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Apache HBase Guide

Apache HBase is a scalable, distributed, column-oriented datastore. Apache HBase provides real-time read/write
random access to very large datasets hosted on HDFS.

Configuration Settings
HBase has a number of settings that you need to configure. For information, see Configuration Settings for HBase on
page 35.

By default, HBase ships configured for standalone mode. In this mode of operation, a single JVM hosts the HBase
Master, an HBase RegionServer, and a ZooKeeper quorum peer. HBase stores your data in a location on the local
filesystem, rather than using HDFS. Standalone mode is only appropriate for initial testing.

Pseudo-distributedmode differs from standalonemode in that each of the component processes run in a separate
JVM. It differs from distributedmode in that each of the separate processes run on the same server, rather thanmultiple
servers in a cluster. For more information, see Configuring HBase in Pseudo-Distributed Mode on page 24.

Managing HBase
You canmanage and configure various aspects of HBase using ClouderaManager. For more information, seeManaging
HBase on page 44.

HBase Security
For the most part, securing an HBase cluster is a one-way operation, and moving from a secure to an unsecure
configuration should not be attempted without contacting Cloudera support for guidance. For an overview security in
HBase, see Managing HBase Security on page 112.

For information about authentication and authorization with HBase, see HBase Authentication and Configuring HBase
Authorization.

HBase Replication
If your data is already in an HBase cluster, replication is useful for getting the data into additional HBase clusters. In
HBase, cluster replication refers to keeping one cluster state synchronized with that of another cluster, using the
write-ahead log (WAL) of the source cluster to propagate the changes. Replication is enabled at column family granularity.
Before enabling replication for a column family, create the table and all column families to be replicated, on the
destination cluster.

Cluster replication uses an active-push methodology. An HBase cluster can be a source (also called active, meaning
that it writes new data), a destination (also called passive, meaning that it receives data using replication), or can fulfill
both roles at once. Replication is asynchronous, and the goal of replication is consistency.

When data is replicated from one cluster to another, the original source of the data is tracked with a cluster ID, which
is part of the metadata. In CDH 5, all clusters that have already consumed the data are also tracked. This prevents
replication loops.

For more information about replication in HBase, see HBase Replication on page 117.
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HBase High Availability
Most aspects of HBase are highly available in a standard configuration. A cluster typically consists of one Master and
three or more RegionServers, with data stored in HDFS. To ensure that every component is highly available, configure
one or more backup Masters. The backup Masters run on other hosts than the active Master.

For information about configuring high availability in HBase, see HBase High Availability on page 128.

Troubleshooting HBase
The Cloudera HBase packages have been configured to place logs in /var/log/hbase. Cloudera recommends tailing
the .log files in this directory when you start HBase to check for any error messages or failures.

For information about HBase troubleshooting, see Troubleshooting HBase on page 30.

Upstream Information for HBase
More HBase information is available on the Apache Software Foundation site on the HBase project page.

For Apache HBase documentation, see the following:

• Apache HBase Reference Guide
• Apache HBase API Guide
• Apache HBase Blogs

Because Cloudera does not support all HBase features, always check external Hive documentation against the current
version and supported features of HBase included in CDH distribution.

HBase has its own JIRA issue tracker.
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Setting Up Apache HBase Using the Command Line

Apache HBase provides large-scale tabular storage for Hadoop using the Hadoop Distributed File System (HDFS).
Cloudera recommends installing HBase in a standalone mode before you try to run it on a whole cluster.

Note: Install Cloudera Repository

Before using the instructions on this page to install or upgrade:

• Install the Cloudera yum, zypper/YaST or apt repository.
• Install or upgrade CDH 5 and make sure it is functioning correctly.

For instructions, see Installing andDeployingUnmanaged CDHUsing the Command Line andUpgrading
Unmanaged CDH Using the Command Line.

Note: Running Services

Use the service command to start, stop, and restart CDH components, instead of running scripts in
/etc/init.d directly. The service command creates a predictable environment by setting the
current working directory to / and removing most environment variables (passing only LANG and
TERM). With /etc/init.d, existing environment variables remain in force and can produce
unpredictable results. When you install CDH from packages, service is installed as part of the Linux
Standard Base (LSB).

Use the following sections to install, update, and configure HBase:

Next Steps

After installing and configuring HBase, check out the following topics about using HBase:

• Importing Data Into HBase on page 83
• Writing Data to HBase on page 81
• Reading Data from HBase on page 71

Installing HBase
To install HBase On RHEL-compatible systems:

$ sudo yum install hbase

To install HBase on Ubuntu and Debian systems:

$ sudo apt-get install hbase

To install HBase on SLES systems:

$ sudo zypper install hbase

Note: See also Starting HBase in Standalone Mode on page 22, Configuring HBase in
Pseudo-Distributed Mode on page 24, and Deploying HBase on a Cluster on page 27 for more
information on configuring HBase for different modes.
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To list the installed files on Ubuntu and Debian systems:

$ dpkg -L hbase

To list the installed files on RHEL and SLES systems:

$ rpm -ql hbase

You can see that the HBase package has been configured to conform to the Linux Filesystem Hierarchy Standard. (To
learn more, run man hier).

You are now ready to enable the server daemons you want to use with Hadoop. You can also enable Java-based client
access by adding the JAR files in /usr/lib/hbase/ and /usr/lib/hbase/lib/ to your Java class path.

New Features and Changes for HBase in CDH 5
CDH 5.0.x and 5.1.x each include major upgrades to HBase. Each of these upgrades provides exciting new features, as
well as things to keep in mind when upgrading from a previous version.

For new features and changes introduced in older CDH 5 releases, skip to CDH 5.1 HBase Changes or CDH 5.0.x HBase
Changes.

CDH 5.4 HBase Changes

CDH 5.4 introduces HBase 1.0, which represents a major upgrade to HBase. This upgrade introduces new features and
moves some features which were previously marked as experimental to fully supported status. This overview provides
information about the most important features, how to use them, and where to find out more information. Cloudera
appreciates your feedback about these features.

Highly-Available Read Replicas

CDH 5.4 introduces highly-available read replicas. Using read replicas, clients can request, on a per-read basis, a read
result using a new consistency model, timeline consistency, rather than strong consistency. The read request is sent
to the RegionServer serving the region, but also to any RegionServers hosting replicas of the region. The client receives
the read from the fastest RegionServer to respond, and receives an indication of whether the response was from the
primary RegionServer or from a replica. See HBase Read Replicas on page 128 for more details.

MultiWAL Support

CDH 5.4 introduces support for writing multiple write-ahead logs (MultiWAL) on a given RegionServer, allowing you
to increase throughput when a region writes to the WAL. See Configuring HBase MultiWAL Support on page 106.

Medium-Object (MOB) Storage

CDH 5.4 introduces a mechanism for storing objects between 100 KB and 10 MB in a default configuration, ormedium
objects, directly in HBase. Storing objects up to 50 MB is possible with additional configuration. Previously, storing
these medium objects directly in HBase could degrade performance due to write amplification caused by splits and
compactions.

MOB storage requires HFile V3.

doAs Impersonation for the Thrift Gateway

Prior to CDH 5.4, the Thrift gateway could be configured to authenticate to HBase on behalf of the client as a static
user. A new mechanism, doAs Impersonation, allows the client to authenticate as any HBase user on a per-call basis
for a higher level of security and flexibility.

Namespace Create Authorization

Prior to CDH 5.4, only global admins could create namespaces. Now, a Namespace Create authorization can be assigned
to a user, who can then create namespaces.
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Authorization to List Namespaces and Tables

Prior to CDH 5.4, authorization checks were not performed on list namespace and list table operations, so you could
list the names of tany tables or namespaces, regardless of your authorization. In CDH 5.4, you are not able to list
namespaces or tables you do not have authorization to access.

Crunch API Changes for HBase

In CDH 5.4, Apache Crunch adds the following API changes for HBase:

• HBaseTypes.cells() was added to support serializing HBase Cell objects.
• Each method of HFileUtils now supports PCollection<C extends Cell>, which includes both

PCollection<KeyValue> and PCollection<Cell>, on their method signatures.
• HFileTarget, HBaseTarget, and HBaseSourceTarget each support any subclass of Cell as an output type.

HFileSource and HBaseSourceTarget still return KeyValue as the input type for backward-compatibility
with existing Crunch pipelines.

ZooKeeper 3.4 Is Required

HBase 1.0 requires ZooKeeper 3.4.

HBase API Changes for CDH 5.4

CDH 5.4.0 introduces HBase 1.0, which includes some major changes to the HBase APIs. Besides the changes listed
above, some APIs have been deprecated in favor of new public APIs.

• The HConnection API is deprecated in favor of Connection.
• The HConnectionManager API is deprecated in favor of ConnectionFactory.
• The HTable API is deprecated in favor of Table.
• The HTableAdmin API is deprecated in favor of Admin.

HBase 1.0 API Example

Configuration conf = HBaseConfiguration.create();
try (Connection connection = ConnectionFactory.createConnection(conf)) {
  try (Table table = connection.getTable(TableName.valueOf(tablename)) {
    // use table as needed, the table returned is lightweight
  }
}

CDH 5.3 HBase Changes

CDH 5.4 introduces HBase 0.98.6, which represents a minor upgrade to HBase. CDH 5.3 provides
checkAndMutate(RowMutations), in addition to existing support for atomic checkAndPut as well as
checkAndDelete operations on individual rows (HBASE-11796).

SlabCache Has Been Deprecated

SlabCache, which was marked as deprecated in CDH 5.2, has been removed in CDH 5.3. To configure the BlockCache,
see Configuring the HBase BlockCache on page 63.

checkAndMutate(RowMutations) API

CDH 5.3 provides checkAndMutate(RowMutations), in addition to existing support for atomic checkAndPut as
well as checkAndDelete operations on individual rows (HBASE-11796).

CDH 5.2 HBase Changes

CDH 5.2 introduces HBase 0.98.6, which represents a minor upgrade to HBase. This upgrade introduces new features
and moves some features which were previously marked as experimental to fully supported status. This overview
provides information about the most important features, how to use them, and where to find out more information.
Cloudera appreciates your feedback about these features.
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JAVA_HOMEmust be set in your environment.

HBase now requires JAVA_HOME to be set in your environment. If it is not set, HBase will fail to start and an error will
be logged. If you use ClouderaManager, this is set automatically. If you use CDHwithout ClouderaManager, JAVA_HOME
should be set up as part of the overall installation. See Step 2: Install Java Development Kit for instructions on setting
JAVA_HOME, as well as other JDK-specific instructions.

The default value for hbase.hstore.flusher.count has increased from 1 to 2.

The default value for hbase.hstore.flusher.count has been increased from one thread to two. This new
configuration can improve performancewhenwriting to HBase under someworkloads. However, for high IOworkloads
two flusher threads can create additional contention when writing to HDFS. If after upgrading to CDH 5.2. you see an
increase in flush times or performance degradation, lowering this value to 1 is recommended. Use the RegionServer's
advanced configuration snippet for hbase-site.xml if you use Cloudera Manager, or edit the file directly otherwise.

The default value for hbase.hregion.memstore.block.multiplier has increased from 2 to 4.

The default value for hbase.hregion.memstore.block.multiplier has increased from 2 to 4 to improve both
throughput and latency. If you experience performance degradation due to this change, change the value setting to
2, using the RegionServer's advanced configuration snippet for hbase-site.xml if you use Cloudera Manager, or
by editing the file directly otherwise.

SlabCache is deprecated, and BucketCache is now the default block cache.

CDH 5.1 provided full support for the BucketCache block cache. CDH 5.2 deprecates usage of SlabCache in favor of
BucketCache. To configure BucketCache, see BucketCache Block Cache on page 16

Changed Syntax of user_permissions Shell Command

The pattern-matching behavior for the user_permissions HBase Shell command has changed. Previously, either of
the following two commands would return permissions of all known users in HBase:

•hbase> user_permissions '*'

•hbase> user_permissions '.*'

The first variant is no longer supported. The second variant is the only supported operation and also supports passing
in other Java regular expressions.

New Properties for IPC Configuration

If the Hadoop configuration is read after the HBase configuration, Hadoop's settings can override HBase's settings if
the names of the settings are the same. To avoid the risk of override, HBase has renamed the following settings (by
prepending 'hbase.') so that you can set them independent of your setting for Hadoop. If you do not use the
HBase-specific variants, the Hadoop settings will be used. If you have not experienced issues with your configuration,
there is no need to change it.

New HBase Configuration PropertyHadoop Configuration Property

hbase.ipc.server.listen.queue.sizeipc.server.listen.queue.size

hbase.ipc.server.max.callqueue.sizeipc.server.max.callqueue.size

hbase.ipc.server.max.callqueue.lengthipc.server.max.callqueue.length

hbase.ipc.server.read.threadpool.sizeipc.server.read.threadpool.size

hbase.ipc.server.tcpkeepaliveipc.server.tcpkeepalive

hbase.ipc.server.tcpnodelayipc.server.tcpnodelay

hbase.ipc.client.call.purge.timeoutipc.client.call.purge.timeout
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New HBase Configuration PropertyHadoop Configuration Property

hbase.ipc.client.connection.maxidletimeipc.client.connection.maxidletime

hbase.ipc.client.idlethresholdipc.client.idlethreshold

hbase.ipc.client.kill.maxipc.client.kill.max

Snapshot Manifest Configuration

Snapshot manifests were previously a feature included in HBase in CDH 5 but not in Apache HBase. They are now
included in ApacheHBase 0.98.6. To use snapshotmanifests, you nowneed to sethbase.snapshot.format.version
to 2 in hbase-site.xml. This is the default for HBase in CDH 5.2, but the default for Apache HBase 0.98.6 is 1. To
edit the configuration, use an Advanced Configuration Snippet if you use Cloudera Manager, or edit the file directly
otherwise. The new snapshot code can read both version 1 and 2. However, if you use version 2, you will not be able
to read these snapshots on HBase versions prior to 0.98.

Not using manifests (setting hbase.snapshot.format.version to 1) can cause excess load on the NameNode and
impact performance.

Tags

Tags, which allow metadata to be stored in HFiles alongside cell data, are a feature of HFile version 3, are needed for
per-cell access controls and visibility labels. Tags were previously considered an experimental feature but are now fully
supported.

Per-Cell Access Controls

Per-cell access controls were introduced as an experimental feature in CDH 5.1 and are fully supported in CDH 5.2.
You must use HFile version 3 to use per-cell access controls. For more information about access controls, see Per-Cell
Access Controls on page 19.

Experimental Features

Warning: These features are still considered experimental. Experimental features are not supported
and Cloudera does not recommend using them in production environments or with important data.

Visibility Labels

You can now specify a list of visibility labels, such as CONFIDENTIAL, TOPSECRET, or PUBLIC, at the cell level. You can
associate userswith these labels to enforce visibility of HBase data. These labels can be grouped into complex expressions
using logical operators &, |, and ! (AND, OR, NOT). A given user is associated with a set of visibility labels, and the
policy for associating the labels is pluggable. A coprocessor,
org.apache.hadoop.hbase.security.visibility.DefaultScanLabelGenerator, checks for visibility labels
on cells thatwould be returned by aGet or Scan and drops the cells that a user is not authorized to see, before returning
the results. The same coprocessor saves visibility labels as tags, in the HFiles alongside the cell data, when a Put
operation includes visibility labels. You can specify custom implementations of ScanLabelGenerator by setting the
property hbase.regionserver.scan.visibility.label.generator.class to a comma-separated list of
classes in hbase-site.xml. To edit the configuration, use an Advanced Configuration Snippet if you use Cloudera
Manager, or edit the file directly otherwise.

No labels are configured by default. You can add a label to the system using either the
VisibilityClient#addLabels() API or the add_label shell command. Similar APIs and shell commands are
provided for deleting labels and assigning them to users. Only a user with superuser access (the hbase.superuser
access level) can perform these operations.

To assign a visibility label to a cell, you can label the cell using the API method Mutation#setCellVisibility(new
CellVisibility(<labelExp>));. An API is provided for managing visibility labels, and you can also performmany
of the operations using HBase Shell.
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Previously, visibility labels could not contain the symbols &, |, !, ( and ), but this is no longer the case.

For more information about visibility labels, see the Visibility Labels section of the Apache HBase Reference Guide.

If you use visibility labels along with access controls, you must ensure that the Access Controller is loaded before the
Visibility Controller in the list of coprocessors. This is the default configuration. See HBASE-11275.

Visibility labels are an experimental feature introduced in CDH 5.1, and still experimental in CDH 5.2.

Transparent Server-Side Encryption

Transparent server-side encryption can now be enabled for both HFiles and write-ahead logs (WALs), to protect their
contents at rest. To configure transparent encryption, first create an encryption key, then configure the appropriate
settings in hbase-site.xml . To edit the configuration, use an Advanced Configuration Snippet if you use Cloudera
Manager, or edit the file directly otherwise. See the Transparent Encryption section in the Apache HBase Reference
Guide for more information.

Transparent server-side encryption is an experimental feature introduced in CDH 5.1, and still experimental in CDH
5.2.
Stripe Compaction

Stripe compaction is a compaction scheme that segregates the data inside a region by row key, creating "stripes" of
data which are visible within the region but transparent to normal operations. This striping improves read performance
in common scenarios and greatly reduces variability by avoiding large or inefficient compactions.

Configuration guidelines and more information are available at Stripe Compaction.

To configure stripe compaction for a single table from within the HBase shell, use the following syntax.

alter <table>, CONFIGURATION => {<setting> => <value>}
 Example: alter 'orders', CONFIGURATION => {'hbase.store.stripe.fixed.count' => 10}

To configure stripe compaction for a column family from within the HBase shell, use the following syntax.

alter <table>, {NAME => <column family>, CONFIGURATION => {<setting => <value>}}
 Example: alter 'logs', {NAME => 'blobs', CONFIGURATION => 
{'hbase.store.stripe.fixed.count' => 10}}

Stripe compaction is an experimental feature in CDH 5.1, and still experimental in CDH 5.2.

CDH 5.1 HBase Changes

CDH 5.1 introduces HBase 0.98, which represents a major upgrade to HBase. This upgrade introduces several new
features, including a section of features which are considered experimental and should not be used in a production
environment. This overview provides information about the most important features, how to use them, and where to
find out more information. Cloudera appreciates your feedback about these features.

In addition toHBase 0.98, Cloudera has pulled in changes fromHBASE-10883, HBASE-10964, HBASE-10823, HBASE-10916,
and HBASE-11275. Implications of these changes are detailed below and in the Release Notes.

BucketCache Block Cache

A new offheap BlockCache implementation, BucketCache, was introduced as an experimental feature in CDH 5 Beta
1, and is now fully supported in CDH 5.1. BucketCache can be used in either of the following two configurations:

• As a CombinedBlockCache with both onheap and offheap caches.
• As an L2 cache for the default onheap LruBlockCache

BucketCache requires less garbage-collection than SlabCache, which is the other offheap cache implementation in
HBase. It also has many optional configuration settings for fine-tuning. All available settings are documented in the
API documentation for CombinedBlockCache. Following is a simple example configuration.
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1. First, edit hbase-env.sh and set -XX:MaxDirectMemorySize to the total size of the desired onheap plus
offheap, in this case, 5 GB (but expressed as 5G). To edit the configuration, use an Advanced Configuration Snippet
if you use Cloudera Manager, or edit the file directly otherwise.

-XX:MaxDirectMemorySize=5G

2. Next, add the following configuration tohbase-site.xml. To edit the configuration, use anAdvancedConfiguration
Snippet if you use Cloudera Manager, or edit the file directly otherwise. This configuration uses 80% of the
-XX:MaxDirectMemorySize (4 GB) for offheap, and the remainder (1 GB) for onheap.

<property>
  <name>hbase.bucketcache.ioengine</name>
  <value>offheap</value>
</property>
<property>
  <name>hbase.bucketcache.percentage.in.combinedcache</name>
  <value>0.8</value>
</property>
<property>
  <name>hbase.bucketcache.size</name>
  <value>5120</value>
</property>

3. Restart or rolling restart your cluster for the configuration to take effect.

Access Control for EXEC Permissions

A new access control level has been added to check whether a given user has EXEC permission. This can be specified
at the level of the cluster, table, row, or cell.

To use EXEC permissions, perform the following procedure.

• Install the AccessController coprocessor either as a system coprocessor or on a table as a table coprocessor.
• Set the hbase.security.exec.permission.checks configuration setting in hbase-site.xml to true To

edit the configuration, use an Advanced Configuration Snippet if you use ClouderaManager, or edit the file directly
otherwise..

Formore information on setting and revoking security permissions, see the Access Control section of theApache HBase
Reference Guide.

Reverse Scan API

A reverse scan API has been introduced. This allows you to scan a table in reverse. Previously, if you wanted to be able
to access your data in either direction, you needed to store the data in two separate tables, each ordered differently.
This feature was implemented in HBASE-4811.

To use the reverse scan feature, use the newScan.setReversed(boolean reversed)API. If you specify a startRow
and stopRow, to scan in reverse, the startRow needs to be lexicographically after the stopRow. See the Scan API
documentation for more information.

MapReduce Over Snapshots

You can now run a MapReduce job over a snapshot from HBase, rather than being limited to live data. This provides
the ability to separate your client-sidework load from your live cluster if you need to run resource-intensiveMapReduce
jobs and can tolerate using potentially-stale data. You can either run theMapReduce job on the snapshot within HBase,
or export the snapshot and run the MapReduce job against the exported file.

Running aMapReduce job on an exported file outside of the scope of HBase relies on the permissions of the underlying
filesystem and server, and bypasses ACLs, visibility labels, and encryption that may otherwise be provided by your
HBase cluster.

A new API, TableSnapshotInputFormat, is provided. For more information, see TableSnapshotInputFormat.

MapReduce over snapshots was introduced in CDH 5.0.
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Stateless Streaming Scanner over REST

A new stateless streaming scanner is available over the REST API. Using this scanner, clients do not need to restart a
scan if the REST server experiences a transient failure. All query parameters are specified during the REST request.
Query parameters include startrow, endrow, columns, starttime, endtime, maxversions, batchtime, and
limit. Following are a few examples of using the stateless streaming scanner.

Scan the entire table, return the results in JSON.

curl -H "Accept: application/json" https://localhost:8080/ExampleScanner/*

Scan the entire table, return the results in XML.

curl -H "Content-Type: text/xml" https://localhost:8080/ExampleScanner/*

Scan only the first row.

curl -H "Content-Type: text/xml" \
https://localhost:8080/ExampleScanner/*?limit=1

Scan only specific columns.

curl -H "Content-Type: text/xml" \
https://localhost:8080/ExampleScanner/*?columns=a:1,b:1

Scan for rows between starttime and endtime.

curl -H "Content-Type: text/xml" \
https://localhost:8080/ExampleScanner/*?starttime=1389900769772\
&endtime=1389900800000

Scan for a given row prefix.

curl -H "Content-Type: text/xml" https://localhost:8080/ExampleScanner/test*

For full details about the stateless streaming scanner, see the API documentation for this feature.

Delete Methods of Put Class Now Use Constructor Timestamps

The Delete()methods of the Put class of the HBase Client API previously ignored the constructor's timestamp, and
used the value of HConstants.LATEST_TIMESTAMP. This behavior was different from the behavior of the add()
methods. The Delete()methods now use the timestamp from the constructor, creating consistency in behavior
across the Put class. See HBASE-10964.

Experimental Features

Warning: These features are still considered experimental. Experimental features are not supported
and Cloudera does not recommend using them in production environments or with important data.

Visibility Labels

You can now specify a list of visibility labels, such as CONFIDENTIAL, TOPSECRET, or PUBLIC, at the cell level. You can
associate userswith these labels to enforce visibility of HBase data. These labels can be grouped into complex expressions
using logical operators &, |, and ! (AND, OR, NOT). A given user is associated with a set of visibility labels, and the
policy for associating the labels is pluggable. A coprocessor,
org.apache.hadoop.hbase.security.visibility.DefaultScanLabelGenerator, checks for visibility labels
on cells thatwould be returned by aGet or Scan and drops the cells that a user is not authorized to see, before returning
the results. The same coprocessor saves visibility labels as tags, in the HFiles alongside the cell data, when a Put
operation includes visibility labels. You can specify custom implementations of ScanLabelGenerator by setting the
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property hbase.regionserver.scan.visibility.label.generator.class to a comma-separated list of
classes.

No labels are configured by default. You can add a label to the system using either the
VisibilityClient#addLabels() API or the add_label shell command. Similar APIs and shell commands are
provided for deleting labels and assigning them to users. Only a user with superuser access (the hbase.superuser
access level) can perform these operations.

To assign a visibility label to a cell, you can label the cell using the API method Mutation#setCellVisibility(new
CellVisibility(<labelExp>));.

Visibility labels and request authorizations cannot contain the symbols &, |, !, ( and ) because they are reserved for
constructing visibility expressions. See HBASE-10883.

For more information about visibility labels, see the Visibility Labels section of the Apache HBase Reference Guide.

If you use visibility labels along with access controls, you must ensure that the Access Controller is loaded before the
Visibility Controller in the list of coprocessors. This is the default configuration. See HBASE-11275.

To use per-cell access controls or visibility labels, you must use HFile version 3. To enable HFile version 3, add the
following to hbase-site.xml, using an advanced code snippet if you use Cloudera Manager, or directly to the file if
your deployment is unmanaged.. Changes will take effect after the next major compaction.

<property>
  <name>hfile.format.version</name>
  <value>3</value>
</property>

Visibility labels are an experimental feature introduced in CDH 5.1.

Per-Cell Access Controls

You can now specify access control levels at the per-cell level, as well as at the level of the cluster, table, or row.

A new parent class has been provided, which encompasses Get, Scan, and Query. This change also moves the
getFilter and setFiltermethods of Get and Scan to the common parent class. Client code may need to be
recompiled to take advantage of per-cell ACLs. See the Access Control section of the Apache HBase Reference Guide
for more information.

The ACLS for cells having timestamps in the future are not considered for authorizing the pendingmutation operations.
See HBASE-10823.

If you use visibility labels along with access controls, you must ensure that the Access Controller is loaded before the
Visibility Controller in the list of coprocessors. This is the default configuration.

To use per-cell access controls or visibility labels, you must use HFile version 3. To enable HFile version 3, add the
following to hbase-site.xml, using an advanced code snippet if you use Cloudera Manager, or directly to the file if
your deployment is unmanaged.. Changes will take effect after the next major compaction.

<property>
  <name>hfile.format.version</name>
  <value>3</value>
</property>

Per-cell access controls are an experimental feature introduced in CDH 5.1.
Transparent Server-Side Encryption

Transparent server-side encryption can now be enabled for both HFiles and write-ahead logs (WALs), to protect their
contents at rest. To configure transparent encryption, first create an encryption key, then configure the appropriate
settings in hbase-site.xml . See the Transparent Encryption section in the Apache HBase Reference Guide for more
information.

Transparent server-side encryption is an experimental feature introduced in CDH 5.1.
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Stripe Compaction

Stripe compaction is a compaction scheme that segregates the data inside a region by row key, creating "stripes" of
data which are visible within the region but transparent to normal operations. This striping improves read performance
in common scenarios and greatly reduces variability by avoiding large or inefficient compactions.

Configuration guidelines and more information are available at Stripe Compaction.

To configure stripe compaction for a single table from within the HBase shell, use the following syntax.

alter <table>, CONFIGURATION => {<setting> => <value>}
 Example: alter 'orders', CONFIGURATION => {'hbase.store.stripe.fixed.count' => 10}

To configure stripe compaction for a column family from within the HBase shell, use the following syntax.

alter <table>, {NAME => <column family>, CONFIGURATION => {<setting => <value>}}
 Example: alter 'logs', {NAME => 'blobs', CONFIGURATION => 
{'hbase.store.stripe.fixed.count' => 10}}

Stripe compaction is an experimental feature in CDH 5.1.

Distributed Log Replay

After a RegionServer fails, its failed region is assigned to another RegionServer, which is marked as "recovering" in
ZooKeeper. A SplitLogWorker directly replays edits from the WAL of the failed RegionServer to the region at its new
location. When a region is in "recovering" state, it can accept writes but no reads (including Append and Increment),
region splits or merges. Distributed Log Replay extends the distributed log splitting framework. It works by directly
replaying WAL edits to another RegionServer instead of creating recovered.edits files.

Distributed log replay provides the following advantages over using the current distributed log splitting functionality
on its own.

• It eliminates the overhead of writing and reading a large number of recovered.edits files. It is not unusual for
thousands of recovered.edits files to be created and written concurrently during a RegionServer recovery. Many
small random writes can degrade overall system performance.

• It allows writes even when a region is in recovering state. It only takes seconds for a recovering region to accept
writes again.

To enable distributed log replay, set hbase.master.distributed.log.replay to true. You must also enable
HFile version 3. Distributed log replay is unsafe for rolling upgrades.

Distributed log replay is an experimental feature in CDH 5.1.

CDH 5.0.x HBase Changes

HBase in CDH 5.0.x is based on the Apache HBase 0.96 release. When upgrading to CDH 5.0.x, keep the following in
mind.

Upgrade is Not Reversible

The upgrade fromCDH4HBase to CDH 5HBase is irreversible and requires HBase to be shut down completely. Executing
the upgrade script reorganizes existing HBase data stored on HDFS into new directory structures, converts HBase 0.90
HFile v1 files to the improved and optimized HBase 0.96 HFile v2 file format, and rewrites the hbase.version file.
This upgrade also removes transient data stored in ZooKeeper during the conversion to the new data format.

These changes were made to reduce the impact in future major upgrades. Previously HBase used brittle custom data
formats and this move shifts HBase's RPC and persistent data to a more evolvable Protocol Buffer data format.

API Changes

The HBase User API (Get, Put, Result, Scanner etc; see Apache HBase API documentation) has evolved and attempts
have beenmade tomake sure theHBase Clients are source code compatible and thus should recompilewithout needing
any source code modifications. This cannot be guaranteed however, since with the conversion to Protocol Buffers
(ProtoBufs), some relatively obscure APIs have been removed. Rudimentary efforts have also been made to preserve
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recompile compatibility with advanced APIs such as Filters and Coprocessors. These advanced APIs are still evolving
and our guarantees for API compatibility are weaker here.

For information about changes to custom filters, see Custom Filters.

As of 0.96, the User API has been marked and all attempts at compatibility in future versions will be made. A version
of the javadoc that only contains the User API can be found here.

HBase Metrics Changes

HBase provides a metrics framework based on JMX beans. Between HBase 0.94 and 0.96, the metrics framework
underwentmany changes. Somebeanswere added and removed, somemetricsweremoved fromone bean to another,
and somemetrics were renamed or removed. Click here to download the CSV spreadsheet which provides a mapping.

Custom Filters

If you used custom filters written for HBase 0.94, you need to recompile those filters for HBase 0.96. The custom filter
must be altered to fit with the newer interface that uses protocol buffers. Specifically two new methods,
toByteArray(…) and parseFrom(…), which are detailed in detailed in the Filter API. These should be used instead
of the oldmethods write(…) and readFields(…), so that protocol buffer serialization is used. To see what changes
were required to port one of HBase's own custom filters, see the Git commit that represented porting the
SingleColumnValueFilter filter.

Checksums

When you upgrade to CDH 5, HBase checksums are now turned on by default. With this configuration, HBase reads
data and then verifies the checksums. Checksum verification inside HDFS will be switched off. If the HBase-checksum
verification fails, then the HDFS checksums are used instead for verifying data that is being read from storage. Once
you turn on HBase checksums, you will not be able to roll back to an earlier HBase version.

You should see a modest performance gain after setting hbase.regionserver.checksum.verify to true for data
that is not already present in the RegionServer's block cache.

To enable or disable checksums, modify the following configuration properties in hbase-site.xml. To edit the
configuration, use an Advanced Configuration Snippet if you use Cloudera Manager, or edit the file directly otherwise.

<property>
  <name>hbase.regionserver.checksum.verify</name>
  <value>true</value>
  <description>
      If set to  true, HBase will read data and then verify checksums  for
      hfile blocks. Checksum verification inside HDFS will be switched off.
      If the hbase-checksum verification fails, then it will  switch back to
      using HDFS checksums.
  </description>
</property>

The default value for the hbase.hstore.checksum.algorithm property has also changed to CRC32. Previously,
Cloudera advised setting it to NULL due to performance issues which are no longer a problem.

<property>
   <name>hbase.hstore.checksum.algorithm</name>
   <value>CRC32</value>
   <description>
     Name of an algorithm that is used to compute checksums. Possible values
     are NULL, CRC32, CRC32C.
   </description>
 </property>
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Installing HBase
To install HBase On RHEL-compatible systems:

$ sudo yum install hbase

To install HBase on Ubuntu and Debian systems:

$ sudo apt-get install hbase

To install HBase on SLES systems:

$ sudo zypper install hbase

Note: See also Starting HBase in Standalone Mode on page 22, Configuring HBase in
Pseudo-Distributed Mode on page 24, and Deploying HBase on a Cluster on page 27 for more
information on configuring HBase for different modes.

To list the installed files on Ubuntu and Debian systems:

$ dpkg -L hbase

To list the installed files on RHEL and SLES systems:

$ rpm -ql hbase

You can see that the HBase package has been configured to conform to the Linux Filesystem Hierarchy Standard. (To
learn more, run man hier).

You are now ready to enable the server daemons you want to use with Hadoop. You can also enable Java-based client
access by adding the JAR files in /usr/lib/hbase/ and /usr/lib/hbase/lib/ to your Java class path.

Starting HBase in Standalone Mode

Note:

You can skip this section if you are already running HBase in distributed or pseudo-distributed mode.

By default, HBase ships configured for standalone mode. In this mode of operation, a single JVM hosts the HBase
Master, an HBase RegionServer, and a ZooKeeper quorum peer. HBase stores your data in a location on the local
filesystem, rather than using HDFS. Standalone mode is only appropriate for initial testing.

Important:

If you have configuredHigh Availability for theNameNode (HA), you cannot deploy HBase in standalone
mode without modifying the default configuration, because both the standalone HBase process and
ZooKeeper (required by HA) will try to bind to port 2181. You can configure a different port for
ZooKeeper, but in most cases it makes more sense to deploy HBase in distributed mode in an HA
cluster.

In order to run HBase in standalone mode, you must install the HBase Master package.
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Installing the HBase Master

To install the HBase Master on RHEL-compatible systems:

$ sudo yum install hbase-master

To install the HBase Master on Ubuntu and Debian systems:

$ sudo apt-get install hbase-master

To install the HBase Master on SLES systems:

$ sudo zypper install hbase-master

Starting the HBase Master

• On RHEL and SLES systems (using .rpm packages) you can now start the HBase Master by using the included
service script:

$ sudo service hbase-master start

• On Ubuntu systems (using Debian packages) the HBase Master starts when the HBase package is installed.

To verify that the standalone installation is operational, visit http://localhost:60010. The list of RegionServers
at the bottom of the page should include one entry for your local machine.

Note:

Although you have only started the master process, in standalonemode this same process is also
internally running a RegionServer and a ZooKeeper peer. In the next section, you will break out these
components into separate JVMs.

If you see this message when you start the HBase standalone master:

Starting Hadoop HBase master daemon: starting master, logging to 
/usr/lib/hbase/logs/hbase-hbase-master/cloudera-vm.out
Couldnt start ZK at requested address of 2181, instead got: 2182.  Aborting. Why? Because
 clients (eg shell) wont be able to find this ZK quorum
hbase-master.

you will need to stop the hadoop-zookeeper-server (or zookeeper-server) or uninstall the hadoop-zookeeper-server
(or zookeeper) package.

See also Accessing HBase by using the HBase Shell on page 28, Using MapReduce with HBase on page 30 and
Troubleshooting HBase on page 30.

Installing and Starting the HBase Thrift Server

To install Thrift on RHEL-compatible systems:

$ sudo yum install hbase-thrift

To install Thrift on Ubuntu and Debian systems:

$ sudo apt-get install hbase-thrift

To install Thrift on SLES systems:

$ sudo zypper install hbase-thrift
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You can now use the service command to start the Thrift server:

$ sudo service hbase-thrift start

Installing and Configuring HBase REST

To install HBase REST on RHEL-compatible systems:

$ sudo yum install hbase-rest

To install HBase REST on Ubuntu and Debian systems:

$ sudo apt-get install hbase-rest

To install HBase REST on SLES systems:

$ sudo zypper install hbase-rest

You can use the service command to run an init.d script, /etc/init.d/hbase-rest, to start the REST server;
for example:

$ sudo service hbase-rest start

The script starts the server by default on port 8080. This is a commonly used port and so may conflict with other
applications running on the same host.

If you need change the port for the REST server, configure it in hbase-site.xml, for example:

<property>
  <name>hbase.rest.port</name>
  <value>60050</value>
</property>

Note:

You can use HBASE_REST_OPTS in hbase-env.sh to pass other settings (such as heap size and GC
parameters) to the REST server JVM.

Configuring HBase in Pseudo-Distributed Mode

Note: You can skip this section if you are already running HBase in distributed mode, or if you intend
to use only standalone mode.

Pseudo-distributedmode differs from standalonemode in that each of the component processes run in a separate
JVM. It differs from distributedmode in that each of the separate processes run on the same server, rather thanmultiple
servers in a cluster. This section also assumes you want to store your HBase data in HDFS rather than on the local
filesystem.
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Note: Before you start

• This section assumes youhave already installed theHBasemaster and gone through the standalone
configuration steps.

• If the HBase master is already running in standalone mode, use the following command to stop
it:

sudo service hbase-master stop

Modifying the HBase Configuration

To enable pseudo-distributed mode, you must first make some configuration changes. Open
/etc/hbase/conf/hbase-site.xml in your editor of choice, and insert the following XML properties between the
<configuration> and </configuration> tags. The hbase.cluster.distributed property directs HBase to
start each process in a separate JVM. Thehbase.rootdir property directs HBase to store its data in anHDFS filesystem,
rather than the local filesystem. Be sure to replace myhost with the hostname of your HDFS NameNode (as specified
by fs.default.name or fs.defaultFS in your conf/core-site.xml file); you may also need to change the port
number from the default (8020).

<property>
  <name>hbase.cluster.distributed</name>
  <value>true</value>
</property>
<property>
  <name>hbase.rootdir</name>
  <value>hdfs://myhost:8020/hbase</value>
</property>

Creating the /hbase Directory in HDFS

Before starting the HBase Master, you need to create the /hbase directory in HDFS. The HBase master runs as
hbase:hbase so it does not have the required permissions to create a top level directory.

To create the /hbase directory in HDFS:

$ sudo -u hdfs hadoop fs -mkdir /hbase
$ sudo -u hdfs hadoop fs -chown hbase /hbase

Note: If Kerberos is enabled, do not use commands in the form sudo -u <user> hadoop

<command>; they will fail with a security error. Instead, use the following commands: $ kinit
<user> (if you are using a password) or $ kinit -kt <keytab> <principal> (if you are using
a keytab) and then, for each command executed by this user, $ <command>

Enabling Servers for Pseudo-distributed Operation

After you have configured HBase, you must enable the various servers that make up a distributed HBase cluster. HBase
uses three required types of servers:

• Installing and Starting ZooKeeper Server
• Starting the HBase Master
• Starting an HBase RegionServer

Installing and Starting ZooKeeper Server

HBase uses ZooKeeper Server as a highly available, central location for cluster management. For example, it allows
clients to locate the servers, and ensures that only onemaster is active at a time. For a small cluster, running a ZooKeeper
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node collocated with the NameNode is recommended. For larger clusters, contact Cloudera Support for configuration
help.

Install and start the ZooKeeper Server in standalone mode by running the commands shown in the Initialize a Single
ZooKeeper Server

Starting the HBase Master

After ZooKeeper is running, you can start the HBase master in standalone mode.

$ sudo service hbase-master start

Starting an HBase RegionServer

The RegionServer is the HBase process that actually hosts data and processes requests. The RegionServer typically runs
on all HBase nodes except for the node running the HBase master node.

To enable the HBase RegionServer On RHEL-compatible systems:

$ sudo yum install hbase-regionserver

To enable the HBase RegionServer on Ubuntu and Debian systems:

$ sudo apt-get install hbase-regionserver

To enable the HBase RegionServer on SLES systems:

$ sudo zypper install hbase-regionserver

To start the RegionServer:

$ sudo service hbase-regionserver start

Verifying the Pseudo-Distributed Operation

After you have started ZooKeeper, the Master, and a RegionServer, the pseudo-distributed cluster should be up and
running. You can verify that each of the daemons is running using the jps tool from the Oracle JDK, which you can
obtain from here. If you are running a pseudo-distributed HDFS installation and a pseudo-distributed HBase installation
on one machine, jps will show the following output:

$ sudo jps
32694 Jps
30674 HRegionServer
29496 HMaster
28781 DataNode
28422 NameNode
30348 QuorumPeerMain

You should also be able to go to http://localhost:60010 and verify that the local RegionServer has registered
with the Master.

Installing and Starting the HBase Thrift Server

The HBase Thrift Server is an alternative gateway for accessing the HBase server. Thrift mirrors most of the HBase
client APIs while enabling popular programming languages to interact with HBase. The Thrift Server is multiplatform
and more performant than REST in many situations. Thrift can be run collocated along with the RegionServers, but
should not be collocated with the NameNode or the JobTracker. For more information about Thrift, visit
http://thrift.apache.org/.
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To enable the HBase Thrift Server On RHEL-compatible systems:

$ sudo yum install hbase-thrift

To enable the HBase Thrift Server on Ubuntu and Debian systems:

$ sudo apt-get install hbase-thrift

To enable the HBase Thrift Server on SLES systems:

$ sudo zypper install hbase-thrift

To start the Thrift server:

$ sudo service hbase-thrift start

See also Accessing HBase by using the HBase Shell on page 28, Using MapReduce with HBase on page 30 and
Troubleshooting HBase on page 30.

Deploying HBase on a Cluster
After you have HBase running in pseudo-distributed mode, the same configuration can be extended to running on a
distributed cluster.

Note: Before you start

This section assumes that you have already installed the HBase Master and the HBase RegionServer
and gone through the steps for standalone and pseudo-distributed configuration. You are now about
to distribute the processes across multiple hosts; see Choosing Where to Deploy the Processes on
page 27.

Choosing Where to Deploy the Processes

For small clusters, Cloudera recommends designating one node in your cluster as the HBase Master node. On this
node, youwill typically run theHBaseMaster and a ZooKeeper quorumpeer. Thesemaster processesmay be collocated
with the Hadoop NameNode and JobTracker for small clusters.

Designate the remaining nodes as RegionServer nodes. On each node, Cloudera recommends running a RegionServer,
which may be collocated with a Hadoop TaskTracker (MRv1) and a DataNode. When co-locating with TaskTrackers, be
sure that the resources of the machine are not oversubscribed – it's safest to start with a small number of MapReduce
slots and work up slowly.

The HBase Thrift service is light-weight, and can be run on any node in the cluster.

Configuring for Distributed Operation

After you have decided which machines will run each process, you can edit the configuration so that the nodes can
locate each other. In order to do so, you should make sure that the configuration files are synchronized across the
cluster. Cloudera strongly recommends the use of a configurationmanagement system to synchronize the configuration
files, though you can use a simpler solution such as rsync to get started quickly.

The only configuration change necessary to move from pseudo-distributed operation to fully-distributed operation is
the addition of the ZooKeeper Quorum address in hbase-site.xml. Insert the following XML property to configure
the nodes with the address of the node where the ZooKeeper quorum peer is running:

<property>
  <name>hbase.zookeeper.quorum</name>
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  <value>mymasternode</value>
</property>

The hbase.zookeeper.quorum property is a comma-separated list of hosts onwhich ZooKeeper servers are running.
If one of the ZooKeeper servers is down, HBase will use another from the list. By default, the ZooKeeper service is
bound to port 2181. To change the port, add the hbase.zookeeper.property.clientPort property to
hbase-site.xml and set the value to the port you want ZooKeeper to use. In CDH 5.7.0 and higher, you do not need
to use hbase.zookeeper.property.clientPort. Instead, you can specify the port along with the hostname for each
ZooKeeper host:

<property>
  <name>hbase.zookeeper.quorum</name>
  <value>zk1.example.com:2181,zk2.example.com:20000,zk3.example.com:31111</value>
</property>

For more information, see this chapter of the Apache HBase Reference Guide.

To start the cluster, start the services in the following order:

1. The ZooKeeper Quorum Peer
2. The HBase Master
3. Each of the HBase RegionServers

After the cluster is fully started, you can view the HBase Master web interface on port 60010 and verify that each of
the RegionServer nodes has registered properly with the master.

See also Accessing HBase by using the HBase Shell on page 28, Using MapReduce with HBase on page 30 and
Troubleshooting HBase on page 30. For instructions on improving the performance of local reads, see Optimizing
Performance in CDH.

Accessing HBase by using the HBase Shell
After you have started HBase, you can access the database in an interactive way by using the HBase Shell, which is a
command interpreter for HBase which is written in Ruby. Always run HBase administrative commands such as the
HBase Shell, hbck, or bulk-load commands as the HBase user (typically hbase).

$ hbase shell

HBase Shell Overview

• To get help and to see all available commands, use the help command.
• To get help on a specific command, use help "command". For example:

hbase> help "create"

• To remove an attribute from a table or column family or reset it to its default value, set its value to nil. For
example, use the following command to remove the KEEP_DELETED_CELLS attribute from the f1 column of the
users table:

hbase> alter 'users', { NAME => 'f1', KEEP_DELETED_CELLS => nil }

• To exit the HBase Shell, type quit.
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Setting Virtual Machine Options for HBase Shell

HBase in CDH 5.2 and higher allows you to set variables for the virtual machine running HBase Shell, by using the
HBASE_SHELL_OPTS environment variable. This example sets several options in the virtual machine.

$ HBASE_SHELL_OPTS="-verbose:gc -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCDateStamps

      -XX:+PrintGCDetails -Xloggc:$HBASE_HOME/logs/gc-hbase.log" ./bin/hbase shell

Scripting with HBase Shell

CDH 5.2 and higher include non-interactive mode. This mode allows you to use HBase Shell in scripts, and allow the
script to access the exit status of the HBase Shell commands. To invoke non-interactive mode, use the -n or
--non-interactive switch. This small example script shows how to use HBase Shell in a Bash script.

#!/bin/bash
echo 'list' | hbase shell -n
status=$?
if [$status -ne 0]; then
  echo "The command may have failed."
fi

Successful HBase Shell commands return an exit status of 0. However, an exit status other than 0 does not necessarily
indicate a failure, but should be interpreted as unknown. For example, a command may succeed, but while waiting for
the response, the clientmay lose connectivity. In that case, the client has noway to know the outcomeof the command.
In the case of a non-zero exit status, your script should check to be sure the command actually failed before taking
further action.

CDH 5.7 and higher include the get_splits command, which returns the split points for a given table:

hbase> get_splits 't2'
Total number of splits = 5

=> ["", "10", "20", "30", "40"]

You can also write Ruby scripts for use with HBase Shell. Example Ruby scripts are included in the
hbase-examples/src/main/ruby/ directory.

Configuring HBase Online Merge
CDH 5 supports online merging of regions. HBase splits big regions automatically but does not support merging small
regions automatically. To complete an online merge of two regions of a table, use the HBase shell to issue the online
merge command. By default, both regions to be merged should be neighbors; that is, one end key of a region should
be the start key of the other region. Although you can "force merge" any two regions of the same table, this can create
overlaps and is not recommended.

The Master and RegionServer both participate in online merges. When the request to merge is sent to the Master, the
Master moves the regions to be merged to the same RegionServer, usually the one where the region with the higher
load resides. The Master then requests the RegionServer to merge the two regions. The RegionServer processes this
request locally. Once the two regions are merged, the new region will be online and available for server requests, and
the old regions are taken offline.

For merging two consecutive regions, use the following command:

hbase> merge_region 'ENCODED_REGIONNAME', 'ENCODED_REGIONNAME'

For merging regions that are not adjacent, passing true as the third parameter forces the merge.

hbase> merge_region 'ENCODED_REGIONNAME', 'ENCODED_REGIONNAME', true
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Note: This command is slightly different from other region operations. You must pass the encoded
region name (ENCODED_REGIONNAME), not the full region name . The encoded region name is the
hash suffix on region names. For example, if the region name is
TestTable,0094429456,1289497600452.527db22f95c8a9e0116f0cc13c680396, theencoded
region name portion is 527db22f95c8a9e0116f0cc13c680396.

Using MapReduce with HBase
To run MapReduce jobs that use HBase, you need to add the HBase and Zookeeper JAR files to the Hadoop Java
classpath. You can do this by adding the following statement to each job:

TableMapReduceUtil.addDependencyJars(job); 

This distributes the JAR files to the cluster along with your job and adds them to the job's classpath, so that you do not
need to edit the MapReduce configuration.

When getting an Configuration object for a HBase MapReduce job, instantiate it using the
HBaseConfiguration.create()method.

Troubleshooting HBase
The Cloudera HBase packages have been configured to place logs in /var/log/hbase. Cloudera recommends tailing
the .log files in this directory when you start HBase to check for any error messages or failures.

Table Creation Fails after Installing LZO

If you install LZO after starting the RegionServer, you will not be able to create a table with LZO compression until you
re-start the RegionServer.

Why this happens

When the RegionServer starts, it runs CompressionTest and caches the results. When you try to create a table with a
given form of compression, it refers to those results. You have installed LZO since starting the RegionServer, so the
cached results, which pre-date LZO, cause the create to fail.

What to do

Restart the RegionServer. Now table creation with LZO will succeed.

Thrift Server Crashes after Receiving Invalid Data

The Thrift server may crash if it receives a large amount of invalid data, due to a buffer overrun.

Why this happens

The Thrift server allocates memory to check the validity of data it receives. If it receives a large amount of invalid data,
it may need to allocate more memory than is available. This is due to a limitation in the Thrift library itself.

What to do

To prevent the possibility of crashes due to buffer overruns, use the framed and compact transport protocols. These
protocols are disabled by default, because they may require changes to your client code. The two options to add to
your hbase-site.xml are hbase.regionserver.thrift.framed and hbase.regionserver.thrift.compact.
Set each of these to true, as in the XML below. You can also specify the maximum frame size, using the
hbase.regionserver.thrift.framed.max_frame_size_in_mb option.

<property> 
  <name>hbase.regionserver.thrift.framed</name> 
  <value>true</value> 
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</property> 
<property> 
  <name>hbase.regionserver.thrift.framed.max_frame_size_in_mb</name> 
  <value>2</value> 
</property> 
<property> 
  <name>hbase.regionserver.thrift.compact</name> 
  <value>true</value> 
</property>

HBase is using more disk space than expected.

HBase StoreFiles (also called HFiles) store HBase row data on disk. HBase stores other information on disk, such as
write-ahead logs (WALs), snapshots, data that would otherwise be deleted but would be needed to restore from a
stored snapshot.

Warning: The following information is provided to help you troubleshoot high disk usage only. Do
not edit or remove any of this data outside the scope of the HBase APIs or HBase Shell, or your data
is very likely to become corrupted.

Table 1: HBase Disk Usage

Troubleshooting NotesPurposeLocation

To list snapshots, use the HBase Shell
command list_snapshots. To

Contains one subdirectory per
snapshot.

/hbase/.snapshots

remove a snapshot, use
delete_snapshot.

To free up space being taken up by
excessive archives, delete the

Contains data that would otherwise
have been deleted (either because it

/hbase/.archive

snapshots that refer to them.was explicitly deleted or expired due
Snapshots never expire so datato TTL or version limits on the table)
referred to by them is kept until thebut that is required to restore from an

existing snapshot. snapshot is removed. Do not remove
anything from /hbase/.archive

manually, or you will corrupt your
snapshots.

WALs are removed when their
contents are verified to have been

Contains HBase WAL files that are
required to recover regions in the
event of a RegionServer failure.

/hbase/.logs

written to StoreFiles. Do not remove
them manually. If the size of any
subdirectory of /hbase/.logs/ is
growing, examine the HBase server
logs to find the root cause for why
WALs are not being processed
correctly.

To tune the length of time aWAL stays
in the .oldWALs before it is removed,

Contains HBase WAL files that have
already been written to disk. A HBase

/hbase/logs/.oldWALs

configure themaintenance thread removes them
periodically based on a TTL. hbase.master.logcleaner.ttl

property, which defaults to 60000
milliseconds, or 1 hour.

Do not remove corrupt WALs
manually. If the size of any

Contains corrupted HBase WAL files./hbase/.logs/.corrupt

subdirectory of /hbase/.logs/ is
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Troubleshooting NotesPurposeLocation

growing, examine the HBase server
logs to find the root cause for why
WALs are not being processed
correctly.
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Upgrading HBase

Coprocessors and Custom JARs

When upgrading HBase from one major version to another, you must recompile coprocessors and custom JARs after
the upgrade.

Never rely on HBase directory layout on disk.

The HBase directory layout is an implementation detail and is subject to change. Do not rely on the directory layout
for client or administration functionality. Instead, access HBase using the supported APIs.

Upgrading HBase from a Lower CDH 5 Release

Important: Rolling upgrade is not supported between a CDH 5 Beta release and a CDH 5 GA release.
Cloudera recommends using Cloudera Manager if you need to do rolling upgrades.

To upgrade HBase from a lower CDH 5 release, proceed as follows.

The instructions that follow assume that you are upgrading HBase as part of an upgrade to the latest CDH 5 release,
and have already performed the steps underUpgrading from an Earlier CDH 5 Release to the Latest Release.

During a rolling upgrade from CDH 5.0.x to CDH 5.4.x the HBase Master UI will display the URLs to the old HBase
RegionServers using an incorrect info port number. Once the rolling upgrade completes the HBase master UI will use
the correct port number.

Step 1: Perform a Graceful Cluster Shutdown

Note: Upgrading using rolling restart is not supported.

To shut HBase down gracefully:

1. Stop the Thrift server and clients, then stop the cluster.

a. Stop the Thrift server and clients:

sudo service hbase-thrift stop

b. Stop the cluster by shutting down the master and the RegionServers:

• Use the following command on the master node:

sudo service hbase-master stop

• Use the following command on each node hosting a RegionServer:

sudo service hbase-regionserver stop

2. Stop the ZooKeeper Server:

$ sudo service zookeeper-server stop
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Step 2: Install the new version of HBase

Note: You may want to take this opportunity to upgrade ZooKeeper, but you do not have to upgrade
Zookeeper before upgrading HBase; the new version of HBase will run with the older version of
Zookeeper. For instructions on upgrading ZooKeeper, see Upgrading ZooKeeper from an Earlier CDH
5 Release.

To install the new version of HBase, follow directions in the next section, Setting Up Apache HBase Using the Command
Line on page 11.

Important: Configuration files

• If you install a newer version of a package that is already on the system, configuration files that
you have modified will remain intact.

• If you uninstall a package, the packagemanager renames any configuration files you havemodified
from <file> to <file>.rpmsave. If you then re-install the package (probably to install a new
version) the packagemanager creates a new <file>with applicable defaults. You are responsible
for applying any changes captured in the original configuration file to the new configuration file.
In the case of Ubuntu and Debian upgrades, you will be prompted if you have made changes to
a file for which there is a new version. For details, see Automatic handling of configuration files
by dpkg.
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Configuration Settings for HBase

This section contains information on configuring the Linux host and HDFS for HBase.

Using DNS with HBase
HBase uses the local hostname to report its IP address. Both forward and reverse DNS resolving should work. If your
server has multiple interfaces, HBase uses the interface that the primary hostname resolves to. If this is insufficient,
you can set hbase.regionserver.dns.interface in the hbase-site.xml file to indicate the primary interface.
Towork properly, this setting requires that your cluster configuration is consistent and every host has the same network
interface configuration. As an alternative, you can set hbase.regionserver.dns.nameserver in the
hbase-site.xml file to use a different DNS name server than the system-wide default.

Using the Network Time Protocol (NTP) with HBase
The clocks on cluster members must be synchronized for your cluster to function correctly. Some skew is tolerable,
but excessive skew could generate odd behaviors. Run NTP or another clock synchronization mechanism on your
cluster. If you experience problems querying data or unusual cluster operations, verify the system time. For more
information about NTP, see the NTP website.

Setting User Limits for HBase
BecauseHBase is a database, it opensmany files at the same time. The default setting of 1024 for themaximumnumber
of open files on most Unix-like systems is insufficient. Any significant amount of loading will result in failures and cause
error message such as java.io.IOException...(Too many open files) to be logged in the HBase or HDFS
log files. For more information about this issue, see the Apache HBase Book. You may also notice errors such as:

2010-04-06 03:04:37,542 INFO org.apache.hadoop.hdfs.DFSClient: Exception 
increateBlockOutputStream java.io.EOFException
2010-04-06 03:04:37,542 INFO org.apache.hadoop.hdfs.DFSClient: Abandoning block 
blk_-6935524980745310745_1391901

Another setting you should configure is the number of processes a user is permitted to start. The default number of
processes is typically 1024. Consider raising this value if you experience OutOfMemoryException errors.

Configuring ulimit for HBase Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope >Master or Scope > RegionServer.
4. Locate theMaximum Process File Descriptors property or search for it by typing its name in the Search box.
5. Edit the property value.

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.
See Modifying Configuration Properties Using Cloudera Manager.

6. Click Save Changes to commit the changes.
7. Restart the role.
8. Restart the service.
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Configuring ulimit for HBase Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

Cloudera recommends increasing themaximumnumber of file handles tomore than 10,000. Increasing the file handles
for the user running the HBase process is an operating system configuration, not an HBase configuration. A common
mistake is to increase the number of file handles for a particular user when HBase is running as a different user. HBase
prints the ulimit it is using on the first line in the logs. Make sure that it is correct.

To change the maximum number of open files for a user, use the ulimit -n command while logged in as that user.

To set themaximumnumber of processes a user can start, use the ulimit -u command. You can also use the ulimit
command to set many other limits. For more information, see the online documentation for your operating system,
or the output of the man ulimit command.

To make the changes persistent, add the command to the user's Bash initialization file (typically ~/.bash_profile
or ~/.bashrc ). Alternatively, you can configure the settings in the Pluggable Authentication Module (PAM)
configuration files if your operating system uses PAM and includes the pam_limits.so shared library.

Configuring ulimit using Pluggable Authentication Modules Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

If you are using ulimit, you must make the following configuration changes:

1. In the /etc/security/limits.conf file, add the following lines, adjusting the values as appropriate. This
assumes that your HDFS user is called hdfs and your HBase user is called hbase.

hdfs  -       nofile  32768
hdfs  -       nproc   2048
hbase -       nofile  32768
hbase -       nproc   2048

Note:

• Only the root user can edit this file.
• If this change does not take effect, check other configuration files in the

/etc/security/limits.d/ directory for lines containing the hdfs or hbase user and the
nofile value. Such entries may be overriding the entries in /etc/security/limits.conf.

To apply the changes in /etc/security/limits.conf on Ubuntu and Debian systems, add the following line in the
/etc/pam.d/common-session file:

session required  pam_limits.so

For more information on the ulimit command or per-user operating system limits, refer to the documentation for
your operating system.
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Using dfs.datanode.max.transfer.threads with HBase
A Hadoop HDFS DataNode has an upper bound on the number of files that it can serve at any one time. The upper
bound is controlled by the dfs.datanode.max.transfer.threads property (the property is spelled in the code
exactly as shown here). Before loading, make sure you have configured the value for
dfs.datanode.max.transfer.threads in the conf/hdfs-site.xml file (by default found in
/etc/hadoop/conf/hdfs-site.xml) to at least 4096 as shown below:

<property>
  <name>dfs.datanode.max.transfer.threads</name>
  <value>4096</value>
</property>

Restart HDFS after changing the value for dfs.datanode.max.transfer.threads. If the value is not set to an
appropriate value, strange failures can occur and an error message about exceeding the number of transfer threads
will be added to the DataNode logs. Other error messages about missing blocks are also logged, such as:

06/12/14 20:10:31 INFO hdfs.DFSClient: Could not obtain block 
blk_XXXXXXXXXXXXXXXXXXXXXX_YYYYYYYY from any node: 
java.io.IOException: No live nodes contain current block. Will get new block locations
 from namenode and retry... 

Note: The property dfs.datanode.max.transfer.threads is a HDFS 2 property which replaces
the deprecated property dfs.datanode.max.xcievers.

Configuring BucketCache in HBase
The default BlockCache implementation in HBase is CombinedBlockCache, and the default off-heap BlockCache
is BucketCache. SlabCache is now deprecated. See Configuring the HBase BlockCache on page 63 for information
about configuring the BlockCache using Cloudera Manager or the command line.

Configuring Encryption in HBase
It is possible to encrypt the HBase root directory within HDFS, using HDFS Transparent Encryption. This provides an
additional layer of protection in case the HDFS filesystem is compromised.

If you use this feature in combinationwith bulk-loading of HFiles, youmust configure hbase.bulkload.staging.dir
to point to a location within the same encryption zone as the HBase root directory. Otherwise, you may encounter
errors such as:

org.apache.hadoop.ipc.RemoteException(java.io.IOException): 
/tmp/output/f/5237a8430561409bb641507f0c531448 can't be moved into an encryption zone.

You can also choose to only encrypt specific column families, which encrypts individual HFiles while leaving others
unencrypted, using HBase Transparent Encryption at Rest. This provides a balance of data security and performance.

Configuring Cell Level TTL in HBase
Cell TTLs are defined internally as Cell Tags. Cell Tags are only supported for HFile Version 3 and higher, therefore HFile
Version 3must be set to enable Cell TTL use. Formore information, see Enabling HFile Version 3Using ClouderManager.
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Using Hedged Reads

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

Note:

To enable hedged reads for HBase, edit the hbase-site.xml file on each server. Set
dfs.client.hedged.read.threadpool.size to the number of threads to dedicate to running
hedged threads, and set thedfs.client.hedged.read.threshold.millis configurationproperty
to the number of milliseconds to wait before starting a second read against a different block replica.
Set dfs.client.hedged.read.threadpool.size to 0 or remove it from the configuration to
disable the feature. After changing these properties, restart your cluster.

The following is an example configuration for hedged reads for HBase.

<property>
  <name>dfs.client.hedged.read.threadpool.size</name>
  <value>20</value>  <!-- 20 threads -->
</property>
<property>
  <name>dfs.client.hedged.read.threshold.millis</name>
  <value>10</value>  <!-- 10 milliseconds -->
</property>

Accessing HBase by using the HBase Shell
After you have started HBase, you can access the database in an interactive way by using the HBase Shell, which is a
command interpreter for HBase which is written in Ruby. Always run HBase administrative commands such as the
HBase Shell, hbck, or bulk-load commands as the HBase user (typically hbase).

$ hbase shell

HBase Shell Overview

• To get help and to see all available commands, use the help command.
• To get help on a specific command, use help "command". For example:

hbase> help "create"

• To remove an attribute from a table or column family or reset it to its default value, set its value to nil. For
example, use the following command to remove the KEEP_DELETED_CELLS attribute from the f1 column of the
users table:

hbase> alter 'users', { NAME => 'f1', KEEP_DELETED_CELLS => nil }

• To exit the HBase Shell, type quit.
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Setting Virtual Machine Options for HBase Shell

HBase in CDH 5.2 and higher allows you to set variables for the virtual machine running HBase Shell, by using the
HBASE_SHELL_OPTS environment variable. This example sets several options in the virtual machine.

$ HBASE_SHELL_OPTS="-verbose:gc -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCDateStamps

      -XX:+PrintGCDetails -Xloggc:$HBASE_HOME/logs/gc-hbase.log" ./bin/hbase shell

Scripting with HBase Shell

CDH 5.2 and higher include non-interactive mode. This mode allows you to use HBase Shell in scripts, and allow the
script to access the exit status of the HBase Shell commands. To invoke non-interactive mode, use the -n or
--non-interactive switch. This small example script shows how to use HBase Shell in a Bash script.

#!/bin/bash
echo 'list' | hbase shell -n
status=$?
if [$status -ne 0]; then
  echo "The command may have failed."
fi

Successful HBase Shell commands return an exit status of 0. However, an exit status other than 0 does not necessarily
indicate a failure, but should be interpreted as unknown. For example, a command may succeed, but while waiting for
the response, the clientmay lose connectivity. In that case, the client has noway to know the outcomeof the command.
In the case of a non-zero exit status, your script should check to be sure the command actually failed before taking
further action.

CDH 5.7 and higher include the get_splits command, which returns the split points for a given table:

hbase> get_splits 't2'
Total number of splits = 5

=> ["", "10", "20", "30", "40"]

You can also write Ruby scripts for use with HBase Shell. Example Ruby scripts are included in the
hbase-examples/src/main/ruby/ directory.

Configuring HBase Online Merge
CDH 5 supports online merging of regions. HBase splits big regions automatically but does not support merging small
regions automatically. To complete an online merge of two regions of a table, use the HBase shell to issue the online
merge command. By default, both regions to be merged should be neighbors; that is, one end key of a region should
be the start key of the other region. Although you can "force merge" any two regions of the same table, this can create
overlaps and is not recommended.

The Master and RegionServer both participate in online merges. When the request to merge is sent to the Master, the
Master moves the regions to be merged to the same RegionServer, usually the one where the region with the higher
load resides. The Master then requests the RegionServer to merge the two regions. The RegionServer processes this
request locally. Once the two regions are merged, the new region will be online and available for server requests, and
the old regions are taken offline.

For merging two consecutive regions, use the following command:

hbase> merge_region 'ENCODED_REGIONNAME', 'ENCODED_REGIONNAME'

For merging regions that are not adjacent, passing true as the third parameter forces the merge.

hbase> merge_region 'ENCODED_REGIONNAME', 'ENCODED_REGIONNAME', true
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Note: This command is slightly different from other region operations. You must pass the encoded
region name (ENCODED_REGIONNAME), not the full region name . The encoded region name is the
hash suffix on region names. For example, if the region name is
TestTable,0094429456,1289497600452.527db22f95c8a9e0116f0cc13c680396, theencoded
region name portion is 527db22f95c8a9e0116f0cc13c680396.

Configuring RegionServer Grouping
You can use RegionServer Grouping (rsgroup) to impose strict isolation between RegionServers by partitioning
RegionServers into distinct groups. You can use HBase Shell commands to define and manage RegionServer Grouping.

You must first create an rsgroup before you can add RegionServers to it. Once you have created an rsgroup, you can
move your HBase tables into this rsgroup so that only the RegionServers in the same rsgroup can host the regions of
the table.

Note: RegionServers and tables can only belong to one rsgroup at a time. By default, all the tables
and RegionServers belong to the default rsgroup.

A custom balancer implementation tracks assignments per rsgroup and moves regions to the relevant RegionServers
in that rsgroup. The rsgroup information is stored in a regular HBase table, and a ZooKeeper-based read-only cache is
used at cluster bootstrap time.

Enabling RegionServer Grouping using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

You must use Cloudera Manager to enable RegionServer Grouping before you can define and manage rsgroups.

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope >Master.
4. Locate the HBase Coprocessor Master Classes property or search for it by typing its name in the Search box.
5. Add the following property value: org.apache.hadoop.hbase.rsgroup.RSGroupAdminEndpoint.
6. Locate theMaster Advanced Configuration Snippet (Safety Valve) for hbase-site.xml property or search for it

by typing its name in the Search box.
7. Click View as XML and add the following property:

<property>   
  <name>hbase.master.loadbalancer.class</name>
  <value>org.apache.hadoop.hbase.rsgroup.RSGroupBasedLoadBalancer</value>
</property>

8. Click Save Changes to commit the changes.
9. Restart the role.
10. Restart the service.

Configuring RegionServer Grouping

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

When you add a new rsgroup, you are creating an rsgroup other than the default group. To configure a rsgroup, in the
HBase shell:

1. Type add_rsgroup 'mygroup'.
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2. Add RegionServers and tables to this rsgroup using the commands:

hbase> move_servers_rsgroup ‘mygroup',['server1:port','server2:port']
hbase> move_tables_rsgroup 'mygroup',['table1','table2']

3. Run the balance_rsgroup command if the tables are slow to migrate to the group’s dedicated server.

Note: The term rsgroup refers to servers in a cluster with only the hostname and port. It does not
make use of the HBase ServerName type identifying RegionServers (hostname + port + start time) to
distinguish RegionServer instances.

Monitor RegionServer Grouping

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

You can monitor the status of the commands using the Tables tab on the HBase Master UI home page. If you click on
a table name, you can see the RegionServers that are deployed.

You must manually align the RegionServers referenced in rsgroups with the actual state of nodes in the cluster that is
active and running.

Removing a RegionServer from RegionServer Grouping

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

You can remove a RegionServer bymoving it to the default rsgroup. Edits made using shell commands to all rsgroups,
except the default rsgroup, are persisted to the system hbase:rsgroup table. If an rsgroup references a
decommissioned RegionServer, then the rsgroup should be updated to undo the reference.

1. Move the RegionServer to the default rsgroup using the command:

hbase> move_servers_rsgroup 'default',['server1:port']

2. Check the list of RegionServers in your rsgourp to ensure that that the RegionServer is successfully removed using
the command:

hbase> get_rsgroup 'mygroup’

The default rsgroup’s RegionServer list mirrors the current state of the cluster. If you shut down a RegionServer that
was part of the default rsgroup, and then run the get_rsgroup 'default' command to list its content in the
shell, the server is no longer listed. If you move the offline server from the non-default rsgroup to default, it will not
show in the default list; the server will just be removed from the list.

Enabling ACL for RegionServer Grouping

Minimum Required Role: Full Administrator

You need to be a Global Admin to manage rsgroups if authorization is enabled.

To enable ACL, add the following to the hbase-site.xml file, and then restart your HBase Master server:

<property>
  <name>hbase.security.authorization</name>
  <value>true</value>
<property>

Best Practices when using RegionServer Grouping

You must keep in mind the following best practices when using rsgroups:

Isolate System Tables
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You can either have a system rsgroupwhere all the system tables are present or just leave the system tables in default
rsgroup and have all user-space tables in non-default rsgroups.

Handling Dead Nodes

You can have a special rsgroup of dead or questionable nodes to help you keep them without running until the nodes
are repaired. Be careful when replacing dead nodes in an rsgroup, and ensure there are enough live nodes before you
start moving out the dead nodes. You can move the good live nodes first before moving out the dead nodes.

If you have configured a table to be in a rsgroup, but all the RegionServers in that rsgroup die, the tables become
unavailable and you can no longer access those tables.

Troubleshooting RegionServer Grouping

If you encounter an issue when using rsgroup, check the Master log to see what is causing the issue. If an rsgroup
operation is unresponsive, restart the Master.

For example, if you have not enabled the rsgroup coprocessor endpoint in the Master, and run any of the rsgroup shell
commands, you will encounter the following error message:

ERROR: org.apache.hadoop.hbase.exceptions.UnknownProtocolException: No registered master
 coprocessor service found for name RSGroupAdminService
    at 
org.apache.hadoop.hbase.master.MasterRpcServices.execMasterService(MasterRpcServices.java:604)

    at 
org.apache.hadoop.hbase.shaded.protobuf.generated.MasterProtos$MasterService$2.callBlockingMethod(MasterProtos.java)

    at org.apache.hadoop.hbase.ipc.RpcServer.call(RpcServer.java:1140)
    at org.apache.hadoop.hbase.ipc.CallRunner.run(CallRunner.java:133)
    at org.apache.hadoop.hbase.ipc.RpcExecutor$Handler.run(RpcExecutor.java:277)
    at org.apache.hadoop.hbase.ipc.RpcExecutor$Handler.run(RpcExecutor.java:257)

Disabling RegionServer Grouping

When you no longer require rsgroups, you can disable it for your cluster. Removing RegionServer Grouping for a cluster
on which it was enabled involves more steps in addition to removing the relevant properties from hbase-site.xml.
You must ensure that you clean the RegionServer grouping-related metadata so that if the feature is re-enabled in the
future, the old metadata will not affect the functioning of the cluster.

To disable RegionServer Grouping:

1. Move all the tables in non-default rsgroups to default RegionServer group.

#Reassigning table t1 from the non-default group - hbase shell
hbase> move_tables_rsgroup 'default',['t1']

2. Move all RegionServers in non-default rsgroups to default regionserver group.

#Reassigning all the servers in the non-default rsgroup to default - hbase shell
hbase> move_servers_rsgroup 
'default',['regionserver1:port','regionserver2:port','regionserver3:port']

3. Remove all non-default rsgroups. default rsgroup created implicitly does not have to be removed.

#removing non-default rsgroup - hbase shell
hbase> remove_rsgroup 'mygroup'

4. Remove the changes made in hbase-site.xml and restart the cluster.
5. Drop the table hbase:rsgroup from HBase.

#Through hbase shell drop table hbase:rsgroup
hbase> disable 'hbase:rsgroup'
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0 row(s) in 2.6270 seconds
hbase> drop 'hbase:rsgroup'
0 row(s) in 1.2730 seconds

6. Remove the znode rsgroup from the cluster ZooKeeper using zkCli.sh.

#From ZK remove the node /hbase/rsgroup through zkCli.sh
rmr /hbase/rsgroup

Configuring the BlockCache
See Configuring the HBase BlockCache on page 63.

Configuring the Scanner Heartbeat
See Configuring the HBase Scanner Heartbeat on page 69.

Troubleshooting HBase
See Troubleshooting HBase.
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Managing HBase

Cloudera Manager requires certain additional steps to set up and configure the HBase service.

Creating the HBase Root Directory
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

When adding the HBase service, the Add Service wizard automatically creates a root directory for HBase in HDFS. If
you quit the Add Service wizard or it does not finish, you can create the root directory outside the wizard by doing
these steps:

1. Choose Create Root Directory from the Actionsmenu in the HBase > Status tab.
2. Click Create Root Directory again to confirm.

Graceful Shutdown
Minimum Required Role: Operator (also provided by Configurator, Cluster Administrator, Full Administrator)

A graceful shutdown of an HBase RegionServer allows the regions hosted by that RegionServer to be moved to other
RegionServers before stopping the RegionServer. Cloudera Manager provides the following configuration options to
perform a graceful shutdown of either an HBase RegionServer or the entire service.

To increase the speed of a rolling restart of the HBase service, set the Region Mover Threads property to a higher
value. This increases the number of regions that can be moved in parallel, but places additional strain on the HMaster.
In most cases, Region Mover Threads should be set to 5 or lower.

Gracefully Shutting Down an HBase RegionServer

1. Go to the HBase service.
2. Click the Instances tab.
3. From the list of Role Instances, select the RegionServer you want to shut down gracefully.
4. Select Actions for Selected > Decommission (Graceful Stop).
5. Cloudera Manager attempts to gracefully shut down the RegionServer for the interval configured in the Graceful

Shutdown Timeout configuration option, which defaults to 3 minutes. If the graceful shutdown fails, Cloudera
Manager forcibly stops the process by sending a SIGKILL (kill -9) signal. HBase will perform recovery actions
on regions that were on the forcibly stopped RegionServer.

6. If you cancel the graceful shutdown before the Graceful Shutdown Timeout expires, you can still manually stop
a RegionServer by selecting Actions for Selected > Stop, which sends a SIGTERM (kill -5) signal.

Gracefully Shutting Down the HBase Service

1. Go to the HBase service.
2. Select Actions > Stop. This tries to perform an HBase Master-driven graceful shutdown for the length of the

configured Graceful Shutdown Timeout (three minutes by default), after which it abruptly shuts down the whole
service.

Configuring the Graceful Shutdown Timeout Property

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

This timeout only affects a graceful shutdown of the entire HBase service, not individual RegionServers. Therefore, if
you have a large cluster with many RegionServers, you should strongly consider increasing the timeout from its default
of 180 seconds.
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1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > HBASE-1 (Service Wide)
4. Use the Search box to search for the Graceful Shutdown Timeout property and edit the value.
5. Click Save Changes to save this setting.

Configuring the HBase Thrift Server Role
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

The Thrift Server role is not added by default when you install HBase, but it is required before you can use certain other
features such as the Hue HBase browser. To add the Thrift Server role:

1. Go to the HBase service.
2. Click the Instances tab.
3. Click the Add Role Instances button.
4. Select the host(s) where you want to add the Thrift Server role (you only need one for Hue) and click Continue.

The Thrift Server role should appear in the instances list for the HBase server.
5. Select the Thrift Server role instance.
6. Select Actions for Selected > Start.

Enabling HBase Indexing
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

HBase indexing is dependent on the Key-Value Store Indexer service. The Key-Value Store Indexer service uses the Lily
HBase Indexer Service to index the stream of records being added to HBase tables. Indexing allows you to query data
stored in HBase with the Solr service.

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > HBASE-1 (Service Wide)
4. Select Category > Backup.
5. Select the Enable Replication and Enable Indexing properties.
6. Click Save Changes.

Adding a Custom Coprocessor
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Note: End-user custom HBase coprocessors are not supported.

The HBase coprocessor framework provides a way to extend HBase with custom functionality. To configure these
properties in Cloudera Manager:

1. Select the HBase service.
2. Click the Configuration tab.
3. Select Scope > All.
4. Select Category > All.
5. Type HBase Coprocessor in the Search box.
6. You can configure the values of the following properties:
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HBase Coprocessor Abort on Error (Service-Wide)•
• HBase Coprocessor Master Classes (Master Default Group)
• HBase Coprocessor Region Classes (RegionServer Default Group)

7. Click Save Changes to commit the changes.

Disabling Loading of Coprocessors
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

In CDH 5.7 and higher, you can disable loading of system (HBase-wide) or user (table-wide) coprocessors. Cloudera
recommends against disabling loading of system coprocessors, because HBase security functionality is implemented
using system coprocessors. However, disabling loading of user coprocessors may be appropriate.

1. Select the HBase service.
2. Click the Configuration tab.
3. Search for HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.
4. To disable loading of all coprocessors, add a new property with the name hbase.coprocessor.enabled and

set its value to false. Cloudera does not recommend this setting.
5. To disable loading of user coprocessors, add a newpropertywith the namehbase.coprocessor.user.enabled

and set its value to false.
6. Click Save Changes to commit the changes.

Enabling Hedged Reads on HBase
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > HBASE-1 (Service-Wide).
4. Select Category > Performance.
5. Configure the HDFS Hedged Read Threadpool Size and HDFS Hedged Read Delay Threshold properties. The

descriptions for each of these properties on the configuration pages provide more information.
6. Click Save Changes to commit the changes.

Moving HBase Master Role to Another Host
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

1. Select the HBase service in Cloudera Manager.
2. Click the Instances tab.
3. Click Add Role Instances to add role instances to HBase.
4. Choose the desired new host underMaster.
5. Click Continue.
6. Start the newly added HBase Master role.

As a results the state of this role becomes Started.

7. Wait until the type of the newly added HBase Master role becomes Master (Backup).
8. Stop any other non-active HBase Master role instances.

Note: This step does not impact HBase. It is required to ensure that the newly created HBase
Master role backup will be chosen to be the new active HBase Master role.
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9. Stop the remaining active HBase Master role.

As a result, the type of the newly added HBase Master role automatically becomes Master (Active).

10. Delete the old HBase Master role instances on hosts that are not wanted.

Advanced Configuration for Write-Heavy Workloads
HBase includes several advanced configuration parameters for adjusting the number of threads available to service
flushes and compactions in the presence of write-heavy workloads. Tuning these parameters incorrectly can severely
degrade performance and is not necessary for most HBase clusters. If you use Cloudera Manager, configure these
options using the HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.

hbase.hstore.flusher.count

The number of threads available to flush writes from memory to disk. Never increase
hbase.hstore.flusher.count to more of 50% of the number of disks available to HBase. For example, if you
have 8 solid-state drives (SSDs), hbase.hstore.flusher.count should never exceed 4. This allows scanners
and compactions to proceed even in the presence of very high writes.

hbase.regionserver.thread.compaction.large andhbase.regionserver.thread.compaction.small

The number of threads available to handle small and large compactions, respectively. Never increase either of these
options to more than 50% of the number of disks available to HBase.

Ideally, hbase.regionserver.thread.compaction.small should be greater than or equal to
hbase.regionserver.thread.compaction.large, since the large compaction threads domore intense work
and will be in use longer for a given operation.

In addition to the above, if you use compression on some column families, more CPU will be used when flushing these
column families to disk during flushes or compaction. The impact on CPU usage depends on the size of the flush or the
amount of data to be decompressed and compressed during compactions.

Managing HBase
Cloudera Manager requires certain additional steps to set up and configure the HBase service.

Creating the HBase Root Directory

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

When adding the HBase service, the Add Service wizard automatically creates a root directory for HBase in HDFS. If
you quit the Add Service wizard or it does not finish, you can create the root directory outside the wizard by doing
these steps:

1. Choose Create Root Directory from the Actionsmenu in the HBase > Status tab.
2. Click Create Root Directory again to confirm.

Graceful Shutdown

Minimum Required Role: Operator (also provided by Configurator, Cluster Administrator, Full Administrator)

A graceful shutdown of an HBase RegionServer allows the regions hosted by that RegionServer to be moved to other
RegionServers before stopping the RegionServer. Cloudera Manager provides the following configuration options to
perform a graceful shutdown of either an HBase RegionServer or the entire service.

To increase the speed of a rolling restart of the HBase service, set the Region Mover Threads property to a higher
value. This increases the number of regions that can be moved in parallel, but places additional strain on the HMaster.
In most cases, Region Mover Threads should be set to 5 or lower.
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Gracefully Shutting Down an HBase RegionServer

1. Go to the HBase service.
2. Click the Instances tab.
3. From the list of Role Instances, select the RegionServer you want to shut down gracefully.
4. Select Actions for Selected > Decommission (Graceful Stop).
5. Cloudera Manager attempts to gracefully shut down the RegionServer for the interval configured in the Graceful

Shutdown Timeout configuration option, which defaults to 3 minutes. If the graceful shutdown fails, Cloudera
Manager forcibly stops the process by sending a SIGKILL (kill -9) signal. HBase will perform recovery actions
on regions that were on the forcibly stopped RegionServer.

6. If you cancel the graceful shutdown before the Graceful Shutdown Timeout expires, you can still manually stop
a RegionServer by selecting Actions for Selected > Stop, which sends a SIGTERM (kill -5) signal.

Gracefully Shutting Down the HBase Service

1. Go to the HBase service.
2. Select Actions > Stop. This tries to perform an HBase Master-driven graceful shutdown for the length of the

configured Graceful Shutdown Timeout (three minutes by default), after which it abruptly shuts down the whole
service.

Configuring the Graceful Shutdown Timeout Property

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

This timeout only affects a graceful shutdown of the entire HBase service, not individual RegionServers. Therefore, if
you have a large cluster with many RegionServers, you should strongly consider increasing the timeout from its default
of 180 seconds.

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > HBASE-1 (Service Wide)
4. Use the Search box to search for the Graceful Shutdown Timeout property and edit the value.
5. Click Save Changes to save this setting.

Configuring the HBase Thrift Server Role

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

The Thrift Server role is not added by default when you install HBase, but it is required before you can use certain other
features such as the Hue HBase browser. To add the Thrift Server role:

1. Go to the HBase service.
2. Click the Instances tab.
3. Click the Add Role Instances button.
4. Select the host(s) where you want to add the Thrift Server role (you only need one for Hue) and click Continue.

The Thrift Server role should appear in the instances list for the HBase server.
5. Select the Thrift Server role instance.
6. Select Actions for Selected > Start.

Enabling HBase Indexing

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

HBase indexing is dependent on the Key-Value Store Indexer service. The Key-Value Store Indexer service uses the Lily
HBase Indexer Service to index the stream of records being added to HBase tables. Indexing allows you to query data
stored in HBase with the Solr service.

1. Go to the HBase service.
2. Click the Configuration tab.
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3. Select Scope > HBASE-1 (Service Wide)
4. Select Category > Backup.
5. Select the Enable Replication and Enable Indexing properties.
6. Click Save Changes.

Adding a Custom Coprocessor

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Note: End-user custom HBase coprocessors are not supported.

The HBase coprocessor framework provides a way to extend HBase with custom functionality. To configure these
properties in Cloudera Manager:

1. Select the HBase service.
2. Click the Configuration tab.
3. Select Scope > All.
4. Select Category > All.
5. Type HBase Coprocessor in the Search box.
6. You can configure the values of the following properties:

• HBase Coprocessor Abort on Error (Service-Wide)
• HBase Coprocessor Master Classes (Master Default Group)
• HBase Coprocessor Region Classes (RegionServer Default Group)

7. Click Save Changes to commit the changes.

Disabling Loading of Coprocessors

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

In CDH 5.7 and higher, you can disable loading of system (HBase-wide) or user (table-wide) coprocessors. Cloudera
recommends against disabling loading of system coprocessors, because HBase security functionality is implemented
using system coprocessors. However, disabling loading of user coprocessors may be appropriate.

1. Select the HBase service.
2. Click the Configuration tab.
3. Search for HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.
4. To disable loading of all coprocessors, add a new property with the name hbase.coprocessor.enabled and

set its value to false. Cloudera does not recommend this setting.
5. To disable loading of user coprocessors, add a newpropertywith the namehbase.coprocessor.user.enabled

and set its value to false.
6. Click Save Changes to commit the changes.

Enabling Hedged Reads on HBase

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > HBASE-1 (Service-Wide).
4. Select Category > Performance.
5. Configure the HDFS Hedged Read Threadpool Size and HDFS Hedged Read Delay Threshold properties. The

descriptions for each of these properties on the configuration pages provide more information.
6. Click Save Changes to commit the changes.
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Moving HBase Master Role to Another Host

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

1. Select the HBase service in Cloudera Manager.
2. Click the Instances tab.
3. Click Add Role Instances to add role instances to HBase.
4. Choose the desired new host underMaster.
5. Click Continue.
6. Start the newly added HBase Master role.

As a results the state of this role becomes Started.

7. Wait until the type of the newly added HBase Master role becomes Master (Backup).
8. Stop any other non-active HBase Master role instances.

Note: This step does not impact HBase. It is required to ensure that the newly created HBase
Master role backup will be chosen to be the new active HBase Master role.

9. Stop the remaining active HBase Master role.

As a result, the type of the newly added HBase Master role automatically becomes Master (Active).

10. Delete the old HBase Master role instances on hosts that are not wanted.

Advanced Configuration for Write-Heavy Workloads

HBase includes several advanced configuration parameters for adjusting the number of threads available to service
flushes and compactions in the presence of write-heavy workloads. Tuning these parameters incorrectly can severely
degrade performance and is not necessary for most HBase clusters. If you use Cloudera Manager, configure these
options using the HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.

hbase.hstore.flusher.count

The number of threads available to flush writes from memory to disk. Never increase
hbase.hstore.flusher.count to more of 50% of the number of disks available to HBase. For example, if you
have 8 solid-state drives (SSDs), hbase.hstore.flusher.count should never exceed 4. This allows scanners
and compactions to proceed even in the presence of very high writes.

hbase.regionserver.thread.compaction.large andhbase.regionserver.thread.compaction.small

The number of threads available to handle small and large compactions, respectively. Never increase either of these
options to more than 50% of the number of disks available to HBase.

Ideally, hbase.regionserver.thread.compaction.small should be greater than or equal to
hbase.regionserver.thread.compaction.large, since the large compaction threads domore intense work
and will be in use longer for a given operation.

In addition to the above, if you use compression on some column families, more CPU will be used when flushing these
column families to disk during flushes or compaction. The impact on CPU usage depends on the size of the flush or the
amount of data to be decompressed and compressed during compactions.

Starting and Stopping HBase
Use these instructions to start, stop, restart, rolling restart, or decommission HBase clusters or individual hosts.

Starting or Restarting HBase

You can start HBase hosts individually or as an entire cluster.

1. Go to the HBase service.
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2. Click the Actions button and select Start.
3. To restart a running cluster, click Actions and select Restart or Rolling Restart. A rolling restart, which restarts

each RegionServer, one at a time, after a grace period. To configure the grace period, see Configuring the Graceful
Shutdown Timeout Property on page 48.

4. The Thrift service has no dependencies and can be restarted at any time. To stop or restart the Thrift service:

• Go to the HBase service.
• Select Instances.
• Select the HBase Thrift Server instance.
• Select Actions for Selected and select either Stop or Restart.

Stopping HBase

You can stop a single HBase host, all hosts of a given type, or all hosts in the cluster.

1. To stop or decommission a single RegionServer:

a. Go to the HBase service.
b. Click the Instances tab.
c. From the list of Role Instances, select the RegionServer or RegionServers you want to stop or decommission.
d. Select Actions for Selected and select either Decommission (Graceful Stop) or Stop.

• Graceful Stop causes the regions to be redistributed to other RegionServers, increasing availability during
the RegionServer outage. Cloudera Manager waits for an interval determined by the Graceful Shutdown
timeout interval, which defaults to three minutes. If the graceful stop does not succeed within this
interval, the RegionServer is stopped with a SIGKILL (kill -9) signal. Recovery will be initiated on
affected regions.

• Stop happens immediately and does not redistribute the regions. It issues a SIGTERM (kill -5) signal.

2. To stop or decommission a single HMaster, select the Master and go through the same steps as above.
3. To stop or decommission the entire cluster, select the Actions button at the top of the screen (not Actions for

selected) and select Decommission (Graceful Stop) or Stop.

Starting and Stopping HBase Using the Command Line

When starting and stopping CDH services, order is important. See Starting CDH Services Using the Command Line and
Stopping CDH Services Using the Command Line for details. If you use Cloudera Manager, follow these instructions
instead.

Important:

• If you use Cloudera Manager, do not use these command-line instructions.
• This information applies specifically to CDH 5.15.0. If you use an earlier version of CDH, see the

documentation for that version located at Cloudera Documentation.

Starting HBase

When starting HBase, it is important to start the HMaster, followed by the RegionServers, then the Thrift server.

If you need the ability to perform a rolling restart, Cloudera recommendsmanaging your cluster with ClouderaManager.

1. To start a HBase cluster using the command line, start the HBase Master by using the sudo hbase-master
start command on RHEL or SuSE, or the sudo hadoop-hbase-regionserver start command on Ubuntu
or Debian. The HMaster starts the RegionServers automatically.

2. To start a RegionServer manually, use the sudo hbase-regionserver start command on RHEL or SuSE, or
the sudo hadoop-hbase-regionserver start command on Ubuntu or Debian.
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3. The Thrift service has no dependencies and can be restarted at any time. To start the Thrift server, use the
hbase-thrift start on RHEL or SuSE, or the hadoop-hbase-thrift start on Ubuntu or Debian.

Stopping HBase

When stopping HBase, it is important to stop the Thrift server, followed by each RegionServer, followed by any backup
HMasters, and finally the main HMaster.

1. Shut down the Thrift server by using thehbase-thrift stop commandon the Thrift server host.sudo service
hbase-thrift stop

2. Shut down each RegionServer by using thehadoop-hbase-regionserver stop commandon the RegionServer
host.

sudo service hadoop-hbase-regionserver stop

3. Shut down backup HMasters, followed by the main HMaster, by using the hbase-master stop command.

sudo service hbase-master stop

Accessing HBase by using the HBase Shell
After you have started HBase, you can access the database in an interactive way by using the HBase Shell, which is a
command interpreter for HBase which is written in Ruby. Always run HBase administrative commands such as the
HBase Shell, hbck, or bulk-load commands as the HBase user (typically hbase).

$ hbase shell

HBase Shell Overview

• To get help and to see all available commands, use the help command.
• To get help on a specific command, use help "command". For example:

hbase> help "create"

• To remove an attribute from a table or column family or reset it to its default value, set its value to nil. For
example, use the following command to remove the KEEP_DELETED_CELLS attribute from the f1 column of the
users table:

hbase> alter 'users', { NAME => 'f1', KEEP_DELETED_CELLS => nil }

• To exit the HBase Shell, type quit.

Setting Virtual Machine Options for HBase Shell

HBase in CDH 5.2 and higher allows you to set variables for the virtual machine running HBase Shell, by using the
HBASE_SHELL_OPTS environment variable. This example sets several options in the virtual machine.

$ HBASE_SHELL_OPTS="-verbose:gc -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCDateStamps

      -XX:+PrintGCDetails -Xloggc:$HBASE_HOME/logs/gc-hbase.log" ./bin/hbase shell
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Scripting with HBase Shell

CDH 5.2 and higher include non-interactive mode. This mode allows you to use HBase Shell in scripts, and allow the
script to access the exit status of the HBase Shell commands. To invoke non-interactive mode, use the -n or
--non-interactive switch. This small example script shows how to use HBase Shell in a Bash script.

#!/bin/bash
echo 'list' | hbase shell -n
status=$?
if [$status -ne 0]; then
  echo "The command may have failed."
fi

Successful HBase Shell commands return an exit status of 0. However, an exit status other than 0 does not necessarily
indicate a failure, but should be interpreted as unknown. For example, a command may succeed, but while waiting for
the response, the clientmay lose connectivity. In that case, the client has noway to know the outcomeof the command.
In the case of a non-zero exit status, your script should check to be sure the command actually failed before taking
further action.

CDH 5.7 and higher include the get_splits command, which returns the split points for a given table:

hbase> get_splits 't2'
Total number of splits = 5

=> ["", "10", "20", "30", "40"]

You can also write Ruby scripts for use with HBase Shell. Example Ruby scripts are included in the
hbase-examples/src/main/ruby/ directory.

Using HBase Command-Line Utilities
Besides the HBase Shell, HBase includes several other command-line utilities, which are available in the hbase/bin/
directory of each HBase host. This topic provides basic usage instructions for the most commonly used utilities.

PerformanceEvaluation

The PerformanceEvaluation utility allows you to run several preconfigured tests on your cluster and reports its
performance. To run the PerformanceEvaluation tool in CDH 5.1 and higher, use the bin/hbase pe command.
In CDH 5.0 and lower, use the command bin/hbase org.apache.hadoop.hbase.PerformanceEvaluation.

For usage instructions, run the command with no arguments. The following output shows the usage instructions for
the PerformanceEvaluation tool in CDH 5.7. Options and commands available depend on the CDH version.

$ hbase pe

Usage: java org.apache.hadoop.hbase.PerformanceEvaluation \
  <OPTIONS> [-D<property=value>]* <command> <nclients>

Options:
 nomapred        Run multiple clients using threads (rather than use mapreduce)
 rows            Rows each client runs. Default: One million
 size            Total size in GiB. Mutually exclusive with --rows. Default: 1.0.
 sampleRate      Execute test on a sample of total rows. Only supported by randomRead.
                 Default: 1.0
 traceRate       Enable HTrace spans. Initiate tracing every N rows. Default: 0
 table           Alternate table name. Default: 'TestTable'
 multiGet        If >0, when doing RandomRead, perform multiple gets instead of single
                 gets.
                 Default: 0
 compress        Compression type to use (GZ, LZO, ...). Default: 'NONE'
 flushCommits    Used to determine if the test should flush the table. Default: false
 writeToWAL      Set writeToWAL on puts. Default: True
 autoFlush       Set autoFlush on htable. Default: False
 oneCon          all the threads share the same connection. Default: False
 presplit        Create presplit table. Recommended for accurate perf analysis (see
                 guide). Default: disabled
 inmemory        Tries to keep the HFiles of the CF inmemory as far as possible. Not
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                 guaranteed that reads are always served from memory.  Default: false
 usetags         Writes tags along with KVs. Use with HFile V3. Default: false
 numoftags       Specify the no of tags that would be needed. This works only if usetags
                 is true.
 filterAll       Helps to filter out all the rows on the server side there by not returning
                 anything back to the client.  Helps to check the server side performance.
                 Uses FilterAllFilter internally.
 latency         Set to report operation latencies. Default: False
 bloomFilter     Bloom filter type, one of [NONE, ROW, ROWCOL]
 valueSize       Pass value size to use: Default: 1024
 valueRandom     Set if we should vary value size between 0 and 'valueSize'; set on read
                 for stats on size: Default: Not set.
 valueZipf       Set if we should vary value size between 0 and 'valueSize' in zipf form:
                 Default: Not set.
 period          Report every 'period' rows: Default: opts.perClientRunRows / 10
 multiGet        Batch gets together into groups of N. Only supported by randomRead.
                 Default: disabled
 addColumns      Adds columns to scans/gets explicitly. Default: true
 replicas        Enable region replica testing. Defaults: 1.
 splitPolicy     Specify a custom RegionSplitPolicy for the table.
 randomSleep     Do a random sleep before each get between 0 and entered value. Defaults: 0
 columns         Columns to write per row. Default: 1
 caching         Scan caching to use. Default: 30

 Note: -D properties will be applied to the conf used.
  For example:
   -Dmapreduce.output.fileoutputformat.compress=true
   -Dmapreduce.task.timeout=60000

Command:
 append          Append on each row; clients overlap on keyspace so some concurrent
                 operations
 checkAndDelete  CheckAndDelete on each row; clients overlap on keyspace so some concurrent
                 operations
 checkAndMutate  CheckAndMutate on each row; clients overlap on keyspace so some concurrent
                 operations
 checkAndPut     CheckAndPut on each row; clients overlap on keyspace so some concurrent
                 operations
 filterScan      Run scan test using a filter to find a specific row based on it's value
                 (make sure to use --rows=20)
 increment       Increment on each row; clients overlap on keyspace so some concurrent
                 operations
 randomRead      Run random read test
 randomSeekScan  Run random seek and scan 100 test
 randomWrite     Run random write test
 scan            Run scan test (read every row)
 scanRange10     Run random seek scan with both start and stop row (max 10 rows)
 scanRange100    Run random seek scan with both start and stop row (max 100 rows)
 scanRange1000   Run random seek scan with both start and stop row (max 1000 rows)
 scanRange10000  Run random seek scan with both start and stop row (max 10000 rows)
 sequentialRead  Run sequential read test
 sequentialWrite Run sequential write test

Args:
 nclients        Integer. Required. Total number of clients (and HRegionServers)
                 running: 1 <= value <= 500
Examples:
 To run a single client doing the default 1M sequentialWrites:
 $ bin/hbase org.apache.hadoop.hbase.PerformanceEvaluation sequentialWrite 1
 To run 10 clients doing increments over ten rows:
 $ bin/hbase org.apache.hadoop.hbase.PerformanceEvaluation --rows=10 --nomapred increment 10

LoadTestTool

The LoadTestTool utility load-tests your cluster by performing writes, updates, or reads on it. To run the
LoadTestTool in CDH 5.1 and higher, use the bin/hbase ltt command . In CDH 5.0 and lower, use the command
bin/hbase org.apache.hadoop.hbase.util.LoadTestTool. To print general usage information, use the -h
option. Options and commands available depend on the CDH version.

$ bin/hbase ltt -h

Options:
 -batchupdate                    Whether to use batch as opposed to separate updates for every 
column
                                 in a row
 -bloom <arg>                    Bloom filter type, one of [NONE, ROW, ROWCOL]
 -compression <arg>              Compression type, one of [LZO, GZ, NONE, SNAPPY, LZ4]
 -data_block_encoding <arg>      Encoding algorithm (e.g. prefix compression) to use for data 
blocks
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                                 in the test column family, one of
                                 [NONE, PREFIX, DIFF, FAST_DIFF, PREFIX_TREE].
 -deferredlogflush               Enable deferred log flush.
 -encryption <arg>               Enables transparent encryption on the test table, one of [AES]
 -families <arg>                 The name of the column families to use separated by comma
 -generator <arg>                The class which generates load for the tool. Any args for this 
class
                                 can be passed as colon separated after class name
 -h,--help                       Show usage
 -in_memory                      Tries to keep the HFiles of the CF inmemory as far as possible. 
 Not
                                 guaranteed that reads are always served from inmemory
 -init_only                      Initialize the test table only, don't do any loading
 -key_window <arg>               The 'key window' to maintain between reads and writes for concurrent

                                 write/read workload. The default is 0.
 -max_read_errors <arg>          The maximum number of read errors to tolerate before terminating
 all
                                 reader threads. The default is 10.
 -mob_threshold <arg>            Desired cell size to exceed in bytes that will use the MOB write
 path
 -multiget_batchsize <arg>       Whether to use multi-gets as opposed to separate gets for every
                                 column in a row
 -multiput                       Whether to use multi-puts as opposed to separate puts for every
                                 column in a row
 -num_keys <arg>                 The number of keys to read/write
 -num_regions_per_server <arg>   Desired number of regions per region server. Defaults to 5.
 -num_tables <arg>               A positive integer number. When a number n is speicfied, load 
test tool
                                 will load n table parallely. -tn parameter value becomes table 
name prefix.
                                 Each table name is in format <tn>_1...<tn>_n
 -read <arg>                     <verify_percent>[:<#threads=20>]
 -reader <arg>                   The class for executing the read requests
 -region_replica_id <arg>        Region replica id to do the reads from
 -region_replication <arg>       Desired number of replicas per region
 -regions_per_server <arg>       A positive integer number. When a number n is specified, load 
test tool
                                 will create the test table with n regions per server
 -skip_init                      Skip the initialization; assume test table already exists
 -start_key <arg>                The first key to read/write (a 0-based index). The default value
 is 0.
 -tn <arg>                       The name of the table to read or write
 -update <arg>                   <update_percent>[:<#threads=20>][:<#whether to ignore nonce 
collisions=0>]
 -updater <arg>                  The class for executing the update requests
 -write <arg>                    <avg_cols_per_key>:<avg_data_size>[:<#threads=20>]
 -writer <arg>                   The class for executing the write requests
 -zk <arg>                       ZK quorum as comma-separated host names without port numbers
 -zk_root <arg>                  name of parent znode in zookeeper

wal

The wal utility prints information about the contents of a specified WAL file. To get a list of all WAL files, use the HDFS
command hadoop fs -ls -R /hbase/WALs. To run the wal utility, use the bin/hbase wal command. Run it
without options to get usage information.

hbase wal
usage: WAL <filename...> [-h] [-j] [-p] [-r <arg>] [-s <arg>] [-w <arg>]
 -h,--help             Output help message
 -j,--json             Output JSON
 -p,--printvals        Print values
 -r,--region <arg>     Region to filter by. Pass encoded region name; e.g.
                       '9192caead6a5a20acb4454ffbc79fa14'
 -s,--sequence <arg>   Sequence to filter by. Pass sequence number.
 -w,--row <arg>        Row to filter by. Pass row name.

hfile

The hfile utility prints diagnostic information about a specified hfile, such as block headers or statistics. To get a
list of all hfiles, use the HDFS command hadoop fs -ls -R /hbase/data. To run the hfile utility, use the
bin/hbase hfile command. Run it without options to get usage information.

$ hbase hfile
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usage: HFile [-a] [-b] [-e] [-f <arg> | -r <arg>] [-h] [-i] [-k] [-m] [-p]
       [-s] [-v] [-w <arg>]
 -a,--checkfamily         Enable family check
 -b,--printblocks         Print block index meta data
 -e,--printkey            Print keys
 -f,--file <arg>          File to scan. Pass full-path; e.g.
                          hdfs://a:9000/hbase/hbase:meta/12/34
 -h,--printblockheaders   Print block headers for each block.
 -i,--checkMobIntegrity   Print all cells whose mob files are missing
 -k,--checkrow            Enable row order check; looks for out-of-order
                          keys
 -m,--printmeta           Print meta data of file
 -p,--printkv             Print key/value pairs
 -r,--region <arg>        Region to scan. Pass region name; e.g.
                          'hbase:meta,,1'
 -s,--stats               Print statistics
 -v,--verbose             Verbose output; emits file and meta data
                          delimiters
 -w,--seekToRow <arg>     Seek to this row and print all the kvs for this
                          row only

hbck

The hbck utility checks and optionally repairs errors in HFiles.

Warning: Running hbck with any of the -fix or -repair commands is dangerous and can lead to
data loss. Contact Cloudera support before running it.

To run hbck, use the bin/hbase hbck command. Run it with the -h option to get more usage information.

$ bin/hbase hbck -h

Usage: fsck [opts] {only tables}
 where [opts] are:
   -help Display help options (this)
   -details Display full report of all regions.
   -timelag <timeInSeconds>  Process only regions that  have not experienced any metadata updates
 in the last
            <timeInSeconds> seconds.
   -sleepBeforeRerun <timeInSeconds> Sleep this many seconds before checking if the fix worked if
 run with
                     -fix
   -summary Print only summary of the tables and status.
   -metaonly Only check the state of the hbase:meta table.
   -sidelineDir <hdfs://> HDFS path to backup existing meta.
   -boundaries Verify that regions boundaries are the same between META and store files.
   -exclusive Abort if another hbck is exclusive or fixing.
   -disableBalancer Disable the load balancer.

  Metadata Repair options: (expert features, use with caution!)
   -fix              Try to fix region assignments.  This is for backwards compatiblity
   -fixAssignments   Try to fix region assignments.  Replaces the old -fix
   -fixMeta          Try to fix meta problems.  This assumes HDFS region info is good.
   -noHdfsChecking   Don't load/check region info from HDFS. Assumes hbase:meta region info is 
good. Won't
                     check/fix any HDFS issue, e.g. hole, orphan, or overlap
   -fixHdfsHoles     Try to fix region holes in hdfs.
   -fixHdfsOrphans   Try to fix region dirs with no .regioninfo file in hdfs
   -fixTableOrphans  Try to fix table dirs with no .tableinfo file in hdfs (online mode only)
   -fixHdfsOverlaps  Try to fix region overlaps in hdfs.
   -fixVersionFile   Try to fix missing hbase.version file in hdfs.
   -maxMerge <n>     When fixing region overlaps, allow at most <n> regions to merge. (n=5 by 
default)
   -sidelineBigOverlaps  When fixing region overlaps, allow to sideline big overlaps
   -maxOverlapsToSideline <n>  When fixing region overlaps, allow at most <n> regions to sideline
 per group.
                     (n=2 by default)
   -fixSplitParents  Try to force offline split parents to be online.
   -ignorePreCheckPermission  ignore filesystem permission pre-check
   -fixReferenceFiles  Try to offline lingering reference store files
   -fixEmptyMetaCells  Try to fix hbase:meta entries not referencing any region (empty 
REGIONINFO_QUALIFIER rows)

  Datafile Repair options: (expert features, use with caution!)
   -checkCorruptHFiles     Check all Hfiles by opening them to make sure they are valid
   -sidelineCorruptHFiles  Quarantine corrupted HFiles.  implies -checkCorruptHFiles
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  Metadata Repair shortcuts
   -repair           Shortcut for -fixAssignments -fixMeta -fixHdfsHoles
                                  -fixHdfsOrphans -fixHdfsOverlaps -fixVersionFile
                                  -sidelineBigOverlaps -fixReferenceFiles -fixTableLocks
                                  -fixOrphanedTableZnodes
   -repairHoles      Shortcut for -fixAssignments -fixMeta -fixHdfsHoles

  Table lock options
   -fixTableLocks    Deletes table locks held for a long time (hbase.table.lock.expire.ms,
                     10min by default)

  Table Znode options
   -fixOrphanedTableZnodes    Set table state in ZNode to disabled if table does not exists

 Replication options
   -fixReplication   Deletes replication queues for removed peers

clean

After you have finished using a test or proof-of-concept cluster, the hbase clean utility can remove all HBase-related
data from ZooKeeper and HDFS.

Warning: The hbase clean command destroys data. Do not run it on production clusters, or unless
you are absolutely sure you want to destroy the data.

To run the hbase clean utility, use the bin/hbase clean command. Run it with no options for usage information.

$ bin/hbase clean

Usage: hbase clean (--cleanZk|--cleanHdfs|--cleanAll)
Options:
        --cleanZk   cleans hbase related data from zookeeper.
        --cleanHdfs cleans hbase related data from hdfs.
        --cleanAll  cleans hbase related data from both zookeeper and hdfs.

Configuring HBase Garbage Collection

Warning: Configuring the JVM garbage collection for HBase is an advanced operation. Incorrect
configuration can havemajor performance implications for your cluster. Test any configuration changes
carefully.

Garbage collection (memory cleanup) by the JVM can cause HBase clients to experience excessive latency. See Tuning
Java Garbage Collection for HBase for a discussion of various garbage collection settings and their impacts on
performance.

To tune the garbage collection settings, you pass the relevant parameters to the JVM.

Example configuration values are not recommendations and should not be considered as such. This is not the complete
list of configuration options related to garbage collection. See the documentation for your JVM for details on these
settings.

-XX:+UseG1GC

Use the 'G1' garbage collection algorithm. You can tune G1 garbage collection to provide a consistent pause time,
which benefits long-term running Java processes such as HBase, NameNode, Solr, and ZooKeeper. For more
information about tuning G1, see the Oracle documentation on tuning garbage collection.

-XX:MaxGCPauseMillis=value

The garbage collection pause time. Set this to the maximum amount of latency your cluster can tolerate while
allowing as much garbage collection as possible.

-XX:+ParallelRefProcEnabled

Enable or disable parallel reference processing by using a + or - symbol before the parameter name.
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-XX:-ResizePLAB

Enable or disable resizing of Promotion Local Allocation Buffers (PLABs) by using a + or - symbol before the parameter
name.

-XX:ParallelGCThreads=value

The number of parallel garbage collection threads to run concurrently.

-XX:G1NewSizePercent=value

The percent of the heap to be used for garbage collection. If the value is too low, garbage collection is ineffective.
If the value is too high, not enough heap is available for other uses by HBase.

If your cluster is managed by Cloudera Manager, follow the instructions in Configure HBase Garbage Collection Using
Cloudera Manager on page 58. Otherwise, use Configure HBase Garbage Collection Using the Command Line on page
58.

Configure HBase Garbage Collection Using Cloudera Manager

Minimum Required Role: Full Administrator

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > RegionServer.
4. Select Category > Advanced.
5. Locate the Java Configuration Options for HBase RegionServer property or search for it by typing its name in the

Search box.
6. Add or modify JVM configuration options.
7. Click Save Changes to commit the changes.
8. Restart the role.

Configure HBase Garbage Collection Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

1. On each RegionServer, edit conf/hbase-env.sh.
2. Add or modify JVM configuration options on the line beginning with HBASE_OPTS.
3. Restart the RegionServer.

Disabling the BoundedByteBufferPool

HBase uses a BoundedByteBufferPool to avoid fragmenting the heap. The G1 garbage collector reduces the need
to avoid fragmenting the heap in some cases. If you use the G1 garbage collector, you can disable the
BoundedByteBufferPool in HBase in CDH 5.7 and higher. This can reduce the number of "old generation" items
that need to be collected. This configuration is experimental.

To disable the BoundedByteBufferPool, set the hbase.ipc.server.reservoir.enabled property to false.

Disable the BoundedByteBufferPool Using Cloudera Manager

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > RegionServer.
4. Select Category > Advanced.
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5. Locate the HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml property, or search
for it by typing its name in the Search box.

6. Add the following XML:

<property>
  <name>hbase.ipc.server.reservoir.enabled</name>
  <value>false</value>
</property>

7. Click Save Changes to commit the changes.
8. Restart the service.

Disable the BoundedByteBufferPool Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

1. On each RegionServer, edit conf/hbase-site.xml.
2. Add the following XML:

<property>
  <name>hbase.ipc.server.reservoir.enabled</name>
  <value>false</value>
</property>

3. Save your changes.
4. Restart the RegionServer.

Configuring the HBase Canary
The HBase canary is an optional service that periodically checks that a RegionServer is alive. This canary is different
from the Cloudera Service Monitoring canary and is provided by the HBase service. The HBase canary is disabled by
default. After enabling the canary, you can configure several different thresholds and intervals relating to it, as well
as exclude certain tables from the canary checks. The canary works on Kerberos-enabled clusters if you have the HBase
client configured to use Kerberos.

Configure the HBase Canary Using Cloudera Manager

Minimum Required Role: Full Administrator

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > HBase or HBase Service-Wide.
4. Select Category >Monitoring.
5. Locate the HBase Canary property or search for it by typing its name in the Search box. Several properties have

Canary in the property name.
6. Select the checkbox.
7. Review other HBase Canary properties to configure the specific behavior of the canary.

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.
See Modifying Configuration Properties Using Cloudera Manager.

8. Click Save Changes to commit the changes.
9. Restart the role.
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10. Restart the service.

Configure the HBase Canary Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

The HBase canary is a Java class. To run it from the command line, in the foreground, issue a command similar to the
following, as the HBase user:

$ /usr/bin/hbase org.apache.hadoop.hbase.tool.Canary 

To start the canary in the background, add the --daemon option. You can also use this option in your HBase startup
scripts.

$ /usr/bin/hbase org.apache.hadoop.hbase.tool.Canary --daemon

The canary has many options. To see usage instructions, add the --help parameter:

$ /usr/bin/hbase org.apache.hadoop.hbase.tool.Canary --help

Checking and Repairing HBase Tables
HBaseFsck (hbck) is a command-line tool that checks for region consistency and table integrity problems and repairs
corruption. It works in two basic modes — a read-only inconsistency identifying mode and a multi-phase read-write
repair mode.

• Read-only inconsistency identification: In this mode, which is the default, a report is generated but no repairs
are attempted.

• Read-write repair mode: In this mode, if errors are found, hbck attempts to repair them.

Always run HBase administrative commands such as the HBase Shell, hbck, or bulk-load commands as the HBase user
(typically hbase).

Running hbckManually

The hbck command is located in the bin directory of the HBase install.

• With no arguments, hbck checks HBase for inconsistencies and prints OK if no inconsistencies are found, or the
number of inconsistencies otherwise.

• With the -details argument, hbck checks HBase for inconsistencies and prints a detailed report.
• To limithbck to only checking specific tables, provide themas a space-separated list:hbck <table1> <table2>

Warning: The following hbck options modify HBase metadata and are dangerous. They are not
coordinated by the HMaster and can cause further corruption by conflicting with commands that are
currently in progress or coordinated by the HMaster. Even if the HMaster is down, it may try to recover
the latest operation when it restarts. These options should only be used as a last resort. The hbck
command can only fix actual HBase metadata corruption and is not a general-purpose maintenance
tool. Before running these commands, consider contacting Cloudera Support for guidance. In addition,
running any of these commands requires an HMaster restart.

• If region-level inconsistencies are found, use the -fix argument to direct hbck to try to fix them. The following
sequence of steps is followed:
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The standard check for inconsistencies is run.1.
2. If needed, repairs are made to tables.
3. If needed, repairs are made to regions. Regions are closed during repair.

• You can also fix individual region-level inconsistencies separately, rather than fixing them automatically with the
-fix argument.

– -fixAssignments repairs unassigned, incorrectly assigned or multiply assigned regions.
– -fixMeta removes rows from hbase:meta when their corresponding regions are not present in HDFS and

adds new meta rows if regions are present in HDFS but not in hbase:meta.
– -repairHoles creates HFiles for new empty regions on the filesystem and ensures that the new regions

are consistent.
– -fixHdfsOrphans repairs a region directory that is missing a regionmetadata file (the .regioninfo file).
– -fixHdfsOverlaps fixes overlapping regions. You can further tune this argument using the following

options:

– -maxMerge <n> controls the maximum number of regions to merge.
– -sidelineBigOverlaps attempts to sideline the regions which overlap the largest number of other

regions.
– -maxOverlapsToSideline <n> limits the maximum number of regions to sideline.

• To try to repair all inconsistencies and corruption at once, use the -repair option, which includes all the region
and table consistency options.

For more details about the hbck command, see Appendix C of the HBase Reference Guide.

Hedged Reads
Hadoop 2.4 introduced a new feature called hedged reads. If a read from a block is slow, the HDFS client starts up
another parallel, 'hedged' read against a different block replica. The result of whichever read returns first is used, and
the outstanding read is cancelled. This feature helps in situations where a read occasionally takes a long time rather
than when there is a systemic problem. Hedged reads can be enabled for HBase when the HFiles are stored in HDFS.
This feature is disabled by default.

Enabling Hedged Reads for HBase Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > HBASE-1 (Service-Wide).
4. Select Category > Performance.
5. Configure the HDFS Hedged Read Threadpool Size and HDFS Hedged Read Delay Threshold properties. The

descriptions for each of these properties on the configuration pages provide more information.
6. Click Save Changes to commit the changes.

Enabling Hedged Reads for HBase Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

To enable hedged reads for HBase, edit the hbase-site.xml file on each server. Set
dfs.client.hedged.read.threadpool.size to the number of threads to dedicate to running hedged threads,
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and set the dfs.client.hedged.read.threshold.millis configuration property to the number of milliseconds
to wait before starting a second read against a different block replica. Set
dfs.client.hedged.read.threadpool.size to 0 or remove it from the configuration to disable the feature.
After changing these properties, restart your cluster.

The following is an example configuration for hedged reads for HBase.

<property>
  <name>dfs.client.hedged.read.threadpool.size</name>
  <value>20</value>  <!-- 20 threads -->
</property>
<property>
  <name>dfs.client.hedged.read.threshold.millis</name>
  <value>10</value>  <!-- 10 milliseconds -->
</property>

Monitoring the Performance of Hedged Reads

You can monitor the performance of hedged reads using the following metrics emitted by Hadoop when hedged reads
are enabled.

• hedgedReadOps - the number of hedged reads that have occurred
• hedgeReadOpsWin - the number of times the hedged read returned faster than the original read

Configuring the Blocksize for HBase
The blocksize is an important configuration option for HBase. HBase data is stored in one (after a major compaction)
or more (possibly before amajor compaction) HFiles per column family per region. It determines both of the following:

• The blocksize for a given column family determines the smallest unit of data HBase can read from the column
family's HFiles.

• It is also the basic unit of measure cached by a RegionServer in the BlockCache.

The default blocksize is 64 KB. The appropriate blocksize is dependent upon your data and usage patterns. Use the
following guidelines to tune the blocksize size, in combination with testing and benchmarking as appropriate.

Warning: The default blocksize is appropriate for a wide range of data usage patterns, and tuning
the blocksize is an advanced operation. The wrong configuration can negatively impact performance.

• Consider the average key/value size for the column family when tuning the blocksize. You can find the average
key/value size using the HFile utility:

$ hbase org.apache.hadoop.hbase.io.hfile.HFile -f /path/to/HFILE -m -v
...
Block index size as per heapsize: 296
reader=hdfs://srv1.example.com:9000/path/to/HFILE, \
compression=none, inMemory=false, \
firstKey=US6683275_20040127/mimetype:/1251853756871/Put, \
lastKey=US6684814_20040203/mimetype:/1251864683374/Put, \
avgKeyLen=37, avgValueLen=8, \
entries=1554, length=84447
...

• Consider the pattern of reads to the table or column family. For instance, if it is common to scan for 500 rows on
various parts of the table, performancemight be increased if the blocksize is large enough to encompass 500-1000
rows, so that often, only one read operation on the HFile is required. If your typical scan size is only 3 rows,
returning 500-1000 rows would be overkill.

It is difficult to predict the size of a row before it is written, because the data will be compressed when it is written
to the HFile. Perform testing to determine the correct blocksize for your data.
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Configuring the Blocksize for a Column Family

You can configure the blocksize of a column family at table creation or by disabling and altering an existing table. These
instructions are valid whether or not you use Cloudera Manager to manage your cluster.

hbase> create ‘test_table ,{NAME => ‘test_cf , BLOCKSIZE => '262144'}
hbase> disable 'test_table'
hbase> alter 'test_table', {NAME => 'test_cf', BLOCKSIZE => '524288'}
hbase> enable 'test_table'

After changing the blocksize, the HFiles will be rewritten during the next major compaction. To trigger a major
compaction, issue the following command in HBase Shell.

hbase> major_compact 'test_table'

Depending on the size of the table, the major compaction can take some time and have a performance impact while
it is running.

Monitoring Blocksize Metrics

Several metrics are exposed for monitoring the blocksize by monitoring the blockcache itself.

Configuring the HBase BlockCache
In the default configuration, HBase uses a single on-heap cache. If you configure the off-heap BucketCache, the
on-heap cache is used for Bloom filters and indexes, and the off-heap BucketCache is used to cache data blocks. This
is called the Combined Blockcache configuration. The Combined BlockCache allows you to use a larger in-memory
cachewhile reducing the negative impact of garbage collection in the heap, becauseHBasemanages theBucketCache
instead of relying on the garbage collector.

Contents of the BlockCache

To size the BlockCache correctly, you need to understand what HBase places into it.

• Your data: Each time a Get or Scan operation occurs, the result is added to the BlockCache if it was not already
cached there. If you use the BucketCache, data blocks are always cached in the BucketCache.

• Row keys:When a value is loaded into the cache, its row key is also cached. This is one reason to make your row
keys as small as possible. A larger row key takes up more space in the cache.

• hbase:meta: The hbase:meta catalog table keeps track of which RegionServer is serving which regions. It can
consume several megabytes of cache if you have a large number of regions, and has in-memory access priority,
which means HBase attempts to keep it in the cache as long as possible.

• Indexes of HFiles: HBase stores its data in HDFS in a format called HFile. These HFiles contain indexes which allow
HBase to seek for data within them without needing to open the entire HFile. The size of an index is a factor of
the block size, the size of your row keys, and the amount of data you are storing. For big data sets, the size can
exceed 1 GB per RegionServer, although the entire index is unlikely to be in the cache at the same time. If you
use the BucketCache, indexes are always cached on-heap.

• Bloom filters: If you use Bloom filters, they are stored in the BlockCache. If you use the BucketCache, Bloom filters
are always cached on-heap.

The sum of the sizes of these objects is highly dependent on your usage patterns and the characteristics of your data.
For this reason, the HBase Web UI and Cloudera Manager each expose several metrics to help you size and tune the
BlockCache.

Deciding Whether To Use the BucketCache

The HBase team has published the results of exhaustive BlockCache testing, which revealed the following guidelines.
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• If the result of a Get or Scan typically fits completely in the heap, the default configuration, which uses the on-heap
LruBlockCache, is the best choice, as the L2 cache will not provide much benefit. If the eviction rate is low,
garbage collection can be 50% less than that of the BucketCache, and throughput can be at least 20% higher.

• Otherwise, if your cache is experiencing a consistently high eviction rate, use the BucketCache, which causes
30-50% of the garbage collection of LruBlockCache when the eviction rate is high.

• BucketCache using file mode on solid-state disks has a better garbage-collection profile but lower throughput
than BucketCache using off-heap memory.

Bypassing the BlockCache

If the data needed for a specific but atypical operation does not all fit in memory, using the BlockCache can be
counter-productive, because data that you are still using may be evicted, or even if other data is not evicted, excess
garbage collection can adversely effect performance. For this type of operation, youmaydecide to bypass the BlockCache.
To bypass the BlockCache for a given Scan or Get, use the setCacheBlocks(false)method.

In addition, you can prevent a specific column family's contents from being cached, by setting its BLOCKCACHE
configuration to false. Use the following syntax in HBase Shell:

hbase> alter 'myTable', CONFIGURATION => {NAME => 'myCF', BLOCKCACHE => 'false'}

Cache Eviction Priorities

Both the on-heap cache and the off-heap BucketCache use the same cache prioritymechanism to decidewhich cache
objects to evict to make room for new objects. Three levels of block priority allow for scan-resistance and in-memory
column families. Objects evicted from the cache are subject to garbage collection.

• Single access priority: The first time a block is loaded from HDFS, that block is given single access priority, which
means that it will be part of the first group to be considered during evictions. Scanned blocks are more likely to
be evicted than blocks that are used more frequently.

• Multi access priority: If a block in the single access priority group is accessed again, that block is assigned multi
access priority, which moves it to the second group considered during evictions, and is therefore less likely to be
evicted.

• In-memory access priority: If the block belongs to a column family which is configured with the in-memory
configuration option, its priority is changed to in memory access priority, regardless of its access pattern. This
group is the last group considered during evictions, but is not guaranteed not to be evicted. Catalog tables are
configured with in-memory access priority.

To configure a column family for in-memory access, use the following syntax in HBase Shell:

hbase> alter 'myTable', 'myCF', CONFIGURATION => {IN_MEMORY => 'true'}

To use the Java API to configure a column family for in-memory access, use the
HColumnDescriptor.setInMemory(true)method.

Sizing the BlockCache

When you use the LruBlockCache, the blocks needed to satisfy each read are cached, evicting older cached objects
if the LruBlockCache is full. The size cached objects for a given read may be significantly larger than the actual result
of the read. For instance, if HBase needs to scan through 20 HFile blocks to return a 100 byte result, and the HFile
blocksize is 100 KB, the read will add 20 * 100 KB to the LruBlockCache.

Because the LruBlockCache resides entirely within the Java heap, the amount of which is available to HBase and
what percentage of the heap is available to the LruBlockCache strongly impact performance. By default, the amount
of HBase heap reserved for LruBlockCache (hfile.block.cache.size) is .40, or 40%. To determine the amount
of heap available for theLruBlockCache, use the following formula. The0.99 factor allows 1%of heap to be available
as a "working area" for evicting items from the cache. If you use the BucketCache, the on-heap LruBlockCache only
stores indexes and Bloom filters, and data blocks are cached in the off-heap BucketCache.
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number of RegionServers * heap size * hfile.block.cache.size * 0.99

To tune the size of the LruBlockCache, you can add RegionServers or increase the total Java heap on a given
RegionServer to increase it, or you can tune hfile.block.cache.size to reduce it. Reducing it will cause cache
evictions to happen more often, but will reduce the time it takes to perform a cycle of garbage collection. Increasing
the heap will cause garbage collection to take longer but happen less frequently.

About the Off-heap BucketCache

If the BucketCache is enabled, it stores data blocks, leaving the on-heap cache free for storing indexes and Bloom
filters. The physical location of the BucketCache storage can be either in memory (off-heap) or in a file stored in a
fast disk.

• Off-heap: This is the default configuration.
• File-based: You can use the file-based storage mode to store the BucketCache on an SSD or FusionIO device,

Starting in CDH 5.4 (HBase 1.0), you can configure a column family to keep its data blocks in the L1 cache instead of
the BucketCache, using the HColumnDescriptor.cacheDataInL1(true)method or by using the following syntax
in HBase Shell:

hbase> alter 'myTable', CONFIGURATION => {CACHE_DATA_IN_L1 => 'true'}}

Configuring the Off-heap BucketCache

This table summaries the important configuration properties for the BucketCache. To configure the BucketCache,
see Configuring theOff-heap BucketCacheUsing ClouderaManager on page 68 or Configuring theOff-heap BucketCache
Using the Command Line on page 68. The table is followed by three diagrams that show the impacts of different
blockcache settings.

Table 2: BucketCache Configuration Properties

DescriptionDefaultProperty

When BucketCache is enabled, use
it as a L2 cache for LruBlockCache.

truehbase.bucketcache.combinedcache.enabled

If set to true, indexes and Bloom filters
are kept in the LruBlockCache and
the data blocks are kept in the
BucketCache.

Where to store the contents of the
BucketCache. Its value can be

none (BucketCache is disabled by
default)

hbase.bucketcache.ioengine

offheap, heap or file:PATHwhere
PATH is the path to the file that host
the file-based cache.

A float between 0.0 and 1.0. This
factor multiplied by the Java heap size

0.4hfile.block.cache.size

is the size of the L1 cache. In other
words, the percentage of the Java
heap to use for the L1 cache.

When using BucketCache, this is a
float that represents one of two

not sethbase.bucketcache.size

different values, depending on
whether it is a floating-point decimal
less than 1.0 or an integer greater than
1.0.
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DescriptionDefaultProperty

• If less than 1.0, it represents a
percentage of total heapmemory
size to give to the cache.

• If greater than 1.0, it represents
the capacity of the cache in
megabytes

A comma-separated list of sizes for
buckets for the BucketCache if you

4, 8, 16, 32, 40, 48, 56, 64,

96, 128, 192, 256, 384, 512

KB

hbase.bucketcache.bucket.sizes

prefer to use multiple sizes. The sizes
should be multiples of the default
blocksize, ordered from smallest to
largest. The sizes you use will depend
on your data patterns. This parameter
is experimental.

A JVM option to configure the
maximum amount of direct memory

MaxDirectMemorySize =

BucketCache + 1

-XX:MaxDirectMemorySize

available to the JVM. It is automatically
calculated and configured based on
the following formula:
MaxDirectMemorySize =

BucketCache size + 1 GB for
other features using direct memory,
such as DFSClient. For example, if the
BucketCache size is 8 GB, it will be
-XX:MaxDirectMemorySize=9G.

1. 20% minimum reserved for operations and rpc call queues
2. hbase.regionserver.global.memstore.size: default is 0.4, which means 40%
3. hbase.regionserver.global.memstore.size + hfile.block.cache.size ≤0.80, which means 80%
4. hfile.block.cache.size: default is 0.4, which means 40%
5. slack reserved for HDFS SCR/NIO: number of open HFiles *

hbase.dfs.client.read.shortcircuit.buffer.size, where
hbase.dfs.client.read.shortcircuit.buffer.size is set to 128k.

Figure 1: Default LRUCache, L1 only block cache hbase.bucketcache.ioengine=NULL
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1. 20% minimum reserved for operations and rpc call queues
2. hbase.regionserver.global.memstore.size: default is 0.4, which means 40%
3. hbase.regionserver.global.memstore.size + hfile.block.cache.size ≤0.80, which means 80%
4. hfile.block.cache.size: default is 0.4, which means 40%
5. slack reserved for HDFS SCR/NIO: number of open HFiles *

hbase.dfs.client.read.shortcircuit.buffer.size, where
hbase.dfs.client.read.shortcircuit.buffer.size is set to 128k.

6. hbase.bucketcache.size: default is 0.0

If hbase.bucketcache.size is float <1, it represents the percentage of total heap size.

If hbase.bucketcache.size is ≥1, it represents the absolute value in MB. It must be <HBASE_OFFHEAPSIZE

Figure 2: Default LRUCache, L1 only block cache hbase.bucketcache.ioengine=heap

1. 20% minimum reserved for operations and rpc call queues
2. hbase.regionserver.global.memstore.size: default is 0.4, which means 40%
3. hbase.regionserver.global.memstore.size + hfile.block.cache.size ≤0.80, which means 80%
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4. hfile.block.cache.size: default is 0.4 which means 40%
5. slack reserved for HDFS SCR/NIO: number of open HFiles *

hbase.dfs.client.read.shortcircuit.buffer.size, where
hbase.dfs.client.read.shortcircuit.buffer.size is set to 128k.

6. hbase.bucketcache.size: default is 0.0

If hbase.bucketcache.size is float <1, it represents the percentage of total heap size.

If hbase.bucketcache.size is ≥1, it represents the absolute value in MB.

Figure 3: Default LRUCache, L1 only block cache hbase.bucketcache.ioengine=offheap

Configuring the Off-heap BucketCache Using Cloudera Manager

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select the RegionServer scope and do the following:

a. Ensure that Enable Combined BucketCache is selected.
b. Set BucketCache IOEngine to offheap.
c. Update the value of BucketCache Size according to the required BucketCache size.

4. In the HBase Region Server Environment Advanced Configuration Snippet for hbase-env.sh, edit the following
parameters:

• HBASE_OFFHEAPSIZE: Set it to a value (such as 5G) that accommodates your required L2 cache size, in
addition to space reserved for cache management.

• HBASE_OPTS: Add the JVMoption--XX:MaxDirectMemorySize=<size>G, replacing<size>with a value
not smaller than the aggregated heap size expressed as a number of gigabytes + the off-heap BucketCache,
expressed as a number of gigabytes + around 1GB used for HDFS short circuit read. For example, if the off-heap
BucketCache is 16GB and the heap size is 15GB, the total value of MaxDirectMemorySize could be 32:
-XX:MaxDirectMamorySize=32G.

5. Optionally, when combined BucketCache is in use, you can decrease the heap size ratio allocated to the L1
BlockCache, and increase the Memstore size.

The on-heap BlockCache only stores indexes and Bloom filters, the actual data resides in the off-heap BucketCache.
A larger Memstore is able to accommodate more write request before flushing them to disks.

• Decrease HFile Block Cache Size to 0.3 or 0.2.
• IncreaseMaximum Size of All Memstores in RegionServer to 0.5 or 0.6 respectively.

6. Click Save Changes to commit the changes.
7. Restart or rolling restart your RegionServers for the changes to take effect.

Configuring the Off-heap BucketCache Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

1. Verify the RegionServer's off-heap size, and if necessary, tune it by editing the hbase-env.sh file and adding a
line like the following:

HBASE_OFFHEAPSIZE=5G
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Set it to a value that accommodates your BucketCache size + the additional space required for DFSClient short
circuit reads (default is 1 GB). For example, if the BucketCache size is 8 GB, set HBASE_OFFHEAPSIZE=9G.

2. Configure the MaxDirectMemorySize option for the RegionServers JVMS. This can be done adding the following
line in hbase-env.sh:

HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS
          -XX:MaxDirectMemorySize=<size>G

Replace <size> with the same value set for HBASE_OFFHEAPSIZE.

3. Next, in the hbase-site.xml files on the RegionServers, configure the properties in Table 2: BucketCache
Configuration Properties on page 65 as appropriate, using the example below as a model.

<property>
  <name>hbase.bucketcache.combinedcache.enabled</name>
  <value>true</value>
</property>
<property>
  <name>hbase.bucketcache.ioengine</name>
  <value>offheap</value>
</property>
<property>
  <name>hbase.bucketcache.size</name>
  <value>8388608</value>
</property>
<property>
  <name>hfile.block.cache.size</name>
  <value>0.2</value>
</property>
<property>
  <name>hbase.regionserver.global.memstore.size</name>
  <value>0.6</value>
</property>

4. Restart each RegionServer for the changes to take effect.

Monitoring the BlockCache

Cloudera Manager provides metrics to monitor the performance of the BlockCache, to assist you in tuning your
configuration.

You can view further detail and graphs using the RegionServer UI. To access the RegionServer UI in Cloudera Manager,
go to the Cloudera Manager page for the host, click the RegionServer process, and click HBase RegionServer Web UI.

If you do not use Cloudera Manager, access the BlockCache reports at
http://regionServer_host:22102/rs-status#memoryStats, replacing regionServer_host with the
hostname or IP address of your RegionServer.

Configuring the HBase Scanner Heartbeat
A scanner heartbeat check enforces a time limit on the execution of scan RPC requests. This helps prevent scans from
taking too long and causing a timeout at the client.

When the server receives a scan RPC request, a time limit is calculated to be half of the smaller of two values:
hbase.client.scanner.timeout.period and hbase.rpc.timeout (which both default to 60000 milliseconds,
or one minute). When the time limit is reached, the server returns the results it has accumulated up to that point. This
result set may be empty. If your usage pattern includes that scans will take longer than a minute, you can increase
these values.

Tomake sure the timeout period is not too short, you can configurehbase.cells.scanned.per.heartbeat.check
to a minimum number of cells that must be scanned before a timeout check occurs. The default value is 10000. A
smaller value causes timeout checks to occur more often.
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Configure the Scanner Heartbeat Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select HBase or HBase Service-Wide.
4. Locate the RPC Timeout property by typing its name in the Search box, and edit the property.
5. Locate theHBase RegionServer Lease Period property by typing its name in the Search box, and edit the property.
6. Click Save Changes to commit the changes.
7. Restart the role.
8. Restart the service.

Configure the Scanner Heartbeat Using the Command Line

1. Edit hbase-site.xml and add the following properties, modifying the values as needed.

<property>
  <name>hbase.rpc.timeout</name>
  <value>60000</value>
</property>
<property>
  <name>hbase.client.scanner.timeout.period</name>
  <value>60000</value>
</property>
<property>
  <name>hbase.cells.scanned.per.heartbeat.check</name>
  <value>10000</value>
</property>

2. Distribute themodified hbase-site.xml to all your cluster hosts and restart the HBasemaster and RegionServer
processes for the change to take effect.

Limiting the Speed of Compactions
You can limit the speed at which HBase compactions run, by configuring
hbase.regionserver.throughput.controller and its related settings. The default controller is
org.apache.hadoop.hbase.regionserver.compactions.PressureAwareCompactionThroughputController,
which uses the following algorithm:

1. If compaction pressure is greater than 1.0, there is no speed limitation.
2. In off-peak hours, use a fixed throughput limitation, configured using

hbase.hstore.compaction.throughput.offpeak, hbase.offpeak.start.hour, and
hbase.offpeak.end.hour.

3. In normal hours, the max throughput is tuned between
hbase.hstore.compaction.throughput.higher.bound and
hbase.hstore.compaction.throughput.lower.bound (which default to 20 MB/sec and 10 MB/sec
respectively), using the following formula, where compactionPressure is between 0.0 and 1.0. The
compactionPressure refers to the number of store files that require compaction.

lower + (higer - lower) * compactionPressure

To disable compaction speed limits, set hbase.regionserver.throughput.controller to
org.apache.hadoop.hbase.regionserver.compactions.NoLimitCompactionThroughputController.

Configure the Compaction Speed Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)
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1. Go to the HBase service.
2. Click the Configuration tab.
3. Select HBase or HBase Service-Wide.
4. Search for HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml. Paste the relevant

properties into the field andmodify the values as needed. See Configure the Compaction SpeedUsing the Command
Line on page 71 for an explanation of the properties.

5. Click Save Changes to commit the changes.
6. Restart the role.
7. Restart the service.

Configure the Compaction Speed Using the Command Line

1. Edit hbase-site.xml and add the relevant properties,modifying the values as needed. Default values are shown.
hbase.offpeak.start.hour and hbase.offpeak.end.hour have no default values; this configuration sets
the off-peak hours from 20:00 (8 PM) to 6:00 (6 AM).

<property>
  <name>hbase.regionserver.throughput.controller</name>

<value>org.apache.hadoop.hbase.regionserver.compactions.PressureAwareCompactionThroughputController</value>
</property>
<property>
  <name>hbase.hstore.compaction.throughput.higher.bound</name>
  <value>20971520</value>
  <description>The default is 20 MB/sec</description>
</property>
<property>
  <name>hbase.hstore.compaction.throughput.lower.bound</name>
  <value>10485760</value>
  <description>The default is 10 MB/sec</description>
</property>
<property>
  <name>hbase.hstore.compaction.throughput.offpeak</name>
  <value>9223372036854775807</value>
  <description>The default is Long.MAX_VALUE, which effectively means no 
limitation</description>
</property>
<property>
  <name>hbase.offpeak.start.hour</name>
  <value>20</value>
  <value>When to begin using off-peak compaction settings, expressed as an integer 
between 0 and 23.</value>
</property>
<property>
  <name>hbase.offpeak.end.hour</name>
  <value>6</value>
  <value>When to stop using off-peak compaction settings, expressed as an integer between
 0 and 23.</value>
</property>
<property>
  <name>hbase.hstore.compaction.throughput.tune.period</name>
  <value>60000</value>
  <description>
</property>

2. Distribute themodified hbase-site.xml to all your cluster hosts and restart the HBasemaster and RegionServer
processes for the change to take effect.

Reading Data from HBase
Get and Scan are the two ways to read data from HBase, aside from manually parsing HFiles. A Get is simply a Scan
limited by the API to one row. A Scan fetches zero or more rows of a table. By default, a Scan reads the entire table
from start to end. You can limit your Scan results in several different ways, which affect the Scan's load in terms of
IO, network, or both, as well as processing load on the client side. This topic is provided as a quick reference. Refer to
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the API documentation for Scan for more in-depth information. You can also perform Gets and Scan using the HBase
Shell, the REST API, or the Thrift API.

• Specify a startrow or stoprow or both. Neither startrow nor stoprow need to exist. Because HBase sorts
rows lexicographically, it will return the first row after startrow would have occurred, and will stop returning
rows after stoprow would have occurred.The goal is to reduce IO and network.

– The startrow is inclusive and the stoprow is exclusive. Given a tablewith rows a, b, c, d, e, f, and startrow
of c and stoprow of f, rows c-e are returned.

– If you omit startrow, the first row of the table is the startrow.
– If you omit the stoprow, all results after startrow (including startrow) are returned.
– If startrow is lexicographically after stoprow, and you set Scan setReversed(boolean reversed) to

true, the results are returned in reverse order. Given the same table above, with rows a-f, if you specify c
as the stoprow and f as the startrow, rows f, e, and d are returned.

Scan()
Scan(byte[] startRow)
Scan(byte[] startRow, byte[] stopRow)

• Specify a scanner cache that will be filled before the Scan result is returned, setting setCaching to the number
of rows to cache before returning the result. By default, the caching setting on the table is used. The goal is to
balance IO and network load.

public Scan setCaching(int caching)

• To limit the number of columns if your table has very wide rows (rows with a large number of columns), use
setBatch(int batch) and set it to the number of columns youwant to return in one batch. A large number of columns
is not a recommended design pattern.

public Scan setBatch(int batch)

• To specify a maximum result size, use setMaxResultSize(long), with the number of bytes. The goal is to
reduce IO and network.

public Scan setMaxResultSize(long maxResultSize)

• When you usesetCaching andsetMaxResultSize together, single server requests are limited by either number
of rows or maximum result size, whichever limit comes first.

• You can limit the scan to specific column families or columns by using addFamily or addColumn. The goal is to
reduce IO and network. IO is reduced because each column family is represented by a Store on each RegionServer,
and only the Stores representing the specific column families in question need to be accessed.

public Scan addColumn(byte[] family,
             byte[] qualifier)

public Scan addFamily(byte[] family)

• You can specify a range of timestamps or a single timestamp by specifying setTimeRange or setTimestamp.

public Scan setTimeRange(long minStamp,
                long maxStamp)
                  throws IOException

public Scan setTimeStamp(long timestamp)
                  throws IOException

• You can retrieve a maximum number of versions by using setMaxVersions.

public Scan setMaxVersions(int maxVersions)
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• You can use a filter by using setFilter. Filters are discussed in detail in HBase Filtering on page 74 and the Filter
API.

public Scan setFilter(Filter filter)

• You can disable the server-side block cache for a specific scan using the API setCacheBlocks(boolean). This
is an expert setting and should only be used if you know what you are doing.

Perform Scans Using HBase Shell

You can perform scans using HBase Shell, for testing or quick queries. Use the following guidelines or issue the scan
command in HBase Shell with no parameters for more usage information. This represents only a subset of possibilities.

# Display usage information
hbase> scan

# Scan all rows of table 't1'
hbase> scan 't1'

# Specify a startrow, limit the result to 10 rows, and only return selected columns
hbase> scan 't1', {COLUMNS => ['c1', 'c2'], LIMIT => 10, STARTROW => 'xyz'}

# Specify a timerange
hbase> scan 't1', {TIMERANGE => [1303668804, 1303668904]}

# Specify a custom filter
hbase> scan 't1', {FILTER => org.apache.hadoop.hbase.filter.ColumnPaginationFilter.new(1,
 0)}

# Specify a row prefix filter and another custom filter
hbase> scan 't1', {ROWPREFIXFILTER => 'row2',
                         FILTER => (QualifierFilter (>=, 'binary:xyz')) AND 
(TimestampsFilter ( 123, 456))}

# Disable the block cache for a specific scan (experts only)
hbase> scan 't1', {COLUMNS => ['c1', 'c2'], CACHE_BLOCKS => false}

Hedged Reads

Hadoop 2.4 introduced a new feature called hedged reads. If a read from a block is slow, the HDFS client starts up
another parallel, 'hedged' read against a different block replica. The result of whichever read returns first is used, and
the outstanding read is cancelled. This feature helps in situations where a read occasionally takes a long time rather
than when there is a systemic problem. Hedged reads can be enabled for HBase when the HFiles are stored in HDFS.
This feature is disabled by default.

Enabling Hedged Reads for HBase Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

To enable hedged reads for HBase, edit the hbase-site.xml file on each server. Set
dfs.client.hedged.read.threadpool.size to the number of threads to dedicate to running hedged threads,
and set the dfs.client.hedged.read.threshold.millis configuration property to the number of milliseconds
to wait before starting a second read against a different block replica. Set
dfs.client.hedged.read.threadpool.size to 0 or remove it from the configuration to disable the feature.
After changing these properties, restart your cluster.
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The following is an example configuration for hedged reads for HBase.

<property>
  <name>dfs.client.hedged.read.threadpool.size</name>
  <value>20</value>  <!-- 20 threads -->
</property>
<property>
  <name>dfs.client.hedged.read.threshold.millis</name>
  <value>10</value>  <!-- 10 milliseconds -->
</property>

HBase Filtering
When reading data from HBase using Get or Scan operations, you can use custom filters to return a subset of results
to the client. While this does not reduce server-side IO, it does reduce network bandwidth and reduces the amount
of data the client needs to process. Filters are generally used using the Java API, but can be used from HBase Shell for
testing and debugging purposes.

For more information on Gets and Scans in HBase, see Reading Data from HBase on page 71.

Dynamically Loading a Custom Filter

CDH 5.5 and higher adds (and enables by default) the ability to dynamically load a custom filter by adding a JAR with
your filter to the directory specified by the hbase.dynamic.jars.dir property (which defaults to the lib/ directory
under the HBase root directory).

To disable automatic loading of dynamic JARs, set hbase.use.dynamic.jars to false in the advanced configuration
snippet for hbase-site.xml if you use Cloudera Manager, or to hbase-site.xml otherwise.

Filter Syntax Guidelines

HBase filters take zero or more arguments, in parentheses. Where the argument is a string, it is surrounded by single
quotes ('string').

Logical Operators, Comparison Operators and Comparators

Filters can be combined together with logical operators. Some filters take a combination of comparison operators and
comparators. Following is the list of each.

Logical Operators

• AND - the key-value must pass both the filters to be included in the results.
• OR - the key-value must pass at least one of the filters to be included in the results.
• SKIP - for a particular row, if any of the key-values do not pass the filter condition, the entire row is skipped.
• WHILE - For a particular row, it continues to emit key-values until a key-value is reached that fails the filter condition.
• Compound Filters - Using these operators, a hierarchy of filters can be created. For example:

(Filter1 AND Filter2)OR(Filter3 AND Filter4)

Comparison Operators

• LESS (<)
• LESS_OR_EQUAL (<=)
• EQUAL (=)
• NOT_EQUAL (!=)
• GREATER_OR_EQUAL (>=)
• GREATER (>)
• NO_OP (no operation)
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Comparators

• BinaryComparator - lexicographically compares against the specified byte array using the
Bytes.compareTo(byte[], byte[])method.

• BinaryPrefixComparator - lexicographically compares against a specified byte array. It only compares up to the
length of this byte array.

• RegexStringComparator - compares against the specified byte array using the given regular expression. Only EQUAL
and NOT_EQUAL comparisons are valid with this comparator.

• SubStringComparator - tests whether or not the given substring appears in a specified byte array. The comparison
is case insensitive. Only EQUAL and NOT_EQUAL comparisons are valid with this comparator.

Examples

Example1: >, 'binary:abc' will match everything that is lexicographically greater than
 "abc"
Example2: =, 'binaryprefix:abc' will match everything whose first 3 characters are 
lexicographically equal to "abc"
Example3: !=, 'regexstring:ab*yz' will match everything that doesn't begin with "ab" 
and ends with "yz"
Example4: =, 'substring:abc123' will match everything that begins with the substring 
"abc123"

Compound Operators

Within an expression, parentheses can be used to group clauses together, and parentheses have the highest order of
precedence.

SKIP and WHILE operators are next, and have the same precedence.

The AND operator is next.

The OR operator is next.

Examples

A filter string of the form: “Filter1 AND Filter2 OR Filter3” will be evaluated as: 
“(Filter1 AND Filter2) OR Filter3”
A filter string of the form: “Filter1 AND SKIP Filter2 OR Filter3” will be evaluated 
as: “(Filter1 AND (SKIP Filter2)) OR Filter3”

Filter Types

HBase includes several filter types, as well as the ability to group filters together and create your own custom filters.

• KeyOnlyFilter - takes no arguments. Returns the key portion of each key-value pair.

Syntax: KeyOnlyFilter ()

• FirstKeyOnlyFilter - takes no arguments. Returns the key portion of the first key-value pair.

Syntax: FirstKeyOnlyFilter ()

• PrefixFilter - takes a single argument, a prefix of a row key. It returns only those key-values present in a row that
start with the specified row prefix

Syntax:  PrefixFilter (‘<row_prefix>’)

Example: PrefixFilter (‘Row’)
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• ColumnPrefixFilter - takes a single argument, a column prefix. It returns only those key-values present in a column
that starts with the specified column prefix.

Syntax:  ColumnPrefixFilter (‘<column_prefix>’)

Example: ColumnPrefixFilter (‘Col’)

• MultipleColumnPrefixFilter - takes a list of column prefixes. It returns key-values that are present in a column
that starts with any of the specified column prefixes.

Syntax:  MultipleColumnPrefixFilter (‘<column_prefix>’, ‘<column_prefix>’, …, 
‘<column_prefix>’)

Example: MultipleColumnPrefixFilter (‘Col1’, ‘Col2’)

• ColumnCountGetFilter - takes one argument, a limit. It returns the first limit number of columns in the table.

Syntax:  ColumnCountGetFilter (‘<limit>’)

Example: ColumnCountGetFilter (4)

• PageFilter - takes one argument, a page size. It returns page size number of rows from the table.

Syntax:  PageFilter (‘<page_size>’)

Example: PageFilter (2)

• ColumnPaginationFilter - takes two arguments, a limit and offset. It returns limit number of columns after offset
number of columns. It does this for all the rows.

Syntax:  ColumnPaginationFilter (‘<limit>’, ‘<offset>’)

Example: ColumnPaginationFilter (3, 5)

• InclusiveStopFilter - takes one argument, a row key on which to stop scanning. It returns all key-values present
in rows up to and including the specified row.

Syntax:  InclusiveStopFilter (‘<stop_row_key>’)

Example: InclusiveStopFilter (‘Row2’)

• TimeStampsFilter - takes a list of timestamps. It returns those key-values whose timestamps matches any of the
specified timestamps.

Syntax:  TimeStampsFilter (<timestamp>, <timestamp>, ... ,<timestamp>)

Example: TimeStampsFilter (5985489, 48895495, 58489845945)

• RowFilter - takes a compare operator and a comparator. It compares each row key with the comparator using
the compare operator and if the comparison returns true, it returns all the key-values in that row.

Syntax:  RowFilter (<compareOp>, ‘<row_comparator>’)

Example: RowFilter (<=, ‘binary:xyz)

• FamilyFilter - takes a compare operator and a comparator. It compares each family name with the comparator
using the compare operator and if the comparison returns true, it returns all the key-values in that family.

Syntax:  FamilyFilter (<compareOp>, ‘<family_comparator>’)

Example: FamilyFilter (>=, ‘binaryprefix:FamilyB’)
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• QualifierFilter - takes a compare operator and a comparator. It compares each qualifier namewith the comparator
using the compare operator and if the comparison returns true, it returns all the key-values in that column.

Syntax:  QualifierFilter (<compareOp>, ‘<qualifier_comparator>’)

Example: QualifierFilter (=, ‘substring:Column1’)

• ValueFilter - takes a compare operator and a comparator. It compares each value with the comparator using the
compare operator and if the comparison returns true, it returns that key-value.

Syntax:  ValueFilter (<compareOp>, ‘<value_comparator>’)

Example: ValueFilter (!=, ‘binary:Value’)

• DependentColumnFilter - takes two arguments required arguments, a family and a qualifier. It tries to locate this
column in each row and returns all key-values in that row that have the same timestamp. If the row does not
contain the specified column, none of the key-values in that row will be returned.

The filter can also take an optional boolean argument, dropDependentColumn. If set to true, the column used
for the filter does not get returned.

The filter can also take two more additional optional arguments, a compare operator and a value comparator,
which are further checks in addition to the family and qualifier. If the dependent column is found, its value should
also pass the value check. If it does pass the value check, only then is its timestamp taken into consideration.

Syntax:  DependentColumnFilter (‘<family>’, ‘<qualifier>’, <boolean>, <compare operator>,
 ‘<value comparator’)
         DependentColumnFilter (‘<family>’, ‘<qualifier>’, <boolean>)
         DependentColumnFilter (‘<family>’, ‘<qualifier>’)

Example: DependentColumnFilter (‘conf’, ‘blacklist’, false, >=, ‘zebra’)
         DependentColumnFilter (‘conf’, ‘blacklist’, true)
         DependentColumnFilter (‘conf’, ‘blacklist’)

• SingleColumnValueFilter - takes a column family, a qualifier, a compare operator and a comparator. If the specified
column is not found, all the columns of that row will be emitted. If the column is found and the comparison with
the comparator returns true, all the columns of the row will be emitted. If the condition fails, the row will not
be emitted.

This filter also takes two additional optional boolean arguments, filterIfColumnMissing and
setLatestVersionOnly.

If the filterIfColumnMissing flag is set to true, the columns of the row will not be emitted if the specified
column to check is not found in the row. The default value is false.

If the setLatestVersionOnly flag is set to false, it will test previous versions (timestamps) in addition to the
most recent. The default value is true.

These flags are optional and dependent on each other. You must set neither or both of them together.

Syntax:  SingleColumnValueFilter (‘<family>’, ‘<qualifier>’, <compare operator>, 
‘<comparator>’, <filterIfColumnMissing_boolean>, <latest_version_boolean>)
Syntax:  SingleColumnValueFilter (‘<family>’, ‘<qualifier>’, <compare operator>, 
‘<comparator>’)

Example: SingleColumnValueFilter (‘FamilyA’, ‘Column1’, <=, ‘abc’, true, false)
Example: SingleColumnValueFilter ('FamilyA’, ‘Column1’, <=, ‘abc’)
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• SingleColumnValueExcludeFilter - takes the same arguments and behaves same asSingleColumnValueFilter.
However, if the column is found and the condition passes, all the columns of the row will be emitted except for
the tested column value.

Syntax:  SingleColumnValueExcludeFilter (<family>, <qualifier>, <compare operators>, 
<comparator>, <latest_version_boolean>, <filterIfColumnMissing_boolean>)
Syntax:  SingleColumnValueExcludeFilter (<family>, <qualifier>, <compare operator> 
<comparator>)

Example: SingleColumnValueExcludeFilter (‘FamilyA’, ‘Column1’, ‘<=’, ‘abc’, ‘false’, 
‘true’)
Example: SingleColumnValueExcludeFilter (‘FamilyA’, ‘Column1’, ‘<=’, ‘abc’)

• ColumnRangeFilter - takes either minColumn, maxColumn, or both. Returns only those keys with columns that
are between minColumn and maxColumn. It also takes two boolean variables to indicate whether to include the
minColumn and maxColumn or not. If you don’t want to set the minColumn or the maxColumn, you can pass in
an empty argument.

Syntax:  ColumnRangeFilter (‘<minColumn >’, <minColumnInclusive_bool>, ‘<maxColumn>’, 
<maxColumnInclusive_bool>)

Example: ColumnRangeFilter (‘abc’, true, ‘xyz’, false)

• Custom Filter - You can create a custom filter by implementing the Filter class. The JAR must be available on all
RegionServers.

HBase Shell Example

This example scans the 'users' table for rows where the contents of the cf:name column equals the string 'abc'.

hbase> scan 'users', { FILTER => SingleColumnValueFilter.new(Bytes.toBytes('cf'),
      Bytes.toBytes('name'), CompareFilter::CompareOp.valueOf('EQUAL'),
      BinaryComparator.new(Bytes.toBytes('abc')))}

Java API Example

This example, taken from the HBase unit test found in
hbase-server/src/test/java/org/apache/hadoop/hbase/filter/TestSingleColumnValueFilter.java

, shows how to use the Java API to implement several different filters..

/**
 *
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.hadoop.hbase.filter;

import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;

import java.util.regex.Pattern;
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import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.SmallTests;
import org.apache.hadoop.hbase.filter.CompareFilter.CompareOp;
import org.apache.hadoop.hbase.util.Bytes;
import org.junit.Before;
import org.junit.Test;
import org.junit.experimental.categories.Category;

/**
 * Tests the value filter
 */
@Category(SmallTests.class)
public class TestSingleColumnValueFilter {
  private static final byte[] ROW = Bytes.toBytes("test");
  private static final byte[] COLUMN_FAMILY = Bytes.toBytes("test");
  private static final byte [] COLUMN_QUALIFIER = Bytes.toBytes("foo");
  private static final byte[] VAL_1 = Bytes.toBytes("a");
  private static final byte[] VAL_2 = Bytes.toBytes("ab");
  private static final byte[] VAL_3 = Bytes.toBytes("abc");
  private static final byte[] VAL_4 = Bytes.toBytes("abcd");
  private static final byte[] FULLSTRING_1 =
    Bytes.toBytes("The quick brown fox jumps over the lazy dog.");
  private static final byte[] FULLSTRING_2 =
    Bytes.toBytes("The slow grey fox trips over the lazy dog.");
  private static final String QUICK_SUBSTR = "quick";
  private static final String QUICK_REGEX = ".+quick.+";
  private static final Pattern QUICK_PATTERN = Pattern.compile("QuIcK", 
Pattern.CASE_INSENSITIVE | Pattern.DOTALL);

  Filter basicFilter;
  Filter nullFilter;
  Filter substrFilter;
  Filter regexFilter;
  Filter regexPatternFilter;

  @Before
  public void setUp() throws Exception {
    basicFilter = basicFilterNew();
    nullFilter = nullFilterNew();
    substrFilter = substrFilterNew();
    regexFilter = regexFilterNew();
    regexPatternFilter = regexFilterNew(QUICK_PATTERN);
  }

  private Filter basicFilterNew() {
    return new SingleColumnValueFilter(COLUMN_FAMILY, COLUMN_QUALIFIER,
      CompareOp.GREATER_OR_EQUAL, VAL_2);
  }

  private Filter nullFilterNew() {
    return new SingleColumnValueFilter(COLUMN_FAMILY, COLUMN_QUALIFIER, 
CompareOp.NOT_EQUAL,
        new NullComparator());
  }

  private Filter substrFilterNew() {
    return new SingleColumnValueFilter(COLUMN_FAMILY, COLUMN_QUALIFIER,
      CompareOp.EQUAL,
      new SubstringComparator(QUICK_SUBSTR));
  }

  private Filter regexFilterNew() {
    return new SingleColumnValueFilter(COLUMN_FAMILY, COLUMN_QUALIFIER,
      CompareOp.EQUAL,
      new RegexStringComparator(QUICK_REGEX));
  }

  private Filter regexFilterNew(Pattern pattern) {
    return new SingleColumnValueFilter(COLUMN_FAMILY, COLUMN_QUALIFIER,
        CompareOp.EQUAL,
        new RegexStringComparator(pattern.pattern(), pattern.flags()));
  }
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  private void basicFilterTests(SingleColumnValueFilter filter)
      throws Exception {
    KeyValue kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, VAL_2);
    assertTrue("basicFilter1", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);

    kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, VAL_3);
    assertTrue("basicFilter2", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);

    kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, VAL_4);
    assertTrue("basicFilter3", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);

    assertFalse("basicFilterNotNull", filter.filterRow());
    filter.reset();
    kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, VAL_1);
    assertTrue("basicFilter4", filter.filterKeyValue(kv) == Filter.ReturnCode.NEXT_ROW);

    kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, VAL_2);
    assertTrue("basicFilter4", filter.filterKeyValue(kv) == Filter.ReturnCode.NEXT_ROW);

    assertFalse("basicFilterAllRemaining", filter.filterAllRemaining());
    assertTrue("basicFilterNotNull", filter.filterRow());
    filter.reset();
    filter.setLatestVersionOnly(false);
    kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, VAL_1);
    assertTrue("basicFilter5", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);

    kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, VAL_2);
    assertTrue("basicFilter5", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);

    assertFalse("basicFilterNotNull", filter.filterRow());
  }

  private void nullFilterTests(Filter filter) throws Exception {
    ((SingleColumnValueFilter) filter).setFilterIfMissing(true);
    KeyValue kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, FULLSTRING_1);
    assertTrue("null1", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);
    assertFalse("null1FilterRow", filter.filterRow());
    filter.reset();
    kv = new KeyValue(ROW, COLUMN_FAMILY, Bytes.toBytes("qual2"), FULLSTRING_2);
    assertTrue("null2", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);
    assertTrue("null2FilterRow", filter.filterRow());
  }

  private void substrFilterTests(Filter filter)
      throws Exception {
    KeyValue kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER,
      FULLSTRING_1);
    assertTrue("substrTrue",
      filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);
    kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER,
      FULLSTRING_2);
    assertTrue("substrFalse", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);
    assertFalse("substrFilterAllRemaining", filter.filterAllRemaining());
    assertFalse("substrFilterNotNull", filter.filterRow());
  }

  private void regexFilterTests(Filter filter)
      throws Exception {
    KeyValue kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER,
      FULLSTRING_1);
    assertTrue("regexTrue",
      filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);
    kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER,
      FULLSTRING_2);
    assertTrue("regexFalse", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);
    assertFalse("regexFilterAllRemaining", filter.filterAllRemaining());
    assertFalse("regexFilterNotNull", filter.filterRow());
  }

  private void regexPatternFilterTests(Filter filter)
      throws Exception {
    KeyValue kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER,
      FULLSTRING_1);
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    assertTrue("regexTrue",
      filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);
    assertFalse("regexFilterAllRemaining", filter.filterAllRemaining());
    assertFalse("regexFilterNotNull", filter.filterRow());
  }

  private Filter serializationTest(Filter filter)
      throws Exception {
    // Decompose filter to bytes.
    byte[] buffer = filter.toByteArray();

    // Recompose filter.
    Filter newFilter = SingleColumnValueFilter.parseFrom(buffer);
    return newFilter;
  }

  /**
   * Tests identification of the stop row
   * @throws Exception
   */
  @Test
  public void testStop() throws Exception {
    basicFilterTests((SingleColumnValueFilter) basicFilter);
    nullFilterTests(nullFilter);
    substrFilterTests(substrFilter);
    regexFilterTests(regexFilter);
    regexPatternFilterTests(regexPatternFilter);
  }

  /**
   * Tests serialization
   * @throws Exception
   */
  @Test
  public void testSerialization() throws Exception {
    Filter newFilter = serializationTest(basicFilter);
    basicFilterTests((SingleColumnValueFilter)newFilter);
    newFilter = serializationTest(nullFilter);
    nullFilterTests(newFilter);
    newFilter = serializationTest(substrFilter);
    substrFilterTests(newFilter);
    newFilter = serializationTest(regexFilter);
    regexFilterTests(newFilter);
    newFilter = serializationTest(regexPatternFilter);
    regexPatternFilterTests(newFilter);
  }

}

Writing Data to HBase
To write data to HBase, you use methods of the HTableInterface class. You can use the Java API directly, or use
the HBase Shell, the REST API, the Thrift API, , or another client which uses the Java API indirectly. When you issue a
Put, the coordinates of the data are the row, the column, and the timestamp. The timestamp is unique per version of
the cell, and can be generated automatically or specified programmatically by your application, and must be a long
integer.

Variations on Put

There are several different ways to write data into HBase. Some of them are listed below.

• A Put operation writes data into HBase.
• A Delete operation deletes data from HBase. What actually happens during a Delete depends upon several

factors.
• A CheckAndPut operation performs a Scan before attempting the Put, and only does the Put if a value matches

what is expected, and provides row-level atomicity.
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• A CheckAndDelete operation performs a Scan before attempting the Delete, and only does the Delete if a
value matches what is expected.

• An Increment operation increments values of one or more columns within a single row, and provides row-level
atomicity.

Refer to the API documentation for a full list of methods provided for writing data to HBase.Different methods require
different access levels and have other differences.

Versions

When you put data into HBase, a timestamp is required. The timestamp can be generated automatically by the
RegionServer or can be supplied by you. The timestamp must be unique per version of a given cell, because the
timestamp identifies the version. To modify a previous version of a cell, for instance, you would issue a Put with a
different value for the data itself, but the same timestamp.

HBase's behavior regarding versions is highly configurable. The maximum number of versions defaults to 1 in CDH 5,
and 3 in previous versions. You can change the default value for HBase by configuring hbase.column.max.version
in hbase-site.xml, either using an advanced configuration snippet if you use Cloudera Manager, or by editing the
file directly otherwise.

You can also configure the maximum andminimum number of versions to keep for a given column, or specify a default
time-to-live (TTL), which is the number of seconds before a version is deleted. The following examples all use alter
statements in HBase Shell to create new column families with the given characteristics, but you can use the same
syntax when creating a new table or to alter an existing column family. This is only a fraction of the options you can
specify for a given column family.

hbase> alter ‘t1 , NAME => ‘f1 , VERSIONS => 5
hbase> alter ‘t1 , NAME => ‘f1 , MIN_VERSIONS => 2
hbase> alter ‘t1 , NAME => ‘f1 , TTL => 15

HBase sorts the versions of a cell from newest to oldest, by sorting the timestamps lexicographically. When a version
needs to be deleted because a threshold has been reached, HBase always chooses the "oldest" version, even if it is in
fact the most recent version to be inserted. Keep this in mind when designing your timestamps. Consider using the
default generated timestamps and storing other version-specific data elsewhere in the row, such as in the row key. If
MIN_VERSIONS and TTL conflict, MIN_VERSIONS takes precedence.

Deletion

When you request for HBase to delete data, either explicitly using a Delete method or implicitly using a threshold such
as the maximum number of versions or the TTL, HBase does not delete the data immediately. Instead, it writes a
deletionmarker, called a tombstone, to the HFile, which is the physical file where a given RegionServer stores its region
of a column family. The tombstone markers are processed during major compaction operations, when HFiles are
rewritten without the deleted data included.

Even aftermajor compactions, "deleted" datamay not actually be deleted. You can specify the KEEP_DELETED_CELLS
option for a given column family, and the tombstones will be preserved in the HFile even after major compaction. One
scenario where this approach might be useful is for data retention policies.

Another reason deleted data may not actually be deleted is if the data would be required to restore a table from a
snapshot which has not been deleted. In this case, the data is moved to an archive during a major compaction, and
only deleted when the snapshot is deleted. This is a good reason to monitor the number of snapshots saved in HBase.

Examples

This abbreviated example writes data to an HBase table using HBase Shell and then scans the table to show the result.

hbase> put 'test', 'row1', 'cf:a', 'value1'
0 row(s) in 0.1770 seconds

hbase> put 'test', 'row2', 'cf:b', 'value2'
0 row(s) in 0.0160 seconds
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hbase> put 'test', 'row3', 'cf:c', 'value3'
0 row(s) in 0.0260 seconds  
hbase> scan 'test'
ROW                   COLUMN+CELL
 row1                 column=cf:a, timestamp=1403759475114, value=value1
 row2                 column=cf:b, timestamp=1403759492807, value=value2
 row3                 column=cf:c, timestamp=1403759503155, value=value3
3 row(s) in 0.0440 seconds

This abbreviated example uses the HBase API to write data to an HBase table, using the automatic timestamp created
by the Region Server.

publicstaticfinalbyte[] CF = "cf".getBytes();
publicstaticfinalbyte[] ATTR = "attr".getBytes();
...
Put put = new Put(Bytes.toBytes(row));
put.add(CF, ATTR, Bytes.toBytes( data));
htable.put(put);

This example uses the HBase API to write data to an HBase table, specifying the timestamp.

publicstaticfinalbyte[] CF = "cf".getBytes();
publicstaticfinalbyte[] ATTR = "attr".getBytes();
...
Put put = new Put( Bytes.toBytes(row));
long explicitTimeInMs = 555;  // just an example
put.add(CF, ATTR, explicitTimeInMs, Bytes.toBytes(data));
htable.put(put);

Further Reading

• Refer to the HTableInterface and HColumnDescriptor API documentation formore details about configuring tables
and columns, as well as reading and writing to HBase.

• Refer to the Apache HBase Reference Guide for more in-depth information about HBase, including details about
versions and deletions not covered here.

Importing Data Into HBase
The method you use for importing data into HBase depends on several factors:

• The location, size, and format of your existing data
• Whether you need to import data once or periodically over time
• Whether you want to import the data in bulk or stream it into HBase regularly
• How fresh the HBase data needs to be

This topic helps you choose the correct method or composite of methods and provides example workflows for each
method.

Always run HBase administrative commands as the HBase user (typically hbase).

Choosing the Right Import Method

If the data is already in an HBase table:

• To move the data from one HBase cluster to another, use snapshot and either the clone_snapshot or
ExportSnapshot utility; or, use the CopyTable utility.

• To move the data from one HBase cluster to another without downtime on either cluster, use replication.

If the data currently exists outside HBase:
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• If possible, write the data to HFile format, and use a BulkLoad to import it into HBase. The data is immediately
available to HBase and you can bypass the normal write path, increasing efficiency.

• If you prefer not to use bulk loads, and you are using a tool such as Pig, you can use it to import your data.

If you need to stream live data to HBase instead of import in bulk:

• Write a Java client using the Java API, or use the Apache Thrift Proxy API to write a client in a language supported
by Thrift.

• Stream data directly into HBase using the REST Proxy API in conjunction with an HTTP client such as wget or curl.

• Use Flume or Spark.

Most likely, at least one of these methods works in your situation. If not, you can use MapReduce directly. Test the
most feasible methods with a subset of your data to determine which one is optimal.

Using CopyTable

CopyTable uses HBase read and write paths to copy part or all of a table to a new table in either the same cluster or
a different cluster. CopyTable causes read load when reading from the source, and write load when writing to the
destination. Region splits occur on the destination table in real time as needed. To avoid these issues, use snapshot
and export commands instead of CopyTable. Alternatively, you can pre-split the destination table to avoid excessive
splits. The destination table can be partitioned differently from the source table. See this section of the Apache HBase
documentation for more information.

Edits to the source table after the CopyTable starts are not copied, so you may need to do an additional CopyTable
operation to copy new data into the destination table. Run CopyTable as follows, using --help to see details about
possible parameters.

$ ./bin/hbase org.apache.hadoop.hbase.mapreduce.CopyTable --help
Usage: CopyTable [general options] [--starttime=X] [--endtime=Y] [--new.name=NEW] 
[--peer.adr=ADR] <tablename>

The starttime/endtime and startrow/endrow pairs function in a similar way: if you leave out the first of the pair,
the first timestamp or row in the table is the starting point. Similarly, if you leave out the second of the pair, the
operation continues until the end of the table. To copy the table to a new table in the same cluster, you must specify
--new.name, unless you want to write the copy back to the same table, which would add a new version of each cell
(with the same data), or just overwrite the cell with the same value if the maximum number of versions is set to 1 (the
default in CDH 5). To copy the table to a new table in a different cluster, specify --peer.adr and optionally, specify
a new table name.

The following example creates a new table using HBase Shell in non-interactive mode, and then copies data in two
ColumnFamilies in rows starting with timestamp 1265875194289 and including the last row before the CopyTable
started, to the new table.

$ echo create 'NewTestTable', 'cf1', 'cf2', 'cf3' | bin/hbase shell --non-interactive
$ bin/hbase org.apache.hadoop.hbase.mapreduce.CopyTable --starttime=1265875194289  
--families=cf1,cf2,cf3 --new.name=NewTestTable TestTable

In CDH 5, snapshots are recommended instead of CopyTable for most situations.

Using Snapshots

Cloudera recommends snapshots instead of CopyTable where possible. A snapshot captures the state of a table at the
time the snapshot was taken. Because no data is copied when a snapshot is taken, the process is very quick. As long
as the snapshot exists, cells in the snapshot are never deleted from HBase, even if they are explicitly deleted by the
API. Instead, they are archived so that the snapshot can restore the table to its state at the time of the snapshot.

After taking a snapshot, use the clone_snapshot command to copy the data to a new (immediately enabled) table
in the same cluster, or the Export utility to create a new table based on the snapshot, in the same cluster or a new
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cluster. This is a copy-on-write operation. The new table shares HFiles with the original table until writes occur in the
new table but not the old table, or until a compaction or split occurs in either of the tables. This can improve performance
in the short term compared to CopyTable.

To export the snapshot to a new cluster, use the ExportSnapshot utility, which usesMapReduce to copy the snapshot
to the new cluster. Run the ExportSnapshot utility on the source cluster, as a user with HBase and HDFS write
permission on the destination cluster, and HDFS read permission on the source cluster. This creates the expected
amount of IO load on the destination cluster. Optionally, you can limit bandwidth consumption, which affects IO on
the destination cluster. After the ExportSnapshot operation completes, you can see the snapshot in the new cluster
using the list_snapshot command, and you can use the clone_snapshot command to create the table in the
new cluster from the snapshot.

For full instructions for the snapshot and clone_snapshot HBase Shell commands, run the HBase Shell and type
help snapshot. The following example takes a snapshot of a table, uses it to clone the table to a new table in the
same cluster, and then uses the ExportSnapshot utility to copy the table to a different cluster, with 16 mappers and
limited to 200 Mb/sec bandwidth.

$ bin/hbase shell
hbase(main):005:0> snapshot 'TestTable', 'TestTableSnapshot'
0 row(s) in 2.3290 seconds

hbase(main):006:0> clone_snapshot 'TestTableSnapshot', 'NewTestTable'
0 row(s) in 1.3270 seconds

hbase(main):007:0> describe 'NewTestTable'
DESCRIPTION                                          ENABLED
 'NewTestTable', {NAME => 'cf1', DATA_BLOCK_ENCODING true
  => 'NONE', BLOOMFILTER => 'ROW', REPLICATION_SCOPE
  => '0', VERSIONS => '1', COMPRESSION => 'NONE', MI
 N_VERSIONS => '0', TTL => 'FOREVER', KEEP_DELETED_C
 ELLS => 'false', BLOCKSIZE => '65536', IN_MEMORY =>
  'false', BLOCKCACHE => 'true'}, {NAME => 'cf2', DA
 TA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROW',
 REPLICATION_SCOPE => '0', VERSIONS => '1', COMPRESS
 ION => 'NONE', MIN_VERSIONS => '0', TTL => 'FOREVER
 ', KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '655
 36', IN_MEMORY => 'false', BLOCKCACHE => 'true'}
1 row(s) in 0.1280 seconds
hbase(main):008:0> quit

$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot TestTableSnapshot 
-copy-to file:///tmp/hbase -mappers 16 -bandwidth 200
14/10/28 21:48:16 INFO snapshot.ExportSnapshot: Copy Snapshot Manifest
14/10/28 21:48:17 INFO client.RMProxy: Connecting to ResourceManager at 
a1221.halxg.cloudera.com/10.20.188.121:8032
14/10/28 21:48:19 INFO snapshot.ExportSnapshot: Loading Snapshot 'TestTableSnapshot' 
hfile list
14/10/28 21:48:19 INFO Configuration.deprecation: hadoop.native.lib is deprecated. 
Instead, use io.native.lib.available
14/10/28 21:48:19 INFO util.FSVisitor: No logs under 
directory:hdfs://a1221.halxg.cloudera.com:8020/hbase/.hbase-snapshot/TestTableSnapshot/WALs
14/10/28 21:48:20 INFO mapreduce.JobSubmitter: number of splits:0
14/10/28 21:48:20 INFO mapreduce.JobSubmitter: Submitting tokens for job: 
job_1414556809048_0001
14/10/28 21:48:20 INFO impl.YarnClientImpl: Submitted application 
application_1414556809048_0001
14/10/28 21:48:20 INFO mapreduce.Job: The url to track the job: 
http://a1221.halxg.cloudera.com:8088/proxy/application_1414556809048_0001/
14/10/28 21:48:20 INFO mapreduce.Job: Running job: job_1414556809048_0001
14/10/28 21:48:36 INFO mapreduce.Job: Job job_1414556809048_0001 running in uber mode 
: false
14/10/28 21:48:36 INFO mapreduce.Job:  map 0% reduce 0%
14/10/28 21:48:37 INFO mapreduce.Job: Job job_1414556809048_0001 completed successfully
14/10/28 21:48:37 INFO mapreduce.Job: Counters: 2
 Job Counters
  Total time spent by all maps in occupied slots (ms)=0
  Total time spent by all reduces in occupied slots (ms)=0
14/10/28 21:48:37 INFO snapshot.ExportSnapshot: Finalize the Snapshot Export
14/10/28 21:48:37 INFO snapshot.ExportSnapshot: Verify snapshot integrity
14/10/28 21:48:37 INFO Configuration.deprecation: fs.default.name is deprecated. Instead,
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 use fs.defaultFS
14/10/28 21:48:37 INFO snapshot.ExportSnapshot: Export Completed: TestTableSnapshot

The bold italic line contains the URL from which you can track the ExportSnapshot job. When it finishes, a new set
of HFiles, comprising all of the HFiles that were part of the table when the snapshot was taken, is created at the HDFS
location you specified.

You can use the SnapshotInfo command-line utility included with HBase to verify or debug snapshots.

Using BulkLoad

HBase uses the well-known HFile format to store its data on disk. In many situations, writing HFiles programmatically
with your data, and bulk-loading that data into HBase on the RegionServer, has advantages over other data ingest
mechanisms. BulkLoad operations bypass the write path completely, providing the following benefits:

• The data is available to HBase immediately but does cause additional load or latency on the cluster when it appears.
• BulkLoad operations do not use the write-ahead log (WAL) and do not cause flushes or split storms.
• BulkLoad operations do not cause excessive garbage collection.

Note: Because they bypass the WAL, BulkLoad operations are not propagated between clusters
using replication. If you need the data on all replicated clusters, you must perform the BulkLoad
on each cluster.

If you use BulkLoads with HBase, your workflow is similar to the following:

1. Extract your data from its existing source. For instance, if your data is in a MySQL database, you might run the
mysqldump command. The process you use depends on your data. If your data is already in TSV or CSV format,
skip this step and use the included ImportTsv utility to process your data into HFiles. See the ImportTsv
documentation for details.

2. Process your data into HFile format. See http://hbase.apache.org/book.html#_hfile_format_2 for details about
HFile format. Usually you use a MapReduce job for the conversion, and you often need to write the Mapper
yourself because your data is unique. The jobmust to emit the row key as the Key, and either a KeyValue, a Put,
or a Delete as the Value. The Reducer is handled by HBase; configure it using
HFileOutputFormat.configureIncrementalLoad() and it does the following:

• Inspects the table to configure a total order partitioner
• Uploads the partitions file to the cluster and adds it to the DistributedCache
• Sets the number of reduce tasks to match the current number of regions
• Sets the output key/value class to match HFileOutputFormat requirements
• Sets the Reducer to perform the appropriate sorting (either KeyValueSortReducer or PutSortReducer)

3. One HFile is created per region in the output folder. Input data is almost completely re-written, so you need
available disk space at least twice the size of the original data set. For example, for a 100 GB output from
mysqldump, you should have at least 200 GB of available disk space in HDFS. You can delete the original input
file at the end of the process.

4. Load the files into HBase. Use the LoadIncrementalHFiles command (more commonly known as the
completebulkload tool), passing it a URL that locates the files in HDFS. Each file is loaded into the relevant region
on the RegionServer for the region. You can limit the number of versions that are loaded by passing the
--versions= N option, where N is the maximum number of versions to include, from newest to oldest
(largest timestamp to smallest timestamp).

If a region was split after the files were created, the tool automatically splits the HFile according to the new
boundaries. This process is inefficient, so if your table is being written to by other processes, you should load as
soon as the transform step is done.

The following illustration shows the full BulkLoad process.
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Extra Steps for BulkLoad With Encryption Zones

When using BulkLoad to import data into HBase in the a cluster using encryption zones, the following information is
important.

• Both the staging directory and the directory into which you place your generated HFiles need to be within HBase's
encryption zone (generally under the/hbase directory). Before you can do this, you need to change the permissions
of /hbase to be world-executable but not world-readable (rwx--x--x, or numeric mode 711).

• You also need to configure the HMaster to set the permissions of the HBase root directory correctly. If you use
ClouderaManager, edit theMaster Advanced Configuration Snippet (Safety Valve) for hbase-site.xml. Otherwise,
edit hbase-site.xml on the HMaster. Add the following:

<property>
  <name>hbase.rootdir.perms</name>
  <value>711</value>
</property>

If you skip this step, a previously-working BulkLoad setup will start to fail with permission errors when you restart
the HMaster.

Use Cases for BulkLoad

• Loading your original dataset intoHBase for the first time - Your initial datasetmight be quite large, and bypassing
the HBase write path can speed up the process considerably.

• Incremental Load - To load new data periodically, use BulkLoad to import it in batches at your preferred intervals.
This alleviates latency problems and helps you to achieve service-level agreements (SLAs). However, one trigger
for compaction is the number of HFiles on a RegionServer. Therefore, importing a large number of HFiles at
frequent intervals can cause major compactions to happen more often than they otherwise would, negatively
impacting performance. You can mitigate this by tuning the compaction settings such that the maximum number
of HFiles that can be present without triggering a compaction is very high, and relying on other factors, such as
the size of the Memstore, to trigger compactions.

• Data needs to originate elsewhere - If an existing system is capturing the data you want to have in HBase and
needs to remain active for business reasons, you can periodically BulkLoad data from the system into HBase so
that you can perform operations on it without impacting the system.

Using BulkLoad On A Secure Cluster

If you use security, HBase allows you to securely BulkLoad data into HBase. For a full explanation of how secure BulkLoad
works, see HBase Transparent Encryption at Rest.

First, configure a hbase.bulkload.staging.dir which will be managed by HBase and whose subdirectories will
be writable (but not readable) by HBase users. Next, add the
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org.apache.hadoop.hbase.security.access.SecureBulkLoadEndpoint coprocessor to your configuration,
so that users besides the hbase user can BulkLoad files into HBase. This functionality is available in CDH 5.5 and higher.

<property>
  <name>hbase.bulkload.staging.dir</name>
  <value>/tmp/hbase-staging</value>
</property>
<property>
  <name>hbase.coprocessor.region.classes</name>
  <value>org.apache.hadoop.hbase.security.access.SecureBulkLoadEndpoint</value>
</property>

More Information about BulkLoad

For more information and examples, as well as an explanation of the ImportTsv utility, which can be used to import
data in text-delimited formats such as CSV, see this post on the Cloudera Blog.

Using Cluster Replication

If your data is already in an HBase cluster, replication is useful for getting the data into additional HBase clusters. In
HBase, cluster replication refers to keeping one cluster state synchronized with that of another cluster, using the
write-ahead log (WAL) of the source cluster to propagate the changes. Replication is enabled at column family granularity.
Before enabling replication for a column family, create the table and all column families to be replicated, on the
destination cluster. Replication is supported both from CDH 5 to CDH 6 and from CDH 6 to CDH 5, the source and
destination cluster do not have to run the same major version of CDH.

Cluster replication uses an active-push methodology. An HBase cluster can be a source (also called active, meaning
that it writes new data), a destination (also called passive, meaning that it receives data using replication), or can fulfill
both roles at once. Replication is asynchronous, and the goal of replication is consistency.

When data is replicated from one cluster to another, the original source of the data is tracked with a cluster ID, which
is part of the metadata. In CDH 5, all clusters that have already consumed the data are also tracked. This prevents
replication loops.

Common Replication Topologies

• A central source clustermight propagate changes tomultiple destination clusters, for failover or due to geographic
distribution.

• A source cluster might push changes to a destination cluster, which might also push its own changes back to the
original cluster.

• Many different low-latency clustersmight push changes to one centralized cluster for backup or resource-intensive
data-analytics jobs. The processed data might then be replicated back to the low-latency clusters.

• Multiple levels of replication can be chained together to suit your needs. The following diagram shows a hypothetical
scenario. Use the arrows to follow the data paths.
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At the top of the diagram, the San Jose and Tokyo clusters, shown in red, replicate changes to each other, and each
also replicates changes to a User Data and a Payment Data cluster.

Each cluster in the second row, shown in blue, replicates its changes to the All Data Backup 1 cluster, shown in
grey. The All Data Backup 1 cluster replicates changes to the All Data Backup 2 cluster (also shown in grey),
as well as the Data Analysis cluster (shown in green). All Data Backup 2 also propagates any of its own changes
back to All Data Backup 1.

The Data Analysis cluster runs MapReduce jobs on its data, and then pushes the processed data back to the San
Jose and Tokyo clusters.

Configuring Clusters for Replication

To configure your clusters for replication, see HBase Replication on page 117 and Configuring Secure HBase Replication.
The following is a high-level overview of the steps to enable replication.

Important: You cannot run replication-related HBase commands as an HBase administrator. To run
replication-related HBase commands, you must have HBase user permissions. If ZooKeeper uses
Kerberos, configure HBase Shell to authenticate to ZooKeeper using Kerberos before attempting to
run replication-related commands. No replication-related ACLs are available at this time.

1. Configure and start the source and destination clusters.
2. Create tables with the same names and column families on both the source and destination clusters, so that the

destination cluster knows where to store data it receives. All hosts in the source and destination clusters should
be reachable to each other. See Creating the Empty Table On the Destination Cluster on page 123.

3. On the source cluster, enable replication in Cloudera Manager, or by setting hbase.replication to true in
hbase-site.xml.
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4. Obtain Kerberos credentials as theHBase principal. Substitute yourfully.qualified.domain.name and realm
in the following command:

$ kinit -k -t /etc/hbase/conf/hbase.keytab 
hbase/fully.qualified.domain.name@YOUR-REALM.COM

5. On the source cluster, in HBase Shell, add the destination cluster as a peer, using the add_peer command. The
syntax is as follows:

add_peer 'ID', 'CLUSTER_KEY'

The ID must be a short integer. To compose the CLUSTER_KEY, use the following template:

hbase.zookeeper.quorum:hbase.zookeeper.property.clientPort:zookeeper.znode.parent

If both clusters use the same ZooKeeper cluster, you must use a different zookeeper.znode.parent, because they
cannot write in the same folder.

6. On the source cluster, configure each column family to be replicated by setting its REPLICATION_SCOPE to 1,
using commands such as the following in HBase Shell.

hbase> disable 'example_table'
hbase> alter 'example_table', {NAME => 'example_family', REPLICATION_SCOPE => '1'}
hbase> enable 'example_table'

7. Verify that replication is occurring by examining the logs on the source cluster for messages such as the following.

Considering 1 rs, with ratio 0.1
Getting 1 rs from peer cluster # 0
Choosing peer 10.10.1.49:62020

8. To verify the validity of replicated data, use the included VerifyReplicationMapReduce job on the source
cluster, providing it with the ID of the replication peer and table name to verify. Other options are available, such
as a time range or specific families to verify.

The command has the following form:

hbase org.apache.hadoop.hbase.mapreduce.replication.VerifyReplication 
[--starttime=timestamp1] [--stoptime=timestamp] [--families=comma separated list of 
families] <peerId> <tablename>

The VerifyReplication command prints GOODROWS and BADROWS counters to indicate rows that did and did
not replicate correctly.

Note:

Some changes are not replicated and must be propagated by other means, such as Snapshots or
CopyTable. See Initiating Replication When Data Already Exists on page 123 for more details.

• Data that existed in the master before replication was enabled.

• Operations that bypass the WAL, such as when using BulkLoad or API calls such as
writeToWal(false).

• Table schema modifications.

Using Pig and HCatalog

Apache Pig is a platform for analyzing large data sets using a high-level language. Apache HCatalog is a sub-project of
Apache Hive, which enables reading and writing of data from one Hadoop utility to another. You can use a combination
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of Pig and HCatalog to import data into HBase. The initial format of your data and other details about your infrastructure
determine the steps you follow to accomplish this task. The following simple example assumes that you can get your
data into a TSV (text-separated value) format, such as a tab-delimited or comma-delimited text file.

1. Format the data as a TSV file. You canworkwith other file formats; see the Pig andHCatalog project documentation
for more details.

The following example shows a subset of data fromGoogle's NGramDataset, which shows the frequency of specific
phrases or letter-groupings found in publications indexed by Google. Here, the first column has been added to
this dataset as the row ID. The first column is formulated by combining the n-gram itself (in this case, Zones) with
the line number of the file in which it occurs (z_LINE_NUM). This creates a format such as "Zones_z_6230867."
The second column is the n-gram itself, the third column is the year of occurrence, the fourth column is the
frequency of occurrence of that Ngram in that year, and the fifth column is the number of distinct publications.
This extract is from the z file of the 1-gram dataset from version 20120701. The data is truncated at the ...mark,
for the sake of readability of this document. In most real-world scenarios, you will not work with tables that have
five columns. Most HBase tables have one or two columns.

Zones_z_6230867 Zones 1507 1 1
Zones_z_6230868 Zones 1638 1 1
Zones_z_6230869 Zones 1656 2 1
Zones_z_6230870 Zones 1681 8 2
...
Zones_z_6231150 Zones 1996 17868 4356
Zones_z_6231151 Zones 1997 21296 4675
Zones_z_6231152 Zones 1998 20365 4972
Zones_z_6231153 Zones 1999 20288 5021
Zones_z_6231154 Zones 2000 22996 5714
Zones_z_6231155 Zones 2001 20469 5470
Zones_z_6231156 Zones 2002 21338 5946
Zones_z_6231157 Zones 2003 29724 6446
Zones_z_6231158 Zones 2004 23334 6524
Zones_z_6231159 Zones 2005 24300 6580
Zones_z_6231160 Zones 2006 22362 6707
Zones_z_6231161 Zones 2007 22101 6798
Zones_z_6231162 Zones 2008 21037 6328

2. Using the hadoop fs command, put the data into HDFS. This example places the file into an /imported_data/
directory.

$ hadoop fs -put zones_frequency.tsv /imported_data/

3. Create and register a new HBase table in HCatalog, using the hcat command, passing it a DDL file to represent
your table. You could also register an existing HBase table, using the same command. The DDL file format is
specified as part of the Hive REST API. The following example illustrates the basic mechanism.

CREATE TABLE
zones_frequency_table (id STRING, ngram STRING, year STRING, freq STRING, sources STRING)
STORED BY 'org.apache.hcatalog.hbase.HBaseHCatStorageHandler'
TBLPROPERTIES (
  'hbase.table.name' = 'zones_frequency_table',
  'hbase.columns.mapping' = 'd:ngram,d:year,d:freq,d:sources',
  'hcat.hbase.output.bulkMode' = 'true'
);

$ hcat -f zones_frequency_table.ddl

4. Create a Pig file to process the TSV file created in step 1, using the DDL file created in step 3. Modify the file names
and other parameters in this command to match your values if you use data different from this working example.
USING PigStorage('\t') indicates that the input file is tab-delimited. For more details about Pig syntax, see
the Pig Latin reference documentation.

A = LOAD 'hdfs:///imported_data/zones_frequency.tsv' USING PigStorage('\t') AS 
(id:chararray, ngram:chararray, year:chararray, freq:chararray, sources:chararray);
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-- DUMP A;
STORE A INTO 'zones_frequency_table' USING org.apache.hcatalog.pig.HCatStorer();

Save the file as zones.bulkload.pig.

5. Use the pig command to bulk-load the data into HBase.

$ pig -useHCatalog zones.bulkload.pig

The data is now in HBase and is available to use.

Using the Java API

The Java API is the most commonmechanism for getting data into HBase, through Put operations. The Thrift and REST
APIs, as well as the HBase Shell, use the Java API. The following simple example ouses the Java API to put data into an
HBase table. The Java API traverses the entire write path and can cause compactions and region splits, which can
adversely affect performance.

...
  HTable table = null;
try {

    table = myCode.createTable(tableName, fam);
int i = 1;

    List<Put> puts = new ArrayList<Put>();
for (String labelExp : labelExps) {

      Put put = new Put(Bytes.toBytes("row" + i));
      put.add(fam, qual, HConstants.LATEST_TIMESTAMP, value);
      puts.add(put);
      i++;
    }
    table.put(puts);
  } finally {

if (table != null) {
      table.flushCommits();
    }
  }
...

Using the Apache Thrift Proxy API

The Apache Thrift library provides cross-language client-server remote procedure calls (RPCs), using Thrift bindings. A
Thrift binding is client code generated by the Apache Thrift Compiler for a target language (such as Python) that allows
communication between the Thrift server and clients using that client code. HBase includes an Apache Thrift Proxy
API, which allows you towrite HBase applications in Python, C, C++, or another language that Thrift supports. The Thrift
Proxy API is slower than the Java API and may have fewer features. T use the Thrift Proxy API, you need to configure
and run the HBase Thrift server on your cluster. See Installing and Starting the HBase Thrift Server on page 26. You
also need to install the Apache Thrift compiler on your development system.

After the Thrift server is configured and running, generate Thrift bindings for the language of your choice, using an IDL
file. A HBase IDL file named HBase.thrift is included as part of HBase. After generating the bindings, copy the Thrift
libraries for your language into the same directory as the generated bindings. In the following Python example, these
libraries provide the thrift.transport and thrift.protocol libraries. These commands show how you might
generate the Thrift bindings for Python and copy the libraries on a Linux system.

$ mkdir HBaseThrift
$ cd HBaseThrift/
$ thrift -gen py /path/to/Hbase.thrift
$ mv gen-py/* .
$ rm -rf gen-py/
$ mkdir thrift
$ cp -rp ~/Downloads/thrift-0.9.0/lib/py/src/* ./thrift/
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The following iexample shows a simple Python application using the Thrift Proxy API.

from thrift.transport import TSocket
from thrift.protocol import TBinaryProtocol
from thrift.transport import TTransport
from hbase import Hbase

# Connect to HBase Thrift server
transport = TTransport.TBufferedTransport(TSocket.TSocket(host, port))
protocol = TBinaryProtocol.TBinaryProtocolAccelerated(transport)

# Create and open the client connection
client = Hbase.Client(protocol)
transport.open()

# Modify a single row
mutations = [Hbase.Mutation(
  column='columnfamily:columndescriptor', value='columnvalue')]
client.mutateRow('tablename', 'rowkey', mutations)

# Modify a batch of rows
# Create a list of mutations per work of Shakespeare
mutationsbatch = []

for line in myDataFile:
    rowkey = username + "-" + filename + "-" + str(linenumber).zfill(6)

    mutations = [
            Hbase.Mutation(column=messagecolumncf, value=line.strip()),
            Hbase.Mutation(column=linenumbercolumncf, value=encode(linenumber)),
            Hbase.Mutation(column=usernamecolumncf, value=username)
        ]

       mutationsbatch.append(Hbase.BatchMutation(row=rowkey,mutations=mutations))

# Run the mutations for all the lines in myDataFile
client.mutateRows(tablename, mutationsbatch)

transport.close()

The Thrift Proxy API does not support writing to HBase clusters that are secured using Kerberos.

This example wasmodified from the following two blog posts on http://www.cloudera.com. See them formore details.

• Using the HBase Thrift Interface, Part 1
• Using the HBase Thrift Interface, Part 2

Using the REST Proxy API

After configuring and starting the HBase REST Server on your cluster, you can use the HBase REST Proxy API to stream
data into HBase, from within another application or shell script, or by using an HTTP client such as wget or curl. The
REST Proxy API is slower than the Java API and may have fewer features. This approach is simple and does not require
advanced development experience to implement. However, like the Java and Thrift Proxy APIs, it uses the full write
path and can cause compactions and region splits.

Specified addresseswithout existing data create new values. Specified addresseswith existing data create new versions,
overwriting an existing version if the row, column:qualifier, and timestamp all match that of the existing value.

$ curl -H "Content-Type: text/xml" http://localhost:8000/test/testrow/test:testcolumn

The REST Proxy API does not support writing to HBase clusters that are secured using Kerberos.

For full documentation and more examples, see the REST Proxy API documentation.

Using Flume

Apache Flume is a fault-tolerant system designed for ingesting data into HDFS, for use with Hadoop. You can configure
Flume to write data directly into HBase. Flume includes two different sinks designed to work with HBase: HBaseSink

Apache HBase Guide | 93

Managing HBase

http://www.cloudera.com
http://blog.cloudera.com/blog/2013/09/how-to-use-the-hbase-thrift-interface-part-1/
http://blog.cloudera.com/blog/2013/12/how-to-use-the-hbase-thrift-interface-part-2-insertinggetting-rows/
http://hbase.apache.org/book.html#_rest


(org.apache.flume.sink.hbase.HBaseSink) andAsyncHBaseSink (org.apache.flume.sink.hbase.AsyncHBaseSink).HBaseSink
supports HBase IPC calls introduced in HBase 0.96, and allows you to write data to an HBase cluster that is secured by
Kerberos, whereas AsyncHBaseSink does not. However, AsyncHBaseSink uses an asynchronous model and guarantees
atomicity at the row level.

You configure HBaseSink and AsyncHBaseSink nearly identically. Following is an example configuration for each. Bold
lines highlight differences in the configurations. For full documentation about configuringHBaseSink andAsyncHBaseSink,
see the Flume documentation. The table, columnFamily, and column parameters correlate to the HBase table,
column family, and column where the data is to be imported. The serializer is the class that converts the data at the
source into something HBase can use. Configure your sinks in the Flume configuration file.

In practice, you usually need to write your own serializer, which implements either AsyncHBaseEventSerializer or
HBaseEventSerializer. The HBaseEventSerializer converts Flume Events into one or more HBase Puts, sends them to
the HBase cluster, and is closed when the HBaseSink stops. AsyncHBaseEventSerializer starts and listens for Events.
When it receives an Event, it calls the setEvent method and then calls the getActions and getIncrements methods.
When the AsyncHBaseSink is stopped, the serializer cleanUp method is called. These methods return PutRequest and
AtomicIncrementRequest, which are part of the asynchbase API.

AsyncHBaseSink:

#Use the AsyncHBaseSink
host1.sinks.sink1.type = org.apache.flume.sink.hbase.AsyncHBaseSink
host1.sinks.sink1.channel = ch1
host1.sinks.sink1.table = transactions
host1.sinks.sink1.columnFamily = clients
host1.sinks.sink1.column = charges
host1.sinks.sink1.batchSize = 5000
#Use the SimpleAsyncHbaseEventSerializer that comes with Flume
host1.sinks.sink1.serializer = org.apache.flume.sink.hbase.SimpleAsyncHbaseEventSerializer
host1.sinks.sink1.serializer.incrementColumn = icol
host1.channels.ch1.type=memory

HBaseSink:

#Use the HBaseSink
host1.sinks.sink1.type = org.apache.flume.sink.hbase.HBaseSink
host1.sinks.sink1.channel = ch1
host1.sinks.sink1.table = transactions
host1.sinks.sink1.columnFamily = clients
host1.sinks.sink1.column = charges
host1.sinks.sink1.batchSize = 5000
#Use the SimpleHbaseEventSerializer that comes with Flume
host1.sinks.sink1.serializer = org.apache.flume.sink.hbase.SimpleHbaseEventSerializer
host1.sinks.sink1.serializer.incrementColumn = icol
host1.channels.ch1.type=memory

The following serializer, taken from an Apache Flume blog post by Dan Sandler, splits the event body based on a
delimiter and inserts each split into a different column. The row is defined in the event header. When each event is
received, a counter is incremented to track the number of events received.

   /**
  * A serializer for the AsyncHBaseSink, which splits the event body into
  * multiple columns and inserts them into a row whose key is available in
  * the headers
  */
 public class SplittingSerializer implements AsyncHbaseEventSerializer {
   private byte[] table;
   private byte[] colFam;
   private Event currentEvent;
   private byte[][] columnNames;
   private final List<PutRequest> puts = new ArrayList<PutRequest>();
   private final List<AtomicIncrementRequest> incs = new 
ArrayList<AtomicIncrementRequest>();
   private byte[] currentRowKey;
   private final byte[] eventCountCol = "eventCount".getBytes();
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   @Override
   public void initialize(byte[] table, byte[] cf) {
     this.table = table;
     this.colFam = cf;
   }

   @Override
   public void setEvent(Event event) {
     // Set the event and verify that the rowKey is not present
     this.currentEvent = event;
     String rowKeyStr = currentEvent.getHeaders().get("rowKey");
     if (rowKeyStr == null) {
       throw new FlumeException("No row key found in headers!");
     }
     currentRowKey = rowKeyStr.getBytes();
   }

   @Override
   public List<PutRequest> getActions() {
     // Split the event body and get the values for the columns
     String eventStr = new String(currentEvent.getBody());
     String[] cols = eventStr.split(",");
     puts.clear();
     for (int i = 0; i < cols.length; i++) {
       //Generate a PutRequest for each column.
       PutRequest req = new PutRequest(table, currentRowKey, colFam,
               columnNames[i], cols[i].getBytes());
       puts.add(req);
     }
     return puts;
   }

   @Override
   public List<AtomicIncrementRequest> getIncrements() {
     incs.clear();
     //Increment the number of events received
     incs.add(new AtomicIncrementRequest(table, "totalEvents".getBytes(), colFam, 
eventCountCol));
     return incs;
   }

   @Override
   public void cleanUp() {
     table = null;
     colFam = null;
     currentEvent = null;
     columnNames = null;
     currentRowKey = null;
   }

   @Override
   public void configure(Context context) {
     //Get the column names from the configuration
     String cols = new String(context.getString("columns"));
     String[] names = cols.split(",");
     byte[][] columnNames = new byte[names.length][];
     int i = 0;
     for(String name : names) {
       columnNames[i++] = name.getBytes();
     }
     this.columnNames = columnNames;
   }

   @Override
   public void configure(ComponentConfiguration conf) {
   }
}

Using Spark

For instructions on configuring an HBase service as a Spark service dependency, see Accessing HBase from Spark.
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You can write data to HBase from Apache Spark by using def saveAsHadoopDataset(conf: JobConf): Unit.
This example is adapted from a post on the spark-users mailing list.

// Note: mapred package is used, instead of the
// mapreduce package which contains new hadoop APIs.

import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.hbase.client
// ... some other settings

val conf = HBaseConfiguration.create()

// general hbase settings
conf.set("hbase.rootdir",
         "hdfs://" + nameNodeURL + ":" + hdfsPort + "/hbase")
conf.setBoolean("hbase.cluster.distributed", true)
conf.set("hbase.zookeeper.quorum", hostname)
conf.setInt("hbase.client.scanner.caching", 10000)
// ... some other settings

val jobConfig: JobConf = new JobConf(conf, this.getClass)

// Note:  TableOutputFormat is used as deprecated code
// because JobConf is an old hadoop API
jobConfig.setOutputFormat(classOf[TableOutputFormat])
jobConfig.set(TableOutputFormat.OUTPUT_TABLE, outputTable)

Next, provide themapping between how the data looks in Spark and how it should look in HBase. The following example
assumes that your HBase table has two column families, col_1 and col_2, and that your data is formatted in sets of
three in Spark, like (row_key, col_1, col_2).

def convert(triple: (Int, Int, Int)) = {
      val p = new Put(Bytes.toBytes(triple._1))
      p.add(Bytes.toBytes("cf"),
            Bytes.toBytes("col_1"),
            Bytes.toBytes(triple._2))
      p.add(Bytes.toBytes("cf"),
            Bytes.toBytes("col_2"),
            Bytes.toBytes(triple._3))
      (new ImmutableBytesWritable, p)
}

To write the data from Spark to HBase, you might use:

new PairRDDFunctions(localData.map(convert)).saveAsHadoopDataset(jobConfig)

Using Spark and Kafka

For instructions on configuring an HBase service as a Spark service dependency, see Accessing HBase from Spark.

This example, written in Scala, uses Apache Spark in conjunction with the Apache Kafka message bus to stream data
from Spark to HBase. The example was provided in SPARK-944. It produces some random words and then stores them
in an HBase table, creating the table if necessary.

package org.apache.spark.streaming.examples

import java.util.Properties

import kafka.producer._

import org.apache.hadoop.hbase.{ HBaseConfiguration, HColumnDescriptor, HTableDescriptor
 }
import org.apache.hadoop.hbase.client.{ HBaseAdmin, Put }
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.mapred.JobConf
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import org.apache.spark.SparkContext
import org.apache.spark.rdd.{ PairRDDFunctions, RDD }
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.streaming.kafka._

object MetricAggregatorHBase {
  def main(args : Array[String]) {
    if (args.length < 6) {
      System.err.println("Usage: MetricAggregatorTest <master> <zkQuorum> <group> <topics>
 <destHBaseTableName> <numThreads>")
      System.exit(1)
    }

    val Array(master, zkQuorum, group, topics, hbaseTableName, numThreads) = args

    val conf = HBaseConfiguration.create()
    conf.set("hbase.zookeeper.quorum", zkQuorum)

    // Initialize hBase table if necessary
    val admin = new HBaseAdmin(conf)
    if (!admin.isTableAvailable(hbaseTableName)) {
      val tableDesc = new HTableDescriptor(hbaseTableName)
      tableDesc.addFamily(new HColumnDescriptor("metric"))
      admin.createTable(tableDesc)
    }

    // setup streaming context
    val ssc = new StreamingContext(master, "MetricAggregatorTest", Seconds(2),
      System.getenv("SPARK_HOME"), StreamingContext.jarOfClass(this.getClass))
    ssc.checkpoint("checkpoint")

    val topicpMap = topics.split(",").map((_, numThreads.toInt)).toMap
    val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicpMap)
      .map { case (key, value) => ((key, Math.floor(System.currentTimeMillis() / 
60000).toLong * 60), value.toInt) }

    val aggr = lines.reduceByKeyAndWindow(add _, Minutes(1), Minutes(1), 2)

    aggr.foreach(line => saveToHBase(line, zkQuorum, hbaseTableName))

    ssc.start

    ssc.awaitTermination
  }

  def add(a : Int, b : Int) = { (a + b) }

  def saveToHBase(rdd : RDD[((String, Long), Int)], zkQuorum : String, tableName : 
String) = {
    val conf = HBaseConfiguration.create()
    conf.set("hbase.zookeeper.quorum", zkQuorum)

    val jobConfig = new JobConf(conf)
    jobConfig.set(TableOutputFormat.OUTPUT_TABLE, tableName)
    jobConfig.setOutputFormat(classOf[TableOutputFormat])

    new PairRDDFunctions(rdd.map { case ((metricId, timestamp), value) => 
createHBaseRow(metricId, timestamp, value) }).saveAsHadoopDataset(jobConfig)
  }

  def createHBaseRow(metricId : String, timestamp : Long, value : Int) = {
    val record = new Put(Bytes.toBytes(metricId + "~" + timestamp))

    record.add(Bytes.toBytes("metric"), Bytes.toBytes("col"), 
Bytes.toBytes(value.toString))

    (new ImmutableBytesWritable, record)
  }

}

// Produces some random words between 1 and 100.
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object MetricDataProducer {

  def main(args : Array[String]) {
    if (args.length < 2) {
      System.err.println("Usage: MetricDataProducer <metadataBrokerList> <topic> 
<messagesPerSec>")
      System.exit(1)
    }

    val Array(brokers, topic, messagesPerSec) = args

    // ZooKeeper connection properties
    val props = new Properties()
    props.put("metadata.broker.list", brokers)
    props.put("serializer.class", "kafka.serializer.StringEncoder")

    val config = new ProducerConfig(props)
    val producer = new Producer[String, String](config)

    // Send some messages
    while (true) {
      val messages = (1 to messagesPerSec.toInt).map { messageNum =>
        {
          val metricId = scala.util.Random.nextInt(10)
          val value = scala.util.Random.nextInt(1000)
          new KeyedMessage[String, String](topic, metricId.toString, value.toString)
        }
      }.toArray

      producer.send(messages : _*)
      Thread.sleep(100)
    }
  }
}

Using a Custom MapReduce Job

Many of the methods to import data into HBase useMapReduce implicitly. If none of those approaches fit your needs,
you can use MapReduce directly to convert data to a series of HFiles or API calls for import into HBase. In this way,
you can import data from Avro, Parquet, or another format into HBase, or export data fromHBase into another format,
using API calls such as TableOutputFormat, HFileOutputFormat, and TableInputFormat.

Configuring and Using the HBase REST API
You can use the HBase REST API to interact with HBase services, tables, and regions using HTTP endpoints.

Installing the REST Server

The HBase REST server is an optional component of HBase and is not installed by default.

Installing the REST Server Using Cloudera Manager

Minimum Required Role: Full Administrator

1. Click the Clusters tab.
2. Select Clusters > HBase.
3. Click the Instances tab.
4. Click Add Role Instance.
5. Under HBase REST Server, click Select Hosts.
6. Select one or more hosts to serve the HBase Rest Server role. Click Continue.
7. Select the HBase Rest Server roles. Click Actions For Selected > Start.
8. To configure Kerberos authentication between REST clients and servers, see Configure Authentication for the

HBase REST and Thrift Gateways.
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Installing the REST Server Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

Follow these instructions for each HBase host fulfilling the REST server role.

• To start the REST server as a foreground process, use the following command:

$ bin/hbase rest start

• To start the REST server as a background process, use the following command:

$ bin/hbase-daemon.sh start rest

• To use a different port than the default of 8080, use the -p option.
• To stop a running HBase REST server, use the following command:

$ bin/hbase-daemon.sh stop rest

• To configure Kerberos authentication between REST clients and servers, see Configure Authentication for the
HBase REST and Thrift Gateways.

Using the REST API

The HBase REST server exposes endpoints that provide CRUD (create, read, update, delete) operations for each HBase
process, as well as tables, regions, and namespaces. For a given endpoint, the HTTP verb controls the type of operation
(create, read, update, or delete).

Note: curl Command Examples

The examples in these tables use the curl command, and follow these guidelines:

• The HTTP verb is specified using the -X parameter.
• For GET queries, the Accept header is set to text/xml, which indicates that the client (curl)

expects to receive responses formatted in XML. You can set it to text/json to receive JSON
responses instead.

• For PUT, POST, and DELETE queries, the Content-Type header should be set only if data is also
being sent with the -d parameter. If set, it should match the format of the data being sent, to
enable the REST server to deserialize the data correctly.

For more details about the curl command, see the documentation for the curl version that ships
with your operating system.

These examples use port 20050, which is the default port for the HBase REST server when you use Cloudera Manager.
If you use CDH without Cloudera Manager, the default port for the REST server is 8080.
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Table 3: Cluster-Wide Endpoints

ExampleDescriptionHTTP VerbEndpoint

curl -vi -X GET 
\

Version of HBase running on
this cluster

GET/version/cluster

         -H 
"Accept: text/
xml" \
         "http:/
/
example.com:20550/
version/cluster"

curl -vi -X GET 
\

Cluster statusGET/status/cluster

         -H 
"Accept: text/
xml" \
         "http:/
/
example.com:20550/
status/cluster"

curl -vi -X GET 
\

List of all nonsystem tablesGET/

         -H 
"Accept: text/
xml" \
         "http:/
/
example.com:20550/
"

Table 4: Namespace Endpoints

ExampleDescriptionHTTP VerbEndpoint

curl -vi -X GET 
\

List all namespaces.GET/namespaces

         -H 
"Accept: text/
xml" \
         "http:/
/
example.com:20550/
namespaces/"

curl -vi -X GET 
\

Describe a specific
namespace.

GET/namespaces/namespace

         -H 
"Accept: text/
xml" \
         "http:/
/
example.com:20550/
namespaces/
special_ns"

curl -vi -X POST
 \

Create a new namespace.POST/namespaces/namespace

         -H 
"Accept: text/
xml" \
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"example.com:20550/
namespaces/
special_ns"

curl -vi -X GET 
\

List all tables in a specific
namespace.

GET/namespaces/namespace/tables

         -H 
"Accept: text/
xml" \
         "http:/
/
example.com:20550/
namespaces/
special_ns/
tables"

curl -vi -X PUT 
\

Alter an existing namespace.
Currently not used.

PUT/namespaces/namespace

         -H 
"Accept: text/
xml" \
         "http:/
/
example.com:20550/
namespaces/
special_ns"

curl -vi -X 
DELETE \

Delete a namespace. The
namespace must be empty.

DELETE/namespaces/namespace

         -H 
"Accept: text/
xml" \

"example.com:20550/
namespaces/
special_ns"

Table 5: Table Endpoints

ExampleDescriptionHTTP VerbEndpoint

curl -vi -X GET 
\

Describe the schema of the
specified table.

GET/table/schema

         -H 
"Accept: text/
xml" \
         "http:/
/
example.com:20550/
users/schema"

curl -vi -X POST \
         -H "Accept:

Create a new table, or
replace an existing table's

POST/table/schema

 text/xml" \

Apache HBase Guide | 101

Managing HBase



ExampleDescriptionHTTP VerbEndpoint

         -H 
"Content-Type: text/

schema with the provided
schema

xml" \
         -d '<?xml 
version="1.0" 
encoding="UTF-8"?><TableSchema

name="users"><ColumnSchema
 name="cf" /></
TableSchema>' \
         "http://
example.com:20550/
users/schema"

curl -vi -X PUT \
         -H "Accept:

Update an existing table
with the provided schema
fragment

UPDATE/table/schema

 text/xml" \
         -H 
"Content-Type: text/
xml" \
         -d '<?xml 
version="1.0" 
encoding="UTF-8"?><TableSchema

name="users"><ColumnSchema
 name="cf" 
KEEP_DELETED_CELLS="true"
 /></TableSchema>' \
         "http://
example.com:20550/
users/schema"

curl -vi -X 
DELETE \

Delete the table. You must
use the table/schema

endpoint, not just table/.

DELETE/table/schema

         -H 
"Accept: text/
xml" \
         "http:/
/
example.com:20550/
users/schema"

curl -vi -X GET 
\

List the table regions.GET/table/regions

         -H 
"Accept: text/
xml" \
         "http:/
/
example.com:20550/
users/regions"

Table 6: Endpoints for Get Operations

ExampleDescriptionHTTP VerbEndpoint

Latest version:

curl -vi -X GET 
\

Get the value of a single
row. Values are Base-64
encoded.

GET/table/row/column:qualifier/timestamp

         -H 
"Accept: text/
xml" \
         "http:/
/
example.com:20550/
users/row1"
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Specific timestamp:

curl -vi -X GET 
\
         -H 
"Accept: text/
xml" \
         "http:/
/
example.com:20550/
users/row1/cf:a/
1458586888395"

Latest version:

curl -vi -X GET 
\

Get the value of a single
column. Values are Base-64
encoded.

         -H 
"Accept: text/
xml" \
         "http:/
/
example.com:20550/
users/row1/cf:a"

Specific version:

curl -vi -X GET 
\
         -H 
"Accept: text/
xml" \

"http://
example.com:20550/
users/row1/cf:a/
"

curl -vi -X GET 
\

Multi-Get a specified
number of versions of a
given cell. Values are
Base-64 encoded.

/table/row/column:qualifier?v=number_of_versions

         -H 
"Accept: text/
xml" \
         "http:/
/
example.com:20550/
users/row1/
cf:a?v=2"

Table 7: Endpoints for Scan Operations

ExampleDescriptionHTTP VerbEndpoint

curl -vi -X PUT 
\

Get a Scanner object.
Required by all other Scan
operations. Adjust the batch

PUT/table/scanner/

         -H 
"Accept: text/parameter to the number of xml" \

rows the scan should return          -H 
in a batch. See the next "Content-Type: 

text/xml" \example for adding filters to          -d 
your Scanner. The scanner '<Scanner 
endpoint URL is returned as batch="1"/>' \
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         "http:/
/

the Location in the HTTP
response. The other
examples in this table example.com:20550/

users/scanner/"assume that the Scanner
endpoint is
http://example.com:20550/users/scanner/145869072824375522207.

curl -vi -X PUT 
\

To supply filters to the
Scanner object or configure
the Scanner in any other

PUT/table/scanner/

         -H 
"Accept: text/way, you can create a text xml" \

file and add your filter to the          -H 
file. For example, to return "Content-Type:text/

xml" \only rows for which keys          -d 
start with u123 and use a
batch size of 100:

<Scanner 
batch="100">

@filter.txt \
         "http:/
/
example.com:20550/
users/scanner/"

  <filter>
    {
      "type": 
"PrefixFilter",
      "value": 
"u123"
    }
  </filter>
</Scanner>

Pass the file to the -d
argument of the curl
request.

curl -vi -X GET 
\

Get the next batch from the
scanner. Cell values are
byte-encoded. If the scanner

GET/table/scanner/scanner_id

         -H 
"Accept: text/
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xml" \
         "http:/

is exhausted, HTTP status
204 is returned.

/
example.com:20550/
users/scanner/
145869072824375522207"

curl -vi -X 
DELETE \

Deletes the scanner and
frees the resources it was
using.

DELETE/table/scanner/scanner_id

         -H 
"Accept: text/
xml" \
         "http:/
/
example.com:20550/
users/scanner/
145869072824375522207"

Table 8: Endpoints for Put Operations

ExampleDescriptionHTTP VerbEndpoint

XML:

curl -vi -X PUT 
\

Write a row to a table. The
row, column qualifier, and
value must each be Base-64
encoded. To encode a string,

PUT/table/row_key/

         -H 
you can use the base64 "Accept: text/

xml" \command-line utility. To
         -H decode the string, use "Content-Type: 

base64 -d. The payload is text/xml" \
         -d in the --data argument, so
'<?xml the/users/fakerow value version="1.0" 

is a placeholder. Insert encoding="UTF-8"
multiple rows by adding

standalone="yes"?><CellSet><Rowthem to the <CellSet>
element. You can also save key="cm93NQo="><Cell
the data to be inserted to a

column="Y2Y6ZQo=">dmFsdWU1Cg==</file and pass it to the -d Cell></Row></
parameter with the syntax
-d @filename.txt.

CellSet>' \
         "http:/
/
example.com:20550/
users/fakerow"

JSON:

curl -vi -X PUT 
\
         -H 
"Accept: text/
json" \
         -H 
"Content-Type: 
text/json" \
         -d 
'{"Row":[{"key":"cm93NQo=",
 "Cell": 
[{"column":"Y2Y6ZQo=",

"$":"dmFsdWU1Cg=="}]}]}''
 \
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"example.com:20550/
users/fakerow"

Configuring HBase MultiWAL Support
CDH supports multiple write-ahead logs (MultiWAL) for HBase. (For more information, see HBASE-5699.)

Without MultiWAL support, each region on a RegionServer writes to the same WAL. A busy RegionServer might host
several regions, and each write to the WAL is serial because HDFS only supports sequentially written files. This causes
the WAL to negatively impact performance.

MultiWAL allows a RegionServer to write multipleWAL streams in parallel by using multiple pipelines in the underlying
HDFS instance, which increases total throughput during writes.

Note: In the current implementation ofMultiWAL, incoming edits are partitioned by Region. Therefore,
throughput to a single Region is not increased.

To configure MultiWAL for a RegionServer, set the value of the property hbase.wal.provider to multiwal and
restart the RegionServer. To disable MultiWAL for a RegionServer, unset the property and restart the RegionServer.

RegionServers using the original WAL implementation and those using theMultiWAL implementation can each handle
recovery of either set of WALs, so a zero-downtime configuration update is possible through a rolling restart.

Configuring MultiWAL Support Using Cloudera Manager

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > RegionServer.
4. Select Category >Main.
5. SetWAL Provider toMultiWAL.
6. Set the Per-RegionServer Number of WAL Pipelines to a value greater than 1.
7. Click Save Changes to commit the changes.
8. Restart the RegionServer roles.

Configuring MultiWAL Support Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

1. Edit hbase-site.xml on each RegionServer where you want to enable MultiWAL. Add the following property
by pasting the XML.

<property>
  <name>hbase.wal.provider</name>
  <value>multiwal</value>
</property>

2. Stop and restart the RegionServer.
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Storing Medium Objects (MOBs) in HBase
Data comes in many sizes, and saving all of your data in HBase, including binary data such as images and documents,
is convenient. HBase can technically handle binary objects with cells that are up to 10 MB in size. However, HBase
normal read and write paths are optimized for values smaller than 100 KB in size. When HBase handles large numbers
of values up to 10 MB (medium objects, or MOBs), performance is degraded because of write amplification caused by
splits and compactions.

One way to solve this problem is by storing objects larger than 100KB directly in HDFS, and storing references to their
locations inHBase. CDH5.4 and higher includes optimizations for storingMOBs directly in HBase) based onHBASE-11339.

To use MOB, you must use HFile version 3. Optionally, you can configure the MOB file reader's cache settings
Service-Wide and for each RegionServer, and then configure specific columns to hold MOB data. No change to client
code is required for HBase MOB support.

Enabling HFile Version 3 Using Cloudera Manager

Minimum Required Role: Full Administrator

To enable HFile version 3 using Cloudera Manager, edit the HBase Service Advanced Configuration Snippet for HBase
Service-Wide.

1. Go to the HBase service.
2. Click the Configuration tab.
3. Search for the property HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.
4. Paste the following XML into the Value field and save your changes.

<property>
  <name>hfile.format.version</name>
  <value>3</value>
</property>

Changes will take effect after the next major compaction.

Enabling HFile Version 3 Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

Paste the following XML into hbase-site.xml.

<property>
  <name>hfile.format.version</name>
  <value>3</value>
</property>

Restart HBase. Changes will take effect for a given region during its next major compaction.

Configuring Columns to Store MOBs

Use the following options to configure a column to store MOBs:

• IS_MOB is a Boolean option, which specifies whether or not the column can store MOBs.
• MOB_THRESHOLD configures the number of bytes at which an object is considered to be a MOB. If you do not

specify a value for MOB_THRESHOLD, the default is 100 KB. If you write a value larger than this threshold, it is
treated as a MOB.
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You can configure a column to store MOBs using the HBase Shell or the Java API.

Using HBase Shell:

hbase> create 't1', {NAME => 'f1', IS_MOB => true, MOB_THRESHOLD => 102400}
hbase> alter 't1', {NAME => 'f1', IS_MOB => true, MOB_THRESHOLD =>
102400}

Using the Java API:

HColumnDescriptor hcd = new HColumnDescriptor(“f”);
hcd.setMobEnabled(true);
hcd.setMobThreshold(102400L);

HBase MOB Cache Properties

Because there can be a large number of MOB files at any time, as compared to the number of HFiles, MOB files are
not always kept open. The MOB file reader cache is a LRU cache which keeps the most recently used MOB files open.

The following properties are available for tuning the HBase MOB cache.

Table 9: HBase MOB Cache Properties

DescriptionDefaultProperty

The of opened file handlers to cache.
A larger value will benefit reads by

1000hbase.mob.file.cache.size

providing more file handlers per MOB
file cache and would reduce frequent
file opening and closing of files.
However, if the value is too high,
errors such as "Too many opened file
handlers" may be logged.

The amount of time in seconds after
a file is opened before theMOB cache

3600hbase.mob.cache.evict.period

evicts cached files. The default value
is 3600 seconds.

The ratio, expressed as a float
between 0.0 and 1.0, that controls

0.5fhbase.mob.cache.evict.remain.ratio

howmanyfiles remain cached after an
eviction is triggered due to the number
of cached files exceeding the
hbase.mob.file.cache.size. The
default value is 0.5f.

Configuring the MOB Cache Using Cloudera Manager

To configure the MOB cache within Cloudera Manager, edit the HBase Service advanced configuration snippet for the
cluster. Cloudera recommends testing your configuration with the default settings first.

1. Go to the HBase service.
2. Click the Configuration tab.
3. Search for the property HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.
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4. Paste your configuration into the Value field and save your changes. The following example sets the
hbase.mob.cache.evict.period property to 5000 seconds. See Table 9: HBase MOB Cache Properties on
page 108 for a full list of configurable properties for HBase MOB.

<property>
  <name>hbase.mob.cache.evict.period</name>
  <value>5000</value>
</property>

5. Restart your cluster for the changes to take effect.

Configuring the MOB Cache Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

Because there can be a large number of MOB files at any time, as compared to the number of HFiles, MOB files are
not always kept open. The MOB file reader cache is a LRU cache which keeps the most recently used MOB files open.

To customize the configuration of theMOB file reader's cache on each RegionServer, configure theMOB cache properties
in the RegionServer's hbase-site.xml. Customize the configuration to suit your environment, and restart or rolling
restart the RegionServer. Cloudera recommends testing your configuration with the default settings first. The following
example sets the hbase.mob.cache.evict.period property to 5000 seconds. See Table 9: HBase MOB Cache
Properties on page 108 for a full list of configurable properties for HBase MOB.

<property>
  <name>hbase.mob.cache.evict.period</name>
  <value>5000</value>
</property>

Testing MOB Storage and Retrieval Performance

HBase provides the Java utility org.apache.hadoop.hbase.IntegrationTestIngestMOB to assist with testing
the MOB feature and deciding on appropriate configuration values for your situation. The utility is run as follows:

$ sudo -u hbase hbase org.apache.hadoop.hbase.IntegrationTestIngestMOB \
            -threshold 102400 \
            -minMobDataSize 512 \
            -maxMobDataSize 5120

• threshold is the threshold at which cells are considered to be MOBs. The default is 1 kB, expressed in bytes.
• minMobDataSize is the minimum value for the size of MOB data. The default is 512 B, expressed in bytes.
• maxMobDataSize is the maximum value for the size of MOB data. The default is 5 kB, expressed in bytes.

Compacting MOB Files Manually

You can trigger manual compaction of MOB files manually, rather than waiting for them to be triggered by your
configuration, using the HBase Shell commands compact_mob and major_compact_mob. Each of these commands
requires the first parameter to be the table name, and takes an optional column family name as the second argument.
If the column family is provided, only that column family's files are compacted. Otherwise, all MOB-enabled column
families' files are compacted.

hbase> compact_mob 't1'
hbase> compact_mob 't1', 'f1'
hbase> major_compact_mob 't1'
hbase> major_compact_mob 't1', 'f1'
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This functionality is also available using the API, using the Admin.compact and Admin.majorCompactmethods.

Configuring the Storage Policy for the Write-Ahead Log (WAL)
In CDH 5.7.0 and higher, you can configure the preferred HDFS storage policy for HBase's write-ahead log (WAL) replicas.
This feature allows you to tune HBase's use of SSDs to your available resources and the demands of your workload.

These instructions assume that you have followed the instructions in Configuring Storage Directories for DataNodes
and that your cluster has SSD storage available to HBase. If HDFS is not configured to use SSDs, these configuration
changes will have no effect on HBase. The following policies are available:

• NONE: no preference about where the replicas are written.
• ONE_SSD: place one replica on SSD storage and the remaining replicas in default storage. This allows you to derive

some benefit from SSD storage even if it is a scarce resource in your cluster.

Warning: ONE_SSDmode has not been thoroughly tested with HBase and is not recommended.

• ALL_SSD: place all replicas on SSD storage.

Configuring the Storage Policy for WALs Using Cloudera Manager

Minimum Required Role: Full Administrator

1. Go to the HBase service.
2. Click the Configuration tab.
3. Search for the propertyWAL HSM Storage Policy.
4. Select your desired storage policy.
5. Save your changes. Restart all HBase roles.

Changes will take effect after the next major compaction.

Configuring the Storage Policy for WALs Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

Paste the following XML into hbase-site.xml. Uncomment the <value> line that corresponds to your desired storage
policy.

<property>
  <name>hbase.wal.storage.policy</name>
  <value>NONE</value>
  <!--<value>ONE_SSD</value>-->
  <!--<value>ALL_SSD</value>-->
</property>

Warning: ONE_SSDmode has not been thoroughly tested with HBase and is not recommended.

Restart HBase. Changes will take effect for a given region during its next major compaction.
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Exposing HBase Metrics to a Ganglia Server
Ganglia is a popular open-source monitoring framework. You can expose HBase metrics to a Ganglia instance so that
Ganglia can detect potential problems with your HBase cluster.

Expose HBase Metrics to Ganglia Using Cloudera Manager

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select the HBase Master or RegionServer role. To monitor both, configure each role as described in the rest of

the procedure.
4. Select Category >Metrics.
5. Locate the Hadoop Metrics2 Advanced Configuration Snippet (Safety Valve) property or search for it by typing

its name in the Search box.
6. Edit the property. Add the following, substituting the server information with your own.

hbase.sink.ganglia.class=org.apache.hadoop.metrics2.sink.ganglia.GangliaSink31
hbase.sink.ganglia.servers=<Ganglia server>:<port>
hbase.sink.ganglia.period=10

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.
See Modifying Configuration Properties Using Cloudera Manager.

7. Click Save Changes to commit the changes.
8. Restart the role.
9. Restart the service.

Expose HBase Metrics to Ganglia Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

1. Edit /etc/hbase/conf/hadoop-metrics2-hbase.properties on themaster or RegionServers you want to
monitor, and add the following properties, substituting the server information with your own:

hbase.sink.ganglia.class=org.apache.hadoop.metrics2.sink.ganglia.GangliaSink31
hbase.sink.ganglia.servers=<Ganglia server>:<port>
hbase.sink.ganglia.period=10

2. Restart the master or RegionServer.
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Managing HBase Security

This topic pulls together content also found elsewhere which relates to configuring and using HBase in a secure
environment. For the most part, securing an HBase cluster is a one-way operation, and moving from a secure to an
unsecure configuration should not be attempted without contacting Cloudera support for guidance.

HBase Authentication
To configure HBase security, complete the following tasks:

1. Configure HBaseAuthentication: Youmust establish amechanism for HBase servers and clients to securely identify
themselves with HDFS, ZooKeeper, and each other. This ensures that hosts are who they claim to be.

Note:

• To enable HBase to work with Kerberos security, you must perform the installation and
configuration steps in Configuring Hadoop Security in CDH 5 and ZooKeeper Security
Configuration.

• Although an HBase Thrift server can connect to a secured Hadoop cluster, access is not
secured from clients to the HBase Thrift server. To encrypt communication between clients
and the HBase Thrift Server, see Configuring TLS/SSL for HBase Thrift Server.

The following sections describe how to use Apache HBase and CDH 5 with Kerberos security:

• Configuring Kerberos Authentication for HBase
• Configuring Secure HBase Replication
• Configuring the HBase Client TGT Renewal Period

2. Configure HBase Authorization: You must establish rules for the resources that clients are allowed to access. For
more information, see Configuring HBase Authorization.

Using the Hue HBase App

Hue includes an HBase App that allows you to interact with HBase through a Thrift proxy server. Because Hue sits
between the Thrift server and the client, the Thrift server assumes that all HBase operations come from the hue user
and not the client. To ensure that users in Hue are only allowed to perform HBase operations assigned to their own
credentials, and not those of the hue user, you must enable HBase impersonation. For more information about the
how to enable doAs Impersonation for the HBase Browser Application, see Enabling the HBase Browser Application
with doAs Impersonation.

Configuring HBase Authorization
After configuring HBase authentication (as detailed in HBase Configuration), you must define rules on resources that
is allowed to access. HBase rules can be defined for individual tables, columns, and cells within a table. Cell-level
authorization is fully supported since CDH 5.2.

Important: In a cluster managed by Cloudera Manager, HBase authorization is disabled by default.
You have to enable HBase authorization (as detailed in Enable HBase Authorization) to use any kind
of authorization method.
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Understanding HBase Access Levels

HBase access levels are granted independently of each other and allow for different types of operations at a given
scope.

• Read (R) - can read data at the given scope
• Write (W) - can write data at the given scope
• Execute (X) - can execute coprocessor endpoints at the given scope
• Create (C) - can create tables or drop tables (even those they did not create) at the given scope
• Admin (A) - can perform cluster operations such as balancing the cluster or assigning regions at the given scope

The possible scopes are:

• Superuser - superusers can perform any operation available in HBase, to any resource. The user who runs HBase
on your cluster is a superuser, as are any principals assigned to the configuration property hbase.superuser in
hbase-site.xml on the HMaster.

• Global - permissions granted at global scope allow the admin to operate on all tables of the cluster.
• Namespace - permissions granted at namespace scope apply to all tables within a given namespace.
• Table - permissions granted at table scope apply to data or metadata within a given table.
• ColumnFamily - permissions granted at ColumnFamily scope apply to cells within that ColumnFamily.
• Cell - permissions granted at Cell scope apply to that exact cell coordinate. This allows for policy evolution along

with data. To change an ACL on a specific cell, write an updated cell with new ACL to the precise coordinates of
the original. If you have a multi-versioned schema and want to update ACLs on all visible versions, you'll need to
write new cells for all visible versions. The application has complete control over policy evolution. The exception
is append and increment processing. Appends and increments can carry an ACL in the operation. If one is
included in the operation, then it will be applied to the result of the append or increment. Otherwise, the ACL
of the existing cell being appended to or incremented is preserved.

The combination of access levels and scopes creates a matrix of possible access levels that can be granted to a user.
In a production environment, it is useful to think of access levels in terms of what is needed to do a specific job. The
following list describes appropriate access levels for some common types of HBase users. It is important not to grant
more access than is required for a given user to perform their required tasks.

• Superusers - In a production system, only the HBase user should have superuser access. In a development
environment, an administrator might need superuser access to quickly control and manage the cluster. However,
this type of administrator should usually be a Global Admin rather than a superuser.

• Global Admins - A global admin can perform tasks and access every table in HBase. In a typical production
environment, an admin should not have Read or Write permissions to data within tables.

– A global adminwith Admin permissions can perform cluster-wide operations on the cluster, such as balancing,
assigning or unassigning regions, or calling an explicit major compaction. This is an operations role.

– A global adminwith Create permissions can create or drop any tablewithin HBase. This ismore of a DBA-type
role.

In a production environment, it is likely that different users will have only one of Admin and Create permissions.

Warning:

In the current implementation, a Global Adminwith Admin permission can grant himself Read
and Write permissions on a table and gain access to that table's data. For this reason, only grant
Global Admin permissions to trusted user who actually need them.

Also be aware that a Global Admin with Create permission can perform a Put operation on
the ACL table, simulating a grant or revoke and circumventing the authorization check for
Global Admin permissions. This issue (but not the first one) is fixed in CDH 5.3 and higher, as
well as CDH 5.2.1.

Due to these issues, be cautious with granting Global Admin privileges.
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• NamespaceAdmin - a namespace adminwith Create permissions can create or drop tableswithin that namespace,
and take and restore snapshots. A namespace admin with Admin permissions can perform operations such as
splits or major compactions on tables within that namespace. Prior to CDH 5.4, only global admins could create
namespaces. In CDH 5.4, any user with Namespace Create privileges can create namespaces.

• Table Admins - A table admin can perform administrative operations only on that table. A table adminwith Create
permissions can create snapshots from that table or restore that table from a snapshot. A table admin with Admin
permissions can perform operations such as splits or major compactions on that table.

• Users - Users can read or write data, or both. Users can also execute coprocessor endpoints, if given Executable
permissions.

Important:

If you are using Kerberos principal names when setting ACLs for users, Hadoop uses only the first part
(short) of the Kerberos principal when converting it to the username. Hence, for the principal
ann/fully.qualified.domain.name@YOUR-REALM.COM, HBase ACLs should only be set for user
ann.

The following table shows some typical job descriptions at a hypothetical company and the permissions they might
require to get their jobs done using HBase.

Table 10: Real-World Example of Access Levels

DescriptionPermissionsScopeJob Title

Manages the cluster and
gives access to Junior
Administrators.

Admin, CreateGlobalSenior Administrator

Creates tables and gives
access to Table
Administrators.

CreateGlobalJunior Administrator

Maintains a table from an
operations point of view.

AdminTableTable Administrator

Creates reports from HBase
data.

ReadTableData Analyst

Puts data into HBase and
uses HBase data to perform
operations.

Read, WriteTableWeb Application

Further Reading

• Access Control Matrix
• Security - Apache HBase Reference Guide

Enable HBase Authorization

HBase authorization is built on top of the Coprocessors framework, specifically AccessController Coprocessor.

Note: Once the Access Controller coprocessor is enabled, any user who uses the HBase shell will be
subject to access control. Access control will also be in effect for native (Java API) client access to
HBase.

1. Go to Clusters and select the HBase cluster.
2. Select Configuration.
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3. Search for HBase Secure Authorization and select it.
4. Search forHBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml and enter the following

into it to enable hbase.security.exec.permission.checks. Without this option, all users will continue to
have access to execute endpoint coprocessors. This option is not enabled when you enable HBase Secure
Authorization for backward compatibility.

<property>
  <name>hbase.security.exec.permission.checks</name>
  <value>true</value>
</property>

5. Optionally, search for and configure HBase Coprocessor Master Classes and HBase Coprocessor Region Classes.

Configure Access Control Lists for Authorization

Now that HBase has the security coprocessor enabled, you can set ACLs using the HBase shell. Start the HBase shell
as usual.

Important:

The host running the shell must be configured with a keytab file as described in Configuring Kerberos
Authentication for HBase.

The commands that control ACLs take the following form. Group names are prefixed with the @ symbol.

hbase> grant <user> <permissions> [ @<namespace> [ <table>[ <column family>[ <column 
qualifier> ] ] ] ]   # grants permissions

hbase> revoke <user> [ @<namespace> [ <table> [ <column family> [ <column qualifier> ]
 ] ]  # revokes permissions

hbase> user_permission <table>                                                        
                    # displays existing permissions

In the above commands, fields encased in <> are variables, and fields in [] are optional. The permissions variable
must consist of zero or more character from the set "RWCA".

• R denotes read permissions, which is required to perform Get, Scan, or Exists calls in a given scope.
• W denotes write permissions, which is required to perform Put, Delete, LockRow, UnlockRow,

IncrementColumnValue, CheckAndDelete, CheckAndPut, Flush, or Compact in a given scope.
• X denotes execute permissions, which is required to execute coprocessor endpoints.
• C denotes create permissions, which is required to perform Create, Alter, or Drop in a given scope.
• A denotes admin permissions, which is required to perform Enable, Disable, Snapshot, Restore, Clone,

Split, MajorCompact, Grant, Revoke, and Shutdown in a given scope.

Access Control List Example Commands

grant 'user1', 'RWC'
grant 'user2', 'RW', 'tableA'
grant 'user3', 'C', '@my_namespace'

Be sure to review the information in Understanding HBase Access Levels to understand the implications of the different
access levels.
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Configure Cell_Level Access Control Lists

If you wish to enable cell-level ACLs for HBase, then you must modify the default values for the following properties:

hbase.security.exec.permission.checks => true (the default value is false)
hbase.security.access.early_out => false (the default value is true)
hfile.format.version => 3 (the default value is 2)

Unless you modify the default properties as specified (or via the service-wide HBase Service Advanced Configuration
Snippet (Safety Valve) for hbase-site.xml, which requires a service restart), then cell level ACLs will not work.

The following example shows how to grant (or revoke) HBase permissions (in this case, read permission) at the cell-level
via an ACL:

grant 'Employee', { 'employe.name' => 'R' }, { COLUMNS => [ 'pd' ], FILTER => 
"(PrefixFilter ('T'))" }

Configure HBase Cell Level TTL

If you wish to enable cell level TTL for HBase, then you must modify the default values for the following properties:

hbase.security.exec.permission.checks => true (the default value is false)
hbase.security.access.early_out => false (the default value is true)
hfile.format.version => 3 (the default value is 2)

If you do not modify the default properties as specified (or by the service-wideHBase Service Advanced Configuration
Snippet (Safety Valve) for hbase-site.xml, which requires a service restart), the cell level TTL will not work.

Configuring the HBase Thrift Server Role
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

The Thrift Server role is not added by default when you install HBase, but it is required before you can use certain other
features such as the Hue HBase browser. To add the Thrift Server role:

1. Go to the HBase service.
2. Click the Instances tab.
3. Click the Add Role Instances button.
4. Select the host(s) where you want to add the Thrift Server role (you only need one for Hue) and click Continue.

The Thrift Server role should appear in the instances list for the HBase server.
5. Select the Thrift Server role instance.
6. Select Actions for Selected > Start.

Other HBase Security Topics
• Using BulkLoad On A Secure Cluster on page 87
• Configuring Secure HBase Replication
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HBase Replication

If your data is already in an HBase cluster, replication is useful for getting the data into additional HBase clusters. In
HBase, cluster replication refers to keeping one cluster state synchronized with that of another cluster, using the
write-ahead log (WAL) of the source cluster to propagate the changes. Replication is enabled at column family granularity.
Before enabling replication for a column family, create the table and all column families to be replicated, on the
destination cluster. Replication is supported both from CDH 5 to CDH 6 and from CDH 6 to CDH 5, the source and
destination cluster do not have to run the same major version of CDH.

Cluster replication uses an active-push methodology. An HBase cluster can be a source (also called active, meaning
that it writes new data), a destination (also called passive, meaning that it receives data using replication), or can fulfill
both roles at once. Replication is asynchronous, and the goal of replication is consistency.

When data is replicated from one cluster to another, the original source of the data is tracked with a cluster ID, which
is part of the metadata. In CDH 5, all clusters that have already consumed the data are also tracked. This prevents
replication loops.

Common Replication Topologies
• A central source clustermight propagate changes tomultiple destination clusters, for failover or due to geographic

distribution.
• A source cluster might push changes to a destination cluster, which might also push its own changes back to the

original cluster.
• Many different low-latency clustersmight push changes to one centralized cluster for backup or resource-intensive

data-analytics jobs. The processed data might then be replicated back to the low-latency clusters.
• Multiple levels of replication can be chained together to suit your needs. The following diagram shows a hypothetical

scenario. Use the arrows to follow the data paths.
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At the top of the diagram, the San Jose and Tokyo clusters, shown in red, replicate changes to each other, and each
also replicates changes to a User Data and a Payment Data cluster.

Each cluster in the second row, shown in blue, replicates its changes to the All Data Backup 1 cluster, shown in
grey. The All Data Backup 1 cluster replicates changes to the All Data Backup 2 cluster (also shown in grey),
as well as the Data Analysis cluster (shown in green). All Data Backup 2 also propagates any of its own changes
back to All Data Backup 1.

The Data Analysis cluster runs MapReduce jobs on its data, and then pushes the processed data back to the San
Jose and Tokyo clusters.

Notes about Replication
• The timestamps of the replicated HLog entries are kept intact. In case of a collision (two entries identical as to

row key, column family, column qualifier, and timestamp) only the entry arriving later write will be read.
• Increment Column Values (ICVs) are treated as simple puts when they are replicated. In the case where each side

of replication is active (new data originates from both sources, which then replicate each other), this may be
undesirable, creating identical counters that overwrite one another. (See
https://issues.apache.org/jira/browse/HBase-2804.)

• Make sure the source and destination clusters are time-synchronized with each other. Cloudera recommends you
use Network Time Protocol (NTP).

• Some changes are not replicated and must be propagated through other means, such as Snapshots or CopyTable.

• Data that existed in the active cluster before replication was enabled.

• Operations that bypass the WAL, such as when using BulkLoad or API calls such as writeToWal(false).

• Table schema modifications.

Requirements
Before configuring replication, make sure your environment meets the following requirements:

• You must manage ZooKeeper yourself. It must not be managed by HBase, and must be available throughout the
deployment.

• Each host in both clusters must be able to reach every other host, including those in the ZooKeeper cluster.
• Both clusters must be running the same major version of CDH; for example CDH 5.
• Every table that contains families that are scoped for replication must exist on each cluster and have exactly the

same name. If your tables do not yet exist on the destination cluster, see Creating the Empty Table On the
Destination Cluster on page 123.

• HBase version 0.92 or greater is required for complex replication topologies, such as active-active.

Deploying HBase Replication
Follow these steps to enable replication from one cluster to another.

Important: You cannot run replication-related HBase commands as an HBase administrator. To run
replication-related HBase commands, you must have HBase user permissions. If ZooKeeper uses
Kerberos, configure HBase Shell to authenticate to ZooKeeper using Kerberos before attempting to
run replication-related commands. No replication-related ACLs are available at this time.

1. Configure and start the source and destination clusters.
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2. Create tables with the same names and column families on both the source and destination clusters, so that the
destination cluster knows where to store data it receives. All hosts in the source and destination clusters should
be reachable to each other. See Creating the Empty Table On the Destination Cluster on page 123.

3. On the source cluster, enable replication in Cloudera Manager, or by setting hbase.replication to true in
hbase-site.xml.

4. Obtain Kerberos credentials as theHBase principal. Substitute yourfully.qualified.domain.name and realm
in the following command:

$ kinit -k -t /etc/hbase/conf/hbase.keytab 
hbase/fully.qualified.domain.name@YOUR-REALM.COM

5. On the source cluster, in HBase Shell, add the destination cluster as a peer, using the add_peer command. The
syntax is as follows:

add_peer 'ID', 'CLUSTER_KEY'

The ID must be a short integer. To compose the CLUSTER_KEY, use the following template:

hbase.zookeeper.quorum:hbase.zookeeper.property.clientPort:zookeeper.znode.parent

If both clusters use the same ZooKeeper cluster, you must use a different zookeeper.znode.parent, because they
cannot write in the same folder.

6. On the source cluster, configure each column family to be replicated by setting its REPLICATION_SCOPE to 1,
using commands such as the following in HBase Shell.

hbase> disable 'example_table'
hbase> alter 'example_table', {NAME => 'example_family', REPLICATION_SCOPE => '1'}
hbase> enable 'example_table'

7. Verify that replication is occurring by examining the logs on the source cluster for messages such as the following.

Considering 1 rs, with ratio 0.1
Getting 1 rs from peer cluster # 0
Choosing peer 10.10.1.49:62020

8. To verify the validity of replicated data, use the included VerifyReplicationMapReduce job on the source
cluster, providing it with the ID of the replication peer and table name to verify. Other options are available, such
as a time range or specific families to verify.

The command has the following form:

hbase org.apache.hadoop.hbase.mapreduce.replication.VerifyReplication 
[--starttime=timestamp1] [--stoptime=timestamp] [--families=comma separated list of 
families] <peerId> <tablename>

The VerifyReplication command prints GOODROWS and BADROWS counters to indicate rows that did and did
not replicate correctly.

Replicating Across Three or More Clusters

When configuring replication among three ormore clusters, Cloudera recommends you enable KEEP_DELETED_CELLS
on column families in the destination cluster, where REPLICATION_SCOPE=1 in the source cluster. The following
commands show how to enable this configuration using HBase Shell.

• On the source cluster:

create 't1',{NAME=>'f1', REPLICATION_SCOPE=>1}
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• On the destination cluster:

create 't1',{NAME=>'f1', KEEP_DELETED_CELLS=>'true'}

Enabling Replication on a Specific Table

To enable replication for a specific table on the source cluster, run the enable_table_replication <table>
command from the HBase shell on a cluster where a peer has been configured.

Running enable_table_replication <table> does the following:

1. Verifies that the table exists on the source cluster.
2. If the table does not exist on the remote cluster, uses the peer configuration to duplicate the table schema

(including splits) on the remote cluster.
3. Enables replication on that table.

Configuring Secure Replication
The following steps describe how to set up secure replication between clusters. The steps are the same whether your
clusters are all in the same realm or not, with the exception of the last step.

The last step involves setting up custom secure replication configurations per peer. This can be convenient when you
need to replicate to a cluster that uses different cross-realm authentication rules than the source cluster. For example,
a cluster in Realm A may be allowed to replicate to Realm B and Realm C, but Realm B may not be allowed to replicate
to Realm C. If you do not need this feature, skip the last step.

To use this feature, service-level principals and keytabs (specific to HBase) must be specified when you create the
cluster peers using HBase Shell.

Note: HBase peer-to-peer replication from a non-Kerberized cluster to a Kerberized cluster is not
supported.

1. Set up Kerberos on your cluster, as described in Enabling Kerberos Authentication Using the Wizard.
2. If necessary, configure Kerberos cross-realm authentication.

• At the command line, use the list_principals command to list the kdc, admin_server, and
default_domain for each realm.

• Add this information to each cluster using Cloudera Manager. For each cluster, go to HDFS > Configuration >
Trusted Kerberos Realms. Add the target and source. This requires a restart of HDFS.

3. Configure ZooKeeper.
4. Configure the following HDFS parameters on both clusters, in Cloudera Manager or in the listed files if you do not

use Cloudera Manager:
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Note:

If you use Cloudera Manager to manage your cluster, do not set these properties directly in
configuration files, because Cloudera Manager will overwrite or ignore these settings. You must
set these properties in Cloudera Manager.

For brevity, the Cloudera Manager setting names are not listed here, but you can search by
property name. For instance, in the HDFS service configuration screen, search for
dfs.encrypt.data.transfer. The Enable Data Transfer Encryption setting is shown. Selecting the
box is equivalent to setting the value to true.

<!-- In hdfs-site.xml or advanced configuration snippet -->
<property>
  <name>dfs.encrypt.data.transfer</name>
  <value>true</value>
</property>
<property>
  <name>dfs.data.transfer.protection</name>
  <value>privacy</value>
</property>

<!-- In core-site.xml or advanced configuration snippet -->
<property>
  <name>hadoop.security.authorization</name>
  <value>true</value>
</property>
<property>
  <name>hadoop.rpc.protection</name>
  <value>privacy</value>
</property>
<property>
  <name>hadoop.security.crypto.cipher.suite</name>
  <value>AES/CTR/NoPadding</value>
</property>
<property>
  <name>hadoop.ssl.enabled</name>
  <value>true</value>
</property>

5. Configure the following HBase parameters on both clusters, using Cloudera Manager or in hbase-site.xml if
you do not use Cloudera Managert.

<!-- In hbase-site.xml -->
<property>
  <name>hbase.rpc.protection</name>
  <value>privacy</value>
</property>
<property>
  <name>hbase.thrift.security.qop</name>
  <value>auth-conf</value>
</property>
<property>
  <name>hbase.thrift.ssl.enabled</name>
  <value>true</value>
</property>
<property>
  <name>hbase.rest.ssl.enabled</name>
  <value>true</value>
</property>
<property>
  <name>hbase.ssl.enabled</name>
  <value>true</value>
</property>
<property>
  <name>hbase.security.authentication</name>
  <value>kerberos</value>
</property>
<property>
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  <name>hbase.security.authorization</name>
  <value>true</value>
</property>
<property>
  <name>hbase.secure.rpc.engine</name>
  <value>true</value>
</property>

6. Add the cluster peers using the simplified add_peer syntax, as described in Add Peer.

add_peer 'ID', 'CLUSTER_KEY'

7. If you need to add any peers which require custom security configuration, modify the add_peer syntax, using
the following examples as a model.

add_peer 'vegas', CLUSTER_KEY => 'zk1.vegas.example.com:2181:/hbase',
         CONFIG => {'hbase.master.kerberos.principal'           => 'hbase/_HOST@TO_VEGAS',

                    'hbase.regionserver.kerberos.principal'     => 'hbase/_HOST@TO_VEGAS',

                    'hbase.regionserver.keytab.file'            => 
'/keytabs/vegas_hbase.keytab',
                    'hbase.master.keytab.file'                  => 
'/keytabs/vegas_hbase.keytab'},
          TABLE_CFS => {"tbl" => [cf1']}

add_peer 'atlanta', CLUSTER_KEY => 'zk1.vegas.example.com:2181:/hbase',
         CONFIG => {'hbase.master.kerberos.principal'           => 
'hbase/_HOST@TO_ATLANTA',
                    'hbase.regionserver.kerberos.principal'     => 
'hbase/_HOST@TO_ATLANTA',
                    'hbase.regionserver.keytab.file'            => 
'/keytabs/atlanta_hbase.keytab',
                    'hbase.master.keytab.file'                  => 
'/keytabs/atlanta_hbase.keytab'},
          TABLE_CFS => {"tbl" => [cf2']}

Disabling Replication at the Peer Level
Use the command disable_peer ("<peerID>") to disable replication for a specific peer. This will stop replication
to the peer, but the logs will be kept for future reference.

Note: This log accumulation is a powerful side effect of the disable_peer command and can be
used to your advantage. See Initiating Replication When Data Already Exists on page 123.

To re-enable the peer, use the command enable_peer(<"peerID">). Replication resumes.

Examples:

• To disable peer 1:

disable_peer("1")

• To re-enable peer 1:

enable_peer("1")

Stopping Replication in an Emergency
If replication is causing serious problems, you can stop it while the clusters are running.
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Open the shell on the source cluster and use the disable_peer command for each peer, then the
disable_table_replication command. For example:

hbase> disable_peer("1")
hbase> disable_table_replication

Already queued edits will be replicated after you use the disable_table_replication command, but new entries
will not. See Understanding HowWAL Rolling Affects Replication on page 124.

To start replication again, use the enable_peer command.

Creating the Empty Table On the Destination Cluster
If the table to be replicated does not yet exist on the destination cluster, you must create it. The easiest way to do this
is to extract the schema using HBase Shell.

1. On the source cluster,describe the table usingHBase Shell. The output belowhas been reformatted for readability.

hbase> describe acme_users

Table acme_users is ENABLED
acme_users
COLUMN FAMILIES DESCRIPTION
{NAME => 'user', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'NONE',
REPLICATION_SCOPE => '0', VERSIONS => '3', COMPRESSION => 'NONE',
MIN_VERSIONS => '0', TTL => 'FOREVER', KEEP_DELETED_CELLS => 'FALSE',
BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'false'}

2. Copy the output and make the following changes:

• For the TTL, change FOREVER to org.apache.hadoop.hbase.HConstants::FOREVER.
• Add the word CREATE before the table name.
• Remove the line COLUMN FAMILIES DESCRIPTION and everything above the table name.

The result is a command like the following:

"CREATE 'cme_users' ,

{NAME => 'user', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'NONE',
REPLICATION_SCOPE => '0', VERSIONS => '3', COMPRESSION => 'NONE',
MIN_VERSIONS => '0', TTL => org.apache.hadoop.hbase.HConstants::FOREVER, 
KEEP_DELETED_CELLS => 'FALSE',
BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'false'}

3. On the destination cluster, paste the command from the previous step into HBase Shell to create the table.

Initiating Replication When Data Already Exists
You may need to start replication from some point in the past. For example, suppose you have a primary HBase cluster
in one location and are setting up a disaster-recovery (DR) cluster in another. To initialize the DR cluster, you need to
copy over the existing data from the primary to the DR cluster, so that when you need to switch to the DR cluster you
have a full copy of the data generated by the primary cluster. Once that is done, replication of new data can proceed
as normal.

One way to do this is to take advantage of the write accumulation that happens when a replication peer is disabled.

1. Start replication.
2. Add the destination cluster as a peer and immediately disable it using disable_peer.
3. On the source cluster, take a snapshot of the table and export it. The snapshot command flushes the table from

memory for you.
4. On the destination cluster, import and restore the snapshot.
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5. Run enable_peer to re-enable the destination cluster.

Replicating Pre-existing Data in an Active-Active Deployment

In the case of active-active replication, run the copyTable job before starting the replication. (If you start the job after
enabling replication, the second cluster will re-send the data to the first cluster, because copyTable does not edit
the clusterId in the mutation objects. The following is one way to accomplish this:

1. Run the copyTable job and note the start timestamp of the job.
2. Start replication.
3. Run the copyTable job again with a start time equal to the start time you noted in step 1.

This results in some data being pushed back and forth between the two clusters; but it minimizes the amount of data.

Understanding HowWAL Rolling Affects Replication
When you add a new peer cluster, it only receives new writes from the source cluster since the last time theWAL was
rolled.

The following diagram shows the consequences of adding and removing peer clusters with unpredictable WAL rolling
occurring. Follow the time line and notice which peer clusters receive which writes. Writes that occurred before the
WAL is rolled are not retroactively replicated to new peers that were not participating in the cluster before the WAL
was rolled.
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Configuring Secure HBase Replication
If you want to make HBase Replication secure, follow the instructions under HBase Authentication.

Restoring Data From A Replica
One of the main reasons for replications is to be able to restore data, whether during disaster recovery or for other
reasons. During restoration, the source and sink roles are reversed. The source is the replica cluster, and the sink is
the cluster that needs restoration. This can be confusing, especially if you are in the middle of a disaster recovery
scenario. The following image illustrates the role reversal between normal production and disaster recovery.

Follow these instructions to recover HBase data from a replicated cluster in a disaster recovery scenario.

1. Change the value of the column family property REPLICATION_SCOPE on the sink to 0 for each column to be
restored, so that its data will not be replicated during the restore operation.

2. Change the value of the column family property REPLICATION_SCOPE on the source to 1 for each column to be
restored, so that its data will be replicated.

3. Use the CopyTable or distcp commands to import the data from the backup to the sink cluster, as outlined in
Initiating Replication When Data Already Exists on page 123.

4. Add the sink as a replication peer to the source, using the add_peer command as discussed in Deploying HBase
Replication on page 118. If you used distcp in the previous step, restart or rolling restart both clusters, so that
the RegionServers will pick up the new files. If you used CopyTable, you do not need to restart the clusters. New
data will be replicated as it is written.

5. When restoration is complete, change the REPLICATION_SCOPE values back to their values before initiating the
restoration.

Verifying that Replication is Working
To verify that HBase replication is working, follow these steps to confirm data has been replicated from a source cluster
to a remote destination cluster.

1. Install and configure YARN on the source cluster.

If YARN cannot be used in the source cluster, configure YARN on the destination cluster to verify replication. If
neither the source nor the destination clusters can have YARN installed, you can configure the tool to use local
mode; however, performance and consistency could be negatively impacted.

2. Make sure that you have the required permissions:

• You have sudo permissions to run commands as the hbase user, or a user with admin permissions on both
clusters.

• You are an hbase user configured for submitting jobs with YARN.
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Note: To use the hbase user in a secure cluster, use Cloudera Manager to add the hbase
user as a YARN whitelisted user. If you are running Cloudera Manager 5.8 or higher, and are
running a new installation, the hbase user is already added to the whitelisted users. In
addition, /user/hbase should exist on HDFS and owned as the hbase user, because YARN will
create a job staging directory there.

3. Run the VerifyReplication command:

src-node$ sudo -u hbase hbase 
org.apache.hadoop.hbase.mapreduce.replication.VerifyReplication peer1 table1
...
        org.apache.hadoop.hbase.mapreduce.replication.VerifyReplication$Verifier$Counters

                BADROWS=2
                CONTENT_DIFFERENT_ROWS=1
                GOODROWS=1
                ONLY_IN_PEER_TABLE_ROWS=1
        File Input Format Counters
                Bytes Read=0
        File Output Format Counters
                Bytes Written=0

The following table describes the VerifyReplication counters:

Table 11: VerifyReplication Counters

DescriptionCounter

Number of rows. On both clusters, and all values are the same.GOODROWS

The key is the same on both source and destination clusters for a row,
but the value differs.

CONTENT_DIFFERENT_ROWS

Rows that are only present in the source cluster but not in the
destination cluster.

ONLY_IN_SOURCE_TABLE_ROWS

Rows that are only present in the destination cluster but not in the
source cluster.

ONLY_IN_PEER_TABLE_ROWS

Total number of rows that differ from the source and destination
clusters; the sum of CONTENT_DIFFERENT_ROWS +
ONLY_IN_SOURCE_TABLE_ROWS + ONLY_IN_PEER_TABLE_ROWS

BADROWS

By default, VerifyReplication compares the entire content of table1 on the source cluster against table1 on
the destination cluster that is configured to use the replication peer peer1.

Use the following options to define the period of time, versions, or column families

Table 12: VerifyReplication Counters

DescriptionOption

Beginning of the time range, in milliseconds. Time range is forever if no
end time is defined.

--starttime=<timestamp>

End of the time range, in milliseconds.--endtime=<timestamp>

Number of cell versions to verify.--versions=<versions>

Families to copy; separated by commas.--families=<cf1,cf2,..>
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The following example, verifies replication only for rows with a timestamp range of one day:

src-node$ sudo -u hbase hbase 
org.apache.hadoop.hbase.mapreduce.replication.VerifyReplication --starttime=1472499077000
 --endtime=1472585477000 --families=c1  peer1 table1

Replication Caveats
• Two variables govern replication: hbase.replication as described above under Deploying HBase Replication

on page 118, and a replication znode. Stopping replication (using disable_table_replication as above) sets
the znode to false. Two problems can result:

– If you add a new RegionServer to the active cluster while replication is stopped, its current log will not be
added to the replication queue, because the replication znode is still set to false. If you restart replication
at this point (using enable_peer), entries in the log will not be replicated.

– Similarly, if a log rolls on an existing RegionServer on the active cluster while replication is stopped, the new
log will not be replicated, because the replication znode was set to false when the new log was created.

• In the case of a long-running, write-intensive workload, the destination cluster may become unresponsive if its
meta-handlers are blocked while performing the replication. CDH 5 provides three properties to deal with this
problem:

– hbase.regionserver.replication.handler.count - the number of replication handlers in the
destination cluster (default is 3). Replication is now handled by separate handlers in the destination cluster
to avoid the above-mentioned sluggishness. Increase it to a high value if the ratio of active to passive
RegionServers is high.

– replication.sink.client.retries.number - the number of times the HBase replication client at the
sink cluster should retry writing the WAL entries (default is 1).

– replication.sink.client.ops.timeout - the timeout for theHBase replication client at the sink cluster
(default is 20 seconds).

• For namespaces, tables, column families, or cells with associated ACLs, the ACLs themselves are not replicated.
The ACLs need to be re-created manually on the target table. This behavior opens up the possibility for the ACLs
could be different in the source and destination cluster.
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HBase High Availability

Most aspects of HBase are highly available in a standard configuration. A cluster typically consists of one Master and
three or more RegionServers, with data stored in HDFS. To ensure that every component is highly available, configure
one or more backup Masters. The backup Masters run on other hosts than the active Master.

Enabling HBase High Availability Using Cloudera Manager
1. Go to the HBase service.
2. Follow the process for adding a role instance and add a backup Master to a different host than the one on which

the active Master is running.

Enabling HBase High Availability Using the Command Line
To configure backup Masters, create a new file in the conf/ directory which will be distributed across your cluster,
called backup-masters. For each backup Master you want to start, add a new line with the hostname where the
Master should be started. Each host that will run a Master needs to have all of the configuration files available. In
general, it is a good practice to distribute the entire conf/ directory across all cluster nodes.

After saving and distributing the file, restart your cluster for the changes to take effect. When the master starts the
backup Masters, messages are logged. In addition, you can verify that an HMaster process is listed in the output of
the jps command on the nodes where the backup Master should be running.

$ jps
 15930 HRegionServer
 16194 Jps
 15838 HQuorumPeer
16010 HMaster

To stop a backup Master without stopping the entire cluster, first find its process ID using the jps command, then
issue the kill command against its process ID.

$ kill 16010

HBase Read Replicas
CDH 5.4 introduces read replicas. Without read replicas, only one RegionServer services a read request from a client,
regardless of whether RegionServers are colocated with other DataNodes that have local access to the same block.
This ensures consistency of the data being read. However, a RegionServer can become a bottleneck due to an
underperforming RegionServer, network problems, or other reasons that could cause slow reads.

With read replicas enabled, the HMaster distributes read-only copies of regions (replicas) to different RegionServers
in the cluster. One RegionServer services the default or primary replica, which is the only replica which can service
write requests. If the RegionServer servicing the primary replica is down, writes will fail.

Other RegionServers serve the secondary replicas, follow the primary RegionServer and only see committed updates.
The secondary replicas are read-only, and are unable to service write requests. The secondary replicas can be kept up
to date by reading the primary replica's HFiles at a set interval or by replication. If they use the first approach, the
secondary replicas may not reflect the most recent updates to the data when updates are made and the RegionServer
has not yet flushed the memstore to HDFS. If the client receives the read response from a secondary replica, this is
indicated bymarking the read as "stale". Clients can detect whether or not the read result is stale and react accordingly.

Replicas are placed on different RegionServers, and on different racks when possible. This provides a measure of high
availability (HA), as far as reads are concerned. If a RegionServer becomes unavailable, the regions it was serving can

128 | Apache HBase Guide

HBase High Availability



still be accessed by clients even before the region is taken over by a different RegionServer, using one of the secondary
replicas. The reads may be stale until the entire WAL is processed by the new RegionServer for a given region.

For any given read request, a client can request a faster result even if it comes froma secondary replica, or if consistency
is more important than speed, it can ensure that its request is serviced by the primary RegionServer. This allows you
to decide the relative importance of consistency and availability, in terms of the CAP Theorem, in the context of your
application, or individual aspects of your application, using Timeline Consistency semantics.

Timeline Consistency

Timeline Consistency is a consistency model which allows for a more flexible standard of consistency than the default
HBase model of strong consistency. A client can indicate the level of consistency it requires for a given read (Get or
Scan) operation. The default consistency level is STRONG, meaning that the read request is only sent to the RegionServer
servicing the region. This is the same behavior as when read replicas are not used. The other possibility, TIMELINE,
sends the request to all RegionServers with replicas, including the primary. The client accepts the first response, which
includes whether it came from the primary or a secondary RegionServer. If it came from a secondary, the client can
choose to verify the read later or not to treat it as definitive.

Keeping Replicas Current

The read replica feature includes two different mechanisms for keeping replicas up to date:

Using a Timer

In this mode, replicas are refreshed at a time interval controlled by the configuration option
hbase.regionserver.storefile.refresh.period. Using a timer is supported in CDH 5.4 and higher.

Using Replication

In thismode, replicas are kept current between a source and sink cluster using HBase replication. This can potentially
allow for faster synchronization than using a timer. Each time a flush occurs on the source cluster, a notification is
pushed to the sink clusters for the table. To use replication to keep replicas current, you must first set the column
family attribute REGION_MEMSTORE_REPLICATION to false, then set the HBase configuration property
hbase.region.replica.replication.enabled to true.

Important: Read-replica updates using replication are not supported for the hbase:meta table.
Columns of hbase:meta must always have their REGION_MEMSTORE_REPLICATION attribute set
to false.

Enabling Read Replica Support

Important:

Before you enable read-replica support, make sure to account for their increased heap memory
requirements. Although no additional copies of HFile data are created, read-only replicas regions have
the samememory footprint as normal regions and need to be consideredwhen calculating the amount
of increased heap memory required. For example, if your table requires 8 GB of heap memory, when
you enable three replicas, you need about 24 GB of heap memory.

To enable support for read replicas in HBase, you must set several properties.

Table 13: HBase Read Replica Properties

DescriptionDefault ValueProperty Name

The mechanism for refreshing the
secondary replicas. If set to false,

falsehbase.region.replica.replication.enabled

secondary replicas are not guaranteed to
be consistent at the row level. Secondary
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DescriptionDefault ValueProperty Name

replicas are refreshed at intervals controlled
by a timer
(hbase.regionserver.storefile.refresh.period),
and so are guaranteed to be at most that
interval of milliseconds behind the primary
RegionServer. Secondary replicas read from
the HFile in HDFS, and have no access to
writes that have not been flushed to the
HFile by the primary RegionServer.

If true, replicas are kept up to date using
replication. and the column family has the
attribute
REGION_MEMSTORE_REPLICATION set to
false, Using replication for read
replication of hbase:meta is not
supported, and
REGION_MEMSTORE_REPLICATIONmust
always be set to false on the column
family.

The period, in milliseconds, for refreshing
the store files for the secondary replicas.

0 (disabled)hbase.regionserver.storefile.refresh.period

The default value of 0 indicates that the
feature is disabled. Secondary replicas
update their store files from the primary
RegionServer at this interval.

If refreshes occur too often, this can create
a burden for the NameNode. If refreshes
occur too infrequently, secondary replicas
will be less consistent with the primary
RegionServer.

The Java class used for balancing the load
of all HBase clients. The default

org.apache.hadoop.hbase.master.

balancer.StochasticLoadBalancer

hbase.master.loadbalancer.class

implementation is the
StochasticLoadBalancer, which is the

(the class name is split for
formatting purposes)

only load balancer that supports reading
data from secondary RegionServers.

Whether or not to enable interruption of
RPC threads at the client. The default value

truehbase.ipc.client.allowsInterrupt

of true enables primary RegionServers to
access data from other regions' secondary
replicas.

The timeout period, in milliseconds, an
HBase client's will wait for a response

10mshbase.client.primaryCallTimeout.get

before the read is submitted to a secondary
replica if the read request allows timeline
consistency. The default value is 10. Lower
values increase the number of remote
procedure calls while lowering latency.

The timeout period, inmilliseconds, before
anHBase client'smulti-get request, such as

10mshbase.client.primaryCallTimeout.multiget
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DescriptionDefault ValueProperty Name

HTable.get(List<GET>)), is submitted
to a secondary replica if the multi-get
request allows timeline consistency. Lower
values increase the number of remote
procedure calls while lowering latency.

Configure Read Replicas Using Cloudera Manager

1. Before you can use replication to keep replicas current, you must set the column attribute
REGION_MEMSTORE_REPLICATION tofalse for theHBase table, usingHBase Shell or the client API. See Activating
Read Replicas On a Table on page 132.

2. Select Clusters > HBase.
3. Click the Configuration tab.
4. Select Scope > HBase or HBase Service-Wide.
5. Select Category > Advanced.
6. Locate the HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml property or search

for it by typing its name in the Search box.
7. Using the same XML syntax as Configure Read Replicas Using the Command Line on page 131 and the chart above,

create a configuration and paste it into the text field.
8. Click Save Changes to commit the changes.

Configure Read Replicas Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.15.0. See Cloudera Documentation for information

specific to other releases.

1. Before you can use replication to keep replicas current, you must set the column attribute
REGION_MEMSTORE_REPLICATION tofalse for theHBase table, usingHBase Shell or the client API. See Activating
Read Replicas On a Table on page 132.

2. Add the properties from Table 13: HBase Read Replica Properties on page 129 to hbase-site.xml on each
RegionServer in your cluster, and configure each of them to a value appropriate to your needs. The following
example configuration shows the syntax.

<property>
  <name>hbase.regionserver.storefile.refresh.period</name>
  <value>0</value>
</property>
<property>
  <name>hbase.ipc.client.allowsInterrupt</name>
  <value>true</value>
  <description>Whether to enable interruption of RPC threads at the client. The default
 value of true is
    required to enable Primary RegionServers to access other RegionServers in secondary
 mode. </description>
</property>
<property>
  <name>hbase.client.primaryCallTimeout.get</name>
  <value>10</value>
</property>
<property>
  <name>hbase.client.primaryCallTimeout.multiget</name>
  <value>10</value>
</property>

3. Restart each RegionServer for the changes to take effect.

Apache HBase Guide | 131

HBase High Availability

http://www.cloudera.com/content/support/en/documentation.html


Configuring Rack Awareness for Read Replicas

Rack awareness for read replicas is modeled after the mechanism used for rack awareness in Hadoop. Its purpose is
to ensure that some replicas are on a different rack than the RegionServer servicing the table. The default
implementation, which you can override by setting hbase.util.ip.to.rack.determiner, to custom
implementation, is ScriptBasedMapping, which uses a topology map and a topology script to enforce distribution
of the replicas across racks.

Creating a Topology Map

The topology map assigns hosts to racks. It is read by the topology script. A rack is a logical grouping, and does not
necessarily correspond to physical hardware or location. Racks can be nested. If a host is not in the topology map, it
is assumed to be amember of the default rack. The followingmap uses a nested structure, with two data centers which
each have two racks. All services on a host that are rack-aware will be affected by the rack settings for the host.

If you use Cloudera Manager, do not create the map manually. Instead, go to Hosts, select the hosts to assign to a
rack, and select Actions for Selected > Assign Rack.

<topology>
  <node name="host1.example.com" rack="/dc1/r1"/>
  <node name="host2.example.com" rack="/dc1/r1"/>
  <node name="host3.example.com" rack="/dc1/r2"/>
  <node name="host4.example.com" rack="/dc1/r2"/>
  <node name="host5.example.com" rack="/dc2/r1"/>
  <node name="host6.example.com" rack="/dc2/r1"/>
  <node name="host7.example.com" rack="/dc2/r2"/>
  <node name="host8.example.com" rack="/dc2/r2"/>
</topology>

Creating a Topology Script

The topology script determines rack topology using the topology map. By default, CDH uses
/etc/hadoop/conf.cloudera.YARN-1/topology.py To use a different script, set
net.topology.script.file.name to the absolute path of the topology script.

Activating Read Replicas On a Table

After enabling read replica support on your RegionServers, configure the tables for which you want read replicas to
be created. Keep in mind that each replica increases the amount of storage used by HBase in HDFS.

At Table Creation

To create a new table with read replication capabilities enabled, set the REGION_REPLICATION property on the table.
Use a command like the following, in HBase Shell:

hbase> create 'myTable', 'myCF', {REGION_REPLICATION => '3'}

By Altering an Existing Table

You can also alter an existing column family to enable or change the number of read replicas it propagates, using a
command similar to the following. The change will take effect at the next major compaction.

hbase> disable 'myTable'
hbase> alter 'myTable', 'myCF', {REGION_REPLICATION => '3'}
hbase> enable 'myTable'

Requesting a Timeline-Consistent Read

To request a timeline-consistent read in your application, use theget.setConsistency(Consistency.TIMELINE)
method before performing the Get or Scan operation.
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To check whether the result is stale (comes from a secondary replica), use the isStale()method of the result object.
Use the following examples for reference.

Get Request

Get get = new Get(key);
get.setConsistency(Consistency.TIMELINE);
Result result = table.get(get);

Scan Request

Scan scan = new Scan();
scan.setConsistency(CONSISTENCY.TIMELINE);
ResultScanner scanner = table.getScanner(scan);
Result result = scanner.next();

Scan Request to a Specific Replica

This example overrides the normal behavior of sending the read request to all known replicas, and only sends it to the
replica specified by ID.

Scan scan = new Scan();
scan.setConsistency(CONSISTENCY.TIMELINE);
scan.setReplicaId(2);
ResultScanner scanner = table.getScanner(scan);
Result result = scanner.next();

Detecting a Stale Result

Result result = table.get(get);
if (result.isStale()) {
   ...
}

Getting and Scanning Using HBase Shell

You can also request timeline consistency using HBase Shell, allowing the result to come from a secondary replica.

hbase> get 'myTable', 'myRow', {CONSISTENCY => "TIMELINE"}

hbase> scan 'myTable', {CONSISTENCY => 'TIMELINE'}
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Troubleshooting HBase

The Cloudera HBase packages have been configured to place logs in /var/log/hbase. Cloudera recommends tailing
the .log files in this directory when you start HBase to check for any error messages or failures.

Table Creation Fails after Installing LZO
If you install LZO after starting the RegionServer, you will not be able to create a table with LZO compression until you
re-start the RegionServer.

Why this happens

When the RegionServer starts, it runs CompressionTest and caches the results. When you try to create a table with a
given form of compression, it refers to those results. You have installed LZO since starting the RegionServer, so the
cached results, which pre-date LZO, cause the create to fail.

What to do

Restart the RegionServer. Now table creation with LZO will succeed.

Thrift Server Crashes after Receiving Invalid Data
The Thrift server may crash if it receives a large amount of invalid data, due to a buffer overrun.

Why this happens

The Thrift server allocates memory to check the validity of data it receives. If it receives a large amount of invalid data,
it may need to allocate more memory than is available. This is due to a limitation in the Thrift library itself.

What to do

To prevent the possibility of crashes due to buffer overruns, use the framed and compact transport protocols. These
protocols are disabled by default, because they may require changes to your client code. The two options to add to
your hbase-site.xml are hbase.regionserver.thrift.framed and hbase.regionserver.thrift.compact.
Set each of these to true, as in the XML below. You can also specify the maximum frame size, using the
hbase.regionserver.thrift.framed.max_frame_size_in_mb option.

<property> 
  <name>hbase.regionserver.thrift.framed</name> 
  <value>true</value> 
</property> 
<property> 
  <name>hbase.regionserver.thrift.framed.max_frame_size_in_mb</name> 
  <value>2</value> 
</property> 
<property> 
  <name>hbase.regionserver.thrift.compact</name> 
  <value>true</value> 
</property>

HBase is using more disk space than expected.
HBase StoreFiles (also called HFiles) store HBase row data on disk. HBase stores other information on disk, such as
write-ahead logs (WALs), snapshots, data that would otherwise be deleted but would be needed to restore from a
stored snapshot.
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Warning: The following information is provided to help you troubleshoot high disk usage only. Do
not edit or remove any of this data outside the scope of the HBase APIs or HBase Shell, or your data
is very likely to become corrupted.

Table 14: HBase Disk Usage

Troubleshooting NotesPurposeLocation

To list snapshots, use the HBase Shell
command list_snapshots. To

Contains one subdirectory per
snapshot.

/hbase/.snapshots

remove a snapshot, use
delete_snapshot.

To free up space being taken up by
excessive archives, delete the

Contains data that would otherwise
have been deleted (either because it

/hbase/.archive

snapshots that refer to them.was explicitly deleted or expired due
Snapshots never expire so datato TTL or version limits on the table)
referred to by them is kept until thebut that is required to restore from an

existing snapshot. snapshot is removed. Do not remove
anything from /hbase/.archive

manually, or you will corrupt your
snapshots.

WALs are removed when their
contents are verified to have been

Contains HBase WAL files that are
required to recover regions in the
event of a RegionServer failure.

/hbase/.logs

written to StoreFiles. Do not remove
them manually. If the size of any
subdirectory of /hbase/.logs/ is
growing, examine the HBase server
logs to find the root cause for why
WALs are not being processed
correctly.

To tune the length of time aWAL stays
in the .oldWALs before it is removed,

Contains HBase WAL files that have
already been written to disk. A HBase

/hbase/logs/.oldWALs

configure themaintenance thread removes them
periodically based on a TTL. hbase.master.logcleaner.ttl

property, which defaults to 60000
milliseconds, or 1 hour.

Do not remove corrupt WALs
manually. If the size of any

Contains corrupted HBase WAL files./hbase/.logs/.corrupt

subdirectory of /hbase/.logs/ is
growing, examine the HBase server
logs to find the root cause for why
WALs are not being processed
correctly.

HiveServer2 Security Configuration
HiveServer2 supports authentication of the Thrift client using the following methods:

• Kerberos authentication
• LDAP authentication

Startingwith CDH5.7, clusters running LDAP-enabledHiveServer2 deployments also accept Kerberos authentication.
This ensures that users are not forced to enter usernames/passwords manually, and are able to take advantage

Apache HBase Guide | 135

Troubleshooting HBase



of the multiple authentication schemes SASL offers. In CDH 5.6 and lower, HiveServer2 stops accepting delegation
tokens when any alternate authentication is enabled.

Kerberos authentication is supported between the Thrift client and HiveServer2, and between HiveServer2 and secure
HDFS. LDAP authentication is supported only between the Thrift client and HiveServer2.

To configure HiveServer2 to use one of these authenticationmodes, configure the hive.server2.authentication
configuration property.

Note: To configure dual authentication (both Kerberos and LDAP), configure Kerberos for HiveServer2
and set the hive.server2.authentication property to LDAP.

Enabling Kerberos Authentication for HiveServer2

If you configure HiveServer2 to use Kerberos authentication, HiveServer2 acquires a Kerberos ticket during startup.
HiveServer2 requires a principal and keytab file specified in the configuration. Client applications (for example, JDBC
or Beeline) must have a valid Kerberos ticket before initiating a connection to HiveServer2.

Configuring HiveServer2 for Kerberos-Secured Clusters

To enable Kerberos Authentication for HiveServer2, add the following properties in the
/etc/hive/conf/hive-site.xml file:

<property>
  <name>hive.server2.authentication</name>
  <value>KERBEROS</value>
</property>
<property>
  <name>hive.server2.authentication.kerberos.principal</name>
  <value>hive/_HOST@YOUR-REALM.COM</value>
</property>
<property>
  <name>hive.server2.authentication.kerberos.keytab</name>
  <value>/etc/hive/conf/hive.keytab</value>
</property>

where:

• hive.server2.authentication is a client-facing property that controls the type of authenticationHiveServer2
uses for connections to clients. In this case, HiveServer2 uses Kerberos to authenticate incoming clients.

• The _HOST@YOUR-REALM.COM value in the example above is the Kerberos principal for the hostwhere HiveServer2
is running. The string _HOST in the properties is replaced at run time by the fully qualified domain name (FQDN)
of the host machine where the daemon is running. Reverse DNS must be working on all the hosts configured this
way. Replace YOUR-REALM.COM with the name of the Kerberos realm your Hadoop cluster is in.

• The /etc/hive/conf/hive.keytab value in the example above is a keytab file for that principal.

If you configure HiveServer2 to use both Kerberos authentication and secure impersonation, JDBC clients and Beeline
can specify an alternate session user. If these clients have proxy user privileges, HiveServer2 impersonates the alternate
user instead of the one connecting. The alternate user can be specified by the JDBC connection string
proxyUser=userName

Configuring JDBC Clients for Kerberos Authentication with HiveServer2 (Using the Apache Hive Driver in Beeline)

JDBC-basedclientsmust includeprincipal=<hive.server2.authentication.principal> in the JDBCconnection
string. For example:

String url = 
"jdbc:hive2://node1:10000/default;principal=hive/HiveServer2Host@YOUR-REALM.COM"
Connection con = DriverManager.getConnection(url);
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where hive is the principal configured in hive-site.xml and HiveServer2Host is the host where HiveServer2 is
running.

See the database drivers section on the Cloudera downloads web page to download and install the driver.

Using Beeline to Connect to a Secure HiveServer2

Use the following command to start beeline and connect to a secure HiveServer2 process. In this example, the
HiveServer2 process is running on localhost at port 10000:

$ /usr/lib/hive/bin/beeline
beeline> !connect 
jdbc:hive2://localhost:10000/default;principal=hive/HiveServer2Host@YOUR-REALM.COM
0: jdbc:hive2://localhost:10000/default>

For more information about the Beeline CLI, see Using the Beeline CLI.

For instructions on encrypting communicationwith theODBC/JDBC drivers, see Configuring Encrypted Communication
Between HiveServer2 and Client Drivers.

Using LDAP Username/Password Authentication with HiveServer2

As an alternative to Kerberos authentication, you can configure HiveServer2 to use user and password validation backed
by LDAP. The client sends a username and password during connection initiation. HiveServer2 validates these credentials
using an external LDAP service.

You can enable LDAP Authentication with HiveServer2 using Active Directory or OpenLDAP.

Important: When using LDAP username/password authenticationwith HiveServer2, youmust enable
encrypted communication between HiveServer2 and its client drivers to avoid sending cleartext
passwords. For instructions, see Configuring Encrypted Communication Between HiveServer2 and
Client Drivers. To avoid sending LDAP credentials over a network in cleartext, see Configuring LDAPS
Authentication with HiveServer2 on page 138.

Enabling LDAP Authentication with HiveServer2 using Active Directory

• For managed clusters, use Cloudera Manager:

1. In the ClouderaManager Admin Console, clickHive in the list of components, and then select the Configuration
tab.

2. Type "ldap" in the Search text box to locate the LDAP configuration fields.
3. Check Enable LDAP Authentication.
4. Enter the LDAP URL in the format ldap[s]://<host>:<port>
5. Enter the Active Directory Domain for your environment.
6. Click Save Changes.

• For unmanaged clusters, use the command line:

Add the following properties to the hive-site.xml:

<property>
  <name>hive.server2.authentication</name>
  <value>LDAP</value>
</property>
<property>
  <name>hive.server2.authentication.ldap.url</name>
  <value>LDAP_URLL</value>
</property>
<property>
  <name>hive.server2.authentication.ldap.Domain</name>
  <value>AD_DOMAIN_ADDRESS</value>
</property>
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Where:

The LDAP_URL value is the access URL for your LDAP server. For example, ldap[s]://<host>:<port>

Enabling LDAP Authentication with HiveServer2 using OpenLDAP

To enable LDAP authentication using OpenLDAP, include the following properties in hive-site.xml:

<property>
  <name>hive.server2.authentication</name>
  <value>LDAP</value>
</property>
<property>
  <name>hive.server2.authentication.ldap.url</name>
  <value>LDAP_URL</value>
</property>
<property>
  <name>hive.server2.authentication.ldap.baseDN</name>
  <value>LDAP_BaseDN</value>
</property>

where:

• The LDAP_URL value is the access URL for your LDAP server.
• The LDAP_BaseDN value is the base LDAP DN for your LDAP server; for example,

ou=People,dc=example,dc=com.

Configuring JDBC Clients for LDAP Authentication with HiveServer2

The JDBC client requires a connection URL that includes the user name and password in the JDBC connection string.
For example:

String url ="jdbc:hive2://#<host>:#<port>/#<dbName>; \
          user=<user name>; \
          password=<password>"
          Connection con = DriverManager.getConnection(url);

Enabling LDAP Authentication for HiveServer2 in Hue

Enable LDAP authentication with HiveServer2 by setting the following properties under the [beeswax] section in
hue.ini.

LDAP username of Hue user to be authenticated.auth_username

LDAP password of Hue user to be authenticated.auth_password

Hive uses these login details to authenticate to LDAP. The Hive service trusts that Hue has validated the user being
impersonated.

Configuring LDAPS Authentication with HiveServer2

HiveServer2 supports LDAP username/password authentication for clients. Clients send LDAP credentials to HiveServer2
which in turn verifies them against the configured LDAP provider, such as OpenLDAP or Microsoft Active Directory.
Most implementations now support LDAPS (LDAP over TLS/SSL), an authentication protocol that uses TLS/SSL to encrypt
communication between the LDAP service and its client (in this case, HiveServer2) to avoid sending LDAP credentials
in cleartext.

To configure the LDAPS service with HiveServer2:

1. Import the LDAP server CA certificate or the server certificate into a truststore on the HiveServer2 host. If you
import the CA certificate, HiveServer2 will trust any server with a certificate issued by the LDAP server's CA. If you
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only import the server certificate, HiveServer2 trusts only that server. See Understanding Keystores and Truststores
for more details.

2. Make sure the truststore file is readable by the hive user.
3. Set the hive.server2.authentication.ldap.url configuration property in hive-site.xml to the LDAPS

URL. For example, ldaps://sample.myhost.com.

Note: The URL scheme should be ldaps and not ldap.

4. If this is a managed cluster, in ClouderaManager, go to the Hive service and select Configuration. Under Category,
select Security. In the right panel, search for HiveServer2 TLS/SSL Certificate Trust Store File, and add the path
to the truststore file that you created in step 1.

If you are using an unmanaged cluster, set the environment variable HADOOP_OPTS as follows:

HADOOP_OPTS="-Djavax.net.ssl.trustStore=<trustStore-file-path> 
-Djavax.net.ssl.trustStorePassword=<trustStore-password>"

5. Restart HiveServer2.

Pluggable Authentication

Pluggable authentication allows you to provide a custom authentication provider for HiveServer2.

To enable pluggable authentication:

1. Set the following properties in /etc/hive/conf/hive-site.xml:

<property>
  <name>hive.server2.authentication</name>
  <value>CUSTOM</value>
  <description>Client authentication types.
  NONE: no authentication check
  LDAP: LDAP/AD based authentication
  KERBEROS: Kerberos/GSSAPI authentication
  CUSTOM: Custom authentication provider
  (Use with property hive.server2.custom.authentication.class)
  </description>
</property>

<property>
  <name>hive.server2.custom.authentication.class</name>
  <value>pluggable-auth-class-name</value>
  <description>
  Custom authentication class. Used when property
  'hive.server2.authentication' is set to 'CUSTOM'. Provided class
  must be a proper implementation of the interface
  org.apache.hive.service.auth.PasswdAuthenticationProvider. HiveServer2
  will call its Authenticate(user, passed) method to authenticate requests.
  The implementation may optionally extend the Hadoop's
  org.apache.hadoop.conf.Configured class to grab Hive's Configuration object.
  </description>
</property>

2. Make the class available in the CLASSPATH of HiveServer2.

Trusted Delegation with HiveServer2

HiveServer2 determines the identity of the connecting user from the authentication subsystem (Kerberos or LDAP).
Any new session started for this connection runs on behalf of this connecting user. If the server is configured to proxy
the user at the Hadoop level, then all MapReduce jobs and HDFS accesses will be performed with the identity of the
connecting user. If Apache Sentry is configured, then this connecting userid can also be used to verify access rights to
underlying tables and views.
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Users with Hadoop superuser privileges can request an alternate user for the given session. HiveServer2 checks that
the connecting user can proxy the requested userid, and if so, runs the new session as the alternate user. For example,
the Hadoop superuser hue can request that a connection's session be run as user bob.

Alternate users for new JDBC client connections are specified by adding the
hive.server2.proxy.user=alternate_user_id property to the JDBC connection URL. For example, a JDBC
connection string that lets user hue run a session as user bob would be as follows:

# Login as super user Hue 
kinit hue -k -t hue.keytab hue@MY-REALM.COM

# Connect using following JDBC connection string 
# 
jdbc:hive2://myHost.myOrg.com:10000/default;principal=hive/_HOST@MY-REALM.COM;hive.server2.proxy.user=bob

The connecting user must have Hadoop-level proxy privileges over the alternate user.

HiveServer2 Impersonation

Important: This is not the recommendedmethod to implement HiveServer2 authorization. Cloudera
recommends you use Sentry to implement this instead.

HiveServer2 impersonation lets users execute queries and access HDFS files as the connected user rather than as the
super user. Access policies are applied at the file level using the HDFS permissions specified in ACLs (access control
lists). Enabling HiveServer2 impersonation bypasses Sentry from the end-to-end authorization process. Specifically,
although Sentry enforces access control policies on tables and views within the Hive warehouse, it does not control
access to the HDFS files that underlie the tables. This means that users without Sentry permissions to tables in the
warehousemay nonetheless be able to bypass Sentry authorization checks and execute jobs and queries against tables
in the warehouse as long as they have permissions on the HDFS files supporting the table.

To configure Sentry correctly, restrict ownership of the Hivewarehouse to hive:hive and disable Hive impersonation.

To enable impersonation in HiveServer2:

1. Add the following property to the/etc/hive/conf/hive-site.xml file and set the value totrue. (The default
value is false.)

<property>
  <name>hive.server2.enable.impersonation</name>
  <description>Enable user impersonation for HiveServer2</description>
  <value>true</value>
</property>

2. In HDFS or MapReduce configurations, add the following property to the core-site.xml file:

<property>
  <name>hadoop.proxyuser.hive.hosts</name>
  <value>*</value>
</property>
<property>
  <name>hadoop.proxyuser.hive.groups</name>
  <value>*</value>
</property>

See also File System Permissions.

Securing the Hive Metastore

Note: This is not the recommended method to protect the Hive Metastore. Cloudera recommends
you use Sentry to implement this instead.
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To prevent users from accessing the Hive metastore and the Hive metastore database using any method other than
through HiveServer2, the following actions are recommended:

• Add a firewall rule on the metastore service host to allow access to the metastore port only from the HiveServer2
host. You can do this using iptables.

• Grant access to the metastore database only from the metastore service host. This is specified for MySQL as:

GRANT ALL PRIVILEGES ON metastore.* TO 'hive'@'metastorehost';

where metastorehost is the host where the metastore service is running.

• Make sure users who are not admins cannot log on to the host on which HiveServer2 runs.

Disabling the Hive Security Configuration

Hive's security related metadata is stored in the configuration file hive-site.xml. The following sections describe
how to disable security for the Hive service.

Disable Client/Server Authentication
To disable client/server authentication, set hive.server2.authentication to NONE. For example,

<property>
  <name>hive.server2.authentication</name>
  <value>NONE</value>
  <description>
    Client authentication types.
       NONE: no authentication check
       LDAP: LDAP/AD based authentication
       KERBEROS: Kerberos/GSSAPI authentication
       CUSTOM: Custom authentication provider
               (Use with property hive.server2.custom.authentication.class)
  </description>
</property>

Disable Hive Metastore security
To disable Hive Metastore security, perform the following steps:

• Set the hive.metastore.sasl.enabled property to false in all configurations, the metastore service side
as well as for all clients of the metastore. For example, these might include HiveServer2, Impala, Pig and so on.

• Remove or comment the following parameters in hive-site.xml for the metastore service. Note that this is a
server-only change.

– hive.metastore.kerberos.keytab.file

– hive.metastore.kerberos.principal

Disable Underlying Hadoop Security

If you also want to disable the underlying Hadoop security, remove or comment out the following parameters in
hive-site.xml.

• hive.server2.authentication.kerberos.keytab

• hive.server2.authentication.kerberos.principal

Hive Metastore Server Security Configuration

Important:

This section describes how to configure security for the Hive metastore server. If you are using
HiveServer2, see HiveServer2 Security Configuration.
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Here is a summary of Hive metastore server security in CDH 5:

• No additional configuration is required to run Hive on top of a security-enabled Hadoop cluster in standalone
mode using a local or embedded metastore.

• HiveServer does not support Kerberos authentication for clients. While it is possible to run HiveServer with a
secured Hadoop cluster, doing so creates a security hole since HiveServer does not authenticate the Thrift clients
that connect to it. Instead, you can use HiveServer2 HiveServer2 Security Configuration.

• The Hive metastore server supports Kerberos authentication for Thrift clients. For example, you can configure a
standalone Hive metastore server instance to force clients to authenticate with Kerberos by setting the following
properties in the hive-site.xml configuration file used by the metastore server:

<property>
  <name>hive.metastore.sasl.enabled</name>
  <value>true</value>
  <description>If true, the metastore thrift interface will be secured with SASL. Clients
 must authenticate with Kerberos.</description>
</property>

<property>
  <name>hive.metastore.kerberos.keytab.file</name>
  <value>/etc/hive/conf/hive.keytab</value>
  <description>The path to the Kerberos Keytab file containing the metastore thrift 
server's service principal.</description>
</property>

<property>
  <name>hive.metastore.kerberos.principal</name>
  <value>hive/_HOST@YOUR-REALM.COM</value>
  <description>The service principal for the metastore thrift server. The special string
 _HOST will be replaced automatically with the correct host name.</description>
</property>

Note:

The values shown above for the hive.metastore.kerberos.keytab.file and
hive.metastore.kerberos.principal properties are examples which you will need to
replace with the appropriate values for your cluster. Also note that the Hive keytab file should
have its access permissions set to 600 and be owned by the same account that is used to run the
Metastore server, which is the hive user by default.

• Requests to access the metadata are fulfilled by the Hive metastore impersonating the requesting user. This
includes read access to the list of databases, tables, properties of each table such as their HDFS location and file
type. You can restrict access to the Hive metastore service by allowing it to impersonate only a subset of Kerberos
users. This can be done by setting the hadoop.proxyuser.hive.groups property in core-site.xml on the
Hive metastore host.

For example, if you want to give the hive user permission to impersonate members of groups hive and user1:

<property>
<name>hadoop.proxyuser.hive.groups</name>
<value>hive,user1</value>
</property>

In this example, the Hive metastore can impersonate users belonging to only the hive and user1 groups.
Connection requests from users not belonging to these groups will be rejected.
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Using Hive to Run Queries on a Secure HBase Server
To use Hive to run queries on a secure HBase Server, you must set the following HIVE_OPTS environment variable:

env HIVE_OPTS="-hiveconf hbase.security.authentication=kerberos -hiveconf 
hbase.master.kerberos.principal=hbase/_HOST@YOUR-REALM.COM -hiveconf 
hbase.regionserver.kerberos.principal=hbase/_HOST@YOUR-REALM.COM -hiveconf 
hbase.zookeeper.quorum=zookeeper1,zookeeper2,zookeeper3" hive

where:

• You replace YOUR-REALM with the name of your Kerberos realm
• You replace zookeeper1,zookeeper2,zookeeper3 with the names of your ZooKeeper servers. The

hbase.zookeeper.quorum property is configured in the hbase-site.xml file.
• The special string _HOST is replaced at run-time by the fully qualified domain name of the host machine where

the HBase Master or RegionServer is running. This requires that reverse DNS is properly working on all the hosts
configured this way.

In the following, _HOST is the name of the host where the HBase Master is running:

-hiveconf hbase.master.kerberos.principal=hbase/_HOST@YOUR-REALM.COM

In the following, _HOST is the hostname of the HBase RegionServer that the application is connecting to:

-hiveconf hbase.regionserver.kerberos.principal=hbase/_HOST@YOUR-REALM.COM

Note:

You can also set the HIVE_OPTS environment variable in your shell profile.
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Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting frommechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to thatWork or DerivativeWorks thereof, that is intentionally submitted to Licensor for inclusion in theWork
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving theWork, but excluding communication that is conspicuouslymarked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whoma Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare DerivativeWorks of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license tomake, havemade,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims
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licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within theWork constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the DerivativeWorks; or, within a display generated by the DerivativeWorks, if andwherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure ormalfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.
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While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
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