cluster using the Command Line

	Apache Kudu Schema Design
	The Perfect Schema
	Column Design
	Column Encoding
	Column Compression

	Primary Key Design
	Primary Key Index
	Considerations for Backfill Inserts

	Partitioning
	Range Partitioning
	Hash Partitioning
	Multilevel Partitioning
	Partition Pruning
	Partitioning Examples

	Schema Alterations
	Schema Design Limitations

	Apache Kudu Transaction Semantics
	Single Tablet Write Operations
	Writing to Multiple Tablets
	Read Operations (Scans)
	Known Issues and Limitations
	Writes
	Reads (Scans)

	Apache Kudu Background Maintenance Tasks
	Troubleshooting Apache Kudu
	Issues Starting or Restarting the Master or Tablet Server
	Errors During Hole Punching Test
	NTP Clock Synchronization Issues

	Disk Space Usage
	Reporting Kudu Crashes Using Breakpad
	Troubleshooting Performance Issues
	Kudu Tracing
	Slow Name Resolution and nscd

	Usability Issues
	ClassNotFoundException: com.cloudera.kudu.hive.KuduStorageHandler

	Runtime error: Could not create thread: Resource temporarily unavailable (error 11)
	Tombstoned or STOPPED tablet replicas
	Corruption: checksum error on CFile block

	More Resources for Apache Kudu
	Appendix: Apache License, Version 2.0

