
Cloudera Security

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or
service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logosmentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this documentmay be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subjectmatter in this document. Except as expressly
provided in anywritten license agreement fromCloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.
395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Cloudera Enterprise 5.3.x
Date: February 3, 2021

Table of Contents

About this Guide..8

Authentication...9
Configuring Authentication in Cloudera Manager...9
Cloudera Manager User Accounts...10

Configuring External Authentication for Cloudera Manager...11

Kerberos Principals and Keytabs..17

Enabling Kerberos Authentication Using the Wizard...17

Enabling Kerberos Authentication for Single User Mode or Non-Default Users..26

Viewing and Regenerating Kerberos Principals...27

Mapping Kerberos Principals to Short Names...28

Configuring YARN for Long-running Applications..29

Enabling Kerberos Authentication Without the Wizard...30

Configuring Authentication in Cloudera Navigator..41
Configuring External Authentication for Cloudera Navigator..41

Managing Users and Groups for Cloudera Navigator..43

Configuring Authentication in CDH Using the Command Line...45
Enabling Kerberos Authentication for Hadoop Using the Command Line...45

Flume Authentication..67

HBase Authentication..70

HCatalog Authentication...74

Hive Authentication...76

HttpFS Authentication..83

Hue Authentication..85

Impala Authentication...96

Llama Authentication..101

Oozie Authentication...102

Search Authentication..104

ZooKeeper Authentication...108

FUSE Kerberos Configuration...110

Using kadmin to Create Kerberos Keytab Files...111

Configuring the Mapping from Kerberos Principals to Short Names...112

Enabling Debugging Output for the Sun Kerberos Classes...115

Configuring a Cluster-dedicated MIT KDC with Cross-Realm Trust..115
When to use kadmin.local and kadmin..115

Setting up a Cluster-Dedicated KDC and Default Realm for the Hadoop Cluster...116

Integrating Hadoop Security with Active Directory..120

Configuring a Local MIT Kerberos Realm to Trust Active Directory..121

Integrating Hadoop Security with Alternate Authentication..122
Configuring the AuthenticationFilter to use Kerberos..123

Creating an AltKerberosAuthenticationHandler Subclass..123

Enabling Your AltKerberosAuthenticationHandler Subclass...123

Example Implementation for Oozie..124

Configuring LDAP Group Mappings..125
Using Cloudera Manager...127

Using the Command Line...128

Hadoop Users in Cloudera Manager and CDH...129

Authenticating Kerberos Principals in Java Code...134

Using a Web Browser to Access an URL Protected by Kerberos HTTP SPNEGO...134

Troubleshooting Authentication Issues..138
Sample Kerberos Configuration files: krb5.conf, kdc.conf, kadm5.acl..138

Potential Security Problems and Their Solutions..140

Encryption..149
SSL Certificates Overview...149
Creating Certificates..150

Creating Java Keystores and Truststores..151

Private Key and Certificate Reuse Across Java Keystores and OpenSSL...154

Configuring TLS Security for Cloudera Manager..155
Configuring TLS Encryption Only for Cloudera Manager...156

Level 1: Configuring TLS Encryption for Cloudera Manager Agents...160

Level 2: Configuring TLS Verification of Cloudera Manager Server by the Agents...161

Level 3: Configuring TLS Authentication of Agents to the Cloudera Manager Server..163

HTTPS Communication in Cloudera Manager..167

Troubleshooting SSL/TLS Connectivity...169

Configuring SSL for Cloudera Navigator...170

Configuring SSL/TLS Encryption for CDH Services..170
Prerequisites..170

Hadoop Services as SSL Servers and Clients...170

Configuring SSL for HDFS, YARN and MapReduce..171

Configuring SSL for HBase..173

Configuring SSL for Oozie...174

Configuring Encrypted Communication Between Hive and Client Drivers...175

Configuring SSL for Hue...177

Configuring SSL for Impala...179

Configuring HttpFS to use SSL..180

Encrypted Shuffle and Encrypted Web UIs...181

HDFS Data At Rest Encryption..187
Use Cases...187

Architecture...188

crypto Command Line Interface..188

Enabling HDFS Encryption on a Cluster..189

DistCp Considerations..193

Attack Vectors..194

Configuring the Key Management Server (KMS)...195

Securing the Key Management Server (KMS)..198

Configuring CDH Services for HDFS Encryption..205

HDFS Encryption Troubleshooting..209

Configuring Encrypted HDFS Data Transport..210
Using Cloudera Manager...210

Using the Command Line...211

Authorization...212
Cloudera Manager User Roles..212
User Roles..212

Determining the Role of the Currently Logged in User..214

Removing the Full Administrator User Role...214

Cloudera Navigator User Roles...214
User Roles..214

Determining the Roles of the Currently Logged in User...215

Enabling HDFS Extended ACLs..215
Enabling ACLs...215

Commands...216

The Sentry Service..217
Prerequisites..217

Terminologies...217

Privilege Model..218

User to Group Mapping...218

Appendix: Authorization Privilege Model for Hive and Impala..220

Installing and Upgrading the Sentry Service..223

Migrating from Sentry Policy Files to the Sentry Service..226

Configuring the Sentry Service...226

Sentry Debugging and Failure Scenarios...231

Hive SQL Syntax for Use with Sentry..232

Synchronizing HDFS ACLs and Sentry Permissions...235

Reporting Metrics for the Sentry Service...240

Sentry Policy File Authorization...240
Prerequisites..240

Terminologies...240

Privilege Model..241

User to Group Mapping...241

Policy File...242

Sample Sentry Configuration Files...244

Accessing Sentry-Secured Data Outside Hive/Impala..246

Debugging Failed Sentry Authorization Requests..247

Authorization Privilege Model for Hive and Impala...247

Installing and Upgrading Sentry for Policy File Authorization..250

Configuring Sentry Policy File Authorization Using Cloudera Manager...251

Configuring Sentry Policy File Authorization Using the Command Line...255

Enabling Sentry Authorization for Impala..257
The Sentry Privilege Model..257

Starting the impalad Daemon with Sentry Authorization Enabled..258

Using Impala with the Sentry Service (CDH 5.1 or higher only)...259

Using Impala with the Sentry Policy File..259

Setting Up Schema Objects for a Secure Impala Deployment..264

Privilege Model and Object Hierarchy...265

Debugging Failed Sentry Authorization Requests..268

Managing Sentry for Impala through Cloudera Manager...268

The DEFAULT Database in a Secure Deployment...268

Enabling Sentry Authorization for Search..268
Roles and Collection-Level Privileges...269

Users and Groups...269

Setup and Configuration..270

Policy File...270

Sample Configuration..270

Enabling Sentry in Cloudera Search for CDH 5...271

Providing Document-Level Security Using Sentry..272

Enabling Secure Impersonation...274

Debugging Failed Sentry Authorization Requests..274

Appendix: Authorization Privilege Model for Search...275

Configuring HBase Authorization...277
Understanding HBase Access Levels..277

Enable HBase Authorization..279

Configure Access Control Lists for Authorization...279

Overview of Impala Security..281
Security Guidelines for Impala...281

Securing Impala Data and Log Files..282

Installation Considerations for Impala Security...283

Securing the Hive Metastore Database..283

Securing the Impala Web User Interface..283

Miscellaneous Topics..285
Jsvc, Task Controller and Container Executor Programs...285
MRv1 and YARN: The jsvc Program..285

MRv1 Only: The Linux TaskController Program..285

YARN Only: The Linux Container Executor Program...285

Task-controller and Container-executor Error Codes..286

MRv1 ONLY: Task-controller Error Codes..286

YARN ONLY: Container-executor Error Codes...288

Sqoop, Pig, and Whirr Security Support Status..289

Setting Up a Gateway Node to Restrict Cluster Access..289
Installing and Configuring the Firewall and Gateway..290

Accessing HDFS..290

Submitting and Monitoring Jobs..290

Logging a Security Support Case..291
Kerberos Issues..291

SSL/TLS Issues..291

LDAP Issues..291

Using Antivirus Software on CDH Hosts...292

Appendix: Apache License, Version 2.0...293

About this Guide

This guide is intended for system administratorswhowant to secure a cluster using data encryption, user authentication,
and authorization techniques. This topic also provides information about Hadoop security programs and shows you
how to set up a gateway to restrict access.

8 | Cloudera Security

About this Guide

Authentication

The purpose of authentication in Hadoop, as in other systems, is simply to prove that a user or service is who he or
she claims to be.

Typically, authentication in enterprises is managed through a single distributed system, such as a Lightweight Directory
Access Protocol (LDAP) directory. LDAP authentication consists of straightforward username/password services backed
by a variety of storage systems, ranging from file to database.

A common enterprise-grade authentication system is Kerberos. Kerberos provides strong security benefits including
capabilities that render intercepted authentication packets unusable by an attacker. It virtually eliminates the threat
of impersonation by never sending a user's credentials in cleartext over the network.

Several components of theHadoop ecosystemare converging to use Kerberos authenticationwith the option tomanage
and store credentials in LDAP or AD. For example, Microsoft's Active Directory (AD) is an LDAP directory that also
provides Kerberos authentication for added security.

Before you use this guide to configure Kerberos on your cluster, ensure you have a working KDC (MIT KDC or Active
Directory), set up. You can then use Cloudera Manager's Kerberos wizard to automate several aspects of Kerberos
configuration on your cluster.

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.3.x . If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

Configuring Authentication in Cloudera Manager

Why Use Cloudera Manager to Implement Kerberos Authentication?

If you do not use ClouderaManager to implement Hadoop security, youmustmanually create and deploy the Kerberos
principals and keytabs on every host in your cluster. If you have a large number of hosts, this can be a time-consuming
and error-prone process. After creating and deploying the keytabs, you must also manually configure properties in the
core-site.xml,hdfs-site.xml,mapred-site.xml, andtaskcontroller.cfg files on everyhost in the cluster
to enable and configure Hadoop security in HDFS andMapReduce. You must also manually configure properties in the
oozie-site.xml and hue.ini files on certain cluster hosts in order to enable and configure Hadoop security in
Oozie and Hue.

Cloudera Manager enables you to automate all of those manual tasks. Cloudera Manager can automatically create
and deploy a keytab file for the hdfs user and a keytab file for the mapred user on every host in your cluster, as well
as keytab files for the oozie and hue users on select hosts. The hdfs keytab file contains entries for the hdfs principal
and a host principal, and the mapred keytab file contains entries for the mapred principal and a host principal. The
host principal will be the same in both keytab files. The oozie keytab file contains entries for the oozie principal
and a HTTP principal. The hue keytab file contains an entry for the hue principal. Cloudera Manager can also
automatically configure the appropriate properties in the core-site.xml, hdfs-site.xml, mapred-site.xml,
and taskcontroller.cfg files on every host in the cluster, and the appropriate properties in oozie-site.xml
andhue.ini for select hosts. Lastly, ClouderaManager can automatically start up theNameNode, DataNode, Secondary
NameNode, JobTracker, TaskTracker, Oozie Server, and Hue roles once all the appropriate configuration changes have
been made.

Cloudera Security | 9

Authentication

http://www.cloudera.com/content/support/en/documentation.html

Ways to Configure Kerberos Authentication Using Cloudera Manager

You can use one of the following ways to set up Kerberos authentication on your cluster using Cloudera Manager:

• Cloudera Manager 5.1 introduced a new wizard to automate the procedure to set up Kerberos on a cluster. Using
the KDC information you enter, the wizard will create new principals and keytab files for your CDH services. The
wizard can be used to deploy the krb5.conf file cluster-wide, and automate othermanual tasks such as stopping
all services, deploying client configuration and restarting all services on the cluster.

If you want to use the Kerberos wizard, follow the instructions at Enabling Kerberos Authentication Using the
Wizard on page 17.

• If you do notwant to use the Kerberoswizard, follow the instructions at Enabling Kerberos AuthenticationWithout
the Wizard on page 30.

Cloudera Manager User Accounts

Minimum Required Role: User Administrator (also provided by Full Administrator)

Access to ClouderaManager features is controlled by user accounts. A user account identifies howa user is authenticated
and determines what privileges are granted to the user.

When you are logged in to the Cloudera Manager Admin Console, the username you are logged in as is at the far right

of the top navigation bar—for example, if you are logged in as admin you will see .

A user with the User Administrator or Full Administrator role manages user accounts through the Administration >
Users page.

User Authentication

Cloudera Manager provides several mechanisms for authenticating users. You can configure Cloudera Manager to
authenticate users against the Cloudera Manager database or against an external authentication service. The external
authentication service can be an LDAP server (Active Directory or an OpenLDAP compatible directory), or you can
specify another external service. ClouderaManager also supports using the Security AssertionMarkup Language (SAML)
to enable single sign-on.

If you are using LDAP or another external service you can configure Cloudera Manager so that it can use both methods
of authentication (internal database and external service), and you can determine the order in which it performs these
searches. If you select an external authenticationmechanism, Full Administrator users can always authenticate against
the Cloudera Manager database. This is to prevent locking everyone out if the authentication settings are
misconfigured—such as with a bad LDAP URL.

With external authentication, you can restrict login access tomembers of specific groups, and can specify groupswhose
members are automatically given Full Administrator access to Cloudera Manager.

Users accounts in the Cloudera Manager database page show Cloudera Manager in the User Type column. User
accounts in an LDAP directory or other external authentication mechanism show External in the User Type column.

User Roles

User accounts include the user's role, which determines the Cloudera Manager features visible to the user and the
actions the user can perform. All the tasks in the Cloudera Manager documentation indicate which role is required to
perform the task. For more information about user roles, see Cloudera Manager User Roles on page 212.

Determining the Role of the Currently Logged in User

1. Click the logged-in username at the far right of the top navigation bar. The role displays right under the username.
For example:

10 | Cloudera Security

Authentication

Changing the Logged-In Internal User Password

1. Right-click the logged-in username at the far right of the top navigation bar and select Change Password.
2. Enter the current password and a new password twice, and then click Update.

Adding an Internal User Account

1. Select Administration > Users.
2. Click the Add User button.
3. Enter a username and password.
4. In the Role drop-down, select a role for the new user.
5. Click Add.

Assigning User Roles

1. Select Administration > Users.
2. Check the checkbox next to one or more usernames.
3. Select Actions for Selected > Assign User Roles.
4. In the drop-down, select the role.
5. Click the Assign Role button.

Changing an Internal User Account Password

1. Select Administration > Users.
2. Click the Change Password button next to a username with User Type Cloudera Manager.
3. Type the new password and repeat it to confirm.
4. Click the Update button to make the change.

Deleting Internal User Accounts

1. Select Administration > Users.
2. Check the checkbox next to one or more usernames with User Type Cloudera Manager.
3. Select Actions for Selected > Delete.
4. Click the OK button. (There is no confirmation of the action.)

Configuring External Authentication for Cloudera Manager

Minimum Required Role: User Administrator (also provided by Full Administrator)

Important: This feature is available only with a Cloudera Enterprise license.

For other licenses, the following applies:

• Cloudera Express- The feature is not available.
• Cloudera Enterprise Data Hub Edition Trial - The feature is available until you end the trial or the

trial license expires.

To obtain a license for Cloudera Enterprise, fill in this form or call 866-843-7207. After you install a
Cloudera Enterprise license, the feature will be available.

Cloudera Manager supports user authentication against an internal database and against an external service. The
following sections describe how to configure the supported external services.

Configuring Authentication Using Active Directory

1. Select Administration > Settings.
2. In the left-hand column, select the External Authentication category.
3. In the Authentication Backend Order field, select the order in which Cloudera Manager should attempt its

authentication. You can choose to authenticate users using just one of the methods (using Cloudera Manager's

Cloudera Security | 11

Authentication

http://www.cloudera.com/content/cloudera/en/about/contact-form.html

own database is the default), or you can set it so that if the user cannot be authenticated by the first method, it
will attempt using the second method.

4. For External Authentication Type, select Active Directory.
5. In the LDAP URL property, provide the URL of the Active Directory server.
6. In the Active Directory NT Domain property, provide the NT domain to authenticate against.
7. In the LDAPUser Groups property, optionally provide a comma-separated list of case-sensitive LDAP group names.

If this list is provided, only users who are members of one or more of the groups in the list will be allowed to log
into Cloudera Manager. If this property is left empty, all authenticated LDAP users will be able to log into Cloudera
Manager. For example, if there is a group called CN=ClouderaManagerUsers,OU=Groups,DC=corp,DC=com,
add the group name ClouderaManagerUsers to the LDAP User Groups list to allow members of that group to
log in to Cloudera Manager.

8. To automatically assign a role to users when they log in, provide a comma-separated list of LDAP group names in
the following properties:

• LDAP Full Administrator Groups
• LDAP User Administrator Groups
• LDAP Cluster Administrator Groups
• LDAP BDR Administrator Groups
• LDAP Configurator Groups
• LDAP Navigator Administrator Groups
• LDAP Operator Groups
• LDAP Limited Operator Groups
• LDAP Auditor Groups

If you specify groups in these properties, users must also be a member of at least one of the groups specified in
the LDAP User Groups property or they will not be allowed to log in. If these properties are left empty, users will
be assigned to the Read-Only role and any other role assignmentmust be performedmanually by an Administrator.

Note: Auser that is added to an LDAP groupwill not automatically be assigned the corresponding
role in the internal Cloudera Manager database. Hence, the Users page in Cloudera Manager will
display such users' roles as Read-Only, as this page only queries the Cloudera Manager database,
and not LDAP.

Configuring Authentication Using an OpenLDAP-compatible Server

For an OpenLDAP-compatible directory, you have several options for searching for users and groups:

• You can specify a single base Distinguished Name (DN) and then provide a "Distinguished Name Pattern" to use
to match a specific user in the LDAP directory.

• Search filter options let you search for a particular user based on somewhat broader search criteria – for example
Cloudera Manager users could be members of different groups or organizational units (OUs), so a single pattern
won't find all those users. Search filter options also let you find all the groups to which a user belongs, to help
determine if that user should have login or admin access.

1. Select Administration > Settings.
2. In the left-hand column, select the External Authentication category.
3. In the Authentication Backend Order field, select the order in which Cloudera Manager should attempt its

authentication. You can choose to authenticate users using just one of the methods (using Cloudera Manager's
own database is the default), or you can set it so that if the user cannot be authenticated by the first method, it
will attempt using the second method.

4. For External Authentication Type, select LDAP.
5. In the LDAP URL property, provide the URL of the LDAP server and (optionally) the base Distinguished Name (DN)

(the search base) as part of the URL — for example ldap://ldap-server.corp.com/dc=corp,dc=com.

12 | Cloudera Security

Authentication

6. If your server does not allow anonymous binding, provide the user DN and password to be used to bind to the
directory. These are the LDAP Bind User Distinguished Name and LDAP Bind Password properties. By default,
Cloudera Manager assumes anonymous binding.

7. Use one of the following methods to search for users and groups:

• You can search using User or Group search filters, using the LDAP User Search Base, LDAP User Search Filter,
LDAP Group Search Base and LDAP Group Search Filter settings. These allow you to combine a base DN with
a search filter to allow a greater range of search targets.

For example, if youwant to authenticate userswhomay be in one ofmultiple OUs, the search filtermechanism
will allow this. You can specify the User Search Base DN as dc=corp,dc=com and the user search filter as
uid={0}. Then Cloudera Manager will search for the user anywhere in the tree starting from the Base DN.
Suppose you have two OUs—ou=Engineering and ou=Operations—Cloudera Manager will find User
"foo" if it exists in either of these OUs, that is, uid=foo,ou=Engineering,dc=corp,dc=com or
uid=foo,ou=Operations,dc=corp,dc=com.

You can use a user search filter along with a DN pattern, so that the search filter provides a fallback if the DN
pattern search fails.

The Groups filters let you search to determine if a DN or username is a member of a target group. In this
case, the filter you provide can be something like member={0} where {0} will be replaced with the DN of
the user you are authenticating. For a filter requiring the username, {1}may be used, as memberUid={1}.
This will return a list of groups the user belongs to, which will be compared to the list in the group properties
discussed in step 8 of Configuring Authentication Using Active Directory on page 11.

OR

• Alternatively, specify a single baseDistinguishedName (DN) and then provide a "DistinguishedNamePattern"
in the LDAP Distinguished Name Pattern property.

Use {0} in the pattern to indicate where the username should go. For example, to search for a distinguished
name where the uid attribute is the username, you might provide a pattern similar to
uid={0},ou=People,dc=corp,dc=com. Cloudera Manager substitutes the name provided at login into
this pattern and performs a search for that specific user. So if a user provides the username "foo" at the
Cloudera Manager login page, Cloudera Manager will search for the DN
uid=foo,ou=People,dc=corp,dc=com.

If you provided a base DN along with the URL, the pattern only needs to specify the rest of the DN pattern.
For example, if the URL you provide is ldap://ldap-server.corp.com/dc=corp,dc=com, and the
pattern is uid={0},ou=People, then the search DN will be uid=foo,ou=People,dc=corp,dc=com.

8. Restart the Cloudera Manager Server.

Configuring Cloudera Manager to Use LDAPS

If the LDAP server certificate has been signed by a trusted Certificate Authority (that is, VeriSign, GeoTrust, and so on),
steps 1 and 2 below may not be necessary.

1. Copy the CA certificate file to the Cloudera Manager Server host.
2. Import the CA certificate(s) from the CA certificate file to the local truststore. The default truststore is located in

the $JAVA_HOME/jre/lib/security/cacerts file. This contains the default CA information shipped with the
JDK. Create an alternate default file called jssecacerts in the same location as the cacerts file. You can now
safely append CA certificates for any private or public CAs not present in the default cacerts file, while keeping
the original file intact.

Cloudera Security | 13

Authentication

For our example, we will follow this recommendation by copying the default cacerts file into the new
jssecacerts file, and then importing the CA certificate to this alternate truststore.

$ cp $JAVA_HOME/jre/lib/security/cacerts \
 $JAVA_HOME/jre/lib/jssecacerts

$ /usr/java/latest/bin/keytool -import -alias nt_domain_name \
-keystore /usr/java/latest/jre/lib/security/jssecacerts -file path_to_cert

Note:

• The default password for the cacerts store is changeit.
• The alias can be any name (not just the domain name).

3. Configure the LDAP URL property to use ldaps://ldap_server instead of ldap://ldap_server.
4. Restart the Cloudera Manager Server.

Configuring Authentication Using an External Program

You can configure Cloudera Manager to use an external authentication program of your own choosing. Typically, this
may be a custom script that interacts with a custom authentication service. Cloudera Manager will call the external
programwith the username as the first command line argument. The password is passed overstdin. ClouderaManager
assumes the program will return the following exit codes identifying the user role for a successful authentication:

• 0 - Read-Only
• 1 - Full Administrator
• 2 - Limited Operator
• 3 - Operator
• 4 - Configurator
• 5 - Cluster Administrator
• 6 - BDR Administrator
• 7 - Navigator Administrator
• 8 - User Administrator
• 9 - Auditor

and a negative value is returned for a failure to authenticate.

To configure authentication using an external program:

1. Select Administration > Settings.
2. In the left-hand column, select the External Authentication category.
3. In the Authentication Backend Order field, select the order in which Cloudera Manager should attempt its

authentication. You can choose to authenticate users using just one of the methods (using Cloudera Manager's
own database is the default), or you can set it so that if the user cannot be authenticated by the first method, it
will attempt using the second method.

4. For External Authentication Type, select External Program.
5. Provide a path to the external program in the External Authentication Program Path property.

Configuring Authentication Using SAML

ClouderaManager supports the Security AssertionMarkup Language (SAML), an XML-basedopen standard data format
for exchanging authentication and authorization data between parties, in particular, between an identity provider
(IDP) and a service provider (SP). The SAML specification defines three roles: the principal (typically a user), the IDP,
and the SP. In the use case addressed by SAML, the principal (user agent) requests a service from the service provider.
The service provider requests and obtains an identity assertion from the IDP. On the basis of this assertion, the SP can
make an access control decision—in other words it can decide whether to perform some service for the connected
principal.

14 | Cloudera Security

Authentication

The primary SAML use case is called web browser single sign-on (SSO). A user wielding a user agent (usually a web
browser) requests a web resource protected by a SAML SP. The SP, wishing to know the identity of the requesting
user, issues an authentication request to a SAML IDP through the user agent. In the context of this terminology, Cloudera
Manager operates as a SP. This topic discusses the Cloudera Manager part of the configuration process; it assumes
that you are familiar with SAML and SAML configuration in a general sense, and that you have a functioning IDP already
deployed.

Note:

• Cloudera Manager supports both SP- and IDP-initiated SSO.
• The logout action in Cloudera Manager will send a single-logout request to the IDP.
• SAML authentication has been tested with specific configurations of SiteMinder and Shibboleth.

While SAML is a standard, there is a great deal of variability in configuration between different
IDP products, so it is possible that other IDP implementations, or other configurations of SiteMinder
and Shibboleth, may not interoperate with Cloudera Manager.

• To bypass SSO if SAML configuration is incorrect or not working, you can login using a Cloudera
Manager local account using the URL: http://cm_host:7180/cmf/localLogin

Setting up Cloudera Manager to use SAML requires the following steps.

Preparing Files

You will need to prepare the following files and information, and provide these to Cloudera Manager:

• A Java keystore containing a private key for Cloudera Manager to use to sign/encrypt SAML messages.
• The SAML metadata XML file from your IDP. This file must contain the public certificates needed to verify the

sign/encrypt key used by your IDP per the SAML Metadata Interoperability Profile
• The entity ID that should be used to identify the Cloudera Manager instance
• How the user ID is passed in the SAML authentication response:

– As an attribute. If so, what identifier is used.
– As the NameID.

• The method by which the Cloudera Manager role will be established:

– From an attribute in the authentication response:

– What identifier will be used for the attribute
– What values will be passed to indicate each role

– From an external script that will be called for each use:

– The script takes user ID as $1
– The script sets an exit code to reflect successful authentication of the assigned role:

– 0 - Full Administrator
– 1 - Read-Only
– 2 - Limited Operator
– 3 - Operator
– 4 - Configurator
– 5 - Cluster Administrator
– 6 - BDR Administrator
– 7 - Navigator Administrator
– 8 - User Administrator
– 9 - Auditor

and a negative value is returned for a failure to authenticate.

Cloudera Security | 15

Authentication

Configuring Cloudera Manager

1. Select Administration > Settings.
2. In the left-hand column, select the External Authentication category.
3. Set the External Authentication Type property to SAML (the Authentication Backend Order property is ignored

for SAML).
4. Set the Path to SAML IDP Metadata File property to point to the IDP metadata file.
5. Set the Path to SAML Keystore File property to point to the Java keystore prepared earlier.
6. In the SAML Keystore Password property, set the keystore password.
7. In the Alias of SAML Sign/Encrypt Private Key property, set the alias used to identify the private key for Cloudera

Manager to use.
8. In the SAML Sign/Encrypt Private Key Password property, set the private key password.
9. Set the SAML Entity ID property if:

• There is more than one Cloudera Manager instance being used with the same IDP (each instance needs a
different entity ID).

• Entity IDs are assigned by organizational policy.

10. In the Source of User ID in SAML Response property, set whether the user ID will be obtained from an attribute
or the NameID.

11. If an attribute will be used, set the attribute name in the SAML attribute identifier for user ID property. The
default value is the normal OID used for user IDs and so may not need to be changed.

12. In the SAMLRole assignmentmechanism property, set whether the role assignmentwill be done from an attribute
or an external script.

• If an attribute will be used:

– In the SAML attribute identifier for user role property, set the attribute name if necessary. The default
value is the normal OID used for OrganizationalUnits and so may not need to be changed.

– In the SAML Attribute Values for Roles property, set which attribute values will be used to indicate the
user role.

• If an external script will be used, set the path to that script in the Path to SAML Role Assignment Script
property. Make sure that the script is executable (an executable binary is fine - it doesn’t need to be a shell
script).

13. Save the changes. Cloudera Manager will run a set of validations that ensure it can find the metadata XML and
the keystore, and that the passwords are correct. If you see a validation error, correct the problem before
proceeding.

14. Restart the Cloudera Manager Server.

Configuring the IDP

After the Cloudera Manager Server is restarted, it will attempt to redirect to the IDP login page instead of showing the
normal CM page. This may or may not succeed, depending on how the IDP is configured. In either case, the IDP will
need to be configured to recognize CM before authentication will actually succeed. The details of this process are
specific to each IDP implementation - refer to your IDP documentation for details.

1. Download the Cloudera Manager’s SAML metadata XML file from http://hostname:7180/saml/metadata.
2. Inspect the metadata file and ensure that any URLs contained in the file can be resolved by users’ web browsers.

The IDP will redirect web browsers to these URLs at various points in the process. If the browser cannot resolve
them, authentication will fail. If the URLs are incorrect, you can manually fix the XML file or set the Entity Base
URL in the CM configuration to the right value, and then re-download the file.

3. Provide this metadata file to your IDP using whatever mechanism your IDP provides.
4. Ensure that the IDP has access to whatever public certificates are necessary to validate the private key that was

provided to Cloudera Manager earlier.
5. Ensure that the IDP is configured to provide the User ID and Role using the attribute names that ClouderaManager

was configured to expect, if relevant.

16 | Cloudera Security

Authentication

6. Ensure the changes to the IDP configuration have taken effect (a restart may be necessary).

Verifying Authentication and Authorization

1. Return to the Cloudera Manager Admin Console and refresh the login page.
2. Attempt to log in with credentials for a user that is entitled. The authentication should complete and you should

see the Home page.
3. If authentication fails, you will see an IDP provided error message. Cloudera Manager is not involved in this part

of the process, and you must ensure the IDP is working correctly to complete the authentication.
4. If authentication succeeds but the user is not authorized to use Cloudera Manager, they will be taken to an error

page by Cloudera Manager that explains the situation. If an user who should be authorized sees this error, then
you will need to verify their role configuration, and ensure that it is being properly communicated to Cloudera
Manager, whether by attribute or external script. The Cloudera Manager log will provide details on failures to
establish a user’s role. If any errors occur during role mapping, Cloudera Manager will assume the user is
unauthorized.

Kerberos Principals and Keytabs

Hadoop security uses Kerberos principals and keytabs to perform user authentication on all remote procedure calls.

Kerberos Principals

A user in Kerberos is called a principal, which is made up of three distinct components: the primary, instance, and
realm. A Kerberos principal is used in a Kerberos-secured system to represent a unique identity. The first component
of the principal is called the primary, or sometimes the user component. The primary component is an arbitrary string
and may be the operating system username of the user or the name of a service. The primary component is followed
by an optional section called the instance, which is used to create principals that are used by users in special roles or
to define the host on which a service runs, for example. An instance, if it exists, is separated from the primary by a
slash and then the content is used to disambiguate multiple principals for a single user or service. The final component
of the principal is the realm. The realm is similar to a domain in DNS in that it logically defines a related group of objects,
although rather than hostnames as in DNS, the Kerberos realm defines a group of principals . Each realm can have its
own settings including the location of the KDC on the network and supported encryption algorithms. Large organizations
commonly create distinct realms to delegate administration of a realm to a group within the enterprise. Realms, by
convention, are written in uppercase characters.

Kerberos assigns tickets to Kerberos principals to enable them to access Kerberos-secured Hadoop services. For the
Hadoop daemon principals, the principal names should be of the format
username/fully.qualified.domain.name@YOUR-REALM.COM. In this guide, username in the
username/fully.qualified.domain.name@YOUR-REALM.COM principal refers to the username of an existing
Unix account that is used by Hadoop daemons, such as hdfs or mapred. Human users whowant to access the Hadoop
cluster also need to have Kerberos principals; in this case, username refers to the username of the user's Unix account,
such as joe or jane. Single-component principal names (such as joe@YOUR-REALM.COM) are acceptable for client
user accounts. Hadoop does not support more than two-component principal names.

Kerberos Keytabs

A keytab is a file containing pairs of Kerberos principals and an encrypted copy of that principal's key. A keytab file for
a Hadoop daemon is unique to each host since the principal names include the hostname. This file is used to authenticate
a principal on a host to Kerberos without human interaction or storing a password in a plain text file. Because having
access to the keytab file for a principal allows one to act as that principal, access to the keytab files should be tightly
secured. They should be readable by a minimal set of users, should be stored on local disk, and should not be included
in host backups, unless access to those backups is as secure as access to the local host.

Enabling Kerberos Authentication Using the Wizard

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Cloudera Security | 17

Authentication

Important: Ensure you have secured communication between the Cloudera Manager Server and
Agents before you enable Kerberos on your cluster. Kerberos keytabs are sent from the Cloudera
Manager Server to the Agents, and must be encrypted to prevent potential misuse of leaked keytabs.
For secure communication, you should have at least Level 1 TLS enabled as described in Configuring
TLS Security for Cloudera Manager (Level 1).

This guide describes how to use Cloudera Manager and the Kerberos wizard (introduced in Cloudera Manager 5.1.0)
to automate many of the manual tasks of implementing Kerberos security on your CDH cluster.

• Prerequisites - These instructions assume you know how to install and configure Kerberos, you already have a
working Kerberos key distribution center (KDC) and realm setup, and that you've installed the following Kerberos
client packages on all cluster hosts and hosts that will be used to access the cluster, depending on the OS in use.

Packages RequiredOS

RHEL 6 Compatible, RHEL
5 Compatible

• openldap-clients on the Cloudera Manager Server host
• krb5-workstation, krb5-libs on ALL hosts

SLES • openldap2-client on the Cloudera Manager Server host
• krb5-client on ALL hosts

Ubuntu or Debian • ldap-utils on the Cloudera Manager Server host
• krb5-user on ALL hosts

Windows • krb5-workstation, krb5-libs on ALL hosts

Furthermore, Oozie andHue require that the realm support renewable tickets. ClouderaManager supports setting
up kerberized clusters with MIT KDC and Active Directory.

Important: If you want to integrate Kerberos directly with Active Directory, ensure you have
support from your AD administration team to do so. This includes any future support required
to troubleshoot issues such as Kerberos TGT/TGS ticket renewal, access to KDC logs for debugging
and so on.

For more information about using Active Directory, refer the section below on Considerations when using an
Active Directory KDC and the Microsoft AD documentation.

For more information about installing and configuring MIT KDC, see:

• MIT Kerberos Home
• MIT Kerberos Documentation

• Support

– Kerberos security in Cloudera Manager has been tested on the following version of MIT Kerberos 5:

– krb5-1.6.1 on Red Hat Enterprise Linux 5 and CentOS 5

– Kerberos security in Cloudera Manager is supported on the following versions of MIT Kerberos 5:

– krb5-1.6.3 on SLES 11 Service Pack 1
– krb5-1.8.1 on Ubuntu
– krb5-1.8.2 on Red Hat Enterprise Linux 6 and CentOS 6
– krb5-1.9 on Red Hat Enterprise Linux 6.1

Considerations when using an Active Directory KDC
Performance:

18 | Cloudera Security

Authentication

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/sect-security_guide-kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/ch-kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/ch-kerberos
https://www.suse.com/documentation/sles11/singlehtml/book_security/book_security.html
https://help.ubuntu.com/community/Kerberos
http://technet.microsoft.com/en-us/library/bb742433.aspx#EDAA
https://technet.microsoft.com/en-us/library/bb742516.aspx
http://web.mit.edu/Kerberos
http://web.mit.edu/Kerberos/krb5-1.8/

As your cluster grows, so will the volume of Authentication Service (AS) and Ticket Granting Service (TGS) interaction
between the services on each cluster server. Consider evaluating the volume of this interaction against the Active
Directory domain controllers you have configured for the cluster before rolling this feature out to a production
environment. If cluster performance suffers, over time it might become necessary to dedicate a set of AD domain
controllers to larger deployments.

Network Proximity:

By default, Kerberos uses UDP for client/server communication. Often, AD services are in a different network than
project application services such as Hadoop. If the domain controllers supporting a cluster for Kerberos are not in the
same subnet, or they're separated by a firewall, consider using the udp_preference_limit = 1 setting in the
[libdefaults] section of the krb5.conf used by cluster services. Cloudera strongly recommends against using AD
domain controller (KDC) servers that are separated from the cluster by a WAN connection, as latency in this service
will significantly impact cluster performance.

Process:

Troubleshooting the cluster's operations, especially for Kerberos-enabled services, will need to includeAD administration
resources. Evaluate your organizational processes for engaging the AD administration team, and how to escalate in
case a cluster outage occurs due to issues with Kerberos authentication against AD services. In some situations it might
be necessary to enable Kerberos event logging to address desktop and KDC issues within windows environments.

Step 1: Install Cloudera Manager and CDH

If you have not already done so, Cloudera strongly recommends that you install and configure the Cloudera Manager
Server and Cloudera Manager Agents and CDH to set up a fully-functional CDH cluster before you begin doing the
following steps to implement Hadoop security features.

Overview of the User Accounts and Groups in CDH and Cloudera Manager to Support Security

When you install the CDH packages and the Cloudera Manager Agents on your cluster hosts, Cloudera Manager takes
some steps to provide system security such as creating the following Unix accounts and setting directory permissions
as shown in the following table. TheseUnix accounts and directory permissionsworkwith the Hadoop Kerberos security
requirements.

Runs These RolesThis User

NameNode, DataNodes, and Secondary Nodehdfs

JobTracker and TaskTrackers (MR1) and Job History Server (YARN)mapred

ResourceManager and NodeManagers (YARN)yarn

Oozie Serveroozie

Hue Server, Beeswax Server, Authorization Manager, and Job Designerhue

The hdfs user also acts as the HDFS superuser.

When you install the Cloudera Manager Server on the server host, a new Unix user account called cloudera-scm is
created automatically to support security. The Cloudera Manager Server uses this account to create host principals
and deploy the keytabs on your cluster.

If you installed CDH and Cloudera Manager at the Same Time

If you have a new installation and you installed CDH and Cloudera Manager at the same time, when you started the
Cloudera Manager Agents on your cluster hosts, the Cloudera Manager Agent on each host automatically configured
the directory owners shown in the following table to support security. Assuming the owners are configured as shown,
the Hadoop daemons can then automatically set the permissions for each of the directories specified by the properties
shown below to make sure they are properly restricted. It's critical that the owners are configured exactly as shown
below, so do not change them:

Cloudera Security | 19

Authentication

https://support.microsoft.com/kb/262177?wa=wsignin1.0

OwnerDirectory Specified in this Property

hdfs:hadoopdfs.name.dir

hdfs:hadoopdfs.data.dir

mapred:hadoopmapred.local.dir

mapred:hadoopmapred.system.dir in HDFS

yarn:yarnyarn.nodemanager.local-dirs

yarn:yarnyarn.nodemanager.log-dirs

oozie:oozieoozie.service.StoreService.jdbc.url (if using
Derby)

hue:hue[[database]] name

hue:huejavax.jdo.option.ConnectionURL

If you Installed and Used CDH Before Installing Cloudera Manager

If you have been using HDFS and runningMapReduce jobs in an existing installation of CDHbefore you installed Cloudera
Manager, you must manually configure the owners of the directories shown in the table above. Doing so enables the
Hadoop daemons to automatically set the permissions for each of the directories. It's critical that youmanually configure
the owners exactly as shown above.

Step 2: If You are Using AES-256 Encryption, Install the JCE Policy File

If you are using CentOS or Red Hat Enterprise Linux 5.5 or higher, which use AES-256 encryption by default for tickets,
you must install the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File on all cluster and
Hadoop user hosts. There are 2 ways to do this:

• In the Cloudera Manager Admin Console, navigate to the Hosts page. Both, the Add New Hosts to Cluster wizard
and the Re-run Upgrade Wizard will give you the option to have Cloudera Manager install the JCE Policy file for
you.

• You can follow the JCE Policy File installation instructions in the README.txt file included in the
jce_policy-x.zip file.

Alternatively, you can configure Kerberos to not use AES-256 by removing aes256-cts:normal from the
supported_enctypes field of the kdc.conf or krb5.conf file. Note that after changing the kdc.conf file, you'll
need to restart both the KDC and the kadmin server for those changes to take affect. You may also need to recreate
or change the password of the relevant principals, including potentially the Ticket Granting Ticket principal
(krbtgt/REALM@REALM). If AES-256 is still used after all of those steps, it's because the aes256-cts:normal setting
existed when the Kerberos database was created. To fix this, create a new Kerberos database and then restart both
the KDC and the kadmin server.

To verify the type of encryption used in your cluster:

1. For MIT KDC: On the local KDC host, type this command in the kadmin.local or kadmin shell to create a test
principal:

kadmin: addprinc test

For Active Directory: Create a new AD account with the name, test.

2. On a cluster host, type this command to start a Kerberos session as test:

$ kinit test

20 | Cloudera Security

Authentication

http://www.oracle.com/technetwork/java/javase/downloads/index.html

3. On a cluster host, type this command to view the encryption type in use:

$ klist -e

If AES is being used, output like the following is displayed after you type the klist command (note that AES-256
is included in the output):

Ticket cache: FILE:/tmp/krb5cc_0
Default principal: test@Cloudera Manager
Valid starting Expires Service principal
05/19/11 13:25:04 05/20/11 13:25:04 krbtgt/Cloudera Manager@Cloudera Manager
 Etype (skey, tkt): AES-256 CTS mode with 96-bit SHA-1 HMAC, AES-256 CTS mode with
96-bit SHA-1 HMAC

Step 3: Get or Create a Kerberos Principal for the Cloudera Manager Server

In order to create and deploy the host principals and keytabs on your cluster, the Cloudera Manager Server must have
the correct Kerberos principal. Specifically, the Cloudera Manager Server must have a Kerberos principal that has
privileges to create other accounts.

To get or create the Kerberos principal for the Cloudera Manager Server, you can do either of the following:

• Ask your Kerberos administrator to create a Kerberos administrator principal for the Cloudera Manager Server.
• Create the Kerberos principal for the Cloudera Manager Server yourself by using the following instructions in this

step.

Creating the Cloudera Manager Principal

The following instructions illustrate an example of creating the Cloudera Manager Server principal for MIT KDC and
Active Directory KDC. (If you are using another version of Kerberos, refer to your Kerberos documentation for
instructions.)

If you are using Active Directory:

1. Create an Organizational Unit (OU) in your AD setup where all the principals used by your CDH cluster will reside.
2. Add a new user account to Active Directory, for example, <username>@YOUR-REALM.COM. The password for this

user should be set to never expire.
3. Use AD's Delegate Control wizard to allow this new user to Create, Delete and Manage User Accounts.

If you are using MIT KDC:
Typically, principals with the second component of admin in the principal name (for example,
username/admin@YOUR-LOCAL-REALM.com) have administrator privileges. This is why admin is shown in the
following example.

Note: If you are running kadmin and the Kerberos Key Distribution Center (KDC) on the same host,
use kadmin.local in the following steps. If the Kerberos KDC is running on a remote host, you must
use kadmin instead of kadmin.local.

In the kadmin.local or kadmin shell, type the following command to create the Cloudera Manager Server principal,
replacing YOUR-LOCAL-REALM.COM with the name of your realm:

kadmin: addprinc -pw <Password> cloudera-scm/admin@YOUR-LOCAL-REALM.COM

Step 4: Enabling Kerberos Using the Wizard

Minimum Required Role: Full Administrator

To start the Kerberos wizard:

Cloudera Security | 21

Authentication

1.
Navigate to the Cloudera Manager Admin Console and click to the right of the cluster for which you want to
enable Kerberos authentication.

2. Select Enable Kerberos.

Before you Begin Using the Wizard

The Welcome page lists the following action items that you should complete before you begin to secure the cluster
using this wizard:

• Set up a working KDC. Cloudera Manager supports authentication with MIT KDC and Active Directory.
• Configure the KDC to allow renewable tickets with non-zero ticket lifetimes.

Active Directory allows renewable tickets with non-zero lifetimes by default. You can verify this by checkingDomain
Security Settings > Account Policies > Kerberos Policy in Active Directory.

For MIT KDC, make sure you have the following lines in the kdc.conf.

max_life = 1d
max_renewable_life = 7d

• If you are using Active Directory, make sure LDAP over SSL (LDAPS) is enabled for the Domain Controllers.
• Install the following packages on your cluster depending on the OS in use.

Packages RequiredOS

RHEL 6 Compatible, RHEL
5 Compatible

• openldap-clients on the Cloudera Manager Server host
• krb5-workstation, krb5-libs on ALL hosts

SLES • openldap2-client on the Cloudera Manager Server host
• krb5-client on ALL hosts

Ubuntu or Debian • ldap-utils on the Cloudera Manager Server host
• krb5-user on ALL hosts

Windows • krb5-workstation, krb5-libs on ALL hosts

• Create an account for ClouderaManager that has the permissions to create other accounts in the KDC. This should
have been completed as part of Step 3: Get or Create a Kerberos Principal for the Cloudera Manager Server on
page 21.

Important:

If you have enabled YARN Resource Manager HA in your non-secure cluster, you should clear the
StateStore znode in ZooKeeper before enabling Kerberos. To do this:

1. Go to the Cloudera Manager Admin Console home page, click to the right of the YARN service
and select Stop.

2. When you see a Finished status, the service has stopped.
3. Go to the YARN service and select Actions > Format State Store.
4. When the command completes, click Close.

Once you are able to check all the items on this list, click Continue.

KDC Information

On this page, select the KDC type you are using, MIT KDC or Active Directory, and complete the fields as applicable to
enable Cloudera Manager to generate principals/accounts for the CDH services running on the cluster.

22 | Cloudera Security

Authentication

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/sect-security_guide-kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/ch-kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/ch-kerberos
https://www.suse.com/documentation/sles11/singlehtml/book_security/book_security.html
https://help.ubuntu.com/community/Kerberos
http://technet.microsoft.com/en-us/library/bb742433.aspx#EDAA

Note:

• If you are using AD and havemultiple Domain Controllers behind a Load Balancer, enter the name
of the Load Balancer in the KDC Server Host field and any one of the Domain Controllers inActive
Directory Domain Controller Override. Hadoop daemons will use the Load Balancer for
authentication, but Cloudera Manager will use the override for creating accounts.

• If you have multiple Domain Controllers (in case of AD) or MIT KDC servers, only enter the name
of any one of them in the KDC Server Host field. Cloudera Manager will use that server only for
creating accounts. If you choose to use ClouderaManager tomanage krb5.conf, you can specify
the rest of the Domain Controllers using Safety Valve as explained below.

• Make sure the entries for the Kerberos Encryption Types field matches what your KDC supports.

Click Continue to proceed.

KRB5 Configuration

Manage krb5.conf through Cloudera Manager allows you to choose whether Cloudera Manager should deploy the
krb5.conf on your cluster or not. If left unchecked, you must ensure that the krb5.conf is deployed on all hosts in
the cluster, including the Cloudera Manager Server's host.

If you checkManage krb5.conf through Cloudera Manager, this page will let you configure the properties that will be
emitted in it. In particular, the safety valves on this page can be used to configure cross-realm authentication. More
information can be found at Configuring a Cluster-dedicated MIT KDC with Cross-Realm Trust on page 115.

Note: Cloudera Manager is unable to use a non-default realm. You must specify the default realm.

Click Continue to proceed.

Import KDC Account Manager Credentials

Enter the username and password for the user that can create principals for CDH cluster in the KDC. This is the
user/principal you created in Step 3: Get or Create a Kerberos Principal for the Cloudera Manager Server on page 21.
Cloudera Manager encrypts the username and password into a keytab and uses it as needed to create new principals.

Note: The username entered should have the realm portion in upper-case only as shown in the
example in the UI.

Click Continue to proceed.

Configure HDFS DataNode Ports

On this page, specify the privileged ports needed by the DataNode's Transceiver Protocol and the HTTP Web UI in a
secure cluster.

Use the checkbox to confirm you are ready to restart the cluster. Click Continue.

Enabling Kerberos

This page lets you track the progress made by the wizard as it first stops all services on your cluster, deploys the
krb5.conf, generates keytabs for other CDH services, deploys client configuration and finally restarts all services.
Click Continue.

Congratulations

The final page lists the cluster(s) for which Kerberos has been successfully enabled. Click Finish to return to the Cloudera
Manager Admin Console home page.

Cloudera Security | 23

Authentication

Step 5: Create the HDFS Superuser

To be able to create homedirectories for users, youwill need access to theHDFS superuser account. (CDH automatically
created the HDFS superuser account on each cluster host during CDH installation.) When you enabled Kerberos for
the HDFS service, you lost access to the HDFS superuser account using sudo -u hdfs commands. To enable your
access to the HDFS superuser account now that Kerberos is enabled, you must create a Kerberos principal or an AD
user whose first component is hdfs:

If you are using Active Directory
Add a new user account to Active Directory, hdfs@YOUR-REALM.COM.

If you are using MIT KDC

1. In the kadmin.local or kadmin shell, type the following command to create a Kerberos principal called hdfs:

kadmin: addprinc hdfs@YOUR-LOCAL-REALM.COM

Note: This command prompts you to create a password for the hdfs principal. You should use
a strong password because having access to this principal provides superuser access to all of the
files in HDFS.

2. To run commands as the HDFS superuser, you must obtain Kerberos credentials for the hdfs principal. To do so,
run the following command and provide the appropriate password when prompted.

$ kinit hdfs@YOUR-LOCAL-REALM.COM

Step 6: Get or Create a Kerberos Principal for Each User Account

Now that Kerberos is configured and enabled on your cluster, you and every other Hadoop user must have a Kerberos
principal or keytab to obtain Kerberos credentials to be allowed to access the cluster and use the Hadoop services. In
the next step of this procedure, you will need to create your own Kerberos principals in order to verify that Kerberos
security is working on your cluster. If you and the other Hadoop users already have a Kerberos principal or keytab, or
if your Kerberos administrator can provide them, you can skip ahead to the next step.

The following instructions explain how to create a Kerberos principal for a user account.

If you are using Active Directory

Add a new AD user account, <username>@YOUR-REALM.COM for each Cloudera Manager service that should use
Kerberos authentication.

If you are using MIT KDC

1. In the kadmin.local or kadmin shell, use the following command to create a principal for your account by replacing
YOUR-LOCAL-REALM.COM with the name of your realm, and replacing USERNAME with a username:

kadmin: addprinc USERNAME@YOUR-LOCAL-REALM.COM

2. When prompted, enter the password twice.

Step 7: Prepare the Cluster for Each User

Before you and other users can access the cluster, there are a few tasks you must do to prepare the hosts for each
user.

1. Make sure all hosts in the cluster have a Linux user account with the same name as the first component of that
user's principal name. For example, the Linux account joe should exist on every box if the user's principal name
is joe@YOUR-REALM.COM. You can use LDAP for this step if it is available in your organization.

24 | Cloudera Security

Authentication

Note: Each account must have a user ID that is greater than or equal to 1000. In the
/etc/hadoop/conf/taskcontroller.cfg file, the default setting for the banned.users
property is mapred, hdfs, and bin to prevent jobs from being submitted using those user
accounts. The default setting for the min.user.id property is 1000 to prevent jobs from being
submitted with a user ID less than 1000, which are conventionally Unix super users.

2. Create a subdirectory under /user on HDFS for each user account (for example, /user/joe). Change the owner
and group of that directory to be the user.

$ hadoop fs -mkdir /user/joe
$ hadoop fs -chown joe /user/joe

Note: sudo -u hdfs is not included in the commands above. This is because it is not required if
Kerberos is enabled on your cluster. You will, however, need to have Kerberos credentials for the
HDFS super user in order to successfully run these commands. For information on gaining access to
the HDFS super user account, see Step 14: Create the HDFS Superuser Principal on page 38

Step 8: Verify that Kerberos Security is Working

After you have Kerberos credentials, you can verify that Kerberos security is working on your cluster by trying to run
MapReduce jobs. To confirm, try launching a sleep or a pi job from the provided Hadoop examples
(/usr/lib/hadoop/hadoop-examples.jar).

Note:

This section assumes you have a fully-functional CDH cluster and you have been able to access HDFS
and run MapReduce jobs before you followed these instructions to configure and enable Kerberos
on your cluster. If you have not already done so, you should at a minimum use the Cloudera Manager
Admin Console to generate a client configuration file to enable you to access the cluster. For
instructions, see Deploying Client Configuration Files.

To verify that Kerberos security is working:

1. Acquire Kerberos credentials for your user account.

$ kinit USERNAME@YOUR-LOCAL-REALM.COM

2. Enter a password when prompted.
3. Submit a sample pi calculation as a test MapReduce job. Use the following command if you use a package-based

setup for Cloudera Manager:

$ hadoop jar /usr/lib/hadoop-0.20-mapreduce/hadoop-examples.jar pi 10 10000
Number of Maps = 10
Samples per Map = 10000
...
Job Finished in 38.572 seconds
Estimated value of Pi is 3.14120000000000000000

If you have a parcel-based setup, use the following command instead:

$ hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-0.20-mapreduce/hadoop-examples.jar pi
 10 10000
Number of Maps = 10
Samples per Map = 10000
...
Job Finished in 30.958 seconds
Estimated value of Pi is 3.14120000000000000000

Cloudera Security | 25

Authentication

You have now verified that Kerberos security is working on your cluster.

Important:

Running a MapReduce job will fail if you do not have a valid Kerberos ticket in your credentials cache.
You can examine the Kerberos tickets currently in your credentials cache by running the klist
command. You can obtain a ticket by running the kinit command and either specifying a keytab file
containing credentials, or entering the password for your principal. If you do not have a valid ticket,
you will receive an error such as:

11/01/04 12:08:12 WARN ipc.Client:
Exception encountered while connecting to the server :
javax.security.sasl.SaslException:GSS initiate failed
[Caused by GSSException: No valid credentials provided (Mechanism level:
 Failed to find any
Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to
nn-host/10.0.0.2:8020 failed on local exception:
java.io.IOException:javax.security.sasl.SaslException: GSS initiate
failed
[Caused by GSSException: No valid credentials provided
(Mechanism level: Failed to find any Kerberos tgt)]

Step 9: (Optional) Enable Authentication for HTTP Web Consoles for Hadoop Roles

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Authentication for access to the HDFS,MapReduce, and YARN roles' web consoles can be enabled using a configuration
option for the appropriate service. To enable this authentication:

1. From the Clusters tab, select the service (HDFS,MapReduce, or YARN) forwhich youwant to enable authentication.
2. Click the Configuration tab.
3. Expand Service-Wide > Security, check the Enable Authentication for HTTP Web-Consoles property, and save

your changes.

A command is triggered to generate the new required credentials.

4. Once the command finishes, restart all roles of that service.

Enabling SPNEGO as an Authentication Backend for Hue

To enable SPNEGO authentication:

1. From the Clusters tab, select the Hue service.
2. Click the Configuration tab.
3. Expand Service-Wide > Security, and for the Authentication Backend property, select

desktop.auth.backend.SpnegoDjangoBackend.
4. Click Save Changes.
5. Restart the Hue service.

Enabling Kerberos Authentication for Single User Mode or Non-Default Users

The steps described in this topic are only applicable in the following cases:

• You are running the Cloudera Manager in the single user mode. In this case, configure all the services described
in the table below.

OR

• You are running one or more CDH services with non-default users. This means if you have modified the default
value for the System User property for any service in Cloudera Manager, you must only perform the command
(as described below) corresponding to that service, to be able to successfully run jobs with the non-default user.

26 | Cloudera Security

Authentication

Configure the mapred.system.dir directory to be owned by the mapred user.

sudo -u hdfs hadoop fs -chown mapred:hadoop
${mapred.system.dir}

MapReduce

By default, mapred.system.dir is /tmp/mapred/system.

Give the hbase user ownership of the HBase root directory:

sudo -u hdfs hadoop fs -chown -R hbase ${hbase.rootdir}

HBase

By default, hbase.rootdir is /hbase.

Give the hive user ownership of the /user/hive directory.

sudo -u hdfs hadoop fs -chown hive /user/hive

Hive

For every NodeManager host, for each path in yarn.nodemanager.local-dirs, run:

rm -rf ${yarn.nodemanager.local-dirs}/usercache/*

YARN

This removes the /usercache directory that contains intermediate data stored for
previous jobs.

Viewing and Regenerating Kerberos Principals

Minimum Required Role: Full Administrator

As soon as you enable Hadoop secure authentication for HDFS and MapReduce service instances, Cloudera Manager
starts creating the Kerberos principals for each of the role instances. The amount of time this process will take depends
on the number of hosts and HDFS and MapReduce role instances on your cluster. The process can take from a few
seconds for a small cluster to several minutes for a larger cluster. After the process is completed, you can use the
Cloudera Manager Admin Console to view the list of Kerberos principals that Cloudera Manager has created for the
cluster. Make sure there are principals for each of the hosts and HDFS and MapReduce role instances on your cluster.
If there are no principals after 10 minutes, then there is most likely a problem with the principal creation. See the
Troubleshooting Authentication Issues on page 138 section below for more information. If necessary, you can use
Cloudera Manager to regenerate the principals.

If you make a global configuration change in your cluster, such as changing the encryption type, you must use the
following instructions to regenerate the principals for your cluster.

Important:

• Regenerate principals using the following steps in the Cloudera Manager Admin Console and not
directly using kadmin shell.

• Do not regenerate the principals for your cluster unless you have made a global configuration
change. Before regenerating, be sure to read Configuring a Cluster-dedicated MIT KDC with
Cross-Realm Trust on page 115 to avoid making your existing host keytabs invalid.

• If you are using Active Directory, delete the AD accounts with the userPrincipalName (or login
names) that you want to manually regenerate before continuing with the steps below.

To view and regenerate the Kerberos principals for your cluster:

1. Select Administration > Kerberos.
2. The currently configured Kerberos principals are displayed. If you are running HDFS, the hdfs/hostname and

host/hostnameprincipals are listed. If you are runningMapReduce, themapred/hostname andhost/hostname
principals are listed. The principals for other running services are also listed.

3. Only if necessary, select the principals you want to regenerate.

Cloudera Security | 27

Authentication

4. Click Regenerate.

The Security Inspector

The Security Inspector uses the Host Inspector to run a security-related set of commands on the hosts in your cluster.
It reports on things such as how Java is configured for encryption and on the default realms configured on each host:

1. Select Administration > Kerberos.
2. Click Security Inspector. Cloudera Manager begins several tasks to inspect the managed hosts.
3. After the inspection completes, click Download Result Data or Show Inspector Results to review the results.

Mapping Kerberos Principals to Short Names

Kerberos user principals typically have the format username@REALM, whereas Hadoop usernames are typically just
username. To translate Kerberos principals to Hadoop usernames, Hadoop uses rules defined in the
hadoop.security.auth_to_local property. The default setting strips the @REALM portion from the Kerberos
principal, where REALM is the Kerberos realm defined by the default_realm setting in the NameNode krb5.conf
file.

If you configure your cluster's Kerberos realm to trust other realms, such as a trust between your cluster's realm and
a central Active Directory or MIT Kerberos realm, you must identify the trusted realms in Cloudera Manager so it can
automatically generate the appropriate rules. If you do not do so, user accounts in those realms cannot access the
cluster.

To specify trusted realms using Cloudera Manager:

1. Navigate to the HDFS Service > Configuration tab.
2. In the Search field, type Kerberos Realms to find the Trusted Kerberos Realms and Additional Rules to Map

Kerberos Principals to Short Names settings (in the Service-Wide > Security category).
3. Add realms that are trusted by the cluster's Kerberos realm. Realm names, including Active Directory realms, must

be specified in uppercase letters (for example, CORP.EXAMPLE.COM). To add multiple realms, use the button.
4. Click Save Changes.

The auto-generated mapping rules strip the Kerberos realm (for example, @CORP.EXAMPLE.COM) for each realm
specified in the Trusted Kerberos Realms setting. To customize the mapping rules, specify additional rules in the
Additional Rules to Map Kerberos Principals to Short Names setting, one rule per line. Only enter rules in this field;
ClouderaManager automatically surrounds the ruleswith the appropriate XML tags for the generated core-site.xml
file. For more information on creating custom rules, including how to translate mixed-case Kerberos principals to
lowercase Hadoop usernames, see Mapping Rule Syntax on page 113.

If you specify custom mapping rules for a Kerberos realm using the Additional Rules to Map Kerberos Principals to
Short Names setting, ensure that the same realm is not specified in the Trusted Kerberos Realms setting. If it is, the
auto-generated rule (which only strips the realm from the principal and does no additional transformations) takes
precedent, and the custom rule is ignored.

For these changes to take effect, you must restart the cluster and re-deploy the client configuration. On the Cloudera
Manager Home page, click the cluster-wide button and select Deploy Client Configuration.

Using Auth-to-Local Rules to Isolate Cluster Users

By default, the Hadoop auth-to-local rules map a principal of the form <username>/<hostname>@<REALM> to
<username>. This means if there are multiple clusters in the same realm, then principals associated with hosts of one
cluster would map to the same user in all other clusters.

For example, if you have two clusters, cluster1-host-[1..4].example.com and cluster2-host-
[1..4].example.com, that are part of the same Kerberos realm, EXAMPLE.COM, then the cluster2 principal,
hdfs/cluster2-host1.example.com@EXAMPLE.COM, will map to the hdfs user even on cluster1 hosts.

To prevent this, use auth-to-local rules as follows to ensure only principals containing hostnames of cluster1 are
mapped to legitimate users.

1. Navigate to the HDFS Service > Configuration tab.

28 | Cloudera Security

Authentication

2. In the Search field, type Additional Rules to find the Additional Rules toMap Kerberos Principals to Short Names
settings (in the Service-Wide > Security category).

3. Additional mapping rules can be added to the Additional Rules to Map Kerberos Principals to Short Names
property. These rules will be inserted before the rules generated from the list of trusted realms (configured above)
and before the default rule.

RULE:[2:$1/$2@$0](hdfs/cluster1-host1.example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/
RULE:[2:$1/$2@$0](hdfs/cluster1-host2.example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/
RULE:[2:$1/$2@$0](hdfs/cluster1-host3.example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/
RULE:[2:$1/$2@$0](hdfs/cluster1-host4.example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/
RULE:[2:$1/$2@$0](hdfs.*@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/nobody/

In the example, the principal hdfs/<hostname>@REALM is mapped to the hdfs user if <hostname> is one of
the cluster hosts. Otherwise it gets mapped to nobody, thus ensuring that principals from other clusters do not
have access to cluster1.

If the cluster hosts can be represented with a regular expression, that expression can be used to make the
configuration easier and more conducive to scaling. For example:

RULE:[2:$1/$2@$0](hdfs/cluster1-host[1-4].example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/
RULE:[2:$1/$2@$0](hdfs.*@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/nobody/

4. Click Save Changes.
5. Restart the HDFS service and any dependent services.

Configuring YARN for Long-running Applications

Long-running applications such as Spark Streaming jobs will need additional configuration since the default settings
only allow the hdfs user's delegation tokens a maximum lifetime of 7 days which is not always sufficient.

You can work around this by configuring the ResourceManager as a proxy user for the corresponding HDFS NameNode
so that the ResourceManager can request new tokens when the existing ones are past their maximum lifetime. YARN
will then be able to continue performing localization and log-aggregation on behalf of the hdfs user.

Configure the proxy user in Cloudera Manager as follows:

1. Go to the Cloudera Manager Admin Console.
2. Using the Clusters tab, navigate to the YARN service.
3. Click Configuration.
4. Under theResourceManagerDefault Group >Advanced category, add the following string to theResourceManager

Advanced Configuration Snippet (Safety Valve) for yarn-site.xml property.

<property>
<name>yarn.resourcemanager.proxy-user-privileges.enabled</name>
<value>true</value>
</property>

5. Click Save Changes.
6. Using the Clusters tab, navigate to the HDFS service.
7. Click Configuration.
8. Under the Service-Wide >Advanced category, add the following string to the Cluster-wideAdvanced Configuration

Snippet (Safety Valve) for core-site.xml property.

<property>
<name>hadoop.proxyuser.yarn.hosts</name>
<value>*</value>
</property>

<property>
<name>hadoop.proxyuser.yarn.groups</name>
<value>*</value>
</property>

Cloudera Security | 29

Authentication

9. Click Save Changes.
10. Restart the YARN and HDFS services.

Enabling Kerberos Authentication Without the Wizard

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Note that certain steps in the following procedure to configure Kerberos security may not be completed without Full
Administrator role privileges.

Important: Ensure you have secured communication between the Cloudera Manager Server and
Agents before you enable Kerberos on your cluster. Kerberos keytabs are sent from the Cloudera
Manager Server to the Agents, and must be encrypted to prevent potential misuse of leaked keytabs.
For secure communication, you should have at least Level 1 TLS enabled as described in Configuring
TLS Security for Cloudera Manager (Level 1).

• Prerequisites - These instructions assume you know how to install and configure Kerberos, you already have a
working Kerberos key distribution center (KDC) and realm setup, and that you've installed the following Kerberos
client packages on all cluster hosts and hosts that will be used to access the cluster, depending on the OS in use.

Packages RequiredOS

RHEL 6 Compatible, RHEL
5 Compatible

• openldap-clients on the Cloudera Manager Server host
• krb5-workstation, krb5-libs on ALL hosts

SLES • openldap2-client on the Cloudera Manager Server host
• krb5-client on ALL hosts

Ubuntu or Debian • ldap-utils on the Cloudera Manager Server host
• krb5-user on ALL hosts

Windows • krb5-workstation, krb5-libs on ALL hosts

Furthermore, Oozie andHue require that the realm support renewable tickets. ClouderaManager supports setting
up kerberized clusters with MIT KDC and Active Directory.

Important: If you want to integrate Kerberos directly with Active Directory, ensure you have
support from your AD administration team to do so. This includes any future support required
to troubleshoot issues such as Kerberos TGT/TGS ticket renewal, access to KDC logs for debugging
and so on.

For more information about using Active Directory, refer the section below on Considerations when using an
Active Directory KDC and the Microsoft AD documentation.

For more information about installing and configuring MIT KDC, see:

• MIT Kerberos Home
• MIT Kerberos Documentation

• Support

– Kerberos security in Cloudera Manager has been tested on the following version of MIT Kerberos 5:

– krb5-1.6.1 on Red Hat Enterprise Linux 5 and CentOS 5

– Kerberos security in Cloudera Manager is supported on the following versions of MIT Kerberos 5:

– krb5-1.6.3 on SLES 11 Service Pack 1
– krb5-1.8.1 on Ubuntu

30 | Cloudera Security

Authentication

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/sect-security_guide-kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/ch-kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/ch-kerberos
https://www.suse.com/documentation/sles11/singlehtml/book_security/book_security.html
https://help.ubuntu.com/community/Kerberos
http://technet.microsoft.com/en-us/library/bb742433.aspx#EDAA
https://technet.microsoft.com/en-us/library/bb742516.aspx
http://web.mit.edu/Kerberos
http://web.mit.edu/Kerberos/krb5-1.8/

– krb5-1.8.2 on Red Hat Enterprise Linux 6 and CentOS 6
– krb5-1.9 on Red Hat Enterprise Linux 6.1

Here are the general steps to using Cloudera Manager to configure Hadoop security on your cluster, each of which is
described in more detail in the following sections:

Step 1: Install Cloudera Manager and CDH

If you have not already done so, Cloudera strongly recommends that you install and configure the Cloudera Manager
Server and Cloudera Manager Agents and CDH to set up a fully-functional CDH cluster before you begin doing the
following steps to implement Hadoop security features.

Overview of the User Accounts and Groups in CDH and Cloudera Manager to Support Security

When you install the CDH packages and the Cloudera Manager Agents on your cluster hosts, Cloudera Manager takes
some steps to provide system security such as creating the following Unix accounts and setting directory permissions
as shown in the following table. TheseUnix accounts and directory permissionsworkwith the Hadoop Kerberos security
requirements.

Note: Cloudera Manager 5.3 introduces a new single user mode. In single user mode, the Cloudera
Manager Agent and all the processes run by services managed by Cloudera Manager are started as a
single configured user and group. See Single User Mode Requirements for more information.

Runs These RolesThis User

NameNode, DataNodes, and Secondary Nodehdfs

JobTracker and TaskTrackers (MR1) and Job History Server (YARN)mapred

ResourceManager and NodeManagers (YARN)yarn

Oozie Serveroozie

Hue Server, Beeswax Server, Authorization Manager, and Job Designerhue

The hdfs user also acts as the HDFS superuser.

When you install the Cloudera Manager Server on the server host, a new Unix user account called cloudera-scm is
created automatically to support security. The Cloudera Manager Server uses this account to create and deploy the
host principals and keytabs on your cluster.

If you installed CDH and Cloudera Manager at the Same Time

If you have a new installation and you installed CDH and Cloudera Manager at the same time, when you started the
Cloudera Manager Agents on your cluster hosts, the Cloudera Manager Agent on each host automatically configured
the directory owners shown in the following table to support security. Assuming the owners are configured as shown,
the Hadoop daemons can then automatically set the permissions for each of the directories specified by the properties
shown below to make sure they are properly restricted. It's critical that the owners are configured exactly as shown
below, so don't change them:

OwnerDirectory Specified in this Property

hdfs:hadoopdfs.name.dir

hdfs:hadoopdfs.data.dir

mapred:hadoopmapred.local.dir

mapred:hadoopmapred.system.dir in HDFS

yarn:yarnyarn.nodemanager.local-dirs

Cloudera Security | 31

Authentication

OwnerDirectory Specified in this Property

yarn:yarnyarn.nodemanager.log-dirs

oozie:oozieoozie.service.StoreService.jdbc.url (if using
Derby)

hue:hue[[database]] name

hue:huejavax.jdo.option.ConnectionURL

If you Installed and Used CDH Before Installing Cloudera Manager

If you have been using HDFS and runningMapReduce jobs in an existing installation of CDHbefore you installed Cloudera
Manager, you must manually configure the owners of the directories shown in the table above. Doing so enables the
Hadoop daemons to automatically set the permissions for each of the directories. It's critical that youmanually configure
the owners exactly as shown above.

Step 2: If You are Using AES-256 Encryption, Install the JCE Policy File

If you are using CentOS or RHEL 5.5 or higher, which use AES-256 encryption by default for tickets, you must install
the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File on all cluster and Hadoop user hosts.
There are 2 ways to do this:

• In the Cloudera Manager Admin Console, navigate to the Hosts page. Both, the Add New Hosts to Cluster wizard
and the Re-run Upgrade Wizard will give you the option to have Cloudera Manager install the JCE Policy file for
you.

• You can follow the JCE Policy File installation instructions in the README.txt file included in the
jce_policy-x.zip file.

Alternatively, you can configure Kerberos to not use AES-256 by removing aes256-cts:normal from the
supported_enctypes field of the kdc.conf or krb5.conf file. Note that after changing the kdc.conf file, you'll
need to restart both the KDC and the kadmin server for those changes to take affect. You may also need to recreate
or change the password of the relevant principals, including potentially the Ticket Granting Ticket principal (for example,
krbtgt/EXAMPLE.COM@EXAMPLE.COM). If AES-256 is still used after all of those steps, it's because the
aes256-cts:normal setting existed when the Kerberos database was created. To fix this, create a new Kerberos
database and then restart both the KDC and the kadmin server.

To verify the type of encryption used in your cluster:

1. On the local KDC host, type this command in the kadmin.local or kadmin shell to create a test principal:

kadmin: addprinc test

2. On a cluster host, type this command to start a Kerberos session as the test principal:

$ kinit test

3. After successfully running the previous command, type this command to view the encryption type in use:

$ klist -e

If AES is being used, output like the following is displayed after you type the klist command (note that AES-256
is included in the output):

Ticket cache: FILE:/tmp/krb5cc_0
Default principal: test@EXAMPLE.COM
Valid starting Expires Service principal
05/19/11 13:25:04 05/20/11 13:25:04 krbtgt/EXAMPLE.COM@EXAMPLE.COM
 Etype (skey, tkt): AES-256 CTS mode with 96-bit SHA-1 HMAC, AES-256 CTS mode with
96-bit SHA-1 HMAC

32 | Cloudera Security

Authentication

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Step 3: Get or Create a Kerberos Principal for the Cloudera Manager Server

In order to create and deploy the host principals and keytabs on your cluster, the Cloudera Manager Server must have
the correct Kerberos principal. Specifically, the Cloudera Manager Server must have a Kerberos principal that has
administrator privileges. Typically, principals with the second component of admin in the principal name (for example,
username/admin@EXAMPLE.COM) have administrator privileges. This iswhyadmin is shown in the following instructions
and examples.

To get or create the Kerberos principal for the Cloudera Manager Server, you can do either of the following:

• Ask your Kerberos administrator to create a Kerberos administrator principal for the Cloudera Manager Server.
• Create the Kerberos principal for the Cloudera Manager Server yourself by using the following instructions in this

step.

Creating the Cloudera Manager Principal

If you are using Active Directory

1. Create an Organizational Unit (OU) in your AD where all the principals used by your CDH cluster will reside.
2. Add a new AD user, for example, <username>@EXAMPLE.COM. The password for this user should be set to never

expire.
3. Use AD's Delegate Control wizard to allow this new user to Create, Delete and Manage User Accounts.

If you are using MIT KDC

The instructions in this section illustrate an example of creating the ClouderaManager Server principal forMIT Kerberos.
(If you are using another version of Kerberos, refer to your Kerberos documentation for instructions.)

Note: If you are running kadmin and the Kerberos Key Distribution Center (KDC) on the same host,
use kadmin.local in the following steps. If the Kerberos KDC is running on a remote host, you must
use kadmin instead of kadmin.local.

In the kadmin.local or kadmin shell, type the following command to create the Cloudera Manager Server principal,
replacing EXAMPLE.COM with the name of your realm:

kadmin: addprinc -pw <Password> cloudera-scm/admin@EXAMPLE.COM

Step 4: Import KDC Account Manager Credentials

1. In the Cloudera Manager Admin Console, select Administration > Kerberos.
2. Navigate to the Credentials tab and click Import Kerberos Account Manager Credentials.
3. In the Import Kerberos Account Manager Credentials dialog box, enter the username and password for the user

that can create principals for CDH cluster in the KDC. This is the user/principal you created in Step 3: Get or Create
a Kerberos Principal for the Cloudera Manager Server on page 33. Cloudera Manager encrypts the username and
password into a keytab and uses it as needed to create new principals.

Note: The username entered should have the realm portion in upper-case only as shown in the
example in the UI.

Click Close when complete.

Step 5: Configure the Kerberos Default Realm in the Cloudera Manager Admin Console

Minimum Required Role: Full Administrator

Cloudera Security | 33

Authentication

Important: Hadoop is unable to use a non-default realm. The Kerberos default realm is configured
in the libdefaults property in the /etc/krb5.conf file on every host in the cluster:

[libdefaults]
 default_realm = EXAMPLE.COM

1. In the Cloudera Manager Admin Console, select Administration > Settings.
2. Click the Security category, and enter the Kerberos realm for the cluster in the Kerberos Security Realm field (for

example, EXAMPLE.COM or HADOOP.EXAMPLE.COM) that you configured in the krb5.conf file.
3. Click Save Changes.

Step 6: Stop All Services

Minimum Required Role: Operator (also provided by Configurator, Cluster Administrator, Full Administrator)

Before you enable security in CDH, you must stop all Hadoop daemons in your cluster and then change some
configuration properties. You must stop all daemons in the cluster because after one Hadoop daemon has been
restarted with the configuration properties set to enable security. Daemons running without security enabled will be
unable to communicate with that daemon. This requirement to stop all daemons makes it impossible to do a rolling
upgrade to enable security on a Hadoop cluster.

Stop all running services, and the Cloudera Management service, as follows:

Stopping All Services

1. On the Home page, click

to the right of the cluster name and select Stop.
2. Click Stop in the confirmation screen. The Command Details window shows the progress of stopping services.

When All services successfully stopped appears, the task is complete and you can close the Command Details
window.

Stopping the Cloudera Management Service

1. On the Home page, click

to the right of Cloudera Management Service and select Stop.
2. Click Stop to confirm. The Command Details window shows the progress of stopping the roles.
3. When Command completed with n/n successful subcommands appears, the task is complete. Click Close.

Step 7: Enable Hadoop Security

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

To enable Hadoop security for the cluster, you enable it on an HDFS service. After you do so, the Cloudera Manager
Server automatically enables Hadoop security on theMapReduce and YARN services associatedwith that HDFS service.

1. Navigate to the HDFS Service > Configuration tab.
2. In the Search field, type Hadoop Secure to show the Hadoop security properties (found under the Service-Wide

> Security category).
3. Click the value for theHadoop Secure Authentication property and select the kerberos option to enable Hadoop

security on the selected HDFS service.
4. Click the value for the Hadoop Secure Authorization property and select the checkbox to enable service-level

authorization on the selected HDFS service. You can specify comma-separated lists of users and groups authorized

34 | Cloudera Security

Authentication

to use Hadoop services or perform admin operations using the following properties under the Service-Wide >
Security section:

• Authorized Users: Comma-separated list of users authorized to use Hadoop services.
• Authorized Groups: Comma-separated list of groups authorized to use Hadoop services.
• AuthorizedAdminUsers: Comma-separated list of users authorized to performadmin operations onHadoop.
• Authorized Admin Groups: Comma-separated list of groups authorized to perform admin operations on

Hadoop.

Important: For Cloudera Manager's Monitoring services to work, the hue user should always be
added as an authorized user.

5. In the Search field, type DataNode Transceiver to find the DataNode Transceiver Port property.
6. Click the value for the DataNode Transceiver Port property and specify a privileged port number (below 1024).

Cloudera recommends 1004.

Note: If there is more than one DataNode Role Group, youmust specify a privileged port number
for each DataNode Transceiver Port property.

7. In the Search field, typeDataNodeHTTP to find theDataNodeHTTPWebUI Port property and specify a privileged
port number (below 1024). Cloudera recommends 1006.

Note: These port numbers for the two DataNode properties must be below 1024 in order to
provide part of the security mechanism to make it impossible for a user to run aMapReduce task
that impersonates a DataNode. The port numbers for the NameNode and Secondary NameNode
can be anything you want, but the default port numbers are good ones to use.

8. In the Search field type Data Directory Permissions to find the DataNode Data Directory Permissions property.
9. Reset the value for the DataNode Data Directory Permissions property to the default value of 700 if not already

set to that.
10. Make sure you have changed theDataNode Transceiver Port,DataNodeDataDirectory Permissions andDataNode

HTTP Web UI Port properties for every DataNode role group.
11. Click Save Changes to save the configuration settings.

To enable ZooKeeper security:

1. Navigate to the ZooKeeper Service > Configuration tab and click View and Edit.
2. Click the value for Enable Kerberos Authentication property.
3. Click Save Changes to save the configuration settings.

To enable HBase security:

1. Navigate to the HBase Service > Configuration tab and click View and Edit.
2. In the Search field, type HBase Secure to show the Hadoop security properties (found under the Service-Wide >

Security category).
3. Click the value for the HBase Secure Authorization property and select the checkbox to enable authorization on

the selected HBase service.
4. Click the value for the HBase Secure Authentication property and select kerberos to enable authorization on

the selected HBase service.
5. Click Save Changes to save the configuration settings.

(CDH 4.3 or later) To enable Solr security:

1. Navigate to the Solr Service > Configuration tab and click View and Edit.
2. In the Search field, type Solr Secure to show the Solr security properties (found under the Service-Wide > Security

category).

Cloudera Security | 35

Authentication

3. Click the value for the Solr Secure Authentication property and select kerberos to enable authorization on the
selected Solr service.

4. Click Save Changes to save the configuration settings.

Note: If you use the Cloudera Manager Admin Console to generate a client configuration file after
you enable Hadoop security on your cluster, the generated configuration file will not contain the
Kerberos principal and keytab file that end users need to authenticate. Users must obtain Kerberos
principal and keytab file from your Kerberos administrator and then run the kinit command
themselves.

Step 8: Wait for the Generate Credentials Command to Finish

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

After you enable security for any of the services in Cloudera Manager, a command called Generate Credentials will be
triggered automatically. You can watch the progress of the command on the top right corner of the screen that shows
the running commands. Wait for this command to finish (indicated by a grey box containing "0" in it).

Step 9: Enable Hue to Work with Hadoop Security using Cloudera Manager

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

If you are using a Hue service, you must add a role instance of Kerberos Ticket Renewer to the Hue service to enable
Hue to work properly with the secure Hadoop cluster using Cloudera Manager.

The Hue Kerberos Ticket Renewer service will only renew tickets for the Hue service, for the principal
hue/<hostname>@<YOUR-REALM.COM>. The Hue principal is then used to impersonate other users for applications
within Hue such as the Job Browser, File Browser and so on.

Other services, such as HDFS and MapReduce, do not use the Hue Kerberos Ticket Renewer. They obtain tickets at
startup and use those tickets to obtain Delegation Tokens for various access privileges. Each service handles its own
ticket renewal as needed.

1. Go to the Hue service.
2. Click the Instances tab.
3. Click the Add Role Instances button.
4. Assign the Kerberos Ticket Renewer role instance to the same host as the Hue server.
5. When the wizard is finished, the status will display Finished and the Kerberos Ticket Renewer role instance is

configured. The Hue service will now work with the secure Hadoop cluster.

Troubleshooting the Kerberos Ticket Renewer:

If the Hue Kerberos Ticket Renewer does not start, check your KDC configuration and the ticket renewal property,
maxrenewlife, for the hue/<hostname> and krbtgt principals to ensure they are renewable. If not, running the
following commands on the KDC will enable renewable tickets for these principals.

kadmin.local: modprinc -maxrenewlife 90day krbtgt/YOUR_REALM.COM
kadmin.local: modprinc -maxrenewlife 90day +allow_renewable hue/<hostname>@YOUR-REALM.COM

Step 10: (Flume Only) Use Substitution Variables for the Kerberos Principal and Keytab

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

As described in Flume Security Configuration in the CDH 4 Security Guide, if you are using Flume on a secure cluster
you must configure the HDFS sink with the following configuration options in the flume.conf file:

• hdfs.kerberosPrincipal - fully-qualified principal.
• hdfs.kerberosKeytab - location on the local host of the keytab containing the user and host keys for the above

principal

36 | Cloudera Security

Authentication

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH4-Security-Guide/CDH4-Security-Guide.html

Here is an example of an HDFS sink configuration in the flume.conf file (the majority of the HDFS sink configuration
options have been omitted):

agent.sinks.sink-1.type = HDFS
agent.sinks.sink-1.hdfs.kerberosPrincipal = flume/_HOST@YOUR-REALM.COM
agent.sinks.sink-1.hdfs.kerberosKeytab = /etc/flume-ng/conf/flume.keytab
agent.sinks.sink-1.hdfs.proxyUser = weblogs

Since ClouderaManager generates the Flume keytab files for you, and the locations of the keytab files cannot be known
beforehand, substitution variables are required for Flume. ClouderaManager provides two Flume substitution variables
called $KERBEROS_PRINCIPAL and $KERBEROS_KEYTAB to configure the principal name and the keytab file path
respectively on each host.

Here is an example of using the substitution variables to configure the options shown in the previous example:

agent.sinks.sink-1.type = hdfs
agent.sinks.sink-1.hdfs.kerberosPrincipal = $KERBEROS_PRINCIPAL
agent.sinks.sink-1.hdfs.kerberosKeytab = $KERBEROS_KEYTAB
agent.sinks.sink-1.hdfs.proxyUser = weblogs

Use the following instructions to have Cloudera Manager add these variables to the flume.conf file on every host
that Cloudera Manager manages.

To use the Flume substitution variables for the Kerberos principal and keytab:

1. Go to the Flume service > Configuration page in Cloudera Manager.
2. Click Agent.
3. In the Configuration File property, add the configuration options with the substitution variables. For example:

agent.sinks.sink-1.type = hdfs
agent.sinks.sink-1.hdfs.kerberosPrincipal = $KERBEROS_PRINCIPAL
agent.sinks.sink-1.hdfs.kerberosKeytab = $KERBEROS_KEYTAB
agent.sinks.sink-1.hdfs.proxyUser = weblogs

4. Click Save.

Step 11: (CDH 4.0 and 4.1 only) Configure Hue to Use a Local Hive Metastore

If using Hue and the Bypass Hive Metastore Server option is not selected (metastore bypass is disabled by default),
then Hue will not be able to communicate with Hive with CDH 4.0 or CDH 4.1. This is not a problem with CDH 4.2 or
higher.

If you are using CDH 4.0 or 4.1, you can workaround this issue following the instructions in the Known Issues section
of the Cloudera Manager 4 Release Notes.

Step 12: Start All Services

Minimum Required Role: Operator (also provided by Configurator, Cluster Administrator, Full Administrator)

Start all services on your cluster:

Starting All Services

1. On the Home page, click

to the right of the cluster name and select Start.
2. Click Start that appears in the next screen to confirm. The CommandDetailswindow shows the progress of starting

services.

When All services successfully started appears, the task is complete and you can close the Command Details
window.

Cloudera Security | 37

Authentication

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/latest/Cloudera-Manager-Release-Notes/cmrn_known_issues.html

Starting the Cloudera Management Service

1. On the Home page, click

to the right of Cloudera Management Service and select Start.
2. Click Start to confirm. The Command Details window shows the progress of starting the roles.
3. When Command completed with n/n successful subcommands appears, the task is complete. Click Close.

Step 13: Deploy Client Configurations

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. On the Home page, click

to the right of the cluster name and select Deploy Client Configuration.
2. Click Deploy Client Configuration.

Step 14: Create the HDFS Superuser Principal

To create home directories for users you require access to a superuser account. In HDFS, the user account running the
NameNode process (hdfs by default) is a superuser. CDH automatically creates the hdfs superuser account on each
cluster host during CDH installation. When you enable Kerberos for the HDFS service, you lose access to the hdfs
superuser account via sudo -u hdfs commands. To enable access to the hdfs superuser account when Kerberos is
enabled, you must create a Kerberos principal or an AD user whose first or only component is hdfs. Alternatively, you
can designate a superuser group, whose members are superusers.

To create the hdfs superuser principal:

If you are using Active Directory
Add a new user account to Active Directory, hdfs@EXAMPLE.COM.

If you are using MIT KDC

In the kadmin.local or kadmin shell, type the following command to create a Kerberos principal named hdfs:

kadmin: addprinc hdfs@EXAMPLE.COM

This command prompts you to create a password for the hdfs principal. Use a strong password because this principal
provides superuser access to all of the files in HDFS.

To run commands as the hdfs superuser, you must obtain Kerberos credentials for the hdfs principal. To do so, run
the following command and provide the password:

$ kinit hdfs@EXAMPLE.COM

Designating a Superuser Group

To designate a group of superusers instead of using the default hdfs account, follow these steps:

1. Navigate to the HDFS Service > Configuration tab.
2. In the Search field, type Superuser to display the Superuser Group property.
3. Change the value from the default supergroup to the appropriate group name for your environment.
4. Click Save Changes.

For this change to take effect, you must restart the cluster.

38 | Cloudera Security

Authentication

Step 15: Get or Create a Kerberos Principal for Each User Account

Now that Kerberos is configured and enabled on your cluster, you and every other Hadoop user must have a Kerberos
principal or keytab to obtain Kerberos credentials to be allowed to access the cluster and use the Hadoop services. In
the next step of this procedure, you will need to create your own Kerberos principals in order to verify that Kerberos
security is working on your cluster. If you and the other Hadoop users already have a Kerberos principal or keytab, or
if your Kerberos administrator can provide them, you can skip ahead to the next step.

The following instructions explain how to create a Kerberos principal for a user account.

If you are using Active Directory

Add a newAD user account, <username>@EXAMPLE.COM for each ClouderaManager service that should use Kerberos
authentication.

If you are using MIT KDC

1. In the kadmin.local or kadmin shell, use the following command to create a principal for your account by replacing
EXAMPLE.COM with the name of your realm, and replacing username with a username:

kadmin: addprinc username@EXAMPLE.COM

2. When prompted, enter the password twice.

Step 16: Prepare the Cluster for Each User

Before you and other users can access the cluster, there are a few tasks you must do to prepare the hosts for each
user.

1. Make sure all hosts in the cluster have a Unix user account with the same name as the first component of that
user's principal name. For example, the Unix account joe should exist on every box if the user's principal name
is joe@YOUR-REALM.COM. You can use LDAP for this step if it is available in your organization.

Note: Each account must have a user ID that is greater than or equal to 1000. In the
/etc/hadoop/conf/taskcontroller.cfg file, the default setting for the banned.users
property ismapred,hdfs, andbin to prevent jobs frombeing submitted from those user accounts.
The default setting for the min.user.id property is 1000 to prevent jobs from being submitted
with a user ID less than 1000, which are conventionally Unix super users.

2. Create a subdirectory under /user on HDFS for each user account (for example, /user/joe). Change the owner
and group of that directory to be the user.

$ hadoop fs -mkdir /user/joe
$ hadoop fs -chown joe /user/joe

Note: sudo -u hdfs is not included in the commands above. This is because it is not required if
Kerberos is enabled on your cluster. You will, however, need to have Kerberos credentials for the
HDFS super user in order to successfully run these commands. For information on gaining access to
the HDFS super user account, see Step 14: Create the HDFS Superuser Principal on page 38

Step 17: Verify that Kerberos Security is Working

After you have Kerberos credentials, you can verify that Kerberos security is working on your cluster by trying to run
MapReduce jobs. To confirm, try launching a sleep or a pi job from the provided Hadoop examples
(/usr/lib/hadoop/hadoop-examples.jar).

Cloudera Security | 39

Authentication

Note:

This section assumes you have a fully-functional CDH cluster and you have been able to access HDFS
and run MapReduce jobs before you followed these instructions to configure and enable Kerberos
on your cluster. If you have not already done so, you should at a minimum use the Cloudera Manager
Admin Console to generate a client configuration file to enable you to access the cluster. For
instructions, see Deploying Client Configuration Files.

To verify that Kerberos security is working:

1. Acquire Kerberos credentials for your user account.

$ kinit USERNAME@YOUR-LOCAL-REALM.COM

2. Enter a password when prompted.
3. Submit a sample pi calculation as a test MapReduce job. Use the following command if you use a package-based

setup for Cloudera Manager:

$ hadoop jar /usr/lib/hadoop-0.20/hadoop-0.20.2*examples.jar pi 10 10000
Number of Maps = 10
Samples per Map = 10000
...
Job Finished in 38.572 seconds
Estimated value of Pi is 3.14120000000000000000

If you have a parcel-based setup, use the following command instead:

$ hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-0.20-mapreduce/hadoop-examples.jar pi
 10 10000
Number of Maps = 10
Samples per Map = 10000
...
Job Finished in 30.958 seconds
Estimated value of Pi is 3.14120000000000000000

You have now verified that Kerberos security is working on your cluster.

Important:

Running a MapReduce job will fail if you do not have a valid Kerberos ticket in your credentials cache.
You can examine the Kerberos tickets currently in your credentials cache by running the klist
command. You can obtain a ticket by running the kinit command and either specifying a keytab file
containing credentials, or entering the password for your principal. If you do not have a valid ticket,
you will receive an error such as:

11/01/04 12:08:12 WARN ipc.Client:
Exception encountered while connecting to the server :
javax.security.sasl.SaslException:GSS initiate failed
[Caused by GSSException: No valid credentials provided (Mechanism level:
 Failed to find any
Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to
nn-host/10.0.0.2:8020 failed on local exception:
java.io.IOException:javax.security.sasl.SaslException: GSS initiate
failed
[Caused by GSSException: No valid credentials provided
(Mechanism level: Failed to find any Kerberos tgt)]

Step 18: (Optional) Enable Authentication for HTTP Web Consoles for Hadoop Roles

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

40 | Cloudera Security

Authentication

Authentication for access to the HDFS,MapReduce, and YARN roles' web consoles can be enabled using a configuration
option for the appropriate service. To enable this authentication:

1. From the Clusters tab, select the service (HDFS,MapReduce, or YARN) forwhich youwant to enable authentication.
2. Click the Configuration tab.
3. Expand Service-Wide > Security, check the Enable Authentication for HTTP Web-Consoles property, and save

your changes.

A command is triggered to generate the new required credentials.

4. Once the command finishes, restart all roles of that service.

Configuring Authentication in Cloudera Navigator
Cloudera Navigator supports user authentication against Cloudera Manager user accounts and against an external
LDAP or Active Directory service. External authentication enables you to assign Cloudera Navigator user roles to LDAP
or Active Directory groups containing the appropriate users for each user role. Authenticationwith a ClouderaManager
user account requires either the Full Administrator or Navigator Administrator user role, and enables the user to use
Cloudera Navigator features or to configure the external authentication service.

Configuring External Authentication for Cloudera Navigator

Minimum Required Role: Navigator Administrator (also provided by Full Administrator)

Important: This feature is available only with a Cloudera Enterprise license.

For other licenses, the following applies:

• Cloudera Express- The feature is not available.
• Cloudera Enterprise Data Hub Edition Trial - The feature is available until you end the trial or the

trial license expires.

To obtain a license for Cloudera Enterprise, fill in this form or call 866-843-7207. After you install a
Cloudera Enterprise license, the feature will be available.

Cloudera Navigator supports user authentication against Cloudera Manager user accounts and against an external
service. The external service can be either LDAP or Active Directory. User authentication against Cloudera Manager
user accounts requires users to have one of two Cloudera Manager user roles, either Full Administrator or Navigator
Administrator. External authentication enables you to assign Cloudera Navigator user roles to LDAP or Active Directory
groups to which the appropriate users belong.

For more information about Cloudera Manager user accounts, see Cloudera Manager User Accounts on page 10. For
more information about Cloudera Navigator user roles, see Cloudera Navigator User Roles on page 214.

The following sections describe how to configure the supported external directory services.

Configuring Cloudera Navigator Authentication Using Active Directory

1. Click Cloudera Management Service on the Home page or the Clustersmenu.
2. Click Configuration > Navigator Metadata Server Default Group > External Authentication.
3. In the Authentication Backend Order field, select the order in which Cloudera Navigator should attempt its

authentication. You can choose to authenticate users using just one of the methods (using Cloudera Manager
user accounts is the default), or you can set it so that if the user cannot be authenticated by the first method, it
will attempt using the second method.

4. For External Authentication Type, select Active Directory.
5. In the LDAP URL property, provide the URL of the Active Directory server.
6. For Bind Distinguished Name, enter the distinguished name of the user to bind as. This is used to connect to

Active Directory for searching groups and to get other user information.

Cloudera Security | 41

Authentication

http://www.cloudera.com/content/cloudera/en/about/contact-form.html

7. For LDAP Bind Password, enter the password for the bind user entered above.
8. In the Active Directory NT Domain property, provide the NT domain to authenticate against.
9. After changing the configuration settings, restart the Navigator Metadata Service: click the Instances tab on the

ClouderaManagement Service page, checkNavigatorMetadata Service, and clickActions for Selected > Restart.

Important: Cloudera recommends that theAuthentication BackendOrder be set initially to Cloudera
Manager then External. A Cloudera Manager user with Full Administrator or Navigator Administrator
privileges can then log in to Cloudera Navigator and set up groups and users. Otherwise, the external
authentication system will be checked first, and if the same user credentials also exist in the specified
LDAP or Active Directory, the user will be authenticated there, and will not be authenticated as a
Cloudera Manager administrator. Since no user roles will have been set up yet for the users in the
external authentication system, the user's attempt to log in will fail. Once the groups and user roles
for Cloudera Navigator are set up, the Authentication Backend Order can be changed to External
then Cloudera Manager or External Only, if desired.

Configuring Cloudera Navigator Authentication Using an OpenLDAP-compatible Server

For an OpenLDAP-compatible directory, you have several options for searching for users and groups:

• You can specify a single base Distinguished Name (DN) and then provide a "Distinguished Name Pattern" to use
to match a specific user in the LDAP directory.

• Search filter options let you search for a particular user based on somewhat broader search criteria – for example
Cloudera Navigator users could be members of different groups or organizational units (OUs), so a single pattern
won't find all those users. Search filter options also let you find all the groups to which a user belongs, to help
determine if that user should be allowed to log in.

1. Click Cloudera Management Service on the Home page or the Clustersmenu.
2. Click Configuration > Navigator Metadata Server Default Group > External Authentication.
3. In the Authentication Backend Order field, select the order in which Cloudera Navigator should attempt its

authentication. You can choose to authenticate users using just one of the methods (using Cloudera Manager
user accounts is the default), or you can set it so that if the user cannot be authenticated by the first method, it
will attempt using the second method.

4. For External Authentication Type, select LDAP.
5. In the LDAP URL property, provide the URL of the LDAP server and (optionally) the base Distinguished Name (DN)

(the search base) as part of the URL — for example ldap://ldap-server.corp.com/dc=corp,dc=com.
6. For Bind Distinguished Name, enter the distinguished name of the user to bind as. This is used to connect to the

LDAP server for searching groups and to get other user information.
7. For LDAP Bind Password, enter the password for the bind user entered above.
8. To use a single "DistinguishedNamePattern", provide a pattern in the LDAPDistinguishedNamePattern property.

Use {0} in the pattern to indicate where the username should go. For example, to search for a distinguished name
where the uid attribute is the username, you might provide a pattern similar to
uid={0},ou=People,dc=corp,dc=com. Cloudera Navigator substitutes the name provided at login into this
pattern and performs a search for that specific user. So if a user provides the username "foo" at the Cloudera
Navigator login page, Cloudera Navigator will search for the DN uid=foo,ou=People,dc=corp,dc=com.

If you provided a base DN along with the URL, the pattern only needs to specify the rest of the DN pattern. For
example, if the URL you provide is ldap://ldap-server.corp.com/dc=corp,dc=com, and the pattern is
uid={0},ou=People, then the search DN will be uid=foo,ou=People,dc=corp,dc=com.

9. You can also search using User or Group search filters, using the LDAP User Search Base, LDAP User Search Filter,
LDAP Group Search Base and LDAP Group Search Filter settings. These allow you to combine a base DN with a
search filter to allow a greater range of search targets.

For example, if you want to authenticate users who may be in one of multiple OUs, the search filter mechanism
will allow this. You can specify theUser Search Base DN as dc=corp,dc=com and the user search filter as uid={0}.
Then Cloudera Navigator will search for the user anywhere in the tree starting from the Base DN. Suppose you

42 | Cloudera Security

Authentication

have two OUs—ou=Engineering and ou=Operations—Cloudera Navigator will find User "foo" if it exists in
either of these OUs, that is, uid=foo,ou=Engineering,dc=corp,dc=com or
uid=foo,ou=Operations,dc=corp,dc=com.

You can use a user search filter along with a DN pattern, so that the search filter provides a fallback if the DN
pattern search fails.

The Groups filters let you search to determine if a DN or username is a member of a target group. In this case,
the filter you provide can be something like member={0}where {0}will be replaced with the DN of the user you
are authenticating. For a filter requiring the username, {1}may be used, as memberUid={1}. This will return a
list of groups to which the user belongs.

10. Click Save Changes to commit the changes.
11. After changing the configuration settings, restart the Navigator Metadata Service: click the Instances tab on the

ClouderaManagement Service page, checkNavigatorMetadata Service, and clickActions for Selected > Restart.

Configuring Cloudera Navigator to Use LDAPS

If the LDAP server certificate has been signed by a trusted Certificate Authority (that is, VeriSign, GeoTrust, and so on),
steps 1 and 2 below may not be necessary.

1. Copy the CA certificate file to the Cloudera Navigator Server host.
2. Import the CA certificate(s) from the CA certificate file to the local truststore. The default truststore is located in

the $JAVA_HOME/jre/lib/security/cacerts file. This contains the default CA information shipped with the
JDK. Create an alternate default file called jssecacerts in the same location as the cacerts file. You can now
safely append CA certificates for any private or public CAs not present in the default cacerts file, while keeping
the original file intact.

For our example, we will follow this recommendation by copying the default cacerts file into the new
jssecacerts file, and then importing the CA certificate to this alternate truststore.

$ cp $JAVA_HOME/jre/lib/security/cacerts \
 $JAVA_HOME/jre/lib/jssecacerts

$ /usr/java/latest/bin/keytool -import -alias nt_domain_name \
-keystore /usr/java/latest/jre/lib/security/jssecacerts -file path_to_cert

Note:

• The default password for the cacerts store is changeit.
• The alias can be any name (not just the domain name).

3. Configure the LDAP URL property to use ldaps://ldap_server instead of ldap://ldap_server.

Managing Users and Groups for Cloudera Navigator

Required Role:

Note: The above are Cloudera Navigator user roles. Users with the Cloudera Manager user roles
Navigator Administrator or Full Administrator who log into the Cloudera Navigator Web UI with their
Cloudera Manager credentials will be logged in with the Full Administrator Cloudera Navigator user
role.

Cloudera Security | 43

Authentication

Cloudera Navigator supports user authentication against Cloudera Manager user accounts and against an external
LDAP or Active Directory service. External authentication enables you to assign Cloudera Navigator user roles to LDAP
or Active Directory groups containing the appropriate users for each user role.

Assigning Cloudera Navigator User Roles to LDAP or Active Directory Groups

This section assumes that values for your LDAP or Active Directory directory service have been configured in Cloudera
Manager as described in Configuring External Authentication for Cloudera Navigator. This section also assumes that
your LDAP or Active Directory service contains user groups that correspond to Cloudera Navigator user roles having
the permissions you want each group of users to have. If not, you should assign your users to such groups now. The
Cloudera Navigator user roles are as follows:

• Full Administrator
• User Administrator
• Auditing Viewer
• Lineage Viewer
• Metadata Administrator
• Policy Viewer
• Policy Administrator

Each of these roles and the permissions associated with it are described in Cloudera Navigator User Roles.

To add or remove Cloudera Navigator user roles to LDAP or Active Directory user groups, you should know the names
of the directory groups you want to configure, and then perform the following steps:

1. Open the Cloudera Navigator Web UI in one of the following ways:

• On the Clustersmenu of Cloudera Manager, click Cloudera Navigator in the Cloudera Management Service
section for the desired cluster.

• Click the Instances tab on the Cloudera Management Service page, and click Navigator Metadata Server. In
the Summary section's Quick Links, click Cloudera Navigator.

2. Log in to Cloudera Navigator with the credentials of a user having one or more of the following user roles:

• Cloudera Manager Full Administrator
• Cloudera Manager Navigator Administrator
• Cloudera Navigator Full Administrator
• Cloudera Navigator User Administrator

3. Click the Administration tab in the upper right.
4. Search for an LDAP or Active Directory group by entering its name (or the first portion of the name) in the search

field.

• Select All Groups to search among all groups in the external directory.
• SelectGroupswith Navigator Roles to display only external directory groups that have already been assigned

one or more Cloudera Navigator user roles.

5. From the LDAP or Active Directory groups displayed, select the group to which you want to assign a Cloudera
Navigator user role or roles. If roles have already been assigned to the group, they are listed beneath the name
of the group in the main panel.

6. ClickManage Role Assignment in the upper right.
7. Click the checkbox for each Cloudera Navigator user role youwant assigned to that Active Directory or LDAP group.

Uncheck any already-assigned roles that you want to remove from the group.
8. Click Save.

If a user's role assignments are changed, the changes take effect with the user's next new session, that is, the next
time the user logs in to Cloudera Navigator.

44 | Cloudera Security

Authentication

Configuring Authentication in CDH Using the Command Line
The security features in CDH 5 enable Hadoop to preventmalicious user impersonation. The Hadoop daemons leverage
Kerberos to perform user authentication on all remote procedure calls (RPCs). Group resolution is performed on the
Hadoop master nodes, NameNode, JobTracker and ResourceManager to guarantee that group membership cannot
be manipulated by users. Map tasks are run under the user account of the user who submitted the job, ensuring
isolation there. In addition to these features, new authorization mechanisms have been introduced to HDFS and
MapReduce to enable more control over user access to data.

The security features in CDH 5 meet the needs of most Hadoop customers because typically the cluster is accessible
only to trusted personnel. In particular, Hadoop's current threat model assumes that users cannot:

1. Have root access to cluster machines.
2. Have root access to shared client machines.
3. Read or modify packets on the network of the cluster.

Note:

CDH 5 supports encryption of all user data sent over the network. For configuration instructions, see
Configuring Encrypted Shuffle, Encrypted Web UIs, and Encrypted HDFS Transport.

Note also that there is no built-in support for on-disk encryption.

Enabling Kerberos Authentication for Hadoop Using the Command Line

Important:

These instructions assume you knowhow to install and configure Kerberos, you already have aworking
Kerberos Key Distribution Center (KDC) and realm setup, and that you've installed the Kerberos user
packages on all cluster machines and machines which will be used to access the cluster. Furthermore,
Oozie and Hue require that the realm support renewable tickets. Formore information about installing
and configuring Kerberos, see:

• MIT Kerberos Home
• MIT Kerberos Documentation
• Kerberos Explained
• Microsoft Kerberos Overview
• Microsoft Kerberos in Windows Server 2008
• Microsoft Kerberos in Windows Server 2003

Here are the general steps to configuring secure Hadoop, each of which is described in more detail in the following
sections:

1. Install CDH 5.
2. Verify User Accounts and Groups in CDH 5 Due to Security.
3. If you are Using AES-256 Encryption, install the JCE Policy File.
4. Create and Deploy the Kerberos Principals and Keytab Files.
5. Shut Down the Cluster.
6. Enable Hadoop security.
7. Configure secure HDFS.
8. Optional: Configuring Security for HDFS High Availability.
9. Optional: Configuring secure WebHDFS.
10. Optional: Configuring secure NFS
11. Set Variables for Secure DataNodes.

Cloudera Security | 45

Authentication

http://web.mit.edu/Kerberos
http://web.mit.edu/Kerberos/krb5-1.8/
https://technet.microsoft.com/en-us/library/bb742516.aspx
https://msdn.microsoft.com/en-us/library/aa378747.aspx
http://technet.microsoft.com/en-us/library/cc753173(WS.10).aspx
https://www.microsoft.com/en-us/download/details.aspx?id=53314

12. Start up the NameNode.
13. Start up a DataNode.
14. Set the Sticky Bit on HDFS Directories.
15. Start up the Secondary NameNode (if used).
16. Configure Either MRv1 Security or YARN Security.

Note:

Kerberos security in CDH 5 has been tested with the following version of MIT Kerberos 5:

• krb5-1.6.1 on Red Hat Enterprise Linux 5 and CentOS 5

Kerberos security in CDH 5 is supported with the following versions of MIT Kerberos 5:

• krb5-1.6.3 on SUSE Linux Enterprise Server (SLES) 11 Service Pack 1
• krb5-1.8.1 on Ubuntu
• krb5-1.8.2 on Red Hat Enterprise Linux 6 and CentOS 6
• krb5-1.9 on Red Hat Enterprise Linux 6.1

Note:

If you want to enable Kerberos SPNEGO-based authentication for the Hadoop web interfaces, see the
Hadoop Auth, Java HTTP SPNEGO Documentation.

Step 1: Install CDH 5

Cloudera strongly recommends that you set up a fully-functional CDH 5 cluster before you begin configuring it to use
Hadoop's security features. When a secure Hadoop cluster is not configured correctly, the resulting error messages
are in a preliminary state, so it's best to start implementing security after you are sure your Hadoop cluster is working
properly without security.

For information about installing and configuring Hadoop and CDH 5 components, and deploying them on a cluster, see
Cloudera Installation Guide.

Step 2: Verify User Accounts and Groups in CDH 5 Due to Security

Note: CDH 5 introduces a new version of MapReduce: MapReduce 2.0 (MRv2) built on the YARN
framework. In this document, we refer to this new version as YARN. CDH 5 also provides an
implementation of the previous version of MapReduce, referred to as MRv1 in this document.

• If you are using MRv1, see Step 2a (MRv1 only): Verify User Accounts and Groups in MRv1 on page 46 for
configuration information.

• If you are using YARN, see Step 2b (YARN only): Verify User Accounts and Groups in YARN on page 48 for
configuration information.

Step 2a (MRv1 only): Verify User Accounts and Groups in MRv1

Note: If you are using YARN, skip this step and proceed to Step 2b (YARN only): Verify User Accounts
and Groups in YARN.

During CDH 5 package installation of MRv1, the following Unix user accounts are automatically created to support
security:

46 | Cloudera Security

Authentication

https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-auth/index.html

Runs These Hadoop ProgramsThis User

HDFS: NameNode, DataNodes, Secondary NameNode (or
Standby NameNode if you are using HA)

hdfs

MRv1: JobTracker and TaskTrackersmapred

The hdfs user also acts as the HDFS superuser.

The hadoop user no longer exists in CDH 5. If you currently use the hadoop user to run applications as an HDFS
super-user, you should instead use the new hdfs user, or create a separate Unix account for your application such as
myhadoopapp.

MRv1: Directory Ownership in the Local File System

Because the HDFS and MapReduce services run as different users, you must be sure to configure the correct directory
ownership of the following files on the local file system of each host:

PermissionsOwnerDirectoryFile System

drwx------hdfs:hdfsdfs.namenode.name.dir

(dfs.name.dir is
Local

deprecated but will also
work)

drwx------hdfs:hdfsdfs.datanode.data.dir

(dfs.data.dir is
Local

deprecated but will also
work)

drwxr-xr-xmapred:mapredmapred.local.dirLocal

See also Deploying MapReduce v1 (MRv1) on a Cluster.

You must also configure the following permissions for the HDFS and MapReduce log directories (the default locations
in /var/log/hadoop-hdfs and /var/log/hadoop-0.20-mapreduce), and the $MAPRED_LOG_DIR/userlogs/
directory:

PermissionsOwnerDirectoryFile System

drwxrwxr-xhdfs:hdfsHDFS_LOG_DIRLocal

drwxrwxr-xmapred:mapredMAPRED_LOG_DIRLocal

permissions will be set
automatically at daemon
start time

mapred:anygroupuserlogs directory in
MAPRED_LOG_DIR

Local

MRv1: Directory Ownership on HDFS

The following directories on HDFS must also be configured as follows:

1 In CDH 5, package installation and the Hadoop daemons will automatically configure the correct permissions for
you if you configure the directory ownership correctly as shown in the table above.

Cloudera Security | 47

Authentication

PermissionsOwnerDirectoryFile System

drwx------mapred:hadoopmapreduce.jobtracker.system.dir

(mapred.system.dir is
HDFS

deprecated but will also
work)

drwxr-xr-xhdfs:hadoop/ (root directory)HDFS

MRv1: Changing the Directory Ownership on HDFS

• If Hadoop security is enabled, use kinit hdfs to obtain Kerberos credentials for the hdfs user by running the
following commands before changing the directory ownership on HDFS:

$ sudo -u hdfs kinit -k -t hdfs.keytab hdfs/fully.qualified.domain.name@YOUR-REALM.COM

Ifkinit hdfs does notwork initially, runkinit -R after runningkinit to obtain credentials. (Formore information,
see Troubleshooting Authentication Issues on page 138). To change the directory ownership on HDFS, run the following
commands. Replace the example/mapred/system directory in the commands belowwith theHDFS directory specified
by themapreduce.jobtracker.system.dir (ormapred.system.dir) property in theconf/mapred-site.xml
file:

$ sudo -u hdfs hadoop fs -chown mapred:hadoop /mapred/system
$ sudo -u hdfs hadoop fs -chown hdfs:hadoop /
$ sudo -u hdfs hadoop fs -chmod -R 700 /mapred/system
$ sudo -u hdfs hadoop fs -chmod 755 /

• In addition (whether or not Hadoop security is enabled) create the /tmp directory. For instructions on creating
/tmp and setting its permissions, see these instructions.

Step 2b (YARN only): Verify User Accounts and Groups in YARN

Note: If you are usingMRv1, skip this step and proceed to Step 3: If you are Using AES-256 Encryption,
Install the JCE Policy File on page 50.

During CDH 5 package installation ofMapReduce 2.0 (YARN), the following Unix user accounts are automatically created
to support security:

Runs These Hadoop ProgramsThis User

HDFS: NameNode, DataNodes, Standby NameNode (if you are using HA)hdfs

YARN: ResourceManager, NodeManageryarn

YARN: MapReduce Job History Servermapred

Important: The HDFS and YARN daemons must run as different Unix users; for example, hdfs and
yarn. The MapReduce Job History server must run as user mapred. Having all of these users share a
common Unix group is recommended; for example, hadoop.

YARN: Directory Ownership in the Local File System

Because the HDFS and MapReduce services run as different users, you must be sure to configure the correct directory
ownership of the following files on the local file system of each host:

2 When starting up, MapReduce sets the permissions for the mapreduce.jobtracker.system.dir (or
mapred.system.dir) directory in HDFS, assuming the user mapred owns that directory.

48 | Cloudera Security

Authentication

Permissions (see Footnote
1)

OwnerDirectoryFile System

drwx------hdfs:hdfsdfs.namenode.name.dir

(dfs.name.dir is
Local

deprecated but will also
work)

drwx------hdfs:hdfsdfs.datanode.data.dir

(dfs.data.dir is
Local

deprecated but will also
work)

drwxr-xr-xyarn:yarnyarn.nodemanager.local-dirsLocal

drwxr-xr-xyarn:yarnyarn.nodemanager.log-dirsLocal

--Sr-s---root:yarncontainer-executorLocal

r--------root:yarnconf/container-executor.cfgLocal

Important: Configuration changes to the Linux container executor could result in local NodeManager
directories (such as usercache) being left with incorrect permissions. To avoid this, when making
changes using either Cloudera Manager or the command line, first manually remove the existing
NodeManager local directories from all configured local directories
(yarn.nodemanager.local-dirs), and let the NodeManager recreate the directory structure.

You must also configure the following permissions for the HDFS, YARN and MapReduce log directories (the default
locations in /var/log/hadoop-hdfs, /var/log/hadoop-yarn and /var/log/hadoop-mapreduce):

PermissionsOwnerDirectoryFile System

drwxrwxr-xhdfs:hdfsHDFS_LOG_DIRLocal

drwxrwxr-xyarn:yarn$YARN_LOG_DIRLocal

drwxrwxr-xmapred:mapredMAPRED_LOG_DIRLocal

YARN: Directory Ownership on HDFS

The following directories on HDFS must also be configured as follows:

PermissionsOwnerDirectoryFile System

drwxr-xr-xhdfs:hadoop/ (root directory)HDFS

drwxrwxrwxtyarn:hadoopyarn.nodemanager.remote-app-log-dirHDFS

drwxrwxrwxtmapred:hadoopmapreduce.jobhistory.intermediate-done-dirHDFS

drwxr-x---mapred:hadoopmapreduce.jobhistory.done-dirHDFS

3 In CDH 5, package installation and the Hadoop daemons will automatically configure the correct permissions for
you if you configure the directory ownership correctly as shown in the two tables above. See also Deploying
MapReduce v2 (YARN) on a Cluster.

Cloudera Security | 49

Authentication

YARN: Changing the Directory Ownership on HDFS
If Hadoop security is enabled, use kinit hdfs to obtain Kerberos credentials for the hdfs user by running the
following commands:

$ sudo -u hdfs kinit -k -t hdfs.keytab hdfs/fully.qualified.domain.name@YOUR-REALM.COM
$ hadoop fs -chown hdfs:hadoop /
$ hadoop fs -chmod 755 /

If kinit hdfs does not work initially, run kinit -R after running kinit to obtain credentials. See Troubleshooting
Authentication Issues on page 138. To change the directory ownership on HDFS, run the following commands:

$ sudo -u hdfs hadoop fs -chown hdfs:hadoop /
$ sudo -u hdfs hadoop fs -chmod 755 /
$ sudo -u hdfs hadoop fs -chown yarn:hadoop [yarn.nodemanager.remote-app-log-dir]
$ sudo -u hdfs hadoop fs -chmod 1777 [yarn.nodemanager.remote-app-log-dir]
$ sudo -u hdfs hadoop fs -chown mapred:hadoop [mapreduce.jobhistory.intermediate-done-dir]
$ sudo -u hdfs hadoop fs -chmod 1777 [mapreduce.jobhistory.intermediate-done-dir]
$ sudo -u hdfs hadoop fs -chown mapred:hadoop [mapreduce.jobhistory.done-dir]
$ sudo -u hdfs hadoop fs -chmod 750 [mapreduce.jobhistory.done-dir]

• In addition (whether or not Hadoop security is enabled) create the /tmp directory. For instructions on creating
/tmp and setting its permissions, see Step 7: If Necessary, Create the HDFS /tmp Directory.

• In addition (whether or not Hadoop security is enabled), change permissions on the /user/history Directory.
See Step 8: Create the history Directory and Set Permissions and Owner.

Step 3: If you are Using AES-256 Encryption, Install the JCE Policy File

If you are using CentOS/Red Hat Enterprise Linux 5.6 or higher, or Ubuntu, which use AES-256 encryption by default
for tickets, you must install the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File on all
cluster and Hadoop user machines. For JCE Policy File installation instructions, see the README.txt file included in
the jce_policy-x.zip file.

Alternatively, you can configure Kerberos to not use AES-256 by removing aes256-cts:normal from the
supported_enctypes field of the kdc.conf or krb5.conf file. After changing the kdc.conf file, you must restart
both the KDC and the kadmin server for those changes to take affect. You may also need to re-create or change the
password of the relevant principals, including potentially the Ticket Granting Ticket principal (krbtgt/REALM@REALM).
If AES-256 is still used after completing steps, the aes256-cts:normal setting existed when the Kerberos database
was created. To fix this, create a new Kerberos database and then restart both the KDC and the kadmin server.

To verify the type of encryption used in your cluster:

1. On the local KDC host, type this command to create a test principal:

$ kadmin -q "addprinc test"

2. On a cluster host, type this command to start a Kerberos session as test:

$ kinit test

3. On a cluster host, type this command to view the encryption type in use:

$ klist -e

If AES is being used, output like the following is displayed after you type the klist command; note that AES-256
is included in the output:

Ticket cache: FILE:/tmp/krb5cc_0
Default principal: test@SCM
Valid starting Expires Service principal
05/19/11 13:25:04 05/20/11 13:25:04 krbtgt/SCM@SCM
 Etype (skey, tkt): AES-256 CTS mode with 96-bit SHA-1 HMAC, AES-256 CTS mode with
96-bit SHA-1 HMAC

50 | Cloudera Security

Authentication

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Step 4: Create and Deploy the Kerberos Principals and Keytab Files

A Kerberos principal is used in a Kerberos-secured system to represent a unique identity. Kerberos assigns tickets to
Kerberos principals to enable them to access Kerberos-secured Hadoop services. For Hadoop, the principals should be
of the format username/fully.qualified.domain.name@YOUR-REALM.COM. In this guide, the term username

in the username/fully.qualified.domain.name@YOUR-REALM.COM principal refers to the username of an
existing Unix account, such as hdfs or mapred.

A keytab is a file containing pairs of Kerberos principals and an encrypted copy of that principal's key. The keytab files
are unique to each host since their keys include the hostname. This file is used to authenticate a principal on a host to
Kerberos without human interaction or storing a password in a plain text file. Because having access to the keytab file
for a principal allows one to act as that principal, access to the keytab files should be tightly secured. They should be
readable by a minimal set of users, should be stored on local disk, and should not be included in machine backups,
unless access to those backups is as secure as access to the local machine.

Important:

For both MRv1 and YARN deployments: On every machine in your cluster, there must be a keytab
file for the hdfs user and a keytab file for the mapred user. The hdfs keytab file must contain entries
for the hdfs principal and a HTTP principal, and the mapred keytab file must contain entries for the
mapred principal and a HTTP principal. On each respective machine, the HTTP principal will be the
same in both keytab files.

In addition, for YARN deployments only: On every machine in your cluster, there must be a keytab
file for the yarn user. The yarn keytab file must contain entries for the yarn principal and a HTTP
principal. On each respective machine, the HTTP principal in the yarn keytab file will be the same as
the HTTP principal in the hdfs and mapred keytab files.

Note:

The following instructions illustrate an example of creating keytab files for MIT Kerberos. If you are
using another version of Kerberos, refer to your Kerberos documentation for instructions. You may
use either kadmin or kadmin.local to run these commands.

When to Use kadmin.local and kadmin

When creating the Kerberos principals and keytabs, you can use kadmin.local or kadmin depending on your access
and account:

• If you have root access to the KDC machine, but you do not have a Kerberos admin account, use kadmin.local.
• If you do not have root access to the KDC machine, but you do have a Kerberos admin account, use kadmin.
• If you have both root access to the KDC machine and a Kerberos admin account, you can use either one.

To start kadmin.local (on the KDC machine) or kadmin from any machine, run this command:

$ sudo kadmin.local

OR:

$ kadmin

Note:

In this guide, kadmin is shown as the prompt for commands in the kadmin shell, but you can type the
same commands at the kadmin.local prompt in the kadmin.local shell.

Cloudera Security | 51

Authentication

Note:

Running kadmin.local may prompt you for a password because it is being run via sudo. You should
provide your Unix password. Running kadmin may prompt you for a password because you need
Kerberos admin privileges. You should provide your Kerberos admin password.

To create the Kerberos principals

Important:

If you plan to useOozie, Impala, or the Hue Kerberos ticket renewer in your cluster, youmust configure
your KDC to allow tickets to be renewed, and you must configure krb5.conf to request renewable
tickets. Typically, you can do this by adding the max_renewable_life setting to your realm in
kdc.conf, and by adding the renew_lifetime parameter to the libdefaults section of
krb5.conf. For more information about renewable tickets, see the Kerberos documentation.

Do the following steps for every host in your cluster. Run the commands in the kadmin.local or kadmin shell, replacing
the fully.qualified.domain.name in the commands with the fully qualified domain name of each host. Replace
YOUR-REALM.COM with the name of the Kerberos realm your Hadoop cluster is in.

1. In the kadmin.local or kadmin shell, create the hdfs principal. This principal is used for the NameNode, Secondary
NameNode, and DataNodes.

kadmin: addprinc -randkey hdfs/fully.qualified.domain.name@YOUR-REALM.COM

Note:

If your Kerberos administrator or company has a policy about principal names that does not allow
you to use the format shown above, you canwork around that issue by configuring the<kerberos
principal> to <short name>mapping that is built into Hadoop. For more information, see
Appendix C - Configuring the Mapping from Kerberos Principals to Short Names.

2. Create the mapred principal. If you are using MRv1, the mapred principal is used for the JobTracker and
TaskTrackers. If you are using YARN, the mapred principal is used for the MapReduce Job History Server.

kadmin: addprinc -randkey mapred/fully.qualified.domain.name@YOUR-REALM.COM

3. YARN only: Create the yarn principal. This principal is used for the ResourceManager and NodeManager.

kadmin: addprinc -randkey yarn/fully.qualified.domain.name@YOUR-REALM.COM

4. Create the HTTP principal.

kadmin: addprinc -randkey HTTP/fully.qualified.domain.name@YOUR-REALM.COM

Important:

The HTTP principal must be in the format
HTTP/fully.qualified.domain.name@YOUR-REALM.COM. The first componentof theprincipal
must be the literal string "HTTP". This format is standard for HTTP principals in SPNEGO and is
hard-coded in Hadoop. It cannot be deviated from.

52 | Cloudera Security

Authentication

http://web.mit.edu/Kerberos/krb5-1.8/

To create the Kerberos keytab files

Important:

The instructions in this section for creating keytab files require using the Kerberos norandkey option
in the xst command. If your version of Kerberos does not support the norandkey option, or if you
cannot use kadmin.local, then use these alternate instructions in Appendix F to create appropriate
Kerberos keytab files. After using those alternate instructions to create the keytab files, continue with
the next section To deploy the Kerberos keytab files.

Do the following steps for every host in your cluster. Run the commands in the kadmin.local or kadmin shell, replacing
the fully.qualified.domain.name in the commands with the fully qualified domain name of each host:

1. Create the hdfs keytab file that will contain the hdfs principal and HTTP principal. This keytab file is used for the
NameNode, Secondary NameNode, and DataNodes.

kadmin: xst -norandkey -k hdfs.keytab hdfs/fully.qualified.domain.name
HTTP/fully.qualified.domain.name

2. Create the mapred keytab file that will contain the mapred principal and HTTP principal. If you are using MRv1,
the mapred keytab file is used for the JobTracker and TaskTrackers. If you are using YARN, the mapred keytab file
is used for the MapReduce Job History Server.

kadmin: xst -norandkey -k mapred.keytab mapred/fully.qualified.domain.name
HTTP/fully.qualified.domain.name

3. YARN only: Create the yarn keytab file that will contain the yarn principal and HTTP principal. This keytab file
is used for the ResourceManager and NodeManager.

kadmin: xst -norandkey -k yarn.keytab yarn/fully.qualified.domain.name
HTTP/fully.qualified.domain.name

4. Use klist to display the keytab file entries; a correctly-created hdfs keytab file should look something like this:

$ klist -e -k -t hdfs.keytab
Keytab name: WRFILE:hdfs.keytab
slot KVNO Principal
---- ---- ---
 1 7 HTTP/fully.qualified.domain.name@YOUR-REALM.COM (DES cbc mode with CRC-32)

 2 7 HTTP/fully.qualified.domain.name@YOUR-REALM.COM (Triple DES cbc mode with
 HMAC/sha1)
 3 7 hdfs/fully.qualified.domain.name@YOUR-REALM.COM (DES cbc mode with CRC-32)

 4 7 hdfs/fully.qualified.domain.name@YOUR-REALM.COM (Triple DES cbc mode with
 HMAC/sha1)

5. Continue with the next section To deploy the Kerberos keytab files.

To deploy the Kerberos keytab files

On every node in the cluster, repeat the following steps to deploy the hdfs.keytab and mapred.keytab files. If you
are using YARN, you will also deploy the yarn.keytab file.

1. On the host machine, copy or move the keytab files to a directory that Hadoop can access, such as
/etc/hadoop/conf.

a. If you are using MRv1:

$ sudo mv hdfs.keytab mapred.keytab /etc/hadoop/conf/

Cloudera Security | 53

Authentication

If you are using YARN:

$ sudo mv hdfs.keytab mapred.keytab yarn.keytab /etc/hadoop/conf/

b. Make sure that the hdfs.keytab file is only readable by the hdfs user, and that the mapred.keytab file
is only readable by the mapred user.

$ sudo chown hdfs:hadoop /etc/hadoop/conf/hdfs.keytab
$ sudo chown mapred:hadoop /etc/hadoop/conf/mapred.keytab
$ sudo chmod 400 /etc/hadoop/conf/*.keytab

Note:

To enable you to use the same configuration files on every host, Cloudera recommends that
you use the same name for the keytab files on every host.

c. YARN only:Make sure that the yarn.keytab file is only readable by the yarn user.

$ sudo chown yarn:hadoop /etc/hadoop/conf/yarn.keytab
$ sudo chmod 400 /etc/hadoop/conf/yarn.keytab

Important:

If the NameNode, Secondary NameNode, DataNode, JobTracker, TaskTrackers, HttpFS, or
Oozie services are configured to use Kerberos HTTP SPNEGO authentication, and two ormore
of these services are running on the same host, then all of the running services must use the
same HTTP principal and keytab file used for their HTTP endpoints.

Step 5: Shut Down the Cluster

To enable security in CDH, you must stop all Hadoop daemons in your cluster and then change some configuration
properties. You must stop all daemons in the cluster because after one Hadoop daemon has been restarted with the
configuration properties set to enable security, daemons runningwithout security enabledwill be unable to communicate
with that daemon. This requirement to shut down all daemons makes it impossible to do a rolling upgrade to enable
security on a Hadoop cluster.

To shut down the cluster, run the following command on every node in your cluster (as root):

$ for x in `cd /etc/init.d ; ls hadoop-*` ; do sudo service $x stop ; done

Step 6: Enable Hadoop Security

Cloudera recommends that all of the Hadoop configuration files throughout the cluster have the same contents.

To enable Hadoop security, add the following properties to the core-site.xml file on every machine in the cluster:

<property>
 <name>hadoop.security.authentication</name>
 <value>kerberos</value> <!-- A value of "simple" would disable security. -->
</property>

<property>
 <name>hadoop.security.authorization</name>
 <value>true</value>
</property>

54 | Cloudera Security

Authentication

Enabling Service-Level Authorization for Hadoop Services

The hadoop-policy.xml file maintains access control lists (ACL) for Hadoop services. Each ACL consists of
comma-separated lists of users and groups separated by a space. For example:

user_a,user_b group_a,group_b

If you only want to specify a set of users, add a comma-separated list of users followed by a blank space. Similarly, to
specify only authorized groups, use a blank space at the beginning. A * can be used to give access to all users.

For example, to give users, ann, bob, and groups, group_a, group_b access to Hadoop's DataNodeProtocol service,
modify thesecurity.datanode.protocol.acl property inhadoop-policy.xml. Similarly, to give all users access
to the InterTrackerProtocol service, modify security.inter.tracker.protocol.acl as follows:

<property>
 <name>security.datanode.protocol.acl</name>
 <value>ann,bob group_a,group_b</value>
 <description>ACL for DatanodeProtocol, which is used by datanodes to
 communicate with the namenode.</description>
</property>

<property>
 <name>security.inter.tracker.protocol.acl</name>
 <value>*</value>
 <description>ACL for InterTrackerProtocol, which is used by tasktrackers to
 communicate with the jobtracker.</description>
</property>

For more details, see Service-Level Authorization in Hadoop.

Step 7: Configure Secure HDFS

When following the instructions in this section to configure the properties in the hdfs-site.xml file, keep the
following important guidelines in mind:

• The properties for each daemon (NameNode, Secondary NameNode, and DataNode) must specify both the HDFS
and HTTP principals, as well as the path to the HDFS keytab file.

• The Kerberos principals for the NameNode, Secondary NameNode, and DataNode are configured in the
hdfs-site.xml file. The same hdfs-site.xml file with all three of these principals must be installed on every
hostmachine in the cluster. That is, it is not sufficient to have theNameNode principal configured on theNameNode
host machine only. This is because, for example, the DataNode must know the principal name of the NameNode
in order to send heartbeats to it. Kerberos authentication is bi-directional.

• The special string _HOST in the properties is replaced at run-time by the fully-qualified domain name of the host
machinewhere the daemon is running. This requires that reverseDNS is properlyworking on all the hosts configured
this way. You may use _HOST only as the entirety of the second component of a principal name. For example,
hdfs/_HOST@YOUR-REALM.COM is valid, but hdfs._HOST@YOUR-REALM.COM and
hdfs/_HOST.example.com@YOUR-REALM.COM are not.

• When performing the _HOST substitution for the Kerberos principal names, the NameNode determines its own
hostnamebasedon the configured valueoffs.default.name, whereas theDataNodesdetermine their hostnames
based on the result of reverse DNS resolution on the DataNode hosts. Likewise, the JobTracker uses the configured
value of mapred.job.tracker to determine its hostname whereas the TaskTrackers, like the DataNodes, use
reverse DNS.

• The dfs.datanode.address and dfs.datanode.http.address port numbers for the DataNodemust be
below 1024, because this provides part of the security mechanism to make it impossible for a user to run a map
task which impersonates a DataNode. The port numbers for the NameNode and Secondary NameNode can be
anything you want, but the default port numbers are good ones to use.

Cloudera Security | 55

Authentication

https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-project-dist/hadoop-common/ServiceLevelAuth.html

To configure secure HDFS

Add the following properties to the hdfs-site.xml file on everymachine in the cluster. Replace these example values
shown belowwith the correct settings for your site: path to the HDFS keytab, YOUR-REALM.COM, fully qualified domain
name of NN, and fully qualified domain name of 2NN

<!-- General HDFS security config -->
<property>
 <name>dfs.block.access.token.enable</name>
 <value>true</value>
</property>

<!-- NameNode security config -->
<property>
 <name>dfs.namenode.keytab.file</name>
 <value>/etc/hadoop/conf/hdfs.keytab</value> <!-- path to the HDFS keytab -->
</property>
<property>
 <name>dfs.namenode.kerberos.principal</name>
 <value>hdfs/_HOST@YOUR-REALM.COM</value>
</property>
<property>
 <name>dfs.namenode.kerberos.internal.spnego.principal</name>
 <value>HTTP/_HOST@YOUR-REALM.COM</value>
</property>

<!-- Secondary NameNode security config -->
<property>
 <name>dfs.secondary.namenode.keytab.file</name>
 <value>/etc/hadoop/conf/hdfs.keytab</value> <!-- path to the HDFS keytab -->
</property>
<property>
 <name>dfs.secondary.namenode.kerberos.principal</name>
 <value>hdfs/_HOST@YOUR-REALM.COM</value>
</property>
<property>
 <name>dfs.secondary.namenode.kerberos.internal.spnego.principal</name>
 <value>HTTP/_HOST@YOUR-REALM.COM</value>
</property>

<!-- DataNode security config -->
<property>
 <name>dfs.datanode.data.dir.perm</name>
 <value>700</value>
</property>
<property>
 <name>dfs.datanode.address</name>
 <value>0.0.0.0:1004</value>
</property>
<property>
 <name>dfs.datanode.http.address</name>
 <value>0.0.0.0:1006</value>
</property>
<property>
 <name>dfs.datanode.keytab.file</name>
 <value>/etc/hadoop/conf/hdfs.keytab</value> <!-- path to the HDFS keytab -->
</property>
<property>
 <name>dfs.datanode.kerberos.principal</name>
 <value>hdfs/_HOST@YOUR-REALM.COM</value>
</property>

<!-- Web Authentication config -->
<property>
 <name>dfs.web.authentication.kerberos.principal</name>
 <value>HTTP/_HOST@YOUR_REALM</value>
 </property>

56 | Cloudera Security

Authentication

To enable SSL for HDFS

Add the following property to hdfs-site.xml on every machine in your cluster.

<property>
<name>dfs.http.policy</name>
<value>HTTPS_ONLY</value>
</property>

Optional Step 8: Configuring Security for HDFS High Availability

CDH 5 supports the HDFS High Availability (HA) feature with Kerberos security enabled. There are two use cases that
affect security for HA:

• If you are not using Quorum-based Storage (see Software Configuration for Quorum-based Storage), then no extra
configuration for HA is necessary if automatic failover is not enabled. If automatic failover is enabled then access
to ZooKeeper should be secured. See the Software Configuration for Shared Storage Using NFS documentation
for details.

• If you are using Quorum-based Storage, then you must configure security for Quorum-based Storage by following
the instructions in this section.

To configure security for Quorum-based Storage:

Add the following Quorum-based Storage configuration properties to the hdfs-site.xml file on all of the machines
in the cluster:

<property>
 <name>dfs.journalnode.keytab.file</name>
 <value>/etc/hadoop/conf/hdfs.keytab</value> <!-- path to the HDFS keytab -->
</property>
<property>
 <name>dfs.journalnode.kerberos.principal</name>
 <value>hdfs/_HOST@YOUR-REALM.COM</value>
</property>
<property>
 <name>dfs.journalnode.kerberos.internal.spnego.principal</name>
 <value>HTTP/_HOST@YOUR-REALM.COM</value>
</property>

Note:

If you already have principals and keytabs created for the machines where the JournalNodes are
running, then you should reuse those principals and keytabs in the configuration properties above.
You will likely have these principals and keytabs already created if you are collocating a JournalNode
on a machine with another HDFS daemon.

Optional Step 9: Configure secure WebHDFS

Note:

If you are not using WebHDFS, you can skip this step.

Security for WebHDFS is disabled by default. If you want use WebHDFS with a secure cluster, this is the time to enable
and configure it.

To configure secure WebHDFS:

Cloudera Security | 57

Authentication

1. If you have not already done so, enable WebHDFS by adding the following property to the hdfs-site.xml file
on every machine in the cluster.

<property>
 <name>dfs.webhdfs.enabled</name>
 <value>true</value>
</property>

2. Add the following properties to the hdfs-site.xml file on every machine in the cluster. Replace the example
values shown below with the correct settings for your site.

<property>
 <name>dfs.web.authentication.kerberos.principal</name>
 <value>HTTP/_HOST@YOUR-REALM.COM</value>
</property>

<property>
 <name>dfs.web.authentication.kerberos.keytab</name>
 <value>/etc/hadoop/conf/HTTP.keytab</value> <!-- path to the HTTP keytab -->
</property>

Optional Step 10: Configuring a secure HDFS NFS Gateway

To deploy a Kerberized HDFS NFS gateway, add the following configuration properties to hdfs-site.xml on the NFS
server.

<property>
<name>dfs.nfs.keytab.file</name>
<value>/etc/hadoop/conf/hdfs.keytab</value> <!-- path to the HDFS or NFS gateway keytab
 -->
</property>

<property>
<name>dfs.nfs.kerberos.principal</name>
<value>hdfs/_HOST@YOUR-REALM.COM</value>
</property>

Step 11: Set Variables for Secure DataNodes

In order to allow DataNodes to start on a secure Hadoop cluster, you must set the following variables on all DataNodes
in /etc/default/hadoop-hdfs-datanode.

export HADOOP_SECURE_DN_USER=hdfs
export HADOOP_SECURE_DN_PID_DIR=/var/lib/hadoop-hdfs
export HADOOP_SECURE_DN_LOG_DIR=/var/log/hadoop-hdfs
export JSVC_HOME=/usr/lib/bigtop-utils/

Note:

Depending on the version of Linux you are using, you may not have the /usr/lib/bigtop-utils
directory on your system. If that is the case, set the JSVC_HOME variable to the
/usr/libexec/bigtop-utils directory by using this command:

export JSVC_HOME=/usr/libexec/bigtop-utils

Step 12: Start up the NameNode

You are now ready to start the NameNode. Use the service command to run the /etc/init.d script.

$ sudo service hadoop-hdfs-namenode start

58 | Cloudera Security

Authentication

You'll see some extra information in the logs such as:

10/10/25 17:01:46 INFO security.UserGroupInformation:
Login successful for user hdfs/fully.qualified.domain.name@YOUR-REALM.COM using keytab
 file /etc/hadoop/conf/hdfs.keytab

and:

12/05/23 18:18:31 INFO http.HttpServer: Adding Kerberos (SPNEGO) filter to
getDelegationToken
12/05/23 18:18:31 INFO http.HttpServer: Adding Kerberos (SPNEGO) filter to
renewDelegationToken
12/05/23 18:18:31 INFO http.HttpServer: Adding Kerberos (SPNEGO) filter to
cancelDelegationToken
12/05/23 18:18:31 INFO http.HttpServer: Adding Kerberos (SPNEGO) filter to fsck
12/05/23 18:18:31 INFO http.HttpServer: Adding Kerberos (SPNEGO) filter to getimage
12/05/23 18:18:31 INFO http.HttpServer: Jetty bound to port 50070
12/05/23 18:18:31 INFO mortbay.log: jetty-6.1.26
12/05/23 18:18:31 INFO server.KerberosAuthenticationHandler: Login using keytab
/etc/hadoop/conf/hdfs.keytab, for principal
HTTP/fully.qualified.domain.name@YOUR-REALM.COM
12/05/23 18:18:31 INFO server.KerberosAuthenticationHandler: Initialized, principal
[HTTP/fully.qualified.domain.name@YOUR-REALM.COM] from keytab
[/etc/hadoop/conf/hdfs.keytab]

You can verify that theNameNode is working properly by opening aweb browser to http://machine:50070/where
machine is the name of the machine where the NameNode is running.

Cloudera also recommends testing that the NameNode is working properly by performing a metadata-only HDFS
operation, which will now require correct Kerberos credentials. For example:

$ hadoop fs -ls

Information about the kinit Command

Important:

Running the hadoop fs -ls command will fail if you do not have a valid Kerberos ticket in your
credentials cache. You can examine the Kerberos tickets currently in your credentials cache by running
the klist command. You can obtain a ticket by running the kinit command and either specifying
a keytab file containing credentials, or entering the password for your principal. If you do not have a
valid ticket, you will receive an error such as:

11/01/04 12:08:12 WARN ipc.Client: Exception encountered while connecting
 to the server : javax.security.sasl.SaslException:
 GSS initiate failed [Caused by GSSException: No valid credentials
provided (Mechanism level: Failed to find any Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to
nn-host/10.0.0.2:8020 failed on local exception: java.io.IOException:
javax.security.sasl.SaslException: GSS initiate failed [Caused by
GSSException: No valid credentials provided (Mechanism level: Failed to
 find any Kerberos tgt)]

Note:

The kinit commandmust either be on the path for user accounts running the Hadoop client, or else
thehadoop.kerberos.kinit.commandparameter incore-site.xmlmust bemanually configured
to the absolute path to the kinit command.

Cloudera Security | 59

Authentication

Note:

If you are running MIT Kerberos 1.8.1 or higher, a bug in versions of the Oracle JDK 6 Update 26 and
higher causes Java to be unable to read the Kerberos credentials cache even after you have successfully
obtained a Kerberos ticket using kinit. To workaround this bug, run kinit -R after running kinit
initially to obtain credentials. Doing so will cause the ticket to be renewed, and the credentials cache
rewritten in a format which Java can read. For more information about this problem, see
Troubleshooting.

Step 12: Start up a DataNode

Begin by starting oneDataNodeonly tomake sure it can properly connect to theNameNode.Use theservice command
to run the /etc/init.d script.

$ sudo service hadoop-hdfs-datanode start

You'll see some extra information in the logs such as:

10/10/25 17:21:41 INFO security.UserGroupInformation:
Login successful for user hdfs/fully.qualified.domain.name@YOUR-REALM.COM using keytab
 file /etc/hadoop/conf/hdfs.keytab

If you can get a single DataNode running and you can see it registering with the NameNode in the logs, then start up
all the DataNodes. You should now be able to do all HDFS operations.

Step 14: Set the Sticky Bit on HDFS Directories

This step is optional but strongly recommended for security. In CDH 5, HDFS file permissions have support for the sticky
bit. The sticky bit can be set on directories, preventing anyone except the superuser, directory owner, or file owner
from deleting or moving the files within the directory. Setting the sticky bit for a file has no effect. This is useful for
directories such as /tmpwhich previously had to be set to beworld-writable. To set the sticky bit on the /tmp directory,
run the following command:

$ sudo -u hdfs kinit -k -t hdfs.keytab hdfs/fully.qualified.domain.name@YOUR-REALM.COM
$ sudo -u hdfs hadoop fs -chmod 1777 /tmp

After running this command, the permissions on /tmp will appear as shown below. (Note the "t" instead of the final
"x".)

$ hadoop fs -ls /
Found 2 items
drwxrwxrwt - hdfs supergroup 0 2011-02-14 15:55 /tmp
drwxr-xr-x - hdfs supergroup 0 2011-02-14 14:01 /user

Step 15: Start up the Secondary NameNode (if used)

At this point, you should be able to start the Secondary NameNode if you are using one:

$ sudo service hadoop-hdfs-secondarynamenode start

Note:

If you are using HDFSHA, do not use the Secondary NameNode. See Configuring HDFSHigh Availability
for instructions on configuring and deploying the Standby NameNode.

60 | Cloudera Security

Authentication

You'll see some extra information in the logs such as:

10/10/26 12:03:18 INFO security.UserGroupInformation:
Login successful for user hdfs/fully.qualified.domain.name@YOUR-REALM using keytab file
 /etc/hadoop/conf/hdfs.keytab

and:

12/05/23 18:33:06 INFO http.HttpServer: Adding Kerberos (SPNEGO) filter to getimage
12/05/23 18:33:06 INFO http.HttpServer: Jetty bound to port 50090
12/05/23 18:33:06 INFO mortbay.log: jetty-6.1.26
12/05/23 18:33:06 INFO server.KerberosAuthenticationHandler: Login using keytab
/etc/hadoop/conf/hdfs.keytab, for principal
HTTP/fully.qualified.domain.name@YOUR-REALM.COM
12/05/23 18:33:06 INFO server.KerberosAuthenticationHandler: Initialized, principal
[HTTP/fully.qualified.domain.name@YOUR-REALM.COM] from keytab
[/etc/hadoop/conf/hdfs.keytab]

You should make sure that the Secondary NameNode not only starts, but that it is successfully checkpointing.

If you're using the service command to start the Secondary NameNode from the /etc/init.d scripts, Cloudera
recommends setting the property fs.checkpoint.period in the hdfs-site.xml file to a very low value (such as
5), and then monitoring the Secondary NameNode logs for a successful startup and checkpoint. Once you are satisfied
that the SecondaryNameNode is checkpointing properly, you should reset thefs.checkpoint.period to a reasonable
value, or return it to the default, and then restart the Secondary NameNode.

You can make the Secondary NameNode perform a checkpoint by doing the following:

$ sudo -u hdfs hdfs secondarynamenode -checkpoint force

Note that this will not cause a running Secondary NameNode to checkpoint, but rather will start up a Secondary
NameNode that will immediately perform a checkpoint and then shut down. This can be useful for debugging.

Note:

If you encounter errors during Secondary NameNode checkpointing, it may be helpful to enable
Kerberos debugging output. For instructions, see Appendix D - Enabling Debugging Output for the Sun
Kerberos Classes.

Step 16: Configure Either MRv1 Security or YARN Security

At this point, you are ready to configure either MRv1 Security or YARN Security.

• If you are using MRv1, do the steps in Configuring MRv1 Security to configure, start, and test secure MRv1.

• If you are using YARN, do the steps in Configuring YARN Security to configure, start, and test secure YARN.

Configuring MRv1 Security

If you are using YARN, skip this section and see Configuring YARN Security.

If you are using MRv1, do the following steps to configure, start, and test secure MRv1.

1. Step 1: Configure Secure MRv1 on page 61
2. Step 2: Start up the JobTracker on page 63
3. Step 3: Start up a TaskTracker on page 63
4. Step 4: Try Running a Map/Reduce Job on page 63

Step 1: Configure Secure MRv1

Keep the following important information in mind when configuring secure MapReduce:

• The properties for Job Tracker and Task Tracker must specify the mapred principal, as well as the path to the
mapred keytab file.

Cloudera Security | 61

Authentication

• The Kerberos principals for the Job Tracker and Task Tracker are configured in the mapred-site.xml file. The
same mapred-site.xml file with both of these principals must be installed on every host machine in the cluster.
That is, it is not sufficient to have the Job Tracker principal configured on the Job Tracker host machine only. This
is because, for example, the TaskTracker must know the principal name of the JobTracker in order to securely
register with the JobTracker. Kerberos authentication is bi-directional.

• Do not use ${user.name} in the value of the mapred.local.dir or hadoop.log.dir properties in
mapred-site.xml. Doing so can prevent tasks from launching on a secure cluster.

• Make sure that each user who will be running MRv1 jobs exists on all cluster nodes (that is, on every node that
hosts any MRv1 daemon).

• Make sure the value specified for mapred.local.dir is identical in mapred-site.xml and
taskcontroller.cfg. If the values are different, this error message is returned.

• Make sure the value specified in taskcontroller.cfg for hadoop.log.dir is the same as what the Hadoop
daemons are using, which is /var/log/hadoop-0.20-mapreduce by default and can be configured in
mapred-site.xml. If the values are different, this error message is returned.

To configure secure MapReduce:

1. Add the following properties to the mapred-site.xml file on every machine in the cluster:

<!-- JobTracker security configs -->
<property>
 <name>mapreduce.jobtracker.kerberos.principal</name>
 <value>mapred/_HOST@YOUR-REALM.COM</value>
</property>
<property>
 <name>mapreduce.jobtracker.keytab.file</name>
 <value>/etc/hadoop/conf/mapred.keytab</value> <!-- path to the MapReduce keytab -->
</property>

<!-- TaskTracker security configs -->
<property>
 <name>mapreduce.tasktracker.kerberos.principal</name>
 <value>mapred/_HOST@YOUR-REALM.COM</value>
</property>
<property>
 <name>mapreduce.tasktracker.keytab.file</name>
 <value>/etc/hadoop/conf/mapred.keytab</value> <!-- path to the MapReduce keytab -->
</property>

<!-- TaskController settings -->
<property>
 <name>mapred.task.tracker.task-controller</name>
 <value>org.apache.hadoop.mapred.LinuxTaskController</value>
</property>
<property>
 <name>mapreduce.tasktracker.group</name>
 <value>mapred</value>
</property>

2. Create a file called taskcontroller.cfg that contains the following information:

hadoop.log.dir=<Path to Hadoop log directory. Should be same value used to start the
TaskTracker. This is required to set proper permissions on the log files so that they
can be written to by the user's tasks and read by the TaskTracker for serving on the
web UI.>
mapreduce.tasktracker.group=mapred
banned.users=mapred,hdfs,bin
min.user.id=1000

62 | Cloudera Security

Authentication

Note:

In the taskcontroller.cfg file, the default setting for the banned.users property is mapred,
hdfs, and bin to prevent jobs from being submitted using those user accounts. The default
setting for the min.user.id property is 1000 to prevent jobs from being submitted with a user
ID less than 1000, which are conventionally Unix super users. Note that some operating systems
such as CentOS 5 use a default value of 500 and above for user IDs, not 1000. If this is the case
on your system, change the default setting for the min.user.id property to 500. If there are
user accounts on your cluster that have a user ID less than the value specified for themin.user.id
property, the TaskTracker returns an error code of 255.

3. The path to the taskcontroller.cfg file is determined relative to the location of the task-controller
binary. Specifically, the path is <path of task-controller binary>/../../conf/taskcontroller.cfg.
If you installed the CDH 5 package, this path will always correspond to
/etc/hadoop/conf/taskcontroller.cfg.

Note:

For more information about the task-controller program, see Information about Other Hadoop
Security Programs.

Important:

The same mapred-site.xml file and the same hdfs-site.xml file must both be installed on every
host machine in the cluster so that the NameNode, Secondary NameNode, DataNode, Job Tracker
and Task Tracker can all connect securely with each other.

Step 2: Start up the JobTracker

You are now ready to start the JobTracker.

If you're using the /etc/init.d/hadoop-0.20-mapreduce-jobtracker script, then you can use the service
command to run it now:

$ sudo service hadoop-0.20-mapreduce-jobtracker start

You can verify that the JobTracker is working properly by opening a web browser to http://machine:50030/where
machine is the name of the machine where the JobTracker is running.

Step 3: Start up a TaskTracker

You are now ready to start a TaskTracker.

If you're using the /etc/init.d/hadoop-0.20-mapreduce-tasktracker script, then you can use the service
command to run it now:

$ sudo service hadoop-0.20-mapreduce-tasktracker start

Step 4: Try Running a Map/Reduce Job

You should nowbe able to runMap/Reduce jobs. To confirm, try launching a sleep or a pi job from the providedHadoop
examples (/usr/lib/hadoop-0.20-mapreduce/hadoop-examples.jar). Note that you will need Kerberos
credentials to do so.

Important:

Remember that the user who launches the job must exist on every node.

Cloudera Security | 63

Authentication

Configuring YARN Security

If you are using MRv1, skip this section and see Configuring MRv1 Security.

If you are using YARN, do the following steps to configure, start, and test secure YARN.

1. Configure Secure YARN.
2. Start up the ResourceManager.
3. Start up the NodeManager.
4. Start up the MapReduce Job History Server.
5. Try Running a Map/Reduce YARN Job.
6. (Optional) Step 6: Configuring YARN for long-running applications on page 66

Step 1: Configure Secure YARN

Before you start:

• The Kerberos principals for the ResourceManager and NodeManager are configured in the yarn-site.xml file.
The same yarn-site.xml file must be installed on every host machine in the cluster.

• Make sure that each user who will be running YARN jobs exists on all cluster nodes (that is, on every node that
hosts any YARN daemon).

To configure secure YARN:

1. Add the following properties to the yarn-site.xml file on every machine in the cluster:

<!-- ResourceManager security configs -->
<property>
 <name>yarn.resourcemanager.keytab</name>
 <value>/etc/hadoop/conf/yarn.keytab</value> <!-- path to the YARN keytab -->
</property>
<property>
 <name>yarn.resourcemanager.principal</name>
 <value>yarn/_HOST@YOUR-REALM.COM</value>
</property>

<!-- NodeManager security configs -->
<property>
 <name>yarn.nodemanager.keytab</name>
 <value>/etc/hadoop/conf/yarn.keytab</value> <!-- path to the YARN keytab -->
</property>
<property>
 <name>yarn.nodemanager.principal</name>
 <value>yarn/_HOST@YOUR-REALM.COM</value>
</property>
<property>
 <name>yarn.nodemanager.container-executor.class</name>
 <value>org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor</value>
</property>
<property>
 <name>yarn.nodemanager.linux-container-executor.group</name>
 <value>yarn</value>
</property>

<!-- To enable SSL -->
<property>
 <name>yarn.http.policy</name>
 <value>HTTPS_ONLY</value>
</property>

2. Add the following properties to the mapred-site.xml file on every machine in the cluster:

<!-- MapReduce Job History Server security configs -->
<property>
 <name>mapreduce.jobhistory.address</name>
 <value>host:port</value> <!-- Host and port of the MapReduce Job History Server;
default port is 10020 -->
</property>
<property>

64 | Cloudera Security

Authentication

 <name>mapreduce.jobhistory.keytab</name>
 <value>/etc/hadoop/conf/mapred.keytab</value> <!-- path to the MAPRED keytab for the
 Job History Server -->
</property>
<property>
 <name>mapreduce.jobhistory.principal</name>
 <value>mapred/_HOST@YOUR-REALM.COM</value>
</property>

<!-- To enable SSL -->
<property>
 <name>mapreduce.jobhistory.http.policy</name>
 <value>HTTPS_ONLY</value>
</property>

3. Create a file called container-executor.cfg for the Linux Container Executor program that contains the
following information:

yarn.nodemanager.local-dirs=<comma-separated list of paths to local NodeManager
directories. Should be same values specified in yarn-site.xml. Required to validate
paths passed to container-executor in order.>
yarn.nodemanager.linux-container-executor.group=yarn
yarn.nodemanager.log-dirs=<comma-separated list of paths to local NodeManager log
directories. Should be same values specified in yarn-site.xml. Required to set proper
permissions on the log files so that they can be written to by the user's containers
and read by the NodeManager for log aggregation.
banned.users=hdfs,yarn,mapred,bin
min.user.id=1000

Note:

In the container-executor.cfg file, the default setting for the banned.users property is
hdfs, yarn, mapred, and bin to prevent jobs from being submitted via those user accounts.
The default setting for the min.user.id property is 1000 to prevent jobs from being submitted
with a user ID less than 1000,which are conventionally Unix super users. Note that someoperating
systems such as CentOS 5 use a default value of 500 and above for user IDs, not 1000. If this is
the case on your system, change the default setting for the min.user.id property to 500. If
there are user accounts on your cluster that have a user ID less than the value specified for the
min.user.id property, the NodeManager returns an error code of 255.

4. The path to the container-executor.cfg file is determined relative to the location of the container-executor
binary. Specifically, the path is <dirname of container-executor
binary>/../etc/hadoop/container-executor.cfg. If you installed the CDH5package, this pathwill always
correspond to /etc/hadoop/conf/container-executor.cfg.

Note:

The container-executor program requires that the paths including and leading up to the
directories specified inyarn.nodemanager.local-dirs andyarn.nodemanager.log-dirs
to be set to 755 permissions as shown in this table on permissions on directories.

5. Verify that the ownership and permissions of the container-executor program corresponds to:

---Sr-s--- 1 root yarn 36264 May 20 15:30 container-executor

Note:

For more information about the Linux Container Executor program, see Appendix B - Information
about Other Hadoop Security Programs.

Cloudera Security | 65

Authentication

Step 2: Start up the ResourceManager

You are now ready to start the ResourceManager.

Note:

Make sure you always start ResourceManager before starting NodeManager.

If you're using the/etc/init.d/hadoop-yarn-resourcemanager script, then you canuse theservice command
to run it now:

$ sudo service hadoop-yarn-resourcemanager start

You can verify that the ResourceManager is working properly by opening a web browser to http://host:8088/ where
host is the name of the machine where the ResourceManager is running.

Step 3: Start up the NodeManager

You are now ready to start the NodeManager.

If you're using the /etc/init.d/hadoop-yarn-nodemanager script, then you can use the service command to
run it now:

$ sudo service hadoop-yarn-nodemanager start

You can verify that the NodeManager is working properly by opening a web browser to http://host:8042/ where host
is the name of the machine where the NodeManager is running.

Step 4: Start up the MapReduce Job History Server

You are now ready to start the MapReduce Job History Server.

If you're using the /etc/init.d/hadoop-mapreduce-historyserver script, then you can use the service
command to run it now:

$ sudo service hadoop-mapreduce-historyserver start

You can verify that the MapReduce JobHistory Server is working properly by opening a web browser to
http://host:19888/ where host is the name of the machine where the MapReduce JobHistory Server is running.

Step 5: Try Running a Map/Reduce YARN Job

You should nowbe able to runMap/Reduce jobs. To confirm, try launching a sleep or a pi job from the providedHadoop
examples (/usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar). Note that youwill need Kerberos
credentials to do so.

Important:

Remember that the user who launches the job must exist on every node.

To try running a MapReduce job using YARN, set the HADOOP_MAPRED_HOME environment variable and then submit
the job. For example:

$ export HADOOP_MAPRED_HOME=/usr/lib/hadoop-mapreduce
$ /usr/bin/hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar pi 10
10000

(Optional) Step 6: Configuring YARN for long-running applications

Long-running applications such as Spark Streaming jobs will need additional configuration since the default settings
only allow the hdfs user's delegation tokens a maximum lifetime of 7 days which is not always sufficient.

66 | Cloudera Security

Authentication

You can work around this by configuring the ResourceManager as a proxy user for the corresponding HDFS NameNode
so that the ResourceManager can request new tokens when the existing ones are past their maximum lifetime. YARN
will then be able to continue performing localization and log-aggregation on behalf of the hdfs user.

Set the following property in yarn-site.xml to true:

<property>
<name>yarn.resourcemanager.proxy-user-privileges.enabled</name>
<value>true</value>
</property>

Configure the following properties in core-site.xml on the HDFS NameNode. You can use a more restrictive
configuration by specifying hosts/groups instead of * as in the example below.

<property>
<name>hadoop.proxyuser.yarn.hosts</name>
<value>*</value>
</property>

<property>
<name>hadoop.proxyuser.yarn.groups</name>
<value>*</value>
</property>

Flume Authentication

Flume agents have the ability to store data on an HDFS filesystem configured with Hadoop security. The Kerberos
system and protocols authenticate communications between clients and services. Hadoop clients include users and
MapReduce jobs on behalf of users, and the services include HDFS andMapReduce. Flume acts as a Kerberos principal
(user) and needs Kerberos credentials to interact with the Kerberos security-enabled service. Authenticating a user or
a service can be done using a Kerberos keytab file. This file contains a key that is used to obtain a ticket-granting ticket
(TGT). The TGT is used to mutually authenticate the client and the service using the Kerberos KDC.

The following sections describe how to use Flume 1.3.x and CDH 5 with Kerberos security on your Hadoop cluster:

• Configuring Flume's Security Properties on page 67
• Flume Account Requirements on page 69
• Testing the Flume HDFS Sink Configuration on page 69
• Writing to a Secure HBase cluster on page 70

Important:

To enable Flume to work with Kerberos security on your Hadoop cluster, make sure you perform the
installation and configuration steps in Configuring Hadoop Security in CDH 5.

Note:

These instructions have been tested with CDH 5 and MIT Kerberos 5 only. The following instructions
describe an example of how to configure a Flume agent to be a client as the user flume to a secure
HDFS service. This section does not describe how to secure the communications between Flume
agents, which is not currently implemented.

Configuring Flume's Security Properties

Contents:

Writing as a single user for all HDFS sinks in a given Flume agent

The Hadoop services require a three-part principal that has the form of
username/fully.qualified.domain.name@YOUR-REALM.COM. Cloudera recommends using flume as the first

Cloudera Security | 67

Authentication

component and the fully qualified domain name of the host machine as the second. Assuming that Kerberos and
security-enabled Hadoop have been properly configured on the Hadoop cluster itself, you must add the following
parameters to the Flume agent's flume.conf configuration file, which is typically located at
/etc/flume-ng/conf/flume.conf:

agentName.sinks.sinkName.hdfs.kerberosPrincipal =
flume/fully.qualified.domain.name@YOUR-REALM.COM
agentName.sinks.sinkName.hdfs.kerberosKeytab = /etc/flume-ng/conf/flume.keytab

where:

agentName is the name of the Flume agent being configured, which in this release defaults to the value "agent".
sinkName is the name of the HDFS sink that is being configured. The respective sink's typemust be HDFS.

In the previous example, flume is the first component of the principal name, fully.qualified.domain.name is
the second, and YOUR-REALM.COM is the name of the Kerberos realm your Hadoop cluster is in. The
/etc/flume-ng/conf/flume.keytab file contains the keys necessary for
flume/fully.qualified.domain.name@YOUR-REALM.COM to authenticate with other services.

Flume and Hadoop also provide a simple keyword, _HOST, that gets expanded to be the fully qualified domain name
of the host machine where the service is running. This allows you to have one flume.conf file with the same
hdfs.kerberosPrincipal value on all of your agent host machines.

agentName.sinks.sinkName.hdfs.kerberosPrincipal = flume/_HOST@YOUR-REALM.COM

Writing as different users across multiple HDFS sinks in a single Flume agent

In this release, support has been added for secure impersonation of Hadoop users (similar to "sudo" in UNIX). This is
implemented in a way similar to how Oozie implements secure user impersonation.

The following steps to set up secure impersonation from Flume to HDFS assume your cluster is configured using
Kerberos. (However, impersonation also works on non-Kerberos secured clusters, and Kerberos-specific aspects should
be omitted in that case.)

1. Configure Hadoop to allow impersonation. Add the following configuration properties to your core-site.xml.

<property>
 <name>hadoop.proxyuser.flume.groups</name>
 <value>group1,group2</value>
 <description>Allow the flume user to impersonate any members of group1 and
group2</description>
</property>
<property>
 <name>hadoop.proxyuser.flume.hosts</name>
 <value>host1,host2</value>
 <description>Allow the flume user to connect only from host1 and host2 to impersonate
 a user</description>
</property>

You can use the wildcard character * to enable impersonation of any user from any host. For more information,
see Secure Impersonation.

2. Set up a Kerberos keytab for the Kerberos principal and host Flume is connecting to HDFS from. This user must
match the Hadoop configuration in the preceding step. For instructions, see Configuring Hadoop Security in CDH
5.

3. Configure the HDFS sink with the following configuration options:
4. hdfs.kerberosPrincipal - fully-qualified principal. Note: _HOSTwill be replaced by the hostname of the local

machine (only in-between the / and @ characters)
5. hdfs.kerberosKeytab - location on the local machine of the keytab containing the user and host keys for the

above principal
6. hdfs.proxyUser - the proxy user to impersonate

68 | Cloudera Security

Authentication

http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/Superusers.html

Example snippet (the majority of the HDFS sink configuration options have been omitted):

agent.sinks.sink-1.type = HDFS
agent.sinks.sink-1.hdfs.kerberosPrincipal = flume/_HOST@YOUR-REALM.COM
agent.sinks.sink-1.hdfs.kerberosKeytab = /etc/flume-ng/conf/flume.keytab
agent.sinks.sink-1.hdfs.proxyUser = weblogs

agent.sinks.sink-2.type = HDFS
agent.sinks.sink-2.hdfs.kerberosPrincipal = flume/_HOST@YOUR-REALM.COM
agent.sinks.sink-2.hdfs.kerberosKeytab = /etc/flume-ng/conf/flume.keytab
agent.sinks.sink-2.hdfs.proxyUser = applogs

In the above example, the flume Kerberos principal impersonates the user weblogs in sink-1 and the user applogs
in sink-2. This will only be allowed if the Kerberos KDC authenticates the specified principal (flume in this case), and
the if NameNode authorizes impersonation of the specified proxy user by the specified principal.

Limitations

At this time, Flume does not support using multiple Kerberos principals or keytabs in the same agent. Therefore, if you
want to create files as multiple users on HDFS, then impersonation must be configured, and exactly one principal must
be configured in Hadoop to allow impersonation of all desired accounts. In addition, the same keytab path must be
used across all HDFS sinks in the same agent. If you attempt to configure multiple principals or keytabs in the same
agent, Flume will emit the following error message:

Cannot use multiple kerberos principals in the same agent. Must restart agent to use
new principal or keytab.

Flume Account Requirements

This section provides an overview of the account and credential requirements for Flume to write to a Kerberized HDFS.
Note the distinctions between the Flume agent machine, DataNode machine, and NameNode machine, as well as the
flume Unix user account versus the flume Hadoop/Kerberos user account.

• Each Flume agent machine that writes to HDFS (using a configured HDFS sink) needs a Kerberos principal of the
form:

flume/fully.qualified.domain.name@YOUR-REALM.COM

where fully.qualified.domain.name is the fully qualified domain name of the given Flume agent host
machine, and YOUR-REALM.COM is the Kerberos realm.

• Each Flume agent machine that writes to HDFS does not need to have a flume Unix user account to write files
owned by the flume Hadoop/Kerberos user. Only the keytab for the flume Hadoop/Kerberos user is required
on the Flume agent machine.

• DataNode machines do not need Flume Kerberos keytabs and also do not need the flume Unix user account.

• TaskTracker (MRv1) or NodeManager (YARN) machines need a flume Unix user account if and only ifMapReduce
jobs are being run as the flume Hadoop/Kerberos user.

• The NameNode machine needs to be able to resolve the groups of the flume user. The groups of the flume user
on the NameNode machine are mapped to the Hadoop groups used for authorizing access.

• The NameNode machine does not need a Flume Kerberos keytab.

Testing the Flume HDFS Sink Configuration

To test whether your Flume HDFS sink is properly configured to connect to your secure HDFS cluster, you must run
data through Flume. An easy way to do this is to configure a Netcat source, a Memory channel, and an HDFS sink. Start
Flume with that configuration, and use the nc command (available freely online and with many UNIX distributions) to
send events to the Netcat source port. The resulting events should appear on HDFS in the configured location. If the
events do not appear, check the Flume log at /var/log/flume-ng/flume.log for any error messages related to
Kerberos.

Cloudera Security | 69

Authentication

Writing to a Secure HBase cluster

If you want to write to a secure HBase cluster, be aware of the following:

• Flume must be configured to use Kerberos security as documented above, and HBase must be configured to use
Kerberos security as documented in HBase Security Configuration.

• The hbase-site.xml file, which must be configured to use Kerberos security, must be in Flume's classpath or
HBASE_HOME/conf.

• HBaseSink org.apache.flume.sink.hbase.HBaseSink supports secure HBase, but AsyncHBaseSink
org.apache.flume.sink.hbase.AsyncHBaseSink does not.

• The Flume HBase Sink takes these two parameters:
• kerberosPrincipal – specifies the Kerberos principal to be used
• kerberosKeytab – specifies the path to the Kerberos keytab These are defined as:

agent.sinks.hbaseSink.kerberosPrincipal = flume/fully.qualified.domain.name@YOUR-REALM.COM
agent.sinks.hbaseSink.kerberosKeytab = /etc/flume-ng/conf/flume.keytab

• If HBase is running with the AccessController coprocessor, the flume user (or whichever user the agent is running
as) must have permissions to write to the same table and the column family that the sink is configured to write
to. You can grant permissions using the grant command from HBase shell as explained in HBase Security
Configuration.

• The Flume HBase Sink does not currently support impersonation; it will write to HBase as the user the agent is
being run as.

• If you want to use HDFS Sink and HBase Sink to write to HDFS and HBase from the same agent respectively, both
sinks have to use the same principal and keytab. If you want to use different credentials, the sinks have to be on
different agents.

• Each Flume agent machine that writes to HBase (using a configured HBase sink) needs a Kerberos principal of the
form:

flume/fully.qualified.domain.name@YOUR-REALM.COM

where fully.qualified.domain.name is the fully qualified domain name of the given Flume agent host
machine, and YOUR-REALM.COM is the Kerberos realm.

HBase Authentication

There are two major parts in the process of configuring HBase security:

1. Configure HBaseAuthentication: Youmust establish amechanism for HBase servers and clients to securely identify
themselves with HDFS, ZooKeeper, and each other (called authentication). This ensures that, for example, a host
claiming to be an HBase Region Server or a particular HBase client are in fact who they claim to be.

2. Configure HBase Authorization: You must establish rules for the resources that clients are allowed to access
(called authorization). For more information, see Configuring HBase Authorization on page 277.

For more background information, see this blog post.

The following sections describe how to use Apache HBase and CDH 5 with Kerberos security on your Hadoop cluster:

• Configuring Kerberos Authentication for HBase on page 71
• Configuring Secure HBase Replication on page 73
• Configuring the HBase Client TGT Renewal Period on page 74

Important: To enable HBase to work with Kerberos security on your Hadoop cluster, make sure you
perform the installation and configuration steps in ConfiguringHadoop Security in CDH5 and ZooKeeper
Security Configuration.

70 | Cloudera Security

Authentication

http://www.cloudera.com/blog/2012/03/authorization-and-authentication-in-hadoop/

Note: These instructions have been tested with CDH and MIT Kerberos 5 only.

Important: Although an HBase Thrift server can connect to a secured Hadoop cluster, access is not
secured from clients to the HBase Thrift server.

Configuring Kerberos Authentication for HBase

Here are the two high-level steps for configuring HBase authentication:

Step 1: Configure HBase Servers to Authenticate with a Secure HDFS Cluster on page 71

Step 2: Configure HBase Servers and Clients to Authenticate with a Secure ZooKeeper on page 72.

Step 1: Configure HBase Servers to Authenticate with a Secure HDFS Cluster

To configure HBase servers to authenticate with a secure HDFS cluster, you must do the following tasks:

• Enable HBase Authentication
• Configure HBase's Kerberos Principals

Enabling HBase Authentication

To enable HBase Authentication, set the hbase.security.authentication property to kerberos in
hbase-site.xml on every host acting as an HBase master, region server, or client. In CDH 5, hbase.rpc.engine
is automatically detected and does not need to be set.

<property>
 <name>hbase.security.authentication</name>
 <value>kerberos</value>
</property>

Configuring HBase's Kerberos Principals

In order to run HBase on a secure HDFS cluster, HBase must authenticate itself to the HDFS services. HBase acts as a
Kerberos principal and needs Kerberos credentials to interactwith the Kerberos-enabledHDFS daemons. Authenticating
a service can be done using a keytab file. This file contains a keywhich allows the service to authenticate to the Kerberos
Key Distribution Center (KDC).

To configure HBase's Kerberos principals:

1. Create a service principal for the HBase server using the syntax:
hbase/<fully.qualified.domain.name>@<YOUR-REALM>. This principal is used to authenticate the HBase
server with the HDFS services. Cloudera recommends using hbase as the username portion of this principal.

$ kadmin
kadmin: addprinc -randkey hbase/fully.qualified.domain.name@YOUR-REALM.COM

where: fully.qualified.domain.name is the host where the HBase server is running YOUR-REALM is the
name of your Kerberos realm

2. Create a keytab file for the HBase server.

$ kadmin
kadmin: xst -k hbase.keytab hbase/fully.qualified.domain.name

Cloudera Security | 71

Authentication

3. Copy the hbase.keytab file to the /etc/hbase/conf directory on the HBase server host. The owner of the
hbase.keytab file should be the hbase user and the file should have owner-only read permissions. That is,
assign the file 0400 permissions and make it owned by hbase:hbase.

-r-------- 1 hbase hbase 1343 2012-01-09 10:39 hbase.keytab

4. To test that the keytab file was created properly, try to obtain Kerberos credentials as the HBase principal using
only the keytab file. Substitute your fully.qualified.domain.name and realm in the following command:

$ kinit -k -t /etc/hbase/conf/hbase.keytab
hbase/fully.qualified.domain.name@YOUR-REALM.COM

5. In the /etc/hbase/conf/hbase-site.xml configuration file on all of your cluster hosts running the HBase
daemon, add the following lines:

<property>
 <name>hbase.regionserver.kerberos.principal</name>
 <value>hbase/_HOST@YOUR-REALM.COM</value>
</property>

<property>
 <name>hbase.regionserver.keytab.file</name>
 <value>/etc/hbase/conf/hbase.keytab</value>
</property>

<property>
 <name>hbase.master.kerberos.principal</name>
 <value>hbase/_HOST@YOUR-REALM.COM</value>
</property>

<property>
<name>hbase.master.keytab.file</name>
<value>/etc/hbase/conf/hbase.keytab</value>
</property>

Important:

Make sure you change the /etc/hbase/conf/hbase-site.xml configuration file on all of
your cluster hosts that are running the HBase daemon.

Step 2: Configure HBase Servers and Clients to Authenticate with a Secure ZooKeeper

In order to run a secure HBase, you must also use a secure ZooKeeper. To use your secure ZooKeeper, each HBase host
machine (Master, Region Server, and client) must have a principal that allows it to authenticate with your secure
ZooKeeper ensemble. Note, this HBase section assumes that your secure ZooKeeper is already configured according
to the instructions in the ZooKeeper Security Configuration section and notmanaged by HBase.

This HBase section also assumes that you have successfully completed the previous steps, and already have a principal
and keytab file created and in place for every HBase server and client.

Configure HBase JVMs (all Masters, Region Servers, and clients) to use JAAS

1. On each host, set up a Java Authentication and Authorization Service (JAAS) by creating a
/etc/hbase/conf/zk-jaas.conf file that contains the following:

 Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 useTicketCache=false
 keyTab="/etc/hbase/conf/hbase.keytab"
 principal="hbase/fully.qualified.domain.name@<YOUR-REALM>";
 };

72 | Cloudera Security

Authentication

2. Modify the hbase-env.sh file on HBase server and client hosts to include the following:

 export HBASE_OPTS="$HBASE_OPTS
-Djava.security.auth.login.config=/etc/hbase/conf/zk-jaas.conf"
 export HBASE_MANAGES_ZK=false

Configure the HBase Servers (Masters and Region Servers) to use Authentication to connect to ZooKeeper

1. Update your hbase-site.xml on each HBase server host with the following properties:

<configuration>
 <property>
 <name>hbase.zookeeper.quorum</name>
 <value>$ZK_NODES</value>
 </property>
 <property>
 <name>hbase.cluster.distributed</name>
 <value>true</value>
 </property>
</configuration>

where $ZK_NODES is the comma-separated list of hostnames of the ZooKeeper Quorumhosts that you configured
according to the instructions in ZooKeeper Security Configuration.

2. Add the following lines to the ZooKeeper configuration file zoo.cfg:

kerberos.removeHostFromPrincipal=true
kerberos.removeRealmFromPrincipal=true

Start HBase

If the configuration worked, you should see something similar to the following in the HBase Master and Region Server
logs when you start the cluster:

INFO zookeeper.ZooKeeper: Initiating client connection,
connectString=ZK_QUORUM_SERVER:2181 sessionTimeout=180000 watcher=master:60000
INFO zookeeper.ClientCnxn: Opening socket connection to server /ZK_QUORUM_SERVER:2181
INFO zookeeper.RecoverableZooKeeper: The identifier of this process is
PID@ZK_QUORUM_SERVER
INFO zookeeper.Login: successfully logged in.
INFO client.ZooKeeperSaslClient: Client will use GSSAPI as SASL mechanism.
INFO zookeeper.Login: TGT refresh thread started.
INFO zookeeper.ClientCnxn: Socket connection established to ZK_QUORUM_SERVER:2181,
initiating session
INFO zookeeper.Login: TGT valid starting at: Sun Apr 08 22:43:59 UTC 2012
INFO zookeeper.Login: TGT expires: Mon Apr 09 22:43:59 UTC 2012
INFO zookeeper.Login: TGT refresh sleeping until: Mon Apr 09 18:30:37 UTC 2012
INFO zookeeper.ClientCnxn: Session establishment complete on server ZK_QUORUM_SERVER:2181,
 sessionid = 0x134106594320000, negotiated timeout = 180000

Configuring Secure HBase Replication

If you are using HBase Replication and youwant tomake it secure, read this section for instructions. Before proceeding,
you should already have configured HBase Replication by following the instructions in the HBase Replication section
of the CDH 5 Installation Guide.

To configure secure HBase replication, you must configure cross realm support for Kerberos, ZooKeeper, and Hadoop.

To configure secure HBase replication:

1. Create krbtgt principals for the two realms. For example, if you have two realms called ONE.COM and TWO.COM,
you need to add the following principals: krbtgt/ONE.COM@TWO.COM and krbtgt/TWO.COM@ONE.COM. Add

Cloudera Security | 73

Authentication

these two principals at both realms. Note that there must be at least one common encryption mode between
these two realms.

kadmin: addprinc -e "<enc_type_list>" krbtgt/ONE.COM@TWO.COM
kadmin: addprinc -e "<enc_type_list>" krbtgt/TWO.COM@ONE.COM

2. Add rules for creating short names in Zookeeper. To do this, add a system level property in java.env, defined
in the conf directory. Here is an example rule that illustrates how to add support for the realm called ONE.COM,
and have two members in the principal (such as service/instance@ONE.COM):

-Dzookeeper.security.auth_to_local=RULE:[2:\$1@\$0](.*@\\QONE.COM\\E$)s/@\\QONE.COM\\E$//DEFAULT

The above code example adds support for the ONE.COM realm in a different realm. So, in the case of replication,
you must add a rule for the master cluster realm in the slave cluster realm. DEFAULT is for defining the default
rule.

3. Add rules for creating short names in the Hadoop processes. To do this, add the
hadoop.security.auth_to_local property in the core-site.xml file in the slave cluster. For example, to
add support for the ONE.COM realm:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[2:$1@$0](.*@\QONE.COM\E$)s/@\QONE.COM\E$//
 DEFAULT
 </value>
</property>

For more information about adding rules, see Appendix C - Configuring the Mapping from Kerberos Principals to
Short Names.

Configuring the HBase Client TGT Renewal Period

An HBase client user must also have a Kerberos principal which typically has a password that only the user knows. You
should configure the maxrenewlife setting for the client's principal to a value that allows the user enough time to
finish HBase client processes before the ticket granting ticket (TGT) expires. For example, if the HBase client processes
require up to four days to complete, you should create the user's principal and configure the maxrenewlife setting
by using this command:

kadmin: addprinc -maxrenewlife 4days

HCatalog Authentication

This section describes how to configure HCatalog in CDH 5 with Kerberos security in a Hadoop cluster:

• Before You Start on page 74
• Step 1: Create the HTTP keytab file on page 75
• Step 2: Configure WebHCat to Use Security on page 75
• Step 3: Create Proxy Users on page 75
• Step 4: Verify the Configuration on page 76

For more information about HCatalog see Installing and Using HCatalog.

Before You Start

Secure Web HCatalog requires a running remote Hive metastore service configured in secure mode. See Hive
MetaStoreServer Security Configuration for instructions. Running secure WebHCat with an embedded repository is
not supported.

74 | Cloudera Security

Authentication

Step 1: Create the HTTP keytab file

You need to create a keytab file for WebHCat. Follow these steps:

1. Create the file:

kadmin: addprinc -randkey HTTP/fully.qualified.domain.name@YOUR-REALM.COM
kadmin: xst -k HTTP.keytab HTTP/fully.qualified.domain.name

2. Move the file into the WebHCat configuration directory and restrict its access exclusively to the hcatalog user:

$ mv HTTP.keytab /etc/webhcat/conf/
$ chown hcatalog /etc/webhcat/conf/HTTP.keytab
$ chmod 400 /etc/webhcat/conf/HTTP.keytab

Step 2: Configure WebHCat to Use Security

Create or edit the WebHCat configuration file webhcat-site.xml in the configuration directory and set following
properties:

ValueProperty

Any random valuetempleton.kerberos.secret

/etc/webhcat/conf/HTTP.keytabtempleton.kerberos.keytab

HTTP/fully.qualified.domain.name@YOUR-REALM.COMtempleton.kerberos.principal

Example configuration:

<property>
 <name>templeton.kerberos.secret</name>
 <value>SuPerS3c3tV@lue!</value>
 </property>

 <property>
 <name>templeton.kerberos.keytab</name>
 <value>/etc/webhcat/conf/HTTP.keytab</value>
 </property>

 <property>
 <name>templeton.kerberos.principal</name>
 <value>HTTP/fully.qualified.domain.name@YOUR-REALM.COM</value>
 </property>

Step 3: Create Proxy Users

WebHCat needs access to your NameNode in order to work properly, and so you must configure Hadoop to allow
impersonation from the hcatalog user. To do this, edit your core-site.xml configuration file and set the
hadoop.proxyuser.HTTP.hosts and hadoop.proxyuser.HTTP.groups properties to specify the hosts from
which HCatalog can do the impersonation and what users can be impersonated. You can use the value * for "any".

Example configuration:

 <property>
 <name>hadoop.proxyuser.HTTP.hosts</name>
 <value>*</value>
 </property>
 <property>
 <name>hadoop.proxyuser.HTTP.groups</name>
 <value>*</value>
 </property>

Cloudera Security | 75

Authentication

Step 4: Verify the Configuration

After restarting WebHcat you can verify that it is working by using curl (you may need to run kinit first):

$ curl --negotiate -i -u :
'http://fully.qualified.domain.name:50111/templeton/v1/ddl/database'

Hive Authentication

Here is a summary of the status of Hive security in CDH 5:

• Sentry enables role-based, fine-grained authorization for HiveServer2. See Sentry Policy File Authorization on
page 240.

• HiveServer2 supports authentication of the Thrift client using Kerberos or user/password validation backed by
LDAP. For configuration instructions, see HiveServer2 Security Configuration.

• Earlier versions of HiveServer do not support Kerberos authentication for clients. However, theHiveMetaStoreServer
does support Kerberos authentication for Thrift clients. For configuration instructions, see Hive MetaStoreServer
Security Configuration.

See also: Using Hive to Run Queries on a Secure HBase Server on page 82

HiveServer2 Security Configuration

HiveServer2 supports authentication of the Thrift client using either of these methods:

• Kerberos authentication
• LDAP authentication

If Kerberos authentication is used, authentication is supported between the Thrift client andHiveServer2, and between
HiveServer2 and secure HDFS. If LDAP authentication is used, authentication is supported only between the Thrift
client and HiveServer2. To configure HiveServer2 to use one of these authentication modes, you configure the
hive.server2.authentication configuration property.

If youwant to enable encrypted communication between HiveServer2 and its Client Drivers, see Configuring Encrypted
Communication Between Hive and Client Drivers on page 175.

Enabling Kerberos Authentication for HiveServer2

If you configure HiveServer2 to use Kerberos authentication, HiveServer2 acquires a Kerberos ticket during start-up.
HiveServer2 requires a principal and keytab file specified in the configuration. The client applications (for example
JDBC or Beeline) must get a valid Kerberos ticket before initiating a connection to HiveServer2.

Configuring HiveServer2 for Kerberos-Secured Clusters

To enable Kerberos Authentication for HiveServer2, add the following properties in the
/etc/hive/conf/hive-site.xml file:

<property>
 <name>hive.server2.authentication</name>
 <value>KERBEROS</value>
</property>
<property>
 <name>hive.server2.authentication.kerberos.principal</name>
 <value>hive/_HOST@YOUR-REALM.COM</value>
</property>
<property>
 <name>hive.server2.authentication.kerberos.keytab</name>
 <value>/etc/hive/conf/hive.keytab</value>
</property>

where:

76 | Cloudera Security

Authentication

• hive.server2.authentication in particular, is a client-facing property that controls the type of authentication
HiveServer2 uses for connections to clients. In this case, HiveServer2 uses Kerberos to authenticate incoming
clients.

• The _HOST@YOUR-REALM.COM value in the example above is the Kerberos principal for the hostwhere HiveServer2
is running. The special string _HOST in the properties is replaced at run-time by the fully-qualified domain name
of the host machine where the daemon is running. This requires that reverse DNS is properly working on all the
hosts configured this way. Replace YOUR-REALM.COM with the name of the Kerberos realm your Hadoop cluster
is in.

• The /etc/hive/conf/hive.keytab value in the example above is a keytab file for that principal.

If you configure HiveServer2 to use both Kerberos authentication and secure impersonation, JDBC clients and Beeline
can specify an alternate session user. If these clients have proxy user privileges, HiveServer2 will impersonate the
alternate user instead of the one connecting. The alternate user can be specified by the JDBC connection string
proxyUser=userName

Configuring JDBC Clients for Kerberos Authentication with HiveServer2

JDBC-basedclientsmust includeprincipal=<hive.server2.authentication.principal> in the JDBCconnection
string. For example:

String url =
"jdbc:hive2://node1:10000/default;principal=hive/HiveServer2Host@YOUR-REALM.COM"
Connection con = DriverManager.getConnection(url);

where hive is the principal configured in hive-site.xml and HiveServer2Host is the host where HiveServer2 is
running.

For ODBC Clients, refer the Cloudera ODBC Driver for Apache Hive documentation.

Using Beeline to Connect to a Secure HiveServer2

Use the following command to start beeline and connect to a secure running HiveServer2 process. In this example,
the HiveServer2 process is running on localhost at port 10000:

$ /usr/lib/hive/bin/beeline
beeline> !connect
jdbc:hive2://localhost:10000/default;principal=hive/HiveServer2Host@YOUR-REALM.COM
0: jdbc:hive2://localhost:10000/default>

For more information about the Beeline CLI, see Using the Beeline CLI.

Using LDAP Username/Password Authentication with HiveServer2

As an alternative to Kerberos authentication, you can configure HiveServer2 to use user and password validation backed
by LDAP. In this case, the client sends a user name and password during the connection initiation. HiveServer2 validates
these credentials using an external LDAP service.

You can enable LDAP Authentication with HiveServer2 using Active Directory or OpenLDAP.

Important: When using LDAP username/password authentication with HiveServer2, make sure you
have enabled encrypted communication between HiveServer2 and its client drivers to avoid sending
cleartext passwords. For instructions, see Configuring Encrypted Communication Between Hive and
Client Drivers on page 175. Also see Configuring LDAPS Authentication with HiveServer2 on page 78.

Cloudera Security | 77

Authentication

http://www.cloudera.com/content/cloudera-content/cloudera-docs/Connectors/PDF/Cloudera-ODBC-Driver-for-Apache-Hive-Install-Guide.pdf

Enabling LDAP Authentication with HiveServer2 using Active Directory

To enable the LDAP mode of authentication using Active Directory, include the following properties in the
hive-site.xml file:

<property>
 <name>hive.server2.authentication</name>
 <value>LDAP</value>
</property>
<property>
 <name>hive.server2.authentication.ldap.url</name>
 <value>LDAP_URL</value>
</property>
<property>
 <name>hive.server2.authentication.ldap.Domain</name>
 <value>DOMAIN</value>
</property>

where:

• The LDAP_URL value is the access URL for your LDAP server. For example, ldap://ldaphost@company.com.

Enabling LDAP Authentication with HiveServer2 using OpenLDAP

To enable the LDAP mode of authentication using OpenLDAP, include the following properties in the hive-site.xml
file:

<property>
 <name>hive.server2.authentication</name>
 <value>LDAP</value>
</property>
<property>
 <name>hive.server2.authentication.ldap.url</name>
 <value>LDAP_URL</value>
</property>
<property>
 <name>hive.server2.authentication.ldap.baseDN</name>
 <value>LDAP_BaseDN</value>
</property>

where:

• The LDAP_URL value is the access URL for your LDAP server.
• The LDAP_BaseDN value is the base LDAP DN for your LDAP server. For example,

ou=People,dc=example,dc=com.

Configuring JDBC Clients for LDAP Authentication with HiveServer2

The JDBC client needs to use a connection URL as shown below. -

JDBC-based clients must include user=LDAP_Userid;password=LDAP_Password in the JDBC connection string.
For example:

String url = "jdbc:hive2://node1:10000/default;user=LDAP_Userid;password=LDAP_Password"
Connection con = DriverManager.getConnection(url);

where the LDAP_Userid value is the user id and LDAP_Password is the password of the client user.

For ODBC Clients, refer the Cloudera ODBC Driver for Apache Hive documentation.

Configuring LDAPS Authentication with HiveServer2

HiveServer2 supports LDAP username/password authentication for clients. Clients send LDAP credentials to HiveServer2
which in turn verifies themwith the configured LDAP provider such as OpenLDAP or Microsoft's Active Directory. Most
vendors now support LDAPS (LDAP over SSL), an authentication protocol that uses SSL to encrypt communication
between the LDAP service and its client (in this case, HiveServer2) to avoid sending LDAP credentials in cleartext.

78 | Cloudera Security

Authentication

http://www.cloudera.com/content/cloudera-content/cloudera-docs/Connectors/PDF/Cloudera-ODBC-Driver-for-Apache-Hive-Install-Guide.pdf

Perform the following steps to configure the LDAPS service with HiveServer2:

• Import either the LDAP server issuing Certificate Authority's SSL certificate into a local truststore, or import the
SSL server certificate for a specific trust. If you import the CA certificate, HiveServer2 will trust any server with a
certificate issued by the LDAP server's CA. If you only import the SSL certificate for a specific trust, HiveServer2
will trust only that server. In both cases, the SSL certificate must be imported on to the same host as HiveServer2.
Refer the keytool documentation for more details.

• Make sure the truststore file is readable by the hive user.
• Set the hive.server2.authentication.ldap.url configuration property in hive-site.xml to the LDAPS

URL. For example, ldaps://sample.myhost.com.

Note: The URL scheme should be ldaps and not ldap.

• Set the environment variable HADOOP_OPTS as follows. You can refer the Creating Java Keystores and Truststores
on page 151 topic for details on adding CA certificates to existing truststores or creating new truststores:

HADOOP_OPTS="-Djavax.net.ssl.trustStore=<trustStore-file-path>
-Djavax.net.ssl.trustStorePassword=<trustStore-password>"

For clusters managed by Cloudera Manager, go to the Hive service and select Configuration > View and Edit.
Under the HiveServer2 category, go to the Advanced section and set the HiveServer2 Environment Safety Valve
property.

• Restart HiveServer2.

Pluggable Authentication

Pluggable authentication allows you to provide a custom authentication provider for HiveServer2.

To enable pluggable authentication:

1. Set the following properties in /etc/hive/conf/hive-site.xml:

<property>
 <name>hive.server2.authentication</name>
 <value>CUSTOM</value>
 <description>Client authentication types.
 NONE: no authentication check
 LDAP: LDAP/AD based authentication
 KERBEROS: Kerberos/GSSAPI authentication
 CUSTOM: Custom authentication provider
 (Use with property hive.server2.custom.authentication.class)
 </description>
</property>

<property>
 <name>hive.server2.custom.authentication.class</name>
 <value>pluggable-auth-class-name</value>
 <description>
 Custom authentication class. Used when property
 'hive.server2.authentication' is set to 'CUSTOM'. Provided class
 must be a proper implementation of the interface
 org.apache.hive.service.auth.PasswdAuthenticationProvider. HiveServer2
 will call its Authenticate(user, passed) method to authenticate requests.
 The implementation may optionally extend the Hadoop's
 org.apache.hadoop.conf.Configured class to grab Hive's Configuration object.
 </description>
</property>

2. Make the class available in the CLASSPATH of HiveServer2.

Trusted Delegation with HiveServer2

HiveServer2 determines the identity of the connecting user from the underlying authentication subsystem (Kerberos
or LDAP). Any new session started for this connection runs on behalf of this connecting user. If the server is configured

Cloudera Security | 79

Authentication

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html

to proxy the user at the Hadoop level, then all MapReduce jobs and HDFS accesses will be performed with the identity
of the connecting user. If Apache Sentry is configured, then this connecting userid can also be used to verify access
rights to underlying tables, views and so on.

In CDH 4.5, a connecting user (for example, hue) with Hadoop-level superuser privileges, can request an alternate user
for the given session. HiveServer2 will check if the connecting user has Hadoop-level privileges to proxy the requested
userid (for example, bob). If it does, then the new session will be run on behalf of the alternate user, bob, requested
by connecting user, hue.

To specify an alternate user for new connections, the JDBC client needs to add the
hive.server2.proxy.user=<alternate_user_id>property to the JDBC connectionURL.Note that the connecting
user needs to have Hadoop-level proxy privileges over the alternate user. For example, if user hue requests access to
run a session as user bob, the JDBC connection string should be as follows:

Login as super user Hue
kinit hue -k -t hue.keytab hue@MY-REALM.COM

Connect using following JDBC connection string

jdbc:hive2://myHost.myOrg.com:10000/default;principal=hive/_HOST@MY-REALM.COM;hive.server2.proxy.user=bob

HiveServer2 Impersonation

Note: This is not the recommended method to implement HiveServer2 impersonation. Cloudera
recommends you use Sentry to implement this instead.

Impersonation support in HiveServer2 allows users to execute queries and access HDFS files as the connected user
rather than the super user who started the HiveServer2 daemon. Impersonation allows admins to enforce an access
policy at the file level using HDFS file and directory permissions.

To enable impersonation in HiveServer2:

1. Add the following property to the/etc/hive/conf/hive-site.xml file and set the value totrue. (The default
value is false.)

<property>
 <name>hive.server2.enable.impersonation</name>
 <description>Enable user impersonation for HiveServer2</description>
 <value>true</value>
</property>

2. In HDFS or MapReduce configurations, add the following property to the core-site.xml file:

<property>
 <name>hadoop.proxyuser.hive.hosts</name>
 <value>*</value>
</property>
<property>
 <name>hadoop.proxyuser.hive.groups</name>
 <value>*</value>
</property>

See also File System Permissions.

Securing the Hive Metastore

Note: This is not the recommended method to protect the Hive Metastore. Cloudera recommends
you use Sentry to implement this instead.

To prevent users from accessing the Hive metastore and the Hive metastore database using any method other than
through HiveServer2, the following actions are recommended:

80 | Cloudera Security

Authentication

• Add a firewall rule on the metastore service host to allow access to the metastore port only from the HiveServer2
host. You can do this using iptables.

• Grant access to the metastore database only from the metastore service host. This is specified for MySQL as:

GRANT ALL PRIVILEGES ON metastore.* TO 'hive'@'metastorehost';

where metastorehost is the host where the metastore service is running.

• Make sure users who are not admins cannot log on to the host on which HiveServer2 runs.

Disabling the Hive Client/Server Authentication

Hive's security related metadata is stored in the configuration file hive-site.xml. The following sections describe
how to disable security for the Hive service.

Disable Client/Server Authentication
To disable client/server authentication, set hive.server2.authentication to NONE. For example,

<property>
 <name>hive.server2.authentication</name>
 <value>NONE</value>
 <description>
 Client authentication types.
 NONE: no authentication check
 LDAP: LDAP/AD based authentication
 KERBEROS: Kerberos/GSSAPI authentication
 CUSTOM: Custom authentication provider
 (Use with property hive.server2.custom.authentication.class)
 </description>
</property>

Disable Hive Metastore security
To disable Hive Metastore security, perform the following steps:

• Set the hive.metastore.sasl.enabled property to false in all configurations, the metastore service side
as well as for all clients of the metastore. For example, these might include HiveServer2, Impala, Pig and so on.

• Remove or comment the following parameters in hive-site.xml for the metastore service. Note that this is a
server-only change.

– hive.metastore.kerberos.keytab.file

– hive.metastore.kerberos.principal

Disable Underlying Hadoop Security

If you also want to disable the underlying Hadoop security, remove or comment out the following parameters in
hive-site.xml.

• hive.server2.authentication.kerberos.keytab

• hive.server2.authentication.kerberos.principal

Hive Metastore Server Security Configuration

Important:

This section describes how to configure security for the Hive metastore server. If you are using
HiveServer2, see HiveServer2 Security Configuration.

Here is a summary of Hive metastore server security in CDH 5:

• No additional configuration is required to run Hive on top of a security-enabled Hadoop cluster in standalone
mode using a local or embedded metastore.

Cloudera Security | 81

Authentication

http://en.wikipedia.org/wiki/Iptables

• HiveServer does not support Kerberos authentication for clients. While it is possible to run HiveServer with a
secured Hadoop cluster, doing so creates a security hole since HiveServer does not authenticate the Thrift clients
that connect to it. Instead, you can use HiveServer2 HiveServer2 Security Configuration.

• The Hive metastore server supports Kerberos authentication for Thrift clients. For example, you can configure a
standalone Hive metastore server instance to force clients to authenticate with Kerberos by setting the following
properties in the hive-site.xml configuration file used by the metastore server:

<property>
 <name>hive.metastore.sasl.enabled</name>
 <value>true</value>
 <description>If true, the metastore thrift interface will be secured with SASL. Clients
 must authenticate with Kerberos.</description>
</property>

<property>
 <name>hive.metastore.kerberos.keytab.file</name>
 <value>/etc/hive/conf/hive.keytab</value>
 <description>The path to the Kerberos Keytab file containing the metastore thrift
server's service principal.</description>
</property>

<property>
 <name>hive.metastore.kerberos.principal</name>
 <value>hive/_HOST@YOUR-REALM.COM</value>
 <description>The service principal for the metastore thrift server. The special string
 _HOST will be replaced automatically with the correct host name.</description>
</property>

Note:

The values shown above for the hive.metastore.kerberos.keytab.file and
hive.metastore.kerberos.principal properties are examples which you will need to
replace with the appropriate values for your cluster. Also note that the Hive keytab file should
have its access permissions set to 600 and be owned by the same account that is used to run the
Metastore server, which is the hive user by default.

• Requests to access the metadata are fulfilled by the Hive metastore impersonating the requesting user. This
includes read access to the list of databases, tables, properties of each table such as their HDFS location, file type
and so on. You can restrict access to the Hive metastore service by allowing it to impersonate only a subset of
Kerberos users. This can be done by setting the hadoop.proxyuser.hive.groups property in core-site.xml
on the Hive metastore host.

For example, if you want to give the hive user permission to impersonate members of groups hive and user1:

<property>
<name>hadoop.proxyuser.hive.groups</name>
<value>hive,user1</value>
</property>

In this example, the Hive metastore can impersonate users belonging to only the hive and user1 groups.
Connection requests from users not belonging to these groups will be rejected.

Using Hive to Run Queries on a Secure HBase Server

To use Hive to run queries on a secure HBase Server, you must set the following HIVE_OPTS environment variable:

env HIVE_OPTS="-hiveconf hbase.security.authentication=kerberos -hiveconf
hbase.master.kerberos.principal=hbase/_HOST@YOUR-REALM.COM -hiveconf
hbase.regionserver.kerberos.principal=hbase/_HOST@YOUR-REALM.COM -hiveconf
hbase.zookeeper.quorum=zookeeper1,zookeeper2,zookeeper3" hive

where:

82 | Cloudera Security

Authentication

• You replace YOUR-REALM with the name of your Kerberos realm
• You replace zookeeper1,zookeeper2,zookeeper3 with the names of your ZooKeeper servers. The

hbase.zookeeper.quorum property is configured in the hbase-site.xml file.
• The special string _HOST is replaced at run-time by the fully-qualified domain name of the host machine where

the HBase Master or Region Server is running. This requires that reverse DNS is properly working on all the hosts
configured this way.

In the following, _HOST is the name of the host where the HBase Master is running:

-hiveconf hbase.master.kerberos.principal=hbase/_HOST@YOUR-REALM.COM

In the following, _HOST is the hostname of the HBase RegionServer that the application is connecting to:

-hiveconf hbase.regionserver.kerberos.principal=hbase/_HOST@YOUR-REALM.COM

Note:

You can also set the HIVE_OPTS environment variable in your shell profile.

HttpFS Authentication

This section describes how to configure HttpFS CDH 5 with Kerberos security on a Hadoop cluster:

• Configuring the HttpFS Server to Support Kerberos Security on page 83
• Using curl to access an URL Protected by Kerberos HTTP SPNEGO on page 85

For more information about HttpFS, see
https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-hdfs-httpfs/index.html.

Important:

To enable HttpFS to work with Kerberos security on your Hadoop cluster, make sure you perform the
installation and configuration steps in Configuring Hadoop Security in CDH 5.

Important:

If the NameNode, Secondary NameNode, DataNode, JobTracker, TaskTrackers, ResourceManager,
NodeManagers, HttpFS, or Oozie services are configured to use Kerberos HTTP SPNEGOauthentication,
and two or more of these services are running on the same host, then all of the running services must
use the same HTTP principal and keytab file used for their HTTP endpoints.

Configuring the HttpFS Server to Support Kerberos Security

1. Create an HttpFS service user principal that is used to authenticate with the Hadoop cluster. The syntax of the
principal is: httpfs/<fully.qualified.domain.name>@<YOUR-REALM> where:
fully.qualified.domain.name is the host where the HttpFS server is running YOUR-REALM is the name of
your Kerberos realm

kadmin: addprinc -randkey httpfs/fully.qualified.domain.name@YOUR-REALM.COM

2. Create a HTTP service user principal that is used to authenticate user requests coming to the HttpFS HTTP
web-services. The syntax of the principal is:HTTP/<fully.qualified.domain.name>@<YOUR-REALM>where:

Cloudera Security | 83

Authentication

https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-hdfs-httpfs/index.html

'fully.qualified.domain.name' is the host where the HttpFS server is running YOUR-REALM is the name
of your Kerberos realm

kadmin: addprinc -randkey HTTP/fully.qualified.domain.name@YOUR-REALM.COM

Important:

The HTTP/ component of the HTTP service user principal must be upper case as shown in the
syntax and example above.

3. Create keytab files with both principals.

$ kadmin
kadmin: xst -k httpfs.keytab httpfs/fully.qualified.domain.name
kadmin: xst -k http.keytab HTTP/fully.qualified.domain.name

4. Merge the two keytab files into a single keytab file:

$ ktutil
ktutil: rkt httpfs.keytab
ktutil: rkt http.keytab
ktutil: wkt httpfs-http.keytab

5. Test that credentials in the merged keytab file work. For example:

$ klist -e -k -t httpfs-http.keytab

6. Copy thehttpfs-http.keytab file to theHttpFS configurationdirectory. Theownerof thehttpfs-http.keytab
file should be the httpfs user and the file should have owner-only read permissions.

7. Edit the HttpFS server httpfs-site.xml configuration file in the HttpFS configuration directory by setting the
following properties:

ValueProperty

kerberoshttpfs.authentication.type

kerberoshttpfs.hadoop.authentication.type

HTTP/<HTTPFS-HOSTNAME>@<YOUR-REALM.COM>httpfs.authentication.kerberos.principal

/etc/hadoop-httpfs/conf/httpfs-http.keytabhttpfs.authentication.kerberos.keytab

httpfs/<HTTPFS-HOSTNAME>@<YOUR-REALM.COM>httpfs.hadoop.authentication.kerberos.principal

/etc/hadoop-httpfs/conf/httpfs-http.keytabhttpfs.hadoop.authentication.kerberos.keytab

Use the value configured for
'hadoop.security.auth_to_local' in 'core-site.xml'

httpfs.authentication.kerberos.name.rules

Important:

You must restart the HttpFS server to have the configuration changes take effect.

84 | Cloudera Security

Authentication

Using curl to access an URL Protected by Kerberos HTTP SPNEGO

Important:

Your version of curlmust support GSS and be capable of running curl -V.

To configure curl to access an URL protected by Kerberos HTTP SPNEGO:

1. Run curl -V:

$ curl -V
curl 7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 OpenSSL/0.9.8l
zlib/1.2.3
Protocols: tftp ftp telnet dict ldap http file https ftps
Features: GSS-Negotiate IPv6 Largefile NTLM SSL libz

2. Login to the KDC using kinit.

$ kinit
Please enter the password for tucu@LOCALHOST:

3. Use curl to fetch the protected URL:

$ curl --negotiate -u : -b ~/cookiejar.txt -c ~/cookiejar.txt
http://localhost:14000/webhdfs/v1/?op=liststatus

where: The --negotiate option enables SPNEGO in curl. The -u : option is required but the user name is
ignored (the principal that has been specified for kinit is used). The -b and -c options are used to store and
send HTTP cookies.

Hue Authentication

The following sections describe how to configure Hue CDH 5 with Kerberos security, enabling single sign-on with SAML
and encrypting communication between Hue and other services among other available configuration settings.

• Hue Security Enhancements on page 85
• Configuring Kerberos Authentication for Hue on page 87
• Integrating Hue with LDAP on page 89
• Configuring Hue for SAML on page 93

Important:

To enable Hue to work with Kerberos security on your Hadoop cluster, make sure you perform the
installation and configuration steps in Configuring Hadoop Security in CDH 5.

Hue Security Enhancements

Enabling SSL Communication with HiveServer2

By providing a CA certificate, private key, and public certificate, Hue can communicate with HiveServer2 over SSL. You
can now configure the following properties in the [beeswax] section under [[ssl]] in the Hue configuration file,
hue.ini.

Choose to enable/disable SSL communication for this server.enabled

Default: false

Path to Certificate Authority certificates.cacerts

Cloudera Security | 85

Authentication

Default: /etc/hue/cacerts.pem

Path to the private key file.key

Default: /etc/hue/key.pem

Path to the public certificate file.cert

Default: /etc/hue/cert.pem

Choose whether Hue should validate certificates received from the server.validate

Default: true

Enabling LDAP Authentication with HiveServer2 and Impala

LDAP authentication with HiveServer2 and Impala can be enabled by setting the following properties under the
[desktop] section in hue.ini.

LDAP username of the Hue user to be authenticated.ldap_username

LDAP password for the Hue user to be authenticated.ldap_password

Secure Database Connection

Connections vary depending on the database. Hue uses different clients to communicatewith each database internally.
They all specify a common interface known as the DBAPI version 2 interface. Client specific options, such as secure
connectivity, can be passed through the interface. For example, for MySQL you can enable SSL communication by
specifying the options configuration property under the desktop>[[database]] section in hue.ini.

[desktop]
 [[databases]]
 …
 options={"ssl":{"ca":"/tmp/ca-cert.pem"}}

Session Timeout

Session timeouts can be set by specifying the ttl configuration property under the [desktop]>[[session]] section
in hue.ini.

The cookie containing the users' session ID will expire after this amount of
time in seconds.

ttl

Default: 60*60*24*14

Secure Cookies

Secure session cookies can be enable by specifying the secure configuration property under the
[desktop]>[[session]] section in hue.ini. Additionally, you can set the http-only flag for cookies containing
users' session IDs.

The cookie containing the users' session ID will be secure. Should only be
enabled with HTTPS.

secure

Default: false

The cookie containing the users' session ID will use the HTTP only flag.http-only

Default: false

86 | Cloudera Security

Authentication

Allowed HTTP Methods

You can specify the HTTP request methods that the server should respond to using the http_allowed_methods
property under the [desktop] section in hue.ini.

Default: options,get,head,post,put,delete,connecthttp_allowed_methods

Restricting the Cipher List

Cipher list support with HTTPS can be restricted by specifying the ssl_cipher_list configuration property under
the [desktop] section in hue.ini.

Default: !aNULL:!eNULL:!LOW:!EXPORT:!SSLv2ssl_cipher_list

URL Redirect Whitelist

Restrict the domains or pages to which Hue can redirect users. The redirect_whitelist property can be found
under the [desktop] section in hue.ini.

For example, to restrict users to your local domain and FQDN, the following
value can be used:

redirect_whitelist

^\/.*$,^http:\/\/www.mydomain.com\/.*$

Configuring Kerberos Authentication for Hue

You can configure Hue in CDH 5 to support Hadoop security on a cluster using Kerberos.

To configure the Hue server to support Hadoop security using Kerberos:

1. Create a Hue user principal in the same realm as the Hadoop cluster of the form:

kadmin: addprinc -randkey hue/hue.server.fully.qualified.domain.name@YOUR-REALM.COM

where: hue is the principal the Hue server is running as, hue.server.fully.qualified.domain.name is the
fully-qualified domain name (FQDN) of your Hue server, YOUR-REALM.COM is the name of the Kerberos realm
your Hadoop cluster is in

2. Create a keytab file for the Hue principal using the same procedure that you used to create the keytab for the
hdfs or mapred principal for a specific host. You should name this file hue.keytab and put this keytab file in
the directory /etc/hue on themachine running the Hue server. Like all keytab files, this file should have themost
limited set of permissions possible. It should be owned by the user running the hue server (usuallyhue) and should
have the permission 400.

3. To test that the keytab file was created properly, try to obtain Kerberos credentials as the Hue principal using only
the keytab file. Substitute your FQDN and realm in the following command:

$ kinit -k -t /etc/hue/hue.keytab
hue/hue.server.fully.qualified.domain.name@YOUR-REALM.COM

4. In the /etc/hue/hue.ini configuration file, add the following lines in the sections shown. Replace the
kinit_path value, /usr/kerberos/bin/kinit, shown below with the correct path on the user's system.

[desktop]

 [[kerberos]]
 # Path to Hue's Kerberos keytab file
 hue_keytab=/etc/hue/hue.keytab
 # Kerberos principal name for Hue
 hue_principal=hue/FQDN@REALM
 # add kinit path for non root users
 kinit_path=/usr/kerberos/bin/kinit

Cloudera Security | 87

Authentication

[beeswax]
 # If Kerberos security is enabled, use fully-qualified domain name (FQDN)
 ## hive_server_host=<FQDN of Hive Server>
 # Hive configuration directory, where hive-site.xml is located
 ## hive_conf_dir=/etc/hive/conf

[impala]
 ## server_host=localhost
 # The following property is required when impalad and Hue
 # are not running on the same host
 ## impala_principal=impala/impalad.hostname.domainname.com

[search]
 # URL of the Solr Server
 ## solr_url=http://localhost:8983/solr/
 # Requires FQDN in solr_url if enabled
 ## security_enabled=false

[hadoop]

 [[hdfs_clusters]]

 [[[default]]]
 # Enter the host and port on which you are running the Hadoop NameNode
 namenode_host=FQDN
 hdfs_port=8020
 http_port=50070
 security_enabled=true

 # Thrift plugin port for the name node
 ## thrift_port=10090

 # Configuration for YARN (MR2)
 # --
 [[yarn_clusters]]

 [[[default]]]
 # Enter the host on which you are running the ResourceManager
 ## resourcemanager_host=localhost
 # Change this if your YARN cluster is Kerberos-secured
 ## security_enabled=false

 # Thrift plug-in port for the JobTracker
 ## thrift_port=9290

[liboozie]
 # The URL where the Oozie service runs on. This is required in order for users to submit
 jobs.
 ## oozie_url=http://localhost:11000/oozie
 # Requires FQDN in oozie_url if enabled
 ## security_enabled=false

Important:

In the /etc/hue/hue.ini file, verify the following:

— Make sure the jobtracker_host property is set to the fully-qualified domain name of the
host running the JobTracker. The JobTracker hostname must be fully-qualified in a secured
environment.

— Make sure the fs.defaultfs property under each [[hdfs_clusters]] section contains the
fully-qualified domain name of the file system access point, which is typically the NameNode.

—Make sure the hive_conf_dir property under the [beeswax] section points to a directory
containing a valid hive-site.xml (either the original or a synced copy).

— Make sure the FQDN specified for HiveServer2 is the same as the FQDN specified for the
hue_principal configuration property. Without this, HiveServer2 will not work with security
enabled.

88 | Cloudera Security

Authentication

5. In the /etc/hadoop/conf/core-site.xml configuration file on all of your cluster nodes, add the following
lines:

<!-- Hue security configuration -->
<property>
 <name>hue.kerberos.principal.shortname</name>
 <value>hue</value>
</property>
<property>
 <name>hadoop.proxyuser.hue.groups</name>
 <value>*</value> <!-- A group which all users of Hue belong to, or the wildcard value
 "*" -->
</property>
<property>
 <name>hadoop.proxyuser.hue.hosts</name>
 <value>hue.server.fully.qualified.domain.name</value>
</property>

Important:

Make sure you change the /etc/hadoop/conf/core-site.xml configuration file on all of
your cluster nodes.

6. If Hue is configured to communicate to Hadoop using HttpFS, then you must add the following properties to
httpfs-site.xml:

<property>
 <name>httpfs.proxyuser.hue.hosts</name>
 <value>fully.qualified.domain.name</value>
</property>
<property>
 <name>httpfs.proxyuser.hue.groups</name>
 <value>*</value>
</property>

7. Add the following properties to the Oozie server oozie-site.xml configuration file in the Oozie configuration
directory:

<property>
 <name>oozie.service.ProxyUserService.proxyuser.hue.hosts</name>
 <value>*</value>
</property>
<property>
 <name>oozie.service.ProxyUserService.proxyuser.hue.groups</name>
 <value>*</value>
</property>

8. Restart the JobTracker to load the changes from the core-site.xml file.

$ sudo service hadoop-0.20-mapreduce-jobtracker restart

9. Restart Oozie to load the changes from the oozie-site.xml file.

$ sudo service oozie restart

10. Restart the NameNode, JobTracker, and all DataNodes to load the changes from the core-site.xml file.

$ sudo service hadoop-0.20-(namenode|jobtracker|datanode) restart

Integrating Hue with LDAP

When Hue is integrated with LDAP users can use their existing credentials to authenticate and inherit their existing
groups transparently. There is no need to save or duplicate any employee password in Hue. There are several other

Cloudera Security | 89

Authentication

ways to authenticate with Hue such as PAM, SPNEGO, OpenID, OAuth, SAML2 and so on. This topic details how you
can configure Hue to authenticate against an LDAP directory server.

When authenticating using LDAP, Hue validates login credentials against an LDAP directory service if configured with
the LDAP authentication backend:

[desktop]
[[auth]]
backend=desktop.auth.backend.LdapBackend

The LDAP authentication backendwill automatically create users that don’t exist in Hue by default. Hue needs to import
users in order to properly perform the authentication. Passwords are never imported when importing users. If you
want to disable automatic import set the create_users_on_login property under the [desktop] > [[ldap]]
section of hue.ini to false.

[desktop]
[[ldap]]
create_users_on_login=false

The purpose of disabling the automatic import is to allow only a predefined list of manually imported users to login.

There are two ways to authenticate with a directory service through Hue:

• Search Bind
• Direct Bind

You can specify the authentication mechanism using the search_bind_authentication property under the
[desktop] > [[ldap]] section of hue.ini.

Uses search bind authentication by default. Set this property to false to use
direct bind authentication.

Default: true

search_bind_authentication

Search Bind
The search bind mechanism for authenticating will perform an ldapsearch against the directory service and bind
using the found distinguished name (DN) and password provided. This is the default method of authentication used
by Hue with LDAP.

The following configuration properties under the [desktop] > [[ldap]] > [[[users]]] section in hue.ini
can be set to restrict the search process.

General LDAP filter to restrict the search.

Default: "objectclass=*"

user_filter

The attribute that will be considered the username to be searched against.
Typical attributes to search for include: uid, sAMAccountName.

Default: sAMAccountName

user_name_attr

With the above configuration, the LDAP search filter will take on the form:

(&(objectClass=*)(sAMAccountName=<user entered username>))

90 | Cloudera Security

Authentication

http://www.zytrax.com/books/ldap/ch14/#ldapsearch
http://www.zytrax.com/books/ldap/apa/dn-rdn.html
http://www.zytrax.com/books/ldap/apa/search.html

Important: Setting search_bind_authentication=true in hue.ini tells Hue to perform an
LDAP search using the bind credentials specified for the bind_dn and bind_password configuration
properties. Hue will start searching the subtree starting from the base DN specified for the base_dn
property. It will then search the base DN for an entry whose attribute, specified in user_name_attr,
has the same value as the short name provided on login. The search filter, defined in user_filter
will also be used to limit the search.

Direct Bind

The direct bind mechanism for authenticating will bind to the LDAP server using the username and password provided
at login.

The following configuration properties can be used to determine how Hue binds to the LDAP server. These can be set
under the [desktop] > [[ldap]] section of hue.ini.

The NT domain to connect to (only for use with Active Directory). This
AD-specific property allows Hue to authenticate with AD without having to

nt_domain

follow LDAP references to other partitions. This typically maps to the email
address of the user or the user's ID in conjunction with the domain.

If provided, Hue will use User Principal Names (UPNs) to bind to the LDAP
service.

Default: mycompany.com

Provides a template for the DN that will ultimately be sent to the directory
service when authenticating. The <username> parameter will be replaced
with the username provided at login.

Default: "uid=<username>,ou=People,dc=mycompany,dc=com"

ldap_username_pattern

Important: Setting search_bind_authentication=false in hue.ini tells Hue to perform a
direct bind to LDAP using the credentials provided (not bind_dn and bind_password specified in
hue.ini). There are two ways direct bind works depending on whether the nt_domain property is
specified in hue.ini:

• nt_domain is specified: This is used to connect to an Active Directory service. In this case, the
User Principal Name (UPN) is used to perform a direct bind. Hue forms the UPN by concatenating
the short name provided at login with the nt_domain. For example, <short
name>@<nt_domain>. The ldap_username_pattern property is ignored.

• nt_domain is not specified: This is used to connect to all other directory services (can handle
Active Directory, but nt_domain is the preferred way for AD). In this case,
ldap_username_pattern is used and it should take on the form
cn=<username>,dc=example,dc=comwhere<username>will be replacedwith the username
provided at login.

Importing LDAP Users and Groups

If an LDAP user needs to be part of a certain group and be given a particular set of permissions, you can import this
user with the User Admin interface in Hue.

Cloudera Security | 91

Authentication

http://msdn.microsoft.com/en-us/library/windows/desktop/ms680857(v=vs.85).aspx

Groups can also be imported using the User Admin interface, and users can be added to this group. As in the image
below, not only can groups be discovered using DN and rDN search, but users that are members of the group or
members of its subordinate groups can be imported as well.

You have the following options available when importing a user/group:

• Distinguished name: If checked, the username provided must be a full distinguished name (for example,
uid=hue,ou=People,dc=gethue,dc=com). Otherwise, the Username provided should be a fragment of a
Relative Distinguished Name (rDN) (for example, the username huemaps to the rDN uid=hue). Hue will perform
an LDAP search using the samemethods and configurations as described above. That is, Huewill take the provided
username and create a search filter using the user_filter and user_name_attr configurations.

• Create home directory: If checked, when the user is imported, their home directory in HDFS will automatically
be created if it doesn’t already exist.

Important: When managing LDAP entries, the User Admin app will always perform an LDAP search
and will always use bind_dn, bind_password, base_dn, as defined in hue.ini.

92 | Cloudera Security

Authentication

http://www.zytrax.com/books/ldap/apa/dn-rdn.html
http://www.zytrax.com/books/ldap/apa/dn-rdn.html

Synchronizing LDAP Users and Groups

Users and groups can be synchronized with the directory service using the User Admin interface or using a command
line utility. The image from the Importing LDAP Users and Groups section uses the words Add/Sync to indicate that
when a user or group that already exists in Hue is being added, it will in fact be synchronized instead. In the case of
importing users for a particular group, new users will be imported and existing users will be synchronized.

Note: Users that have been deleted from the directory service will not be deleted from Hue. Those
users can be manually deactivated from Hue using the User Admin interface.

Attributes Synchronized

Currently, only the first name, last name, and email address are synchronized. Hue looks for the LDAP attributes
givenName, sn, and mailwhen synchronizing. The user_name_attr configuration property is used to appropriately
choose the username in Hue. For instance, if user_name_attr’ is set to uid”, then the "uid" returned by the directory
service will be used as the username of the user in Hue.

User Admin interface

The Sync LDAP users/groups button in the User Admin interface will automatically synchronize all users and groups.

Synchronize Using a Command-Line Interface

For example, to synchronize users and groups using a command-line interface:

<hue root>/build/env/bin/hue sync_ldap_users_and_groups

LDAPS/StartTLS support

Secure communication with LDAP is provided using the SSL/TLS and StartTLS protocols. They allow Hue to validate the
directory service it is going to converse with. Hence, if a Certificate Authority certificate file is provided, Hue will
communicate using LDAPS. You can specify the path to the CA certificate under :

[desktop]
 [[ldap]]
 ldap_cert=/etc/hue/ca.crt

The StartTLS protocol can be used as well:

[desktop]
 [[ldap]]
 use_start_tls=true

Configuring Hue for SAML

This section describes the configuration changes required to use Hue with SAML 2.0 (Security Assertion Markup
Language) to enable single sign-on (SSO) authentication.

The SAML 2.0WebBrowser SSO profile has three components: a Security Provider, aUser Agent and an Identity Provider.
In this case, Hue is the Service Provider (SP), you can use an Identity Provider (IdP) of your choice, and you are the user
acting through your browser (User Agent). When a user requests access to an application, Hue uses your browser to
send an authentication request to the Identity Provider which then authenticates the user and redirects them back to
Hue .

This blog post guides users through setting up SSO with Hue, using the SAML backend and Shibboleth as the Identity
Provider.

Note: The following instructions assume you already have an Identity Provider set up and running.

Cloudera Security | 93

Authentication

https://github.com/cloudera/hue/blob/branch-3.5/apps/useradmin/src/useradmin/management/commands/sync_ldap_users_and_groups.py
https://github.com/cloudera/hue/blob/branch-3.5/apps/useradmin/src/useradmin/management/commands/sync_ldap_users_and_groups.py
http://cxf.apache.org/docs/saml-web-sso.html
http://gethue.com/sso-with-hue-new-saml-backend/
http://shibboleth.net/products/

Step 1: Install swig and openssl packages

Install swig and openssl. For example, on RHEL systems, use the following commands:

yum install swig

yum install openssl

Step 2: Install libraries to support SAML in Hue

Install the djangosaml2 and pysaml2 libraries to support SAML in Hue. These libraries are dependent on the xmlsec1
package to be installed and available on the machine for Hue to use. Follow these instructions to install the xmlsec1
package on your system.

RHEL, CentOS and SLES:

For RHEL, CentOS and SLES systems, the xmlsec1 package is available for download from the EPEL repository. In order
to install packages from the EPEL repository, first download the appropriate the rpm package to your machine,
substituting the version in the package URL with the one required for your system. For example, use the following
commands for CentOS 5 or RHEL 5:

rpm -Uvh http://download.fedoraproject.org/pub/epel/5/i386/epel-release-5-4.noarch.rpm

yum install xmlsec1

Oracle Linux:

For Oracle Linux systems, download the xmlsec1 package from http://www.aleksey.com/xmlsec/ and execute the
following commands:

tar -xvzf xmlsec1-<version>.tar.gz
cd xmlsec1-<version>
./configure && make
sudo make install

Important: The xmlsec1 package must be executable by the user running Hue.

You should now be able to install djangosaml and pysaml2 on your machines.

build/env/bin/pip install -e git+https://github.com/abec/pysaml2@HEAD#egg=pysaml2
build/env/bin/pip install -e git+https://github.com/abec/djangosaml2@HEAD#egg=djangosaml2

Step 3: Update the Hue configuration file

Several configuration parameters need to be updated in Hue's configuration file, hue.ini to enable support for SAML.
The table given below describes the available parameters for SAML in hue.ini under the [libsaml] section.

DescriptionParameter

This is a path to the xmlsec_binary, an executable used to sign, verify, encrypt
and decrypt SAML requests and assertions. This program should be executable by
the user running Hue.

xmlsec_binary

Create Hue users received in assertion response upon successful login. The value
for this parameter can be either "true" or "false".

create_users_on_login

Attributes Hue asks for from the IdP. This is a comma-separated list of attributes.
For example, uid, email and so on.

required_attributes

Optional attributes Hue can ask for from the IdP. Also a comma-separated list of
attributes.

optional_attributes

94 | Cloudera Security

Authentication

http://www.aleksey.com/xmlsec/

DescriptionParameter

This is a path to the IdPmetadata copied to a local file. This file should be readable.metadata_file

Path to the private key used to encrypt the metadata. File format .PEMkey_file

Path to the X.509 certificate to be sent along with the encrypted metadata. File
format .PEM

cert_file

Mapping from attributes received from the IdP to the Hue's django user attributes.
For example, {'uid':'username', 'email':'email'}.

user_attribute_mapping

Have Hue initiated logout requests be signed and provide a certificate.logout_requests_signed

Step 3a: Update the SAML metadata file

Update themetadata file pointed to by your Hue configuration file, hue.ini. Check your IdP documentation for details
on how to procure the XMLmetadata and paste it into the <metadata_file_name>.xml file at the location specified
by the configuration parameter metadata_file.

For example, if you were using the Shibboleth IdP, you would visit https://<IdPHOST>:8443/idp/shibboleth,
copy the metadata content available there and paste it into the Hue metadata file.

Note:

You may have to edit the content copied over from your IdP's metadata file in case of missing fields
such as port numbers (8443), from URLs that point to the IdP.

Step 3b: Private key and certificate files

To enable Hue to communicate with the IdP, you will need to specify the location of a private key, for the, key_file
property, that can be used to sign requests sent to the IdP. You will also need to specify the location of the certificate
file, for the cert_pem property, which you will use to verify and decrypt messages from the IdP.

Note: The key and certificate files specified by the key_file and cert_file parameters must be
.PEM files.

Step 3c: Configure Hue to use SAML Backend

To enable SAML to allow user logins and create users, update the backend configuration property in hue.ini to use
the SAML authentication backend. Youwill find thebackendproperty in the[[auth]] sub-section under[desktop].

backend=libsaml.backend.SAML2Backend

Here is an example configuration of the [libsaml] section from hue.ini.

xmlsec_binary=/usr/local/bin/xmlsec1
create_users_on_login=true
metadata_file=/etc/hue/saml/metadata.xml
key_file=/etc/hue/saml/key.pem
cert_file=/etc/hue/saml/cert.pem
logout_requests_signed=true

Step 4: Restart the Hue server

Use the following command to restart the Hue server.

sudo service hue restart

Cloudera Security | 95

Authentication

Impala Authentication

Authentication is the mechanism to ensure that only specified hosts and users can connect to Impala. It also verifies
that when clients connect to Impala, they are connected to a legitimate server. This feature prevents spoofing such as
impersonation (setting up a phony client system with the same account and group names as a legitimate user) and
man-in-the-middle attacks (intercepting application requests before they reach Impala and eavesdropping on sensitive
information in the requests or the results).

Impala supports authentication using either Kerberos or LDAP.

Impala currently does not support application data wire encryption.

Note: Regardless of the authenticationmechanism used, Impala always creates HDFS directories and
data files owned by the same user (typically impala). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala on page 257.

Once you are finished setting up authentication, move on to authorization, which involves specifying what databases,
tables, HDFS directories, and so on can be accessed by particular userswhen they connect through Impala. See Enabling
Sentry Authorization for Impala on page 257 for details.

Enabling Kerberos Authentication for Impala

Impala supports Kerberos authentication. For more information on enabling Kerberos authentication, see the topic
on Configuring Hadoop Security in the CDH 5 Security Guide.

Impala currently does not support application data wire encryption.

When using Impala in a managed environment, Cloudera Manager automatically completes Kerberos configuration.
In an unmanaged environment, create a Kerberos principal for each host running impalad or statestored. Cloudera
recommends using a consistent format, such as impala/_HOST@Your-Realm, but you can use any three-part Kerberos
server principal.

In Impala 2.0 and later, user() returns the full Kerberos principal string, such as user@example.com, in a Kerberized
environment.

Note: Regardless of the authenticationmechanism used, Impala always creates HDFS directories and
data files owned by the same user (typically impala). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala on page 257.

An alternative form of authentication you can use is LDAP, described in Enabling LDAP Authentication for Impala on
page 99.

Requirements for Using Impala with Kerberos

On version 5 of Red Hat Enterprise Linux and comparable distributions, some additional setup is needed for the
impala-shell interpreter to connect to a Kerberos-enabled Impala cluster:

sudo yum install python-devel openssl-devel python-pip
sudo pip-python install ssl

96 | Cloudera Security

Authentication

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_sg_cdh5_hadoop_security.html

Important:

• If you plan to use Impala in your cluster, you must configure your KDC to allow tickets to be
renewed, and you must configure krb5.conf to request renewable tickets. Typically, you can
do this by adding the max_renewable_life setting to your realm in kdc.conf, and by adding
the renew_lifetime parameter to the libdefaults section of krb5.conf.

For more information about renewable tickets, see the Kerberos documentation.

• The Impala Web UI does not support Kerberos authentication.

• You cannot use the Impala resource management feature on a cluster that has Kerberos
authentication enabled.

Start all impalad and statestored daemons with the --principal and --keytab-file flags set to the principal
and full path name of the keytab file containing the credentials for the principal.

Impala supports the Cloudera ODBC driver and the Kerberos interface provided. To use Kerberos through the ODBC
driver, the host type must be set depending on the level of the ODBD driver:

• SecImpala for the ODBC 1.0 driver.
• SecBeeswax for the ODBC 1.2 driver.
• Blank for the ODBC 2.0 driver or higher, when connecting to a secure cluster.
• HS2NoSasl for the ODBC 2.0 driver or higher, when connecting to a non-secure cluster.

To enable Kerberos in the Impala shell, start the impala-shell command using the -k flag.

To enable Impala to work with Kerberos security on your Hadoop cluster, make sure you perform the installation and
configuration steps in Authentication in the CDH 5 Security Guide.

Configuring Impala to Support Kerberos Security

Enabling Kerberos authentication for Impala involves steps that can be summarized as follows:

• Creating service principals for Impala and the HTTP service. Principal names take the form:
serviceName/fully.qualified.domain.name@KERBEROS.REALM

• Creating, merging, and distributing key tab files for these principals.
• Editing /etc/default/impala (in cluster not managed by Cloudera Manager), or editing the Security settings

in the Cloudera Manager interface, to accommodate Kerberos authentication.

Enabling Kerberos for Impala

1. Create an Impala service principal, specifying the name of the OS user that the Impala daemons run under, the
fully qualified domain name of each node running impalad, and the realm name. For example:

$ kadmin
kadmin: addprinc -requires_preauth -randkey
impala/impala_host.example.com@TEST.EXAMPLE.COM

2. Create an HTTP service principal. For example:

kadmin: addprinc -randkey HTTP/impala_host.example.com@TEST.EXAMPLE.COM

Note: TheHTTP component of the service principalmust be uppercase as shown in the preceding
example.

Cloudera Security | 97

Authentication

http://web.mit.edu/Kerberos/krb5-1.8/
http://www.cloudera.com/documentation/enterprise/latest/topics/sg_authentication.html

3. Create keytab files with both principals. For example:

kadmin: xst -k impala.keytab impala/impala_host.example.com
kadmin: xst -k http.keytab HTTP/impala_host.example.com
kadmin: quit

4. Use ktutil to read the contents of the two keytab files and then write those contents to a new file. For example:

$ ktutil
ktutil: rkt impala.keytab
ktutil: rkt http.keytab
ktutil: wkt impala-http.keytab
ktutil: quit

5. (Optional) Test that credentials in the merged keytab file are valid, and that the “renew until” date is in the future.
For example:

$ klist -e -k -t impala-http.keytab

6. Copy the impala-http.keytab file to the Impala configuration directory. Change the permissions to be only
read for the file owner and change the file owner to the impala user. By default, the Impala user and group are
both named impala. For example:

$ cp impala-http.keytab /etc/impala/conf
$ cd /etc/impala/conf
$ chmod 400 impala-http.keytab
$ chown impala:impala impala-http.keytab

7. Add Kerberos options to the Impala defaults file, /etc/default/impala. Add the options for both the impalad
and statestored daemons, using the IMPALA_SERVER_ARGS and IMPALA_STATE_STORE_ARGS variables. For
example, you might add:

-kerberos_reinit_interval=60
-principal=impala_1/impala_host.example.com@TEST.EXAMPLE.COM
-keytab_file=/var/run/cloudera-scm-agent/process/3212-impala-IMPALAD/impala.keytab

Formore information on changing the Impala defaults specified in /etc/default/impala, seeModifying Impala
Startup Options.

Note: Restart impalad and statestored for these configuration changes to take effect.

Enabling Kerberos for Impala with a Proxy Server

A common configuration for Impala with High Availability is to use a proxy server to submit requests to the actual
impalad daemons on different hosts in the cluster. This configuration avoids connection problems in case of machine
failure, because the proxy server can route new requests through one of the remaining hosts in the cluster. This
configuration also helps with load balancing, because the additional overhead of being the “coordinator node” for
each query is spread across multiple hosts.

Although you can set up a proxy serverwith orwithout Kerberos authentication, typically users set up a secure Kerberized
configuration. For information about setting up a proxy server for Impala, including Kerberos-specific steps, see Using
Impala through a Proxy for High Availability.

Enabling Impala Delegation for Kerberos Users

See Configuring Impala Delegation for Hue and BI Tools on page 101 for details about the delegation feature that lets
certain users submit queries using the credentials of other users.

98 | Cloudera Security

Authentication

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBCandODBCapplications
to Impala. See Configuring Impala to Work with JDBC and Configuring Impala to Work with ODBC for details.

Currently, the Hive JDBC driver does not support connections that use both Kerberos authentication and SSL encryption.
To use both of these security features with Impala through a JDBC application, use the Cloudera JDBC Connector as
the JDBC driver.

Enabling LDAP Authentication for Impala

Authentication is the process of allowing only specified named users to access the server (in this case, the Impala
server). This feature is crucial for any production deployment, to prevent misuse, tampering, or excessive load on the
server. Impala users LDAP for authentication, verifying the credentials of each user who connects through
impala-shell, Hue, a Business Intelligence tool, JDBC or ODBC application, and so on.

Note: Regardless of the authenticationmechanism used, Impala always creates HDFS directories and
data files owned by the same user (typically impala). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala on page 257.

An alternative formof authentication you can use is Kerberos, described in Enabling Kerberos Authentication for Impala
on page 96.

Requirements for Using Impala with LDAP

Authentication against LDAP servers is available in Impala 1.2.2 and higher. Impala 1.4.0 adds support for secure LDAP
authentication through SSL and TLS.

The Impala LDAP support lets you use Impala with systems such as Active Directory that use LDAP behind the scenes.

Kerberos Authentication for Connections Between Impala Components

Only client->Impala connections can be authenticated by LDAP.

You must use the Kerberos authentication mechanism for connections between internal Impala components, such as
between the impalad, statestored, and catalogd daemons. See Enabling Kerberos Authentication for Impala on
page 96 on how to set up Kerberos for Impala.

Server-Side LDAP Setup

These requirements apply on the server side when configuring and starting Impala:

To enable LDAP authentication, set the following startup options for impalad:

• --enable_ldap_auth enables LDAP-based authentication between the client and Impala.
• --ldap_uri sets the URI of the LDAP server to use. Typically, the URI is prefixed with ldap://. In Impala 1.4.0

and higher, you can specify secure SSL-based LDAP transport by using the prefix ldaps://. The URI can optionally
specify the port, for example: ldap://ldap_server.cloudera.com:389 or
ldaps://ldap_server.cloudera.com:636. (389 and 636 are the default ports for non-SSL and SSL LDAP
connections, respectively.)

• For ldaps:// connections secured by SSL, --ldap_ca_certificate="/path/to/certificate/pem"
specifies the location of the certificate in standard .PEM format. Store this certificate on the local filesystem, in a
location that only the impala user and other trusted users can read.

Support for Custom Bind Strings

When Impala connects to LDAP it issues a bind call to the LDAP server to authenticate as the connected user. Impala
clients, including the Impala shell, provide the short name of the user to Impala. This is necessary so that Impala can
use Sentry for role-based access, which uses short names.

However, LDAP servers often require more complex, structured usernames for authentication. Impala supports three
ways of transforming the short name (for example, 'henry') to a more complicated string. If necessary, specify one
of the following configuration options when starting the impalad daemon on each data node:

Cloudera Security | 99

Authentication

http://www.cloudera.com/content/www/en-us/downloads.html.html

• --ldap_domain: Replaces the username with a string username@ldap_domain.
• --ldap_baseDN: Replaces the username with a “distinguished name” (DN) of the form:

uid=userid,ldap_baseDN. (This is equivalent to a Hive option).
• --ldap_bind_pattern: This is the most general option, and replaces the username with the string

ldap_bind_pattern where all instances of the string #UID are replaced with userid. For example, an
ldap_bind_pattern of "user=#UID,OU=foo,CN=bar"with a username of henrywill construct a bind name
of "user=henry,OU=foo,CN=bar".

For clusters notmanaged by ClouderaManager, specify the option on theimpalad command line. For clustersmanaged
by Cloudera Manager 5.4.0 and higher, search for the configuration field names ldap_domain, ldap_basedn, or
ldap_bind_pattern, fill in and save the appropriate field values, and restart the Impala service. Prior to Cloudera
Manager 5.4.0, these valueswere filled in using the Impala DaemonCommand LineArgument Advanced Configuration
Snippet (Safety Valve) field.

These options are mutually exclusive; Impala does not start if more than one of these options is specified.

Secure LDAP Connections

To avoid sending credentials over the wire in cleartext, you must configure a secure connection between both the
client and Impala, and between Impala and the LDAP server. The secure connection could use SSL or TLS.

Secure LDAP connections through SSL:

For SSL-enabled LDAP connections, specify a prefix of ldaps:// instead of ldap://. Also, the default port for
SSL-enabled LDAP connections is 636 instead of 389.

Secure LDAP connections through TLS:

TLS, the successor to the SSL protocol, is supported by most modern LDAP servers. Unlike SSL connections, TLS
connections can be made on the same server port as non-TLS connections. To secure all connections using TLS, specify
the following flags as startup options to the impalad daemon:

• --ldap_tls tells Impala to start a TLS connection to the LDAP server, and to fail authentication if it cannot be
done.

• --ldap_ca_certificate="/path/to/certificate/pem" specifies the location of the certificate in standard
.PEM format. Store this certificate on the local filesystem, in a location that only the impala user and other trusted
users can read.

LDAP Authentication for impala-shell Interpreter

To connect to Impala using LDAP authentication, you specify command-line options to the impala-shell command
interpreter and enter the password when prompted:

• -l enables LDAP authentication.
• -u sets the user. Per Active Directory, the user is the short user name, not the full LDAP distinguished name. If

your LDAP settings include a search base, use the --ldap_bind_pattern on the impalad daemon to translate
the short user name from impala-shell automatically to the fully qualified name.

• impala-shell automatically prompts for the password.

For the full list of available impala-shell options, see impala-shell Configuration Options.

LDAP authentication for JDBC applications: See Configuring Impala to Work with JDBC for the format to use with the
JDBC connection string for servers using LDAP authentication.

Enabling Impala Delegation for LDAP Users

See Configuring Impala Delegation for Hue and BI Tools on page 101 for details about the delegation feature that lets
certain users submit queries using the credentials of other users.

LDAP Restrictions for Impala

The LDAP support is preliminary. It currently has only been tested against Active Directory.

100 | Cloudera Security

Authentication

http://en.wikipedia.org/wiki/Transport_Layer_Security

Using Multiple Authentication Methods with Impala

Impala 2.0 and later automatically handles both Kerberos and LDAP authentication. Each impalad daemon can accept
both Kerberos and LDAP requests through the same port. No special actions need to be taken if some users authenticate
through Kerberos and some through LDAP.

Prior to Impala 2.0, you had to configure each impalad to listen on a specific port depending on the kind of
authentication, then configure your network load balancer to forward each kind of request to a data node that was
set up with the appropriate authentication type. Once the initial request was made using either Kerberos or LDAP
authentication, Impala automatically handled theprocess of coordinating thework acrossmultiple nodes and transmitting
intermediate results back to the coordinator node.

Configuring Impala Delegation for Hue and BI Tools

When users submit Impala queries through a separate application, such as Hue or a business intelligence tool, typically
all requests are treated as coming from the same user. In Impala 1.2 and higher,,Impala supports applications to pass
along credentials for the users that connect to them, known as “delegation”, and to issue Impala queries with the
privileges for those users. Currently, the delegation feature is available only for Impala queries submitted through
application interfaces such as Hue and BI tools; for example, Impala cannot issue queries using the privileges of the
HDFS user.

The delegation feature is enabled by a startup option for impalad: --authorized_proxy_user_config. When
you specify this option, users whose names you specify (such as hue) can delegate the execution of a query to another
user. The query runs with the privileges of the delegated user, not the original user such as hue. The name of the
delegated user is passed using the HiveServer2 configuration property impala.doas.user.

You can specify a list of users that the application user can delegate to, or * to allow a superuser to delegate to any
other user. For example:

impalad --authorized_proxy_user_config 'hue=user1,user2;admin=*' ...

Note: Make sure to use single quotes or escape characters to ensure that any * characters do not
undergo wildcard expansion when specified in command-line arguments.

SeeModifying Impala StartupOptions for details about adding or changing impalad startup options. See this Cloudera
blog post for background information about the delegation capability in HiveServer2.

To set up authentication for the delegated users:

• On the server side, configure either user/password authentication through LDAP, or Kerberos authentication, for
all the delegated users. See Enabling LDAPAuthentication for Impala on page 99 or Enabling Kerberos Authentication
for Impala on page 96 for details.

• On the client side, follow the instructions in the “Using User Name and Password” section in the ODBC driver
installation guide. Then search for “delegation” in that same installation guide to learn about the Delegation UID
field and DelegationUID configuration keyword to enable the delegation feature for ODBC-based BI tools.

Enabling Delegation in Cloudera Manager

To enable delegation in Cloudera Manager:

1. Navigate to Clusters > Impala > Configuration > Policy File-Based Sentry.
2. In the Proxy User Configuration field, type the a semicolon-separated list of key=value pairs of authorized proxy

users to the user(s) they can impersonate. The list of delegated users are delimited with a comma, e.g. hue=user1,
user2.

3. Click Save Changes and then restart Impala service.

Llama Authentication

This section describes how to configure Llama in CDH 5 with Kerberos security in a Hadoop cluster.

Cloudera Security | 101

Authentication

http://blog.cloudera.com/blog/2013/07/how-hiveserver2-brings-security-and-concurrency-to-apache-hive/
http://blog.cloudera.com/blog/2013/07/how-hiveserver2-brings-security-and-concurrency-to-apache-hive/
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Connectors/PDF/Cloudera-ODBC-Driver-for-Impala-Install-Guide.pdf
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Connectors/PDF/Cloudera-ODBC-Driver-for-Impala-Install-Guide.pdf

Note: Llama has been tested only in a Cloudera Manager deployment. For information on using
Cloudera Manager to configure Llama and Impala, see Installing Impala.

Configuring Llama to Support Kerberos Security

1. Create a Llama service user principal using the syntax:llama/fully.qualified.domain.name@YOUR-REALM.
This principal is used to authenticate with the Hadoop cluster, where fully.qualified.domain.name is the host
where Llama is running and YOUR-REALM is the name of your Kerberos realm:

$ kadmin
kadmin: addprinc -randkey
llama/fully.qualified.domain.name@YOUR-REALM

2. Create a keytab file with the Llama principal:

$ kadmin
kadmin: xst -k llama.keytab llama/fully.qualified.domain.name

3. Test that the credentials in the keytab file work. For example:

$ klist -e -k -t llama.keytab

4. Copy the llama.keytab file to the Llama configuration directory. The owner of the llama.keytab file should
be the llama user and the file should have owner-only read permissions.

5. Edit the Llama llama-site.xml configuration file in the Llama configuration directory by setting the following
properties:

ValueProperty

truellama.am.server.thrift.security

llama/conf.keytabllama.am.server.thrift.kerberos.keytab.file

llama/fully.qualified.domain.namellama.am.server.thrift.kerberos.server.principal.name

impalallama.am.server.thrift.kerberos.notification.principal.name

6. Restart Llama to make the configuration changes take effect.

Oozie Authentication

This section describes how to configure Oozie CDH 5 with Kerberos security on a Hadoop cluster:

• Configuring Kerberos Authentication for the Oozie Server on page 103
• Configuring Oozie HA with Kerberos on page 104

Important:

To enable Oozie to work with Kerberos security on your Hadoop cluster, make sure you perform the
installation and configuration steps in Configuring Hadoop Security in CDH 5. Also note that when
Kerberos security is enabled in Oozie, a web browser that supports Kerberos HTTP SPNEGO is required
to access the Oozie web-console (for example, Firefox, Internet Explorer or Chrome).

102 | Cloudera Security

Authentication

Important:

If the NameNode, Secondary NameNode, DataNode, JobTracker, TaskTrackers, ResourceManager,
NodeManagers, HttpFS, or Oozie services are configured to use Kerberos HTTP SPNEGOauthentication,
and two or more of these services are running on the same host, then all of the running services must
use the same HTTP principal and keytab file used for their HTTP endpoints.

Configuring Kerberos Authentication for the Oozie Server

1. Create a Oozie service user principal using the syntax:
oozie/<fully.qualified.domain.name>@<YOUR-REALM>. This principal is used to authenticate with the
Hadoop cluster. where: fully.qualified.domain.name is the host where the Oozie server is running
YOUR-REALM is the name of your Kerberos realm.

kadmin: addprinc -randkey oozie/fully.qualified.domain.name@YOUR-REALM.COM

2. Create aHTTP serviceuser principal using the syntax:HTTP/<fully.qualified.domain.name>@<YOUR-REALM>.
This principal is used to authenticate user requests coming to the Oozie web-services. where:
fully.qualified.domain.name is the host where the Oozie server is running YOUR-REALM is the name of
your Kerberos realm.

kadmin: addprinc -randkey HTTP/fully.qualified.domain.name@YOUR-REALM.COM

Important:

The HTTP/ component of the HTTP service user principal must be upper case as shown in the
syntax and example above.

3. Create keytab files with both principals.

$ kadmin
kadmin: xst -k oozie.keytab oozie/fully.qualified.domain.name
kadmin: xst -k http.keytab HTTP/fully.qualified.domain.name

4. Merge the two keytab files into a single keytab file:

$ ktutil
ktutil: rkt oozie.keytab
ktutil: rkt http.keytab
ktutil: wkt oozie-http.keytab

5. Test that credentials in the merged keytab file work. For example:

$ klist -e -k -t oozie-http.keytab

6. Copy the oozie-http.keytab file to the Oozie configuration directory. The owner of the oozie-http.keytab
file should be the oozie user and the file should have owner-only read permissions.

7. Edit the Oozie server oozie-site.xml configuration file in the Oozie configuration directory by setting the
following properties:

Important: You must restart the Oozie server to have the configuration changes take effect.

ValueProperty

trueoozie.service.HadoopAccessorService.kerberos.enabled

Cloudera Security | 103

Authentication

ValueProperty

<REALM>local.realm

/etc/oozie/conf/oozie-http.keytab for a
package installation, or

oozie.service.HadoopAccessorService.keytab.file

<EXPANDED_DIR>/conf/oozie-http.keytab for a
tarball installation

oozie/<fully.qualified.domain.name>@<YOUR-REALM.COM>oozie.service.HadoopAccessorService.kerberos.principal

kerberosoozie.authentication.type

HTTP/<fully.qualified.domain.name>@<YOUR-REALM.COM>oozie.authentication.kerberos.principal

Use the value configured for
hadoop.security.auth_to_local in
core-site.xml

oozie.authentication.kerberos.name.rules

Configuring Oozie HA with Kerberos

In CDH 5, you can configure multiple active Oozie servers against the same database, providing high availability for
Oozie. For instructions on setting up Oozie HA, see Oozie High Availability

Let's assume you have three hosts running Oozie servers, host1.example.com, host2.example.com,
host3.example.com and the Load Balancer running on oozie.example.com. The Load Balancer directs traffic to
the Oozie servers: host1, host2 and host3. For such a configuration, assuming your Kerberos realm is EXAMPLE.COM,
create the following Kerberos principals:

• oozie/host1.example.com@EXAMPLE.COM

• oozie/host2.example.com@EXAMPLE.COM

• oozie/host3.example.com@EXAMPLE.COM

• HTTP/host1.example.com@EXAMPLE.COM

• HTTP/host2.example.com@EXAMPLE.COM

• HTTP/host3.example.com@EXAMPLE.COM

• HTTP/oozie.example.com@EXAMPLE.COM

On each of the hosts, host1, host2 and host3, create a keytab file with its corresponding oozie and HTTP principals
from the list above. All keytab files should also have the load balancer's HTTP principal. Hence, each keytab file should
have 3 principals in all.

Edit the following property in the Oozie server configuration file, oozie-site.xml:

<property>
<name>oozie.authentication.kerberos.principal</name>
<value>*</value>
</property>

Search Authentication

This section describes how to configure Search in CDH 5 to enable Kerberos security and Sentry.

Configuring Search to Use Kerberos

Cloudera Search supports Kerberos authentication. All necessary packages are installed when you install Search. To
enable Kerberos, create principals and keytabs and then modify default configurations.

The following instructions only apply to configuring Kerberos in an unmanaged environment. Kerberos configuration
is automatically handled by Cloudera Manager if you are using Search in a Cloudera Manager environment.

104 | Cloudera Security

Authentication

To create principals and keytabs

Repeat this process on all Solr server hosts.

1. Create a Solr service user principal using the syntax:solr/<fully.qualified.domain.name>@<YOUR-REALM>.
This principal is used to authenticate with the Hadoop cluster. where: fully.qualified.domain.name is the
host where the Solr server is running YOUR-REALM is the name of your Kerberos realm.

$ kadmin
kadmin: addprinc -randkey solr/fully.qualified.domain.name@YOUR-REALM.COM

2. Create aHTTP serviceuser principal using the syntax:HTTP/<fully.qualified.domain.name>@<YOUR-REALM>.
This principal is used to authenticate user requests coming to the Solr web-services. where:
fully.qualified.domain.name is the host where the Solr server is running YOUR-REALM is the name of your
Kerberos realm.

kadmin: addprinc -randkey HTTP/fully.qualified.domain.name@YOUR-REALM.COM

Note:

The HTTP/ component of the HTTP service user principal must be upper case as shown in the
syntax and example above.

3. Create keytab files with both principals.

kadmin: xst -norandkey -k solr.keytab solr/fully.qualified.domain.name \
HTTP/fully.qualified.domain.name

4. Test that credentials in the merged keytab file work. For example:

$ klist -e -k -t solr.keytab

5. Copy the solr.keytab file to the Solr configuration directory. The owner of the solr.keytab file should be
the solr user and the file should have owner-only read permissions.

To modify default configurations

Repeat this process on all Solr server hosts.

1. Ensure that the following properties appear in /etc/default/solr and that they are uncommented. Modify
these properties to match your environment. The relevant properties to be uncommented and modified are:

SOLR_AUTHENTICATION_TYPE=kerberos
SOLR_AUTHENTICATION_SIMPLE_ALLOW_ANON=true
SOLR_AUTHENTICATION_KERBEROS_KEYTAB=/etc/solr/conf/solr.keytab
SOLR_AUTHENTICATION_KERBEROS_PRINCIPAL=HTTP/localhost@LOCALHOST
SOLR_AUTHENTICATION_KERBEROS_NAME_RULES=DEFAULT
SOLR_AUTHENTICATION_JAAS_CONF=/etc/solr/conf/jaas.conf

Note: Modify the values for these properties to match your environment. For example, the
SOLR_AUTHENTICATION_KERBEROS_PRINCIPAL=HTTP/localhost@LOCALHOSTmust include
the principal instance and Kerberos realm for your environment. That is often different from
localhost@LOCALHOST.

2. Set hadoop.security.auth_to_local to match the value specified by
SOLR_AUTHENTICATION_KERBEROS_NAME_RULES in /etc/default/solr.

Note: For information on how to configure the rules, see Configuring theMapping fromKerberos
Principals to Short Names on page 112. For additional information on using Solr with HDFS, see
Configuring Solr for Use with HDFS.

3. If using applications that use the solrj library, set up the Java Authentication and Authorization Service (JAAS).

Cloudera Security | 105

Authentication

Create a jaas.conf file in the Solr configuration directory containing the following settings. This file and its
location must match the SOLR_AUTHENTICATION_JAAS_CONF value. Make sure that you substitute a value
for principal that matches your particular environment.

Client {
 com.sun.security.auth.module.Krb5LoginModule required

a.

 useKeyTab=true
 useTicketCache=false
 keyTab="/etc/solr/conf/solr.keytab"
 principal="solr/fully.qualified.domain.name@<YOUR-REALM>";
};

Using Kerberos

The process of enabling Solr clients to authenticatewith a secure Solr is specific to the client. This section demonstrates:

• Using Kerberos and curl
• Using solrctl
• Configuring SolrJ Library Usage.

This enables technologies including:

• Command line solutions
• Java applications
• The MapReduceIndexerTool

• Configuring Flume Morphline Solr Sink Usage

Secure Solr requires that the CDH components that it interacts with are also secure. Secure Solr interacts with HDFS,
ZooKeeper and optionally HBase, MapReduce, andFlume. See Cloudera Security or the CDH 4 Security Guide for more
information.

Using Kerberos and curl

You can use Kerberos authenticationwith clients such ascurl. To usecurl, begin by acquiring valid Kerberos credentials
and then execute the desired command. For example, you might use commands similar to the following:

$ kinit -kt username.keytab username
$ curl --negotiate -u foo:bar http://solrserver:8983/solr/

Note: Depending on the tool used to connect, additional arguments may be required. For example,
with curl, --negotiate and -u are required. The username and password specified with -u is not
actually checked because Kerberos is used. As a result, any value such as foo:bar or even just : is
acceptable. While any value can be provided for -u, note that the option is required. Omitting -u
results in a 401 Unauthorized error, even though the -u value is not actually used.

Using solrctl

If you are using solrctl to manage your deployment in an environment that requires Kerberos authentication, you
must have valid Kerberos credentials, which you can get using kinit. For more information on solrctl, see Solrctl
Reference

Configuring SolrJ Library Usage

If using applications that use the solrj library, begin by establishing a Java Authentication and Authorization Service
(JAAS) configuration file.

Create a JAAS file:

106 | Cloudera Security

Authentication

http://www.cloudera.com/documentation/enterprise/latest/topics/security.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH4-Security-Guide/CDH4-Security-Guide.html

• If you have already used kinit to get credentials, you can have the client use those credentials. In such a case,
modify your jaas-client.conf file to appear as follows:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=false
 useTicketCache=true
 principal="user/fully.qualified.domain.name@<YOUR-REALM>";
 };

where user/fully.qualified.domain.name@<YOUR-REALM> is replaced with your credentials.
• You want the client application to authenticate using a keytab you specify:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/path/to/keytab/user.keytab"
 storeKey=true
 useTicketCache=false
 principal="user/fully.qualified.domain.name@<YOUR-REALM>";
};

where /path/to/keytab/user.keytab is the keytab file you wish to use and
user/fully.qualified.domain.name@<YOUR-REALM> is the principal in that keytab you wish to use.

Use the JAAS file to enable solutions:

• Command line solutions

Set the property when invoking the program. For example, if you were using a jar, you might use:

java -Djava.security.auth.login.config=/home/user/jaas-client.conf -jar app.jar

• Java applications

Set the Java system property java.security.auth.login.config. For example, if the JAAS configuration file
is located on the filesystem as /home/user/jaas-client.conf. The Java system property
java.security.auth.login.configmust be set to point to this file. Setting a Java system property can be
done programmatically, for example using a call such as:

System.setProperty("java.security.auth.login.config", "/home/user/jaas-client.conf");

• The MapReduceIndexerTool

The MapReduceIndexerTool uses SolrJ to pass the JAAS configuration file. Using the MapReduceIndexerTool in a
secure environment requires the use of the HADOOP_OPTS variable to specify the JAAS configuration file. For
example, you might issue a command such as the following:

HADOOP_OPTS="-Djava.security.auth.login.config=/home/user/jaas.conf" \
hadoop jar MapReduceIndexerTool

• Configuring the hbase-indexer CLI

Certain hbase-indexer CLI commands such as replication-status attempt to read ZooKeeper hosts owned
by HBase. To successfully use these commands in Search for CDH 5 in a secure environment, specify a JAAS
configuration file with the HBase principal in the HBASE_INDEXER_OPTS environment variable. For example, you
might issue a command such as the following:

HBASE_INDEXER_OPTS="-Djava.security.auth.login.config=/home/user/hbase-jaas.conf" \
hbase-indexer replication-status

Cloudera Security | 107

Authentication

Configuring Flume Morphline Solr Sink Usage

Repeat this process on all Flume hosts:

1. If you have not created a keytab file, do so now at /etc/flume-ng/conf/flume.keytab. This file should
contain the service principal flume/<fully.qualified.domain.name>@<YOUR-REALM>. See the CDH 5
Security Guide for more information.

2. Create a JAAS configuration file for flume at/etc/flume-ng/conf/jaas-client.conf. The file should appear
as follows:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 useTicketCache=false
 keyTab="/etc/flume-ng/conf/flume.keytab"
 principal="flume/<fully.qualified.domain.name>@<YOUR-REALM>";
};

3. Add the flume JAAS configuration to the JAVA_OPTS in /etc/flume-ng/conf/flume-env.sh. For example,
you might change:

JAVA_OPTS="-Xmx500m"

to:

JAVA_OPTS="-Xmx500m -Djava.security.auth.login.config=/etc/flume-ng/conf/jaas-client.conf"

ZooKeeper Authentication

This section describes how to configure ZooKeeper in CDH 5 to enable Kerberos security:

• Configuring ZooKeeper Server for Kerberos Authentication on page 108
• Configuring the ZooKeeper Client Shell to Support Kerberos Security on page 109
• Verifying the Configuration on page 110

Important:

Prior to enabling ZooKeeper to work with Kerberos security on your cluster, make sure you first review
the requirements in Configuring Hadoop Security in CDH 5.

Configuring ZooKeeper Server for Kerberos Authentication

You can configure the ZooKeeper server for Kerberos authentication in Cloudera Manager or through the command
line.

Using Cloudera Manager to Configure ZooKeeper Server for Kerberos Authentication

To set up the ZooKeeper server for Kerberos authentication in Cloudera Manager, complete the following steps:

1. In Cloudera Manager, open the ZooKeeper service.
2. Click the Configuration tab.
3. Enter Kerberos in the in the Search bar.
4. Find the Enable Kerberos Authentication property and select the check-box next to the ZooKeeper services that

you want to configure for Kerberos authentication.

108 | Cloudera Security

Authentication

https://www.cloudera.com/documentation/cdh/5-1-x/CDH5-Security-Guide/CDH5-Security-Guide.html
https://www.cloudera.com/documentation/cdh/5-1-x/CDH5-Security-Guide/CDH5-Security-Guide.html

Using the Command Line to Configure ZooKeeper Server for Kerberos Authentication

Follow the steps below for each ZooKeeper server in the ensemble. To maintain consistency across ZooKeeper servers
in the ensemble, use the same name for the keytab file you deploy to each server, for example, zookeeper.keytab.
Each keytab file will contain its respective host's fully-qualified domain name (FQDN).

1. Create a service principal for the ZooKeeper server using the fully-qualified domain name (FQDN) of the host on
which ZooKeeper server is running and the name of your Kerberos realm using the pattern
zookeeper/fqdn.example.com@ YOUR-REALM. This principal will be used to authenticate the ZooKeeper
server with the Hadoop cluster. Create this service principal as follows:

kadmin: addprinc -randkey zookeeper/fqdn.example.com@YOUR-REALM

2. Create a keytab file for the ZooKeeper server:

$ kadmin
kadmin: xst -k zookeeper.keytab zookeeper/fqdn.example.com@YOUR-REALM

Note: For consistency across ZooKeeper Servers, use the same name for the keytab file you
create for each subsequent ZooKeeper Server host system you configure using these steps, for
example, zookeeper.keytab.

3. Copy the zookeeper.keytab file to the ZooKeeper configuration directory on the ZooKeeper server host, using
the appropriate ZooKeeper configuration directory: /etc/zookeeper/conf/. The zookeeper.keytab file
should be owned by the zookeeper user, with owner-only read permissions.

4. Add the following lines to the ZooKeeper configuration file zoo.cfg:

authProvider.1=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
jaasLoginRenew=3600000

5. Set up the Java Authentication and Authorization Service (JAAS) by creating a jaas.conf file in the ZooKeeper
configuration directorywith the settings shown below, replacing fqdn.example.comwith the ZooKeeper server's
hostname.

Server {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/etc/zookeeper/conf/zookeeper.keytab"
 storeKey=true
 useTicketCache=false
 principal="zookeeper/fqdn.example.com
 @YOUR-REALM";
};

6. Add the following setting to the java.env file located in the ZooKeeper configuration directory, creating the file
if necessary:

export JVMFLAGS="-Djava.security.auth.login.config=/etc/zookeeper/conf/jaas.conf"

7. Repeat these steps for each ZooKeeper server in the ensemble.
8. Restart the ZooKeeper server to have the configuration changes take effect. See ZooKeeper Installation for details.

Configuring the ZooKeeper Client Shell to Support Kerberos Security

1. If youwant to use the ZooKeeper client shell zookeeper-clientwith Kerberos authentication, create a principal
using the syntax: zkcli@<YOUR-REALM>. This principal is used to authenticate the ZooKeeper client shell to the
ZooKeeper service. where: YOUR-REALM is the name of your Kerberos realm.

kadmin: addprinc -randkey zkcli@YOUR-REALM.COM

Cloudera Security | 109

Authentication

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/tutorials/GeneralAcnOnly.html

2. Create a keytab file for the ZooKeeper client shell.

$ kadmin
kadmin: xst -norandkey -k zkcli.keytab zkcli@YOUR-REALM.COM

Note:

Some versions of kadmin do not support the -norandkey option in the command above. If your
version does not, you can omit it from the command. Note that doing so will result in a new
password being generated every time you export a keytab, which will invalidate
previously-exported keytabs.

3. Set up JAAS in the configuration directory on the host where the ZooKeeper client shell is running. For a package
installation, the configuration directory is /etc/zookeeper/conf/. For a tar ball installation, the configuration
directory is <EXPANDED_DIR>/conf. Create a jaas.conf file containing the following settings:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/path/to/zkcli.keytab"
 storeKey=true
 useTicketCache=false
 principal="zkcli@<YOUR-REALM>";
};

4. Add the following setting to the java.env file located in the configuration directory. (Create the file if it does
not already exist.)

export JVMFLAGS="-Djava.security.auth.login.config=/etc/zookeeper/conf/jaas.conf"

Verifying the Configuration

1. Make sure that you have restarted the ZooKeeper cluster with Kerberos enabled, as described above.
2. Start the client (where the hostname is the name of a ZooKeeper server):

zookeeper-client -server hostname:port

3. Create a protected znode fromwithin the ZooKeeper CLI.Make sure that you substituteYOUR-REALM as appropriate.

create /znode1 znode1data sasl:zkcli@{{YOUR-REALM}}:cdwra

4. Verify the znode is created and the ACL is set correctly:

getAcl /znode1

The results from getAcl should show that the proper scheme and permissions were applied to the znode.

FUSE Kerberos Configuration

This section describes how to use FUSE (Filesystem in Userspace) and CDH with Kerberos security on your Hadoop
cluster. FUSE enables you to mount HDFS, which makes HDFS files accessible just as if they were UNIX files.

To use FUSE and CDH with Kerberos security, follow these guidelines:

• For each HDFS user, make sure that there is a UNIX user with the same name. If there isn't, some files in the FUSE
mount point will appear to be owned by a non-existent user. Although this is harmless, it can cause confusion.

110 | Cloudera Security

Authentication

• When using Kerberos authentication, users must run kinit before accessing the FUSE mount point. Failure to
do this will result in I/O errors when the user attempts to access the mount point. For security reasons, it is not
possible to list the files in the mount point without first running kinit.

• When a user runs kinit, all processes that run as that user can use the Kerberos credentials. It is not necessary
to run kinit in the same shell as the process accessing the FUSE mount point.

Using kadmin to Create Kerberos Keytab Files

If your version of Kerberos does not support the Kerberos -norandkey option in the xst command, or if you must
use kadmin because you cannot use kadmin.local, then you can use the following procedure to create Kerberos
keytab files. Using the -norandkey option when creating keytabs is optional and a convenience, but it is not required.

Important:

For both MRv1 and YARN deployments: On every machine in your cluster, there must be a keytab
file for the hdfs user and a keytab file for the mapred user. The hdfs keytab file must contain entries
for the hdfs principal and an HTTP principal, and the mapred keytab file must contain entries for the
mapred principal and an HTTP principal. On each respective machine, the HTTP principal will be the
same in both keytab files.

In addition, for YARN deployments only: On every machine in your cluster, there must be a keytab
file for the yarn user. The yarn keytab file must contain entries for the yarn principal and an HTTP
principal. On each respective machine, the HTTP principal in the yarn keytab file will be the same as
the HTTP principal in the hdfs and mapred keytab files.

For instructions, see To create the Kerberos keytab files on page 111.

Note:

These instructions illustrate an example of creating keytab files for MIT Kerberos. If you are using
another version of Kerberos, refer to your Kerberos documentation for instructions. You can use either
kadmin or kadmin.local to run these commands.

To create the Kerberos keytab files

Do the following steps for every host in your cluster, replacing the fully.qualified.domain.name in the commands
with the fully qualified domain name of each host:

1. Create the hdfs keytab file, which contains an entry for the hdfs principal. This keytab file is used for the
NameNode, Secondary NameNode, and DataNodes.

$ kadmin
kadmin: xst -k hdfs-unmerged.keytab hdfs/fully.qualified.domain.name

2. Create the mapred keytab file, which contains an entry for the mapred principal. If you are using MRv1, the
mapred keytab file is used for the JobTracker and TaskTrackers. If you are using YARN, the mapred keytab file is
used for the MapReduce Job History Server.

kadmin: xst -k mapred-unmerged.keytab mapred/fully.qualified.domain.name

3. YARN only: Create the yarn keytab file, which contains an entry for the yarn principal. This keytab file is used
for the ResourceManager and NodeManager.

kadmin: xst -k yarn-unmerged.keytab yarn/fully.qualified.domain.name

Cloudera Security | 111

Authentication

4. Create the http keytab file, which contains an entry for the HTTP principal.

kadmin: xst -k http.keytab HTTP/fully.qualified.domain.name

5. Use the ktutil command to merge the previously-created keytabs:

$ ktutil
ktutil: rkt hdfs-unmerged.keytab
ktutil: rkt http.keytab
ktutil: wkt hdfs.keytab
ktutil: clear
ktutil: rkt mapred-unmerged.keytab
ktutil: rkt http.keytab
ktutil: wkt mapred.keytab
ktutil: clear
ktutil: rkt yarn-unmerged.keytab
ktutil: rkt http.keytab
ktutil: wkt yarn.keytab

This procedure creates three new files: hdfs.keytab, mapred.keytab and yarn.keytab. These files contain
entries for the hdfs and HTTP principals, the mapred and HTTP principals, and the yarn and HTTP principals
respectively.

6. Use klist to display the keytab file entries. For example, a correctly-created hdfs keytab file should look
something like this:

$ klist -e -k -t hdfs.keytab
Keytab name: WRFILE:hdfs.keytab
slot KVNO Principal
---- ---- ---
 1 7 HTTP/fully.qualified.domain.name@YOUR-REALM.COM (DES cbc mode with CRC-32)

 2 7 HTTP/fully.qualified.domain.name@YOUR-REALM.COM (Triple DES cbc mode with
 HMAC/sha1)
 3 7 hdfs/fully.qualified.domain.name@YOUR-REALM.COM (DES cbc mode with CRC-32)

 4 7 hdfs/fully.qualified.domain.name@YOUR-REALM.COM (Triple DES cbc mode with
 HMAC/sha1)

7. To verify that you have performed the merge procedure correctly, make sure you can obtain credentials as both
the hdfs and HTTP principals using the single merged keytab:

$ kinit -k -t hdfs.keytab hdfs/fully.qualified.domain.name@YOUR-REALM.COM
$ kinit -k -t hdfs.keytab HTTP/fully.qualified.domain.name@YOUR-REALM.COM

If either of these commands fails with an error message such as "kinit: Key table entry not found
while getting initial credentials", then something has gone wrong during the merge procedure. Go
back to step 1 of this document and verify that you performed all the steps correctly.

8. To continue the procedure of configuring Hadoop security in CDH 5, follow the instructions in the section To deploy
the Kerberos keytab files.

Configuring the Mapping from Kerberos Principals to Short Names

You configure the mapping from Kerberos principals to short names in the hadoop.security.auth_to_local
property setting in the core-site.xml file. Kerberos has this support natively, and Hadoop's implementation reuses
Kerberos's configuration language to specify the mapping.

A mapping consists of a set of rules that are evaluated in the order listed in the hadoop.security.auth_to_local
property. The first rule that matches a principal name is used to map that principal name to a short name. Any later
rules in the list that match the same principal name are ignored.

112 | Cloudera Security

Authentication

You specify the mapping rules on separate lines in the hadoop.security.auth_to_local property as follows:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[<principal translation>](<acceptance filter>)<short name substitution>
 RULE:[<principal translation>](<acceptance filter>)<short name substitution>
 DEFAULT
 </value>
</property>

Mapping Rule Syntax

To specify a mapping rule, use the prefix string RULE: followed by three sections—principal translation, acceptance
filter, and short name substitution—described in more detail below. The syntax of a mapping rule is:

RULE:[<principal translation>](<acceptance filter>)<short name substitution>

Principal Translation

The first section of a rule, <principal translation>, performs the matching of the principal name to the rule. If
there is a match, the principal translation also does the initial translation of the principal name to a short name. In the
<principal translation> section, you specify the number of components in the principal name and the pattern
you want to use to translate those principal component(s) and realm into a short name. In Kerberos terminology, a
principal name is a set of components separated by slash ("/") characters.

The principal translation is composed of two parts that are both specified within "[]" using the following syntax:

[<number of components in principal name>:<initial specification of short name>]

where:

<number of components in principal name> – This first part specifies the number of components in the principal name
(not including the realm) and must be 1 or 2. A value of 1 specifies principal names that have a single component (for
example, hdfs), and 2 specifies principal names that have two components (for example,
hdfs/fully.qualified.domain.name). A principal name that has only one component will only match
single-component rules, and a principal name that has two components will only match two-component rules.

<initial specification of short name> – This second part specifies a pattern for translating the principal component(s)
and the realm into a short name. The variable $0 translates the realm, $1 translates the first component, and $2
translates the second component.

Here are some examples of principal translation sections. These examples use atm@YOUR-REALM.COM and
atm/fully.qualified.domain.name@YOUR-REALM.COM as principal name inputs:

Translates atm/fully.qualified.domain.name@YOUR-REALM.COM
into this short name

Translates atm@YOUR-REALM.
COM into this short name

This Principal
Translation

Rule does not match1atm@YOUR-REALM.COM[1:$1@$0]

Rule does not match1atm[1:$1]

Rule does not match1atm.foo[1:$1.foo]

atm/fully.qualified.domain.name@YOUR-REALM.COMRule does not match2[2:$1/$2@$0]

atm/fully.qualified.domain.nameRule does not match2[2:$1/$2]

atm@YOUR-REALM.COMRule does not match2[2:$1@$0]

atmRule does not match2[2:$1]

Footnotes:

Cloudera Security | 113

Authentication

1Rule does not match because there are two components in principal name
atm/fully.qualified.domain.name@YOUR-REALM.COM

2Rule does not match because there is one component in principal name atm@YOUR-REALM.COM

Acceptance Filter

The second section of a rule, (<acceptance filter>), matches the translated short name from the principal
translation (that is, the output from the first section). The acceptance filter is specified in "()" characters and is a
standard regular expression. A rulematches only if the specified regular expressionmatches the entire translated short
name from the principal translation. That is, there's an implied ^ at the beginning of the pattern and an implied $ at
the end.

Short Name Substitution

The third and final section of a rule is the (<short name substitution>). If there is a match in the second section,
the acceptance filter, the (<short name substitution>) section does a final translation of the short name from
the first section. This translation is a sed replacement expression (s/.../.../g) that translates the short name from
the first section into the final short name string. The short name substitution section is optional. In many cases, it is
sufficient to use the first two sections only.

Converting Principal Names to Lowercase

In someorganizations, naming conventions result inmixed-case usernames (for example, John.Doe) or even uppercase
usernames (for example, JDOE) in Active Directory or LDAP. This can cause a conflict when the Linux username and
HDFS home directory are lowercase.

To convert principal names to lowercase, append /L to the rule.

Example Rules

Suppose all of your service principals are either of the form
App.service-name/fully.qualified.domain.name@YOUR-REALM.COM or
App.service-name@YOUR-REALM.COM, and you want to map these to the short name string service-name. To do
this, your rule set would be:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[1:$1](App\..*)s/App\.(.*)/$1/g
 RULE:[2:$1](App\..*)s/App\.(.*)/$1/g
 DEFAULT
 </value>
</property>

The first $1 in each rule is a reference to the first component of the full principal name, and the second $1 is a regular
expression back-reference to text that is matched by (.*).

In the following example, suppose your company's naming scheme for user accounts in Active Directory is
FirstnameLastname (for example, JohnDoe), but user home directories in HDFS are /user/firstnamelastname.
The following rule set converts user accounts in the CORP.EXAMPLE.COM domain to lowercase.

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[2:$1@$0](HTTP@\QCORP.EXAMPLE.COM\E$)s/@\QCORP.EXAMPLE.COM\E$//
 RULE:[1:$1@$0](.*@\QCORP.EXAMPLE.COM\E$)s/@\QCORP.EXAMPLE.COM\E$///L
 RULE:[2:$1@$0](.*@\QCORP.EXAMPLE.COM\E$)s/@\QCORP.EXAMPLE.COM\E$///L
 DEFAULT
 </value>
</property>

In this example, the JohnDoe@CORP.EXAMPLE.COM principal becomes the johndoe HDFS user.

114 | Cloudera Security

Authentication

Default Rule

You can specify an optional default rule called DEFAULT (see example above). The default rule reduces a principal
namedown to its first component only. For example, the default rule reduces the principal namesatm@YOUR-REALM.COM
or atm/fully.qualified.domain.name@YOUR-REALM.COM down to atm, assuming that the default domain is
YOUR-REALM.COM.

The default rule applies only if the principal is in the default realm.

If a principal name does not match any of the specified rules, the mapping for that principal name will fail.

Testing Mapping Rules

You can test mapping rules for a long principal name by running:

$ hadoop org.apache.hadoop.security.HadoopKerberosName name1 name2 name3

Enabling Debugging Output for the Sun Kerberos Classes

Initially getting a secure Hadoop cluster configured properly can be tricky, especially for those who are not yet familiar
with Kerberos. To help with this, it can be useful to enable debugging output for the Sun Kerberos classes. To do so,
set the HADOOP_OPTS environment variable to the following:

HADOOP_OPTS="-Dsun.security.krb5.debug=true"

Configuring a Cluster-dedicated MIT KDC with Cross-Realm Trust

Important: If you have existing Kerberos host keytabs at your site, it's important that you read this
section to prevent your existing host keytabs from becoming invalid.

If you use Cloudera Manager to enable Hadoop security on your cluster, the Cloudera Manager Server will create
several principals and then generate keytabs for those principals. Cloudera Manager will then deploy the keytab files
on every host in the cluster. See Hadoop Users in Cloudera Manager and CDH on page 129 for a complete listing of the
principals created by Cloudera Manager.

Note: The following instructions illustrate an example of creating and deploying the principals and
keytab files for MIT Kerberos. (If you are using another version of Kerberos, refer to the Kerberos
documentation for the version of the operating system you are using, for instructions.)

When to use kadmin.local and kadmin

When performing the Kerberos commands in this document, you can use kadmin.local or kadmin depending on
your access and account:

• If you can log on to the KDChost directly, and have root access or a Kerberos admin account, use thekadmin.local
command.

• When accessing the KDC from a remote host, use the kadmin command.

To start kadmin.local on the KDC host:

$ sudo kadmin.local

To run kadmin from any host:

$ kadmin

Cloudera Security | 115

Authentication

Note:

• In this guide, kadmin is shown as the prompt for commands in the kadmin shell, but you can
type the same commands at the kadmin.local prompt in the kadmin.local shell.

• Running kadmin.localmay prompt you for a password because it is being run using sudo. You
should provide your Unix password. Running kadminmay prompt you for a password because
you need Kerberos admin privileges. You should provide your Kerberos admin password.

Setting up a Cluster-Dedicated KDC and Default Realm for the Hadoop Cluster

Cloudera has tested the following configuration approaches to Kerberos security for clusters managed by Cloudera
Manager. For administration teams that are just getting started with Kerberos security, we recommend starting with
these approaches to the configuration of KDC services for a number of reasons.

The number of Service Principal Names (SPNs) that are created and managed by the Cloudera Manager server for a
CDH cluster can be significant, and it is important to realize the impact on cluster uptime and overall operations when
keytabs must be managed manually. The Cloudera Manager server manages the creation of service keytabs on the
proper hosts based on the current configuration of the database. Manual keytab management can be error prone and
introduce delays when deploying or moving services within the cluster, especially under time-sensitive conditions.

Cloudera Manager creates SPNs within a KDC that it can access with the kadmin command and reach based on
configuration of the /etc/krb5.conf on all systems participating in the cluster. SPNs must be created in the form
of service-name/host.fqdn.name@EXAMPLE.COM where service name is the relevant CDH service name such as
hue or hbase or hdfs.

If your site already has aworking KDC and keytabs for any of the principals that ClouderaManager creates, as described
in the following sections, the ClouderaManager Serverwill randomize the key stored in the keytab file and consequently
cause your existing host keytabs to become invalid.

This is why Cloudera recommends you prevent your existing host keytabs from becoming invalid is by using a dedicated
local MIT Kerberos KDC and default realm for the Hadoop cluster and create all Hadoop hdfs, mapred, oozie, HTTP,
hue, andhost service principals in that realm. You can also set up a one-way cross-realm trust from the cluster-dedicated
KDC and realm to your existing central MIT Kerberos KDC, or to an existing Active Directory realm. Using this method,
there is no need to create service principals in the centralMIT Kerberos KDC or in Active Directory, but principals (users)
in the central MIT KDC or in Active Directory can be authenticated to Hadoop. The steps to implement this approach
are as follows:

1. Install and configure a cluster-dedicatedMIT Kerberos KDC that will bemanaged by ClouderaManager for creating
and storing the service principals for your Hadoop cluster.

2. See the example kdc.conf and krb5.conf files in Sample Kerberos Configuration files: krb5.conf, kdc.conf,
kadm5.acl on page 138 for configuration considerations for the KDC and Kerberos clients.

3. Configure a default Kerberos realm for the cluster you want Cloudera Manager to manage and set up one-way
cross-realm trust between the cluster-dedicated KDC and either your central KDC or Active Directory. Follow the
appropriate instructions below for your deployment: Using a Cluster-Dedicated KDC with a Central MIT KDC on
page 117 or Using a Cluster-Dedicated MIT KDC with Active Directory on page 118.

Cloudera strongly recommends the method above because:

• It requires minimal configuration in Active Directory.
• It is comparatively easy to script the creation of many principals and keytabs. A principal and keytab must be

created for every daemon in the cluster, and in a large cluster this can be extremely onerous to do directly in
Active Directory.

• There is no need to involve central Active Directory administrators in order to get service principals created.
• It allows for incremental configuration. The Hadoop administrator can completely configure and verify the

functionality the cluster independently of integrating with Active Directory.

116 | Cloudera Security

Authentication

Using a Cluster-Dedicated KDC with a Central MIT KDC

Important: If you plan to use Oozie or the Hue Kerberos Ticket Renewer in your cluster, you must
configure your KDC to allow tickets to be renewed, and you must configure krb5.conf to request
renewable tickets. Typically, you can do this by adding the max_renewable_life setting to your
realm in kdc.conf, and by adding the renew_lifetime parameter to the libdefaults section
of krb5.conf. For more information about renewable tickets, see the Kerberos documentation. This
is covered in our example krb5.conf and kdc.conf files.

1. In the /var/kerberos/krb5kdc/kdc.conf file on the local dedicated KDC server host, configure the default
realm for the Hadoop cluster by substituting your Kerberos realm in the following realms property. Please refer
to our example kdc.conf file for more information:

[realms]
 HADOOP.EXAMPLE.COM = {

2. In the /etc/krb5.conf file on all cluster hosts and all Hadoop client user hosts, configure the default realm for
the Hadoop cluster by substituting your Kerberos realm in the following realms property. Also specify the local
dedicated KDC server hostname in the /etc/krb5.conf file (for example, kdc01.example.com).

[libdefaults]
 default_realm = HADOOP.EXAMPLE.COM
[realms]
 HADOOP.EXAMPLE.COM = {
 kdc = kdc01.hadoop.example.com:88
 admin_server = kdc01.hadoop.example.com:749
 default_domain = hadoop.example.com
 }
 EXAMPLE.COM = {
 kdc = kdc01.example.com:88
 admin_server = kdc01.example.com:749
 default_domain = example.com
 }
[domain_realm]
 .hadoop.example.com = HADOOP.EXAMPLE.COM
 hadoop.example.com = HADOOP.EXAMPLE.COM
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM

3. To set up the cross-realm trust in the cluster-dedicated KDC, type the following command in the kadmin.local
or kadmin shell on the cluster-dedicated KDC host to create a krbtgt principal. Substitute your cluster-dedicated
KDC realm forHADOOP.EXAMPLE.COM, and substitute your central KDC realm forEXAMPLE.COM. Enter a password
when prompted. Note the password because you will need to enter the same exact password in the central KDC
in the next step.

kadmin: addprinc krbtgt/HADOOP.EXAMPLE.COM@EXAMPLE.COM

4. Each of your Hadoop client users must also place this information in their local core-site.xml file. The easiest
way to do so is by using the Cloudera Manager Admin Console to generate a client configuration file.

5. To set up the cross-realm trust in the central KDC, type the same command in the kadmin.local or kadmin
shell on the central KDC host to create the exact same krbtgt principal and password.

kadmin: addprinc krbtgt/HADOOP.EXAMPLE.COM@EXAMPLE.COM

Important: In order for a cross-realm trust to operate properly, both KDCs must have the same
krbtgt principal and password, and both KDCs must be configured to use the same encryption
type.

6. To properly translate principal names from the central KDC realm into the cluster-dedicated KDC realm for the
Hadoop cluster, configure the Trusted Kerberos Realms property of the HDFS service.

Cloudera Security | 117

Authentication

http://web.mit.edu/Kerberos/krb5-1.8/

Open the Cloudera Manager Admin Console.a.
b. Go to the HDFS service.
c. Click the Configuration tab.
d. Expand the Service-Wide category and click Security.
e. Scroll down to the Trusted Kerberos Realms property, and click on the Value field to add the name of your

central KDC realm. If you need to use more advanced mappings which do more than just allow principals
from another domain, you may enter them in the Additional Rules to Map Kerberos Principals to Short
Namesproperty. Formore information about namemapping rules, see Configuring theMapping fromKerberos
Principals to Short Names on page 112.

7. Each of your Hadoop client users must also place this information in their local core-site.xml file. The easiest
way to do so is by using the Cloudera Manager Admin Console to generate a client configuration file.

8. Proceed to Step 2: If You are Using AES-256 Encryption, Install the JCE Policy File on page 32. Later in this procedure,
you will restart the services to have the configuration changes in core-site.xml take effect.

Using a Cluster-Dedicated MIT KDC with Active Directory

Important: If you are using Cloudera Manager, ensure you have installed the openldap-clients
package on the Cloudera Manager Server host before you begin configuring Kerberos authentication.

On the Active Directory Server

1. On the Active Directory server host, type the following command to add the local realm trust to Active Directory:

netdom trust HADOOP.EXAMPLE.COM /Domain:EXAMPLE.COM /add /realm /passwordt:TrustPassword

2. On the Active Directory server host, type the following command to set the proper encryption type:

Windows 2003 RC2

Windows 2003 server installations do not support AES encryption for Kerberos. Therefore RC4 should be used.
Please see the Microsoft reference documentation for more information.

ktpass /MITRealmName HADOOP.EXAMPLE.COM /TrustEncryp RC4

Windows 2008

ksetup /SetEncTypeAttr HADOOP.EXAMPLE.COM <enc_type>

Where the <enc_type> parameter can be replacedwith parameter strings for AES, DES, or RC4 encryptionmodes.
For example, for AES encryption, replace <enc_type> with AES256-CTS-HMAC-SHA1-96 or
AES128-CTS-HMAC-SHA1-96 and for RC4 encryption, replace with RC4-HMAC-MD5. See theMicrosoft reference
documentation for more information.

Important: Make the encryption type you specify is supported on both your version ofWindows
Active Directory and your version of MIT Kerberos.

On the MIT KDC server

1. In the /var/kerberos/krb5kdc/kdc.conf file on the local dedicated KDC server host, configure the default
realm for the Hadoop cluster by substituting your Kerberos realm in the following realms property:

[realms]
 HADOOP.EXAMPLE.COM = {

118 | Cloudera Security

Authentication

http://social.technet.microsoft.com/wiki/contents/articles/2751.kerberos-interoperability-step-by-step-guide-for-windows-server-2003.aspx
http://technet.microsoft.com/en-us/library/hh240207.aspx
http://technet.microsoft.com/en-us/library/hh240207.aspx

2. Each of your Hadoop client users must also place this information in their local core-site.xml file. The easiest
way to do so is by using the Cloudera Manager Admin Console to generate a client configuration file.

3. On the local MIT KDC server host, type the following command in the kadmin.local or kadmin shell to add the
cross-realm krbtgt principal:

kadmin: addprinc -e "<enc_type_list>" krbtgt/HADOOP.EXAMPLE.COM@EXAMPLE.COM

where the <enc_type_list> parameter specifies the types of encryption this cross-realm krbtgt principal will
support: either AES, DES, or RC4 encryption. You can specify multiple encryption types using the parameter in the
command above, what's important is that at least one of the encryption types corresponds to the encryption type
found in the tickets granted by the KDC in the remote realm.

Examples by Active Directory Domain or Forest "Functional level"

Active Directory will, based on the Domain or Forest functional level, use encryption types supported by that
release of the Windows Server operating system. It is not possible to use AES encryption types with an AD 2003
functional level. If you notice that DES encryption types are being used when authenticating or requesting service
tickets to Active Directory then it might be necessary to enable weak encryption types in the /etc/krb5.conf.
Please see the example krb5.conf file for more information.

• Windows 2003

kadmin: addprinc -e "rc4-hmac:normal" krbtgt/HADOOP.EXAMPLE.COM@EXAMPLE.COM

• Windows 2008

kadmin: addprinc -e "aes256-cts:normal aes128-cts:normal rc4-hmac:normal"
krbtgt/HADOOP.EXAMPLE.COM@EXAMPLE.COM

Note: The cross-realm krbtgt principal that you add in this step must have at least one entry
that uses the same encryption type as the tickets that are issued by the remote KDC. If no entries
have the same encryption type, then the problem youwill see is that authenticating as a principal
in the local realm will allow you to successfully run Hadoop commands, but authenticating as a
principal in the remote realm will not allow you to run Hadoop commands.

On all of the cluster hosts

1. In the /etc/krb5.conf file on all cluster hosts and all Hadoop client user hosts, configure both Kerberos realms.
Note that the default realm and the domain realm should be configured as the local MIT Kerberos realm for the
cluster. Your krb5.conf will contain more configuration properties than those provided below. This example
has been provided to clarify REALM/KDC configuration. Please see our example krb5.conf file for more
information.

[libdefaults]
 default_realm = HADOOP.EXAMPLE.COM
[realms]
 EXAMPLE.COM = {
 kdc = dc01.example.com:88
 admin_server = dc01.example.com:749
 default_domain = example.com
 }
 HADOOP.EXAMPLE.COM = {
 kdc = kdc01.hadoop.example.com:88
 admin_server = kdc01.hadoop.example.com:749
 default_domain = hadoop.example.com
 }
[domain_realm]
 .hadoop.example.com = HADOOP.EXAMPLE.COM
 hadoop.example.com = HADOOP.EXAMPLE.COM

Cloudera Security | 119

Authentication

 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM

2. Use one of the following methods to properly translate principal names from the Active Directory realm into the
cluster-dedicated KDC realm for the Hadoop cluster.

• Using Cloudera Manager: Configure the Trusted Kerberos realms property of the HDFS service:

1. Open the Cloudera Manager Admin Console.
2. Go to the HDFS service.
3. Click the Configuration tab.
4. Expand the Service-Wide category and click Security.
5. Scroll down to the Trusted Kerberos Realms property, and click on the Value field to add the name of

your central KDC realm. If you need to use more advanced mappings which do more than just allow
principals fromanother domain, youmay enter them in theAdditional Rules toMapKerberos Principals
to Short Names property. Formore information about namemapping rules, see Configuring theMapping
from Kerberos Principals to Short Names on page 112.

• Using theCommandLine:Configure thehadoop.security.auth_to_local setting in thecore-site.xml
file on all of the cluster hosts. The following example translates all principal names with the realm
EXAMPLE.COM into the first component of the principal name only. It also preserves the standard translation
for the default realm (the cluster realm).

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[1:$1@$0](^.*@EXAMPLE\.COM$)s/^(.*)@EXAMPLE\.COM$/$1/g
 RULE:[2:$1@$0](^.*@EXAMPLE\.COM$)s/^(.*)@EXAMPLE\.COM$/$1/g
 DEFAULT
 </value>
</property>

Integrating Hadoop Security with Active Directory

Considerations when using an Active Directory KDC
Performance:

As your cluster grows, so will the volume of Authentication Service (AS) and Ticket Granting Service (TGS) interaction
between the services on each cluster server. Consider evaluating the volume of this interaction against the Active
Directory domain controllers you have configured for the cluster before rolling this feature out to a production
environment. If cluster performance suffers, over time it might become necessary to dedicate a set of AD domain
controllers to larger deployments.

Network Proximity:

By default, Kerberos uses UDP for client/server communication. Often, AD services are in a different network than
project application services such as Hadoop. If the domain controllers supporting a cluster for Kerberos are not in the
same subnet, or they're separated by a firewall, consider using the udp_preference_limit = 1 setting in the
[libdefaults] section of the krb5.conf used by cluster services. Cloudera strongly recommends against using AD
domain controller (KDC) servers that are separated from the cluster by a WAN connection, as latency in this service
will significantly impact cluster performance.

Process:

Troubleshooting the cluster's operations, especially for Kerberos-enabled services, will need to includeAD administration
resources. Evaluate your organizational processes for engaging the AD administration team, and how to escalate in
case a cluster outage occurs due to issues with Kerberos authentication against AD services. In some situations it might
be necessary to enable Kerberos event logging to address desktop and KDC issues within windows environments.

120 | Cloudera Security

Authentication

https://support.microsoft.com/kb/262177?wa=wsignin1.0

Important: With CDH 5.1 and later, clusters managed by Cloudera Manager 5.1 (and later) do not
require a local MIT KDC and are able to integrate directly with an Active Directory KDC. Cloudera
recommends you use a direct-to-AD setup. For instructions, see Enabling Kerberos Authentication
Using the Wizard on page 17.

If direct integration with AD is not currently possible, use the following instructions to configure a local MIT KDC to
trust your AD server:

1. Run an MIT Kerberos KDC and realm local to the cluster and create all service principals in this realm.
2. Set up one-way cross-realm trust from this realm to the Active Directory realm. Using this method, there is no

need to create service principals in Active Directory, but Active Directory principals (users) can be authenticated
to Hadoop. See Configuring a Local MIT Kerberos Realm to Trust Active Directory on page 121.

Configuring a Local MIT Kerberos Realm to Trust Active Directory

On the Active Directory Server

1. Type the following command to add the local realm trust to Active Directory:

netdom trust YOUR-LOCAL-REALM.COMPANY.COM /Domain:AD-REALM.COMPANY.COM /add /realm
/passwordt:<TrustPassword>

2. Type the following command to set the proper encryption type:

OnWindows 2003 RC2:

ktpass /MITRealmName YOUR-LOCAL-REALM.COMPANY.COM /TrustEncryp <enc_type>

OnWindows 2008:

ksetup /SetEncTypeAttr YOUR-LOCAL-REALM.COMPANY.COM <enc_type>

where the <enc_type> parameter specifies AES, DES, or RC4 encryption. Refer to the documentation for your
version of Windows Active Directory to find the <enc_type> parameter string to use.

Important: Make sure the encryption type you specify is supported on both your version of
Windows Active Directory and your version of MIT Kerberos.

On the MIT KDC Server

Type the following command in the kadmin.local or kadmin shell to add the cross-realm krbtgt principal. Use the same
password you used in the netdom command on the Active Directory Server.

kadmin: addprinc -e "<enc_type_list>"
krbtgt/YOUR-LOCAL-REALM.COMPANY.COM@AD-REALM.COMPANY.COM

where the <enc_type_list> parameter specifies the types of encryption this cross-realm krbtgt principal will support:
either AES, DES, or RC4 encryption. You can specify multiple encryption types using the parameter in the command
above, what's important is that at least one of the encryption types corresponds to the encryption type found in the
tickets granted by the KDC in the remote realm. For example:

kadmin: addprinc -e "rc4-hmac:normal des3-hmac-sha1:normal"
krbtgt/YOUR-LOCAL-REALM.COMPANY.COM@AD-REALM.COMPANY.COM

Cloudera Security | 121

Authentication

Note: The cross-realm krbtgt principal that you add in this step must have at least one entry that
uses the same encryption type as the tickets that are issued by the remote KDC. If no entries have the
same encryption type, then the problem you will see is that authenticating as a principal in the local
realm will allow you to successfully run Hadoop commands, but authenticating as a principal in the
remote realm will not allow you to run Hadoop commands.

On All of the Cluster Hosts

1. Verify that both Kerberos realms are configured on all of the cluster hosts. Note that the default realm and the
domain realm should remain set as the MIT Kerberos realm which is local to the cluster.

[realms]
 AD-REALM.CORP.FOO.COM = {
 kdc = ad.corp.foo.com:88
 admin_server = ad.corp.foo.com:749
 default_domain = foo.com
 }
 CLUSTER-REALM.CORP.FOO.COM = {
 kdc = cluster01.corp.foo.com:88
 admin_server = cluster01.corp.foo.com:749
 default_domain = foo.com
 }

2. To properly translate principal names from the Active Directory realm into local names within Hadoop, you must
configure the hadoop.security.auth_to_local setting in the core-site.xml file on all of the cluster
machines. The following example translates all principal names with the realm AD-REALM.CORP.FOO.COM into
the first component of the principal name only. It also preserves the standard translation for the default realm
(the cluster realm).

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[1:$1@$0](^.*@AD-REALM\.CORP\.FOO\.COM$)s/^(.*)@AD-REALM\.CORP\.FOO\.COM$/$1/g

 RULE:[2:$1@$0](^.*@AD-REALM\.CORP\.FOO\.COM$)s/^(.*)@AD-REALM\.CORP\.FOO\.COM$/$1/g

 DEFAULT
 </value>
</property>

For more information about name mapping rules, see Configuring the Mapping from Kerberos Principals to Short
Names on page 112.

Integrating Hadoop Security with Alternate Authentication
One of the ramifications of enabling security on a Hadoop cluster is that every user who interacts with the cluster must
have a Kerberos principal configured. For some of the services, specifically Oozie and Hadoop (for example, JobTracker
and TaskTracker), it can be convenient to run a mixed form of authentication where Kerberos authentication is used
for API or command line access while some other form of authentication (for example, SSO and LDAP) is used for
accessing Web UIs. Using an alternate authentication deployment is considered an advanced topic because only a
partial implementation is provided in this release: you will have to implement some of the code yourself.

Note: The following instructions assume you already have a Kerberos-enabled cluster.

Proceed as follows:

• Configuring the AuthenticationFilter to use Kerberos on page 123
• Creating an AltKerberosAuthenticationHandler Subclass on page 123

122 | Cloudera Security

Authentication

• Enabling Your AltKerberosAuthenticationHandler Subclass on page 123

See also the Example Implementation for Oozie on page 124.

Configuring the AuthenticationFilter to use Kerberos

First, you must do all of the steps in the Server Side Configuration section of the Hadoop Auth, Java HTTP SPNEGO
Documentation to configureAuthenticationFilter to use Kerberos. Youmust configureAuthenticationFilter
to use Kerberos before doing the steps below.

Creating an AltKerberosAuthenticationHandler Subclass

An AuthenticationHandler is installed on the server-side to handle authenticating clients and creating an
AuthenticationToken.

1. Subclass the
org.apache.hadoop.security.authentication.server.AltKerberosAuthenticationHandler class
(in the hadoop-auth package).

2. When a client sends a request, the authenticate method will be called. For browsers,
AltKerberosAuthenticationHandler will call the alternateAuthenticatemethod, which is what you
need to implement to interact with the desired authentication mechanism. For non-browsers,
AltKerberosAuthenticationHandler will follow the Kerberos SPNEGO sequence (this is provided for you).

3. The alternateAuthenticate(HttpServletRequest request, HttpServletResponse response)
method in your subclass should following these rules:

4. Return null if the authentication is still in progress; the response object can be used to interact with the client.
5. Throw an AuthenticationException if the authentication failed.
6. Return an AuthenticationToken if the authentication completed successfully.

Enabling Your AltKerberosAuthenticationHandler Subclass

You can enable the alternate authentication on Hadoop Web UIs, Oozie Web UIs, or both. You will need to include a
JAR containing your subclass on the classpath of Hadoop or Oozie. All Kerberos-related configuration properties will
still apply.

Enabling Your AltKerberosAuthenticationHandler Subclass on Hadoop Web UIs

1. Stop Hadoop by running the following command on every node in your cluster (as root):

$ for x in `cd /etc/init.d ; ls hadoop-*` ; do sudo service $x stop ; done

2. Set the following property in core-site.xml, where
org.my.subclass.of.AltKerberosAuthenticationHandler is the classname of your subclass:

<property>
 <name>hadoop.http.authentication.type</name>
 <value>org.my.subclass.of.AltKerberosAuthenticationHandler</value>
</property>

3. (Optional) You can also specify which user-agents you do not want to be considered as browsers by setting the
following property as required (default value is shown). Note that all Java-based programs (such as Hadoop client)
will use java as their user-agent.

<property>
 <name>hadoop.http.authentication.alt-kerberos.non-browser.user-agents</name>
 <value>java,curl,wget,perl</value>
</property>

4. Copy the JAR containing your subclass into /usr/lib/hadoop/lib/.

Cloudera Security | 123

Authentication

https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-auth/index.html
https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-auth/index.html

5. Start Hadoop by running the following command:

$ for x in `cd /etc/init.d ; ls hadoop-*` ; do sudo service $x start ; done

Enabling Your AltKerberosAuthenticationHandler Subclass on Oozie Web UI

Note:

These instructions assume you have already performed the installation and configuration steps in
Oozie Security Configuration.

1. Stop the Oozie Server:

sudo /sbin/service oozie stop

2. Set the following property in oozie-site.xml, where
org.my.subclass.of.AltKerberosAuthenticationHandler is the classname of your subclass:

<property>
 <name>oozie.authentication.type</name>
 <value>org.my.subclass.of.AltKerberosAuthenticationHandler</value>
</property>

3. (Optional) You can also specify which user-agents you do not want to be considered as browsers by setting the
following property as required (default value is shown). Note that all Java-based programs (such as Hadoop client)
will use java as their user-agent.

<property>
 <name>oozie.authentication.alt-kerberos.non-browser.user-agents</name>
 <value>java,curl,wget,perl</value>
</property>

4. Copy the JAR containing your subclass into /var/lib/oozie.
5. Start the Oozie Server:

sudo /sbin/service oozie start

Example Implementation for Oozie

Warning:

The example implementation isNOT SECURE. Its purpose is to be as simple as possible, as an example
of how to write your own AltKerberosAuthenticationHandler subclass.

It should NOT be used in a production environment

An example implementation of AltKerberosAuthenticationHandler is included (though not built by default)
with Oozie. Also included is a simple Login Server with two implementations. The first one will authenticate any user
who is using a username and password that are identical, such as foo:foo. The second one can be configured against
an LDAP server to use LDAP for authentication.

You can read comprehensive documentation on the example at Creating Custom Authentication.

124 | Cloudera Security

Authentication

https://archive.cloudera.com/cdh5/cdh/5/oozie/ENG_Custom_Authentication.html

Important:

If you installed Oozie from the CDH packages and are deploying oozie-login.war alongside
oozie.war, youwill also need to run the following commands after you copy the oozie-login.war
file to/usr/lib/oozie/oozie-server (if using YARNor/usr/lib/oozie/oozie-server-0.20
if using MRv1) because it won't automatically be expanded:

jar xvf oozie-login.war
mkdir oozie-login
mv META-INF oozie-login/
mv WEB-INF oozie-login/

Configuring LDAP Group Mappings

Important: Cloudera strongly recommends against using Hadoop's LdapGroupsMapping provider.
LdapGroupsMapping should only be used in cases where OS-level integration is not possible.
Production clusters require an identity provider that works well with all applications, not just Hadoop.
Hence, often the preferred mechanism is to use tools such as SSSD, VAS or Centrify to replicate LDAP
groups.

When configuring LDAP for groupmappings in Hadoop, youmust create the users and groups for your Hadoop services
in LDAP. When using the default shell-based group mapping provider
(org.apache.hadoop.security.ShellBasedUnixGroupsMapping), the requisite user and group relationships
already exist because they are created during the installation procedure. When you switch to LDAP as the group
mapping provider, you must re-create these relationships within LDAP.

Note that if you have modified the System User or System Group setting within Cloudera Manager for any service,
you must use those custom values to provision the users and groups in LDAP.

The table below lists users and their group members for CDH services:

Note: Cloudera Manager 5.3 introduces a new single user mode. In single user mode, the Cloudera
Manager Agent and all the processes run by services managed by Cloudera Manager are started as a
single configured user and group. See Single User Mode Requirements for more information.

Table 1: Users and Groups

NotesGroupsUnix User IDComponent
(Version)

Cloudera Manager processes such as the Cloudera
Manager Server and the monitoring roles run as this
user.

The Cloudera Manager keytab file must be named
cmf.keytab since that name is hard-coded in
Cloudera Manager.

Note: Applicable to clusters managed
by Cloudera Manager only.

cloudera-scmcloudera-scmClouderaManager
(all versions)

Cloudera Security | 125

Authentication

NotesGroupsUnix User IDComponent
(Version)

Accumulo processes run as this user.accumuloaccumuloApache Accumulo
(Accumulo 1.4.3
and higher)

No special users.Apache Avro

The sink that writes to HDFS as this user must have
write privileges.

flumeflumeApache Flume
(CDH 4, CDH 5)

The Master and the RegionServer processes run as
this user.

hbasehbaseApache HBase
(CDH 4, CDH 5)

The NameNode and DataNodes run as this user, and
theHDFS root directory aswell as the directories used
for edit logs should be owned by it.

hdfs, hadoophdfsHDFS (CDH 4, CDH
5)

The HiveServer2 process and the Hive Metastore
processes run as this user.

hivehiveApache Hive (CDH
4, CDH 5)

A user must be defined for Hive access to its
Metastore DB (for example, MySQL or Postgres) but
it can be any identifier and does not correspond to a
Unix uid. This is
javax.jdo.option.ConnectionUserName in
hive-site.xml.

The WebHCat service (for REST access to Hive
functionality) runs as the hive user.

hivehiveApache HCatalog
(CDH 4.2 and
higher, CDH 5)

The HttpFS service runs as this user. See HttpFS
Security Configuration for instructions on how to
generate the merged httpfs-http.keytab file.

httpfshttpfsHttpFS (CDH 4,
CDH 5)

Hue services run as this user.huehueHue (CDH 4, CDH
5)

Impala services run as this user.impala, hadoop,

hdfs, hive

impalaCloudera Impala
(CDH 4.1 and
higher, CDH 5)

Kafka services run as this user.kafkakafkaApache Kafka
(Cloudera
Distribution of
Kafka 1.2.0)

The KMS (File) service runs as this user.kmskmsKMS (File) (CDH 5.
2.1 and higher)

The KMS (Navigator Key Trustee) service runs as this
user.

kmskmsKMS (Navigator
Key Trustee) (CDH
5.3 and higher)

Llama runs as this user.llamallamaLlama (CDH 5)

No special users.Apache Mahout

Without Kerberos, the JobTracker and tasks run as
this user. The LinuxTaskController binary is owned by
this user for Kerberos.

mapred, hadoopmapredMapReduce (CDH
4, CDH 5)

126 | Cloudera Security

Authentication

NotesGroupsUnix User IDComponent
(Version)

The Oozie service runs as this user.oozieoozieApache Oozie
(CDH 4, CDH 5)

No special users.Parquet

No special users.Apache Pig

The Solr processes run as this user.solrsolrCloudera Search
(CDH 4.3 and
higher, CDH 5)

The Spark History Server process runs as this user.sparksparkApacheSpark (CDH
5)

The Sentry service runs as this user.sentrysentryApache Sentry
(incubating) (CDH
5.1 and higher)

This user is only for the Sqoop1 Metastore, a
configuration option that is not recommended.

sqoopsqoopApache Sqoop
(CDH 4, CDH 5)

The Sqoop2 service runs as this user.sqoop, sqoop2sqoop2Apache Sqoop2
(CDH 4.2 and
higher, CDH 5)

No special users.Apache Whirr

Without Kerberos, all YARN services and applications
run as this user. The LinuxContainerExecutor binary
is owned by this user for Kerberos.

yarn, hadoopyarnYARN (CDH 4, CDH
5)

The ZooKeeper processes run as this user. It is not
configurable.

zookeeperzookeeperApache ZooKeeper
(CDH 4, CDH 5)

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.3.x . If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Make the following changes to the HDFS service's security configuration:

1. Open the Cloudera Manager Admin Console and navigate to the HDFS service.
2. Click the Configuration tab.
3. Modify the following configuration properties under the Service-Wide > Security section. The table below lists

the properties and the value to be set for each property.

ValueConfiguration Property

org.apache.hadoop.security.LdapGroupsMappingHadoop User Group Mapping Implementation

ldap://<server>Hadoop User Group Mapping LDAP URL

Administrator@example.comHadoop User Group Mapping LDAP Bind User

Cloudera Security | 127

Authentication

http://www.cloudera.com/content/support/en/documentation.html

ValueConfiguration Property

***Hadoop User Group Mapping LDAP Bind User
Password

dc=example,dc=comHadoop User Group Mapping Search Base

Although the above changes are sufficient to configure group mappings for Active Directory, some changes to the
remaining default configurations might be required for OpenLDAP.

Using the Command Line

Add the following properties to the core-site.xml on the NameNode:

<property>
<name>hadoop.security.group.mapping</name>
<value>org.apache.hadoop.security.LdapGroupsMapping</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.url</name>
<value>ldap://server</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.bind.user</name>
<value>Administrator@example.com</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.bind.password</name>
<value>****</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.base</name>
<value>dc=example,dc=com</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.search.filter.user</name>
<value>(&(objectClass=user)(sAMAccountName={0}))</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.search.filter.group</name>
<value>(objectClass=group)</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.search.attr.member</name>
<value>member</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.search.attr.group.name</name>
<value>cn</value>
</property>

Note: In addition:

• If you are using Sentry with Hive, you will also need to add these properties on the HiveServer2
node.

• If you are using Sentry with Impala, add these properties on all hosts

See Users and Groups in Sentry for more information.

128 | Cloudera Security

Authentication

Hadoop Users in Cloudera Manager and CDH
A number of special users are created by default when installing and using CDH and Cloudera Manager. Given below
is a list of users and groups as of the latest release. Also listed are the corresponding Kerberos principals and keytab
files that should be created when you configure Kerberos security on your cluster.

Note: Cloudera Manager 5.3 introduces a new single user mode. In single user mode, the Cloudera
Manager Agent and all the processes run by services managed by Cloudera Manager are started as a
single configured user and group. See Single User Mode Requirements for more information.

Table 2: Users and Groups

NotesGroupsUnix User IDComponent
(Version)

Cloudera Manager processes such as the Cloudera
Manager Server and the monitoring roles run as this
user.

The Cloudera Manager keytab file must be named
cmf.keytab since that name is hard-coded in
Cloudera Manager.

Note: Applicable to clusters managed
by Cloudera Manager only.

cloudera-scmcloudera-scmClouderaManager
(all versions)

Accumulo processes run as this user.accumuloaccumuloApache Accumulo
(Accumulo 1.4.3
and higher)

No special users.Apache Avro

The sink that writes to HDFS as this user must have
write privileges.

flumeflumeApache Flume
(CDH 4, CDH 5)

The Master and the RegionServer processes run as
this user.

hbasehbaseApache HBase
(CDH 4, CDH 5)

The NameNode and DataNodes run as this user, and
theHDFS root directory aswell as the directories used
for edit logs should be owned by it.

hdfs, hadoophdfsHDFS (CDH 4, CDH
5)

The HiveServer2 process and the Hive Metastore
processes run as this user.

hivehiveApache Hive (CDH
4, CDH 5)

A user must be defined for Hive access to its
Metastore DB (for example, MySQL or Postgres) but
it can be any identifier and does not correspond to a
Unix uid. This is
javax.jdo.option.ConnectionUserName in
hive-site.xml.

The WebHCat service (for REST access to Hive
functionality) runs as the hive user.

hivehiveApache HCatalog
(CDH 4.2 and
higher, CDH 5)

Cloudera Security | 129

Authentication

NotesGroupsUnix User IDComponent
(Version)

The HttpFS service runs as this user. See HttpFS
Security Configuration for instructions on how to
generate the merged httpfs-http.keytab file.

httpfshttpfsHttpFS (CDH 4,
CDH 5)

Hue services run as this user.huehueHue (CDH 4, CDH
5)

Impala services run as this user.impala, hadoop,

hdfs, hive

impalaCloudera Impala
(CDH 4.1 and
higher, CDH 5)

Kafka services run as this user.kafkakafkaApache Kafka
(Cloudera
Distribution of
Kafka 1.2.0)

The KMS (File) service runs as this user.kmskmsKMS (File) (CDH 5.
2.1 and higher)

The KMS (Navigator Key Trustee) service runs as this
user.

kmskmsKMS (Navigator
Key Trustee) (CDH
5.3 and higher)

Llama runs as this user.llamallamaLlama (CDH 5)

No special users.Apache Mahout

Without Kerberos, the JobTracker and tasks run as
this user. The LinuxTaskController binary is owned by
this user for Kerberos.

mapred, hadoopmapredMapReduce (CDH
4, CDH 5)

The Oozie service runs as this user.oozieoozieApache Oozie
(CDH 4, CDH 5)

No special users.Parquet

No special users.Apache Pig

The Solr processes run as this user.solrsolrCloudera Search
(CDH 4.3 and
higher, CDH 5)

The Spark History Server process runs as this user.sparksparkApacheSpark (CDH
5)

The Sentry service runs as this user.sentrysentryApache Sentry
(incubating) (CDH
5.1 and higher)

This user is only for the Sqoop1 Metastore, a
configuration option that is not recommended.

sqoopsqoopApache Sqoop
(CDH 4, CDH 5)

The Sqoop2 service runs as this user.sqoop, sqoop2sqoop2Apache Sqoop2
(CDH 4.2 and
higher, CDH 5)

No special users.Apache Whirr

Without Kerberos, all YARN services and applications
run as this user. The LinuxContainerExecutor binary
is owned by this user for Kerberos.

yarn, hadoopyarnYARN (CDH 4, CDH
5)

130 | Cloudera Security

Authentication

NotesGroupsUnix User IDComponent
(Version)

The ZooKeeper processes run as this user. It is not
configurable.

zookeeperzookeeperApache ZooKeeper
(CDH 4, CDH 5)

Keytabs and Keytab File Permissions

Note:

The Kerberos principal names should be of the format,
username/fully.qualified.domain.name@YOUR-REALM.COM, where the termusername refers
to the username of an existing UNIX account, such as hdfs or mapred. The table below lists the
usernames to be used for the Kerberos principal names. For example, the Kerberos principal for Apache
Flume would be flume/fully.qualified.domain.name@YOUR-REALM.COM.

For keytabs with multiple principals, Cloudera Manager merges them appropriately from individual
keytabs. If you do not use Cloudera Manager, you must merge the keytabs manually.

Table 3: Clusters Managed by Cloudera Manager

File
Permission
(octal)

Keytab File
Group

Keytab File
Owner

Filename (*.
keytab)

Kerberos
Principals

ServiceComponent (Unix
User ID)

600cloudera-scmcloudera-scmcmfcloudera-scmNACloudera Manager
(cloudera-scm)

600cloudera-scmcloudera-scmheadlamphdfscloudera-mgmt-
REPORTSMANAGER

Cloudera
Management
Service
(cloudera-scm)

600cloudera-scmcloudera-scmcmonhuecloudera-mgmt-
SERVICEMONITOR,

Cloudera
Management

cloudera-mgmt-
ACTIVITYMONITOR

Service
(cloudera-scm)

N/AN/AN/AN/AN/Acloudera-mgmt-
HOSTMONITOR

Cloudera
Management
Service
(cloudera-scm)

600cloudera-scmcloudera-scmaccumulo16accumuloaccumulo16-ACCUMULO16_MASTERApache Accumulo
(accumulo)

accumulo16-ACCUMULO16_TRACER

accumulo16-ACCUMULO16_MONITOR

accumulo16-ACCUMULO16_GC

accumulo16-ACCUMULO16_TSERVER

600cloudera-scmcloudera-scmflumeflumeflume-AGENTFlume (flume)

600cloudera-scmcloudera-scmhbasehbasehbase-REGIONSERVERHBase (hbase)

hbase-
HBASETHRIFTSERVER

hbase- HBASERESTSERVER

Cloudera Security | 131

Authentication

File
Permission
(octal)

Keytab File
Group

Keytab File
Owner

Filename (*.
keytab)

Kerberos
Principals

ServiceComponent (Unix
User ID)

hbase-MASTER

600cloudera-scmcloudera-scmhdfshdfs, HTTPhdfs-NAMENODEHDFS (hdfs)

hdfs-DATANODE

hdfs-
SECONDARYNAMENODE

600cloudera-scmcloudera-scmhivehivehive-HIVESERVER2Hive (hive)

HTTPHTTPhive-WEBHCAT

hivehivehive-HIVEMETASTORE

600cloudera-scmcloudera-scmhttpfshttpfshdfs-HTTPFSHttpFS (httpfs)

600cloudera-scmcloudera-scmhuehuehue-KT_RENEWERHue (hue)

600cloudera-scmcloudera-scmimpalaimpalaimpala-STATESTOREImpala (impala)

impala-CATALOGSERVER

impala-IMPALAD

600cloudera-scmcloudera-scmkmsHTTPkms-KMSKMS (File) (kms)

600cloudera-scmcloudera-scmkeytrusteeHTTPkeytrustee-KMS_KEYTRUSTEEKMS (Navigator Key
Trustee) (kms)

600cloudera-scmcloudera-scmllamallama, HTTPimpala-LLAMALlama (llama)

600cloudera-scmcloudera-scmmapredmapred,
HTTP

mapreduce-JOBTRACKERMapReduce
(mapred)

mapreduce- TASKTRACKER

600cloudera-scmcloudera-scmoozieoozie, HTTPoozie-OOZIE_SERVEROozie (oozie)

600cloudera-scmcloudera-scmsolrsolr, HTTPsolr-SOLR_SERVERSearch (solr)

600cloudera-scmcloudera-scmsentrysentrysentry-SENTRY_SERVERSentry (sentry)

600cloudera-scmcloudera-scmsparksparkspark_on_yarn-
SPARK_YARN_HISTORY_SERVER

Spark (spark)

644cloudera-scmcloudera-scmyarnyarn, HTTPyarn-NODEMANAGERYARN (yarn)

600yarn- RESOURCEMANAGER

600yarn-JOBHISTORY

600cloudera-scmcloudera-scmzookeeperzookeeperzookeeper-serverZooKeeper
(zookeeper)

Table 4: CDH Clusters Not Managed by Cloudera Manager

File
Permission
(octal)

Keytab File
Group

Keytab File
Owner

Filename
(*.keytab)

Kerberos
Principals

ServiceComponent (Unix
User ID)

600accumuloaccumuloaccumulo16accumuloaccumulo16-ACCUMULO16_MASTERApacheAccumulo
(accumulo)

accumulo16-ACCUMULO16_TRACER

132 | Cloudera Security

Authentication

File
Permission
(octal)

Keytab File
Group

Keytab File
Owner

Filename
(*.keytab)

Kerberos
Principals

ServiceComponent (Unix
User ID)

accumulo16-ACCUMULO16_MONITOR

accumulo16-ACCUMULO16_GC

accumulo16-ACCUMULO16_TSERVER

600flumeflumeflumeflumeflume-AGENTFlume (flume)

600hbasehbasehbasehbasehbase-REGIONSERVERHBase (hbase)

hbase- HBASETHRIFTSERVER

hbase- HBASERESTSERVER

hbase-MASTER

600hdfshdfshdfshdfs, HTTPhdfs-NAMENODEHDFS (hdfs)

hdfs-DATANODE

hdfs- SECONDARYNAMENODE

600hivehivehivehivehive-HIVESERVER2Hive (hive)

HTTPHTTPhive-WEBHCAT

hivehivehive-HIVEMETASTORE

600httpfshttpfshttpfshttpfshdfs-HTTPFSHttpFS (httpfs)

600huehuehuehuehue-KT_RENEWERHue (hue)

600impalaimpalaimpalaimpalaimpala-STATESTOREImpala (impala)

impala-CATALOGSERVER

impala-IMPALAD

600llamallamallamallama,
HTTP

impala-LLAMALlama (llama)

600kmskmskmsHTTPkms-KMSKMS (File) (kms)

600hadoopmapredmapredmapred,
HTTP

mapreduce-JOBTRACKERMapReduce
(mapred)

mapreduce- TASKTRACKER

600oozieoozieoozieoozie,
HTTP

oozie-OOZIE_SERVEROozie (oozie)

600solrsolrsolrsolr, HTTPsolr-SOLR_SERVERSearch (solr)

600sentrysentrysentrysentrysentry-SENTRY_SERVERSentry (sentry)

600sparksparksparksparkspark_on_yarn-
SPARK_YARN_HISTORY_SERVER

Spark (spark)

644hadoopyarnyarnyarn, HTTPyarn-NODEMANAGERYARN (yarn)

600yarn- RESOURCEMANAGER

600yarn-JOBHISTORY

600zookeeperzookeeperzookeeperzookeeperzookeeper-serverZooKeeper
(zookeeper)

Cloudera Security | 133

Authentication

Authenticating Kerberos Principals in Java Code
This topic provides an example of how to authenticate a Kerberos principal in a Java application using the
org.apache.hadoop.security.UserGroupInformation class.

The following code snippet authenticates the cloudera principal using the cloudera.keytab file:

// Authenticating Kerberos principal
System.out.println("Principal Authentication: ");
final String user = "cloudera@CLOUDERA.COM";
final String keyPath = "cloudera.keytab";
UserGroupInformation.loginUserFromKeytab(user, keyPath);

Using a Web Browser to Access an URL Protected by Kerberos HTTP SPNEGO
To access an URL protected by Kerberos HTTP SPNEGO, use the following instructions for the browser you are using.

To configure Mozilla Firefox:

1. Open the low level Firefox configuration page by loading the about:config page.
2. In the Search text box, enter: network.negotiate-auth.trusted-uris
3. Double-click thenetwork.negotiate-auth.trusted-uris preference and enter the hostnameor the domain

of the web server that is protected by Kerberos HTTP SPNEGO. Separate multiple domains and hostnames with
a comma.

4. Click OK.

134 | Cloudera Security

Authentication

To configure Internet Explorer:

Follow the instructions given below to configure Internet Explorer to access URLs protected by

Configuring the Local Intranet Domain

1. Open Internet Explorer and click the Settings "gear" icon in the top-right corner. Select Internet options.
2. Select the Security tab.
3. Select the Local Intranet zone and click the Sites button.
4. Make sure that the first two options, Include all local (intranet) sites not listed in other zones and Include all

sites that bypass the proxy server are checked.
5. Click Advanced and add the names of the domains that are protected by Kerberos HTTP SPNEGO, one at a time,

to the list of websites. For example, myhost.example.com. Click Close.
6. Click OK to save your configuration changes.

Cloudera Security | 135

Authentication

Configuring Intranet Authentication

1. Click the Settings "gear" icon in the top-right corner. Select Internet options.
2. Select the Security tab.
3. Select the Local Intranet zone and click the Custom level... button to open the Security Settings - Local Intranet

Zone dialog box.
4. Scroll down to the User Authentication options and select Automatic logon only in Intranet zone.
5. Click OK to save these changes.

136 | Cloudera Security

Authentication

Verifying Proxy Settings

You need to perform the following steps only if you have a proxy server already enabled.

1. Click the Settings "gear" icon in the top-right corner. Select Internet options.
2. Select the Connections tab and click LAN Settings.
3. Verify that the proxy server Address and Port number settings are correct.
4. Click Advanced to open the Proxy Settings dialog box.
5. Add the Kerberos-protected domains to the Exceptions field.
6. Click OK to save any changes.

Cloudera Security | 137

Authentication

To configure Google Chrome:

If you are using Windows, use the Control Panel to navigate to the Internet Options dialog box. Configuration changes
required are the same as those described above for Internet Explorer.

OnMacOS or Linux, add the--auth-server-whitelist parameter to thegoogle-chrome command. For example,
to run Chrome from a Linux prompt, run the google-chrome command as follows,

> google-chrome --auth-server-whitelist = "hostname/domain"

Troubleshooting Authentication Issues
Typically, if there are problems with security, Hadoop will display generic messages about the cause of the problem.
This topic contains some sample Kerberos configuration files for your reference. It also has solutions to potential
problems you might face when configuring a secure cluster:

Sample Kerberos Configuration files: krb5.conf, kdc.conf, kadm5.acl

kdc.conf:

[kdcdefaults]
 kdc_ports = 88
 kdc_tcp_ports = 88

[realms]
 EXAMPLE.COM = {
 #master_key_type = aes256-cts
 max_renewable_life = 7d 0h 0m 0s
 acl_file = /var/kerberos/krb5kdc/kadm5.acl
 dict_file = /usr/share/dict/words
 admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab
note that aes256 is ONLY supported in Active Directory in a domain / forrest operating
 at a 2008 or greater functional level.
aes256 requires that you download and deploy the JCE Policy files for your JDK release
 level to provide

138 | Cloudera Security

Authentication

strong java encryption extension levels like AES256. Make sure to match based on the
 encryption configured within AD for
cross realm auth, note that RC4 = arcfour when comparing windows and linux enctypes
 supported_enctypes = aes256-cts:normal aes128-cts:normal arcfour-hmac:normal
 default_principal_flags = +renewable, +forwardable
 }

krb5.conf:

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true
udp_preference_limit = 1

set udp_preference_limit = 1 when TCP only should be
used. Consider using in complex network environments when
troubleshooting or when dealing with inconsistent
client behavior or GSS (63) messages.

uncomment the following if AD cross realm auth is ONLY providing DES encrypted tickets
allow-weak-crypto = true

[realms]
 AD-REALM.EXAMPLE.COM = {
 kdc = AD1.ad-realm.example.com:88
 kdc = AD2.ad-realm.example.com:88
 admin_server = AD1.ad-realm.example.com:749
 admin_server = AD2.ad-realm.example.com:749
 default_domain = ad-realm.example.com
 }
 EXAMPLE.COM = {
 kdc = kdc1.example.com:88
 admin_server = kdc1.example.com:749
 default_domain = example.com
 }

The domain_realm is critical for mapping your host domain names to the kerberos realms
that are servicing them. Make sure the lowercase left hand portion indicates any
domains or subdomains
that will be related to the kerberos REALM on the right hand side of the expression.
 REALMs will
always be UPPERCASE. For example, if your actual DNS domain was test.com but your
kerberos REALM is
EXAMPLE.COM then you would have,

[domain_realm]
test.com = EXAMPLE.COM
#AD domains and realms are usually the same
ad-domain.example.com = AD-REALM.EXAMPLE.COM
ad-realm.example.com = AD-REALM.EXAMPLE.COM

kadm5.acl:

*/admin@HADOOP.COM *
cloudera-scm@HADOOP.COM * flume/*@HADOOP.COM
cloudera-scm@HADOOP.COM * hbase/*@HADOOP.COM
cloudera-scm@HADOOP.COM * hdfs/*@HADOOP.COM
cloudera-scm@HADOOP.COM * hive/*@HADOOP.COM
cloudera-scm@HADOOP.COM * httpfs/*@HADOOP.COM
cloudera-scm@HADOOP.COM * HTTP/*@HADOOP.COM
cloudera-scm@HADOOP.COM * hue/*@HADOOP.COM

Cloudera Security | 139

Authentication

cloudera-scm@HADOOP.COM * impala/*@HADOOP.COM
cloudera-scm@HADOOP.COM * mapred/*@HADOOP.COM
cloudera-scm@HADOOP.COM * oozie/*@HADOOP.COM
cloudera-scm@HADOOP.COM * solr/*@HADOOP.COM
cloudera-scm@HADOOP.COM * sqoop/*@HADOOP.COM
cloudera-scm@HADOOP.COM * yarn/*@HADOOP.COM
cloudera-scm@HADOOP.COM * zookeeper/*@HADOOP.COM

Potential Security Problems and Their Solutions

This Troubleshooting appendix contains sample Kerberos configuration files, krb5.conf and kdc.conf for your
reference. It also has solutions to potential problems you might face when configuring a secure cluster:

Issues with Generate Credentials

Cloudera Manager uses a command called Generate Credentials to create the accounts needed by CDH for enabling
authentication using Kerberos. The command is triggered automatically when you are using the Kerberos Wizard or
making changes to your cluster that will require new Kerberos principals.

When configuring Kerberos, if CDH services do not start, and on the ClouderaManager Home page you see a validation
error, Role is missing Kerberos keytab, it means theGenerate Credentials command failed. To see the output
of the command, navigate to the Home page and click the All Recent Commands tab.

Here are some common error messages:

SolutionsPossible CausesProblems

With Active Directory

Verify the KDC configuration by going to the Cloudera
Manager Admin Console and navigate to

TheDomainController
specified is incorrect

ldap_sasl_interactive_bind_s:

Can't contact LDAP server

(-1) Administration> Settings> Kerberos. Also check that
LDAPS is enabled for Active Directory.

or LDAPS has not been
enabled for it.

Use the Delegate Control wizard to grant permission
to the Cloudera Manager account to create other

The Active Directory
account you are using

ldap_add: Insufficient access

(50)

accounts. You can also login to Active Directory as thefor Cloudera Manager
Cloudera Manager user to check that it can create
other accounts in your Organizational Unit.

does not have
permissions to create
other accounts.

With MIT KDC

Check the kdc field for your default realm in
krb5.conf and make sure the hostname is correct.

The hostname for the
KDC server is
incorrect.

kadmin: Cannot resolve

network address for admin

server in requested realm

while initializing kadmin

interface.

Running any Hadoop command fails after enabling security.

Description:

A user must have a valid Kerberos ticket in order to interact with a secure Hadoop cluster. Running any Hadoop
command (such as hadoop fs -ls) will fail if you do not have a valid Kerberos ticket in your credentials cache. If you
do not have a valid ticket, you will receive an error such as:

11/01/04 12:08:12 WARN ipc.Client: Exception encountered while connecting to the server
 : javax.security.sasl.SaslException:
GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism
level: Failed to find any Kerberos tgt)]

140 | Cloudera Security

Authentication

Bad connection to FS. command aborted. exception: Call to nn-host/10.0.0.2:8020 failed
 on local exception: java.io.IOException:
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: No valid
 credentials provided (Mechanism level: Failed to find any Kerberos tgt)]

Solution:

You can examine the Kerberos tickets currently in your credentials cache by running the klist command. You can
obtain a ticket by running the kinit command and either specifying a keytab file containing credentials, or entering
the password for your principal.

Java is unable to read the Kerberos credentials cache created by versions of MIT Kerberos 1.8.1 or higher.

Description:

If you are running MIT Kerberos 1.8.1 or higher, the following error will occur when you attempt to interact with the
Hadoop cluster, even after successfully obtaining a Kerberos ticket using kinit:

11/01/04 12:08:12 WARN ipc.Client: Exception encountered while connecting to the server
 : javax.security.sasl.SaslException:
GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism
level: Failed to find any Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to nn-host/10.0.0.2:8020 failed
 on local exception: java.io.IOException:
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: No valid
 credentials provided (Mechanism level: Failed to find any Kerberos tgt)]

Because of a change [1] in the format in which MIT Kerberos writes its credentials cache, there is a bug [2] in the
Oracle JDK 6 Update 26 and earlier that causes Java to be unable to read the Kerberos credentials cache created by
versions of MIT Kerberos 1.8.1 or higher. Kerberos 1.8.1 is the default in Ubuntu Lucid and higher releases and Debian
Squeeze and higher releases. (On RHEL and CentOS, an older version of MIT Kerberos which does not have this issue,
is the default.)

Footnotes:

[1]MIT Kerberos change: http://krbdev.mit.edu/rt/Ticket/Display.html?id=6206

[2] Report of bug in Oracle JDK 6 Update 26 and lower:
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6979329

Solution:

If you encounter this problem, you can work around it by running kinit -R after running kinit initially to obtain
credentials. Doing so will cause the ticket to be renewed, and the credentials cache rewritten in a format which Java
can read. To illustrate this:

$ klist
klist: No credentials cache found (ticket cache FILE:/tmp/krb5cc_1000)
$ hadoop fs -ls
11/01/04 13:15:51 WARN ipc.Client: Exception encountered while connecting to the server
 : javax.security.sasl.SaslException:
GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism
level: Failed to find any Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to nn-host/10.0.0.2:8020 failed
 on local exception: java.io.IOException:
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: No valid
 credentials provided (Mechanism level: Failed to find any Kerberos tgt)]
$ kinit
Password for atm@YOUR-REALM.COM:
$ klist
Ticket cache: FILE:/tmp/krb5cc_1000
Default principal: atm@YOUR-REALM.COM

Valid starting Expires Service principal
01/04/11 13:19:31 01/04/11 23:19:31 krbtgt/YOUR-REALM.COM@YOUR-REALM.COM

Cloudera Security | 141

Authentication

http://krbdev.mit.edu/rt/Ticket/Display.html?id=6206
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6979329

 renew until 01/05/11 13:19:30
$ hadoop fs -ls
11/01/04 13:15:59 WARN ipc.Client: Exception encountered while connecting to the server
 : javax.security.sasl.SaslException:
GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism
level: Failed to find any Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to nn-host/10.0.0.2:8020 failed
 on local exception: java.io.IOException:
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: No valid
 credentials provided (Mechanism level: Failed to find any Kerberos tgt)]
$ kinit -R
$ hadoop fs -ls
Found 6 items
drwx------ - atm atm 0 2011-01-02 16:16 /user/atm/.staging

Note:

This workaround for Problem 2 requires the initial ticket to be renewable. Note that whether or not
you can obtain renewable tickets is dependent upon a KDC-wide setting, as well as a per-principal
setting for both the principal in question and the Ticket Granting Ticket (TGT) service principal for the
realm. A non-renewable ticket will have the same values for its "valid starting" and "renew until"
times. If the initial ticket is not renewable, the following error message is displayed when attempting
to renew the ticket:

kinit: Ticket expired while renewing credentials

java.io.IOException: Incorrect permission

Description:

An error such as the following example is displayed if the user running one of the Hadoop daemons has a umask of
0002, instead of 0022:

java.io.IOException: Incorrect permission for
/var/folders/B3/B3d2vCm4F+mmWzVPB89W6E+++TI/-Tmp-/tmpYTil84/dfs/data/data1,
expected: rwxr-xr-x, while actual: rwxrwxr-x
 at org.apache.hadoop.util.DiskChecker.checkPermission(DiskChecker.java:107)
 at
org.apache.hadoop.util.DiskChecker.mkdirsWithExistsAndPermissionCheck(DiskChecker.java:144)

 at org.apache.hadoop.util.DiskChecker.checkDir(DiskChecker.java:160)
 at org.apache.hadoop.hdfs.server.datanode.DataNode.makeInstance(DataNode.java:1484)

 at
org.apache.hadoop.hdfs.server.datanode.DataNode.instantiateDataNode(DataNode.java:1432)

 at
org.apache.hadoop.hdfs.server.datanode.DataNode.instantiateDataNode(DataNode.java:1408)

 at org.apache.hadoop.hdfs.MiniDFSCluster.startDataNodes(MiniDFSCluster.java:418)

 at org.apache.hadoop.hdfs.MiniDFSCluster.<init>(MiniDFSCluster.java:279)
 at org.apache.hadoop.hdfs.MiniDFSCluster.<init>(MiniDFSCluster.java:203)
 at
org.apache.hadoop.test.MiniHadoopClusterManager.start(MiniHadoopClusterManager.java:152)

 at
org.apache.hadoop.test.MiniHadoopClusterManager.run(MiniHadoopClusterManager.java:129)
 at
org.apache.hadoop.test.MiniHadoopClusterManager.main(MiniHadoopClusterManager.java:308)

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

 at

142 | Cloudera Security

Authentication

sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
 at java.lang.reflect.Method.invoke(Method.java:597)
 at
org.apache.hadoop.util.ProgramDriver$ProgramDescription.invoke(ProgramDriver.java:68)
 at org.apache.hadoop.util.ProgramDriver.driver(ProgramDriver.java:139)
 at org.apache.hadoop.test.AllTestDriver.main(AllTestDriver.java:83)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
 at java.lang.reflect.Method.invoke(Method.java:597)
 at org.apache.hadoop.util.RunJar.main(RunJar.java:186)

Solution:

Make sure that the umask for hdfs and mapred is 0022.

A cluster fails to run jobs after security is enabled.

Description:

A cluster that was previously configured to not use securitymay fail to run jobs for certain users on certain TaskTrackers
(MRv1) or NodeManagers (YARN) after security is enabled due to the following sequence of events:

1. A cluster is at some point in time configured without security enabled.
2. A user X runs some jobs on the cluster, which creates a local user directory on each TaskTracker or NodeManager.
3. Security is enabled on the cluster.
4. User X tries to run jobs on the cluster, and the local user directory on (potentially a subset of) the TaskTrackers

or NodeManagers is owned by the wrong user or has overly-permissive permissions.

The bug is that after step 2, the local user directory on the TaskTracker or NodeManager should be cleaned up, but
isn't.

If you're encountering this problem, youmay see errors in the TaskTracker or NodeManager logs. The following example
is for a TaskTracker on MRv1:

10/11/03 01:29:55 INFO mapred.JobClient: Task Id : attempt_201011021321_0004_m_000011_0,
 Status : FAILED
Error initializing attempt_201011021321_0004_m_000011_0:
java.io.IOException: org.apache.hadoop.util.Shell$ExitCodeException:
at org.apache.hadoop.mapred.LinuxTaskController.runCommand(LinuxTaskController.java:212)

at
org.apache.hadoop.mapred.LinuxTaskController.initializeUser(LinuxTaskController.java:442)

at
org.apache.hadoop.mapreduce.server.tasktracker.Localizer.initializeUserDirs(Localizer.java:272)

at org.apache.hadoop.mapred.TaskTracker.localizeJob(TaskTracker.java:963)
at org.apache.hadoop.mapred.TaskTracker.startNewTask(TaskTracker.java:2209)
at org.apache.hadoop.mapred.TaskTracker$TaskLauncher.run(TaskTracker.java:2174)
Caused by: org.apache.hadoop.util.Shell$ExitCodeException:
at org.apache.hadoop.util.Shell.runCommand(Shell.java:250)
at org.apache.hadoop.util.Shell.run(Shell.java:177)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:370)
at org.apache.hadoop.mapred.LinuxTaskController.runCommand(LinuxTaskController.java:203)

... 5 more

Solution:

Delete the mapred.local.dir or yarn.nodemanager.local-dirs directories for that user across the cluster.

Cloudera Security | 143

Authentication

The NameNode does not start and KrbException Messages (906) and (31) are displayed.

Description:

When you attempt to start the NameNode, a login failure occurs. This failure prevents the NameNode from starting
and the following KrbException messages are displayed:

Caused by: KrbException: Integrity check on decrypted field failed (31) - PREAUTH_FAILED}}

and

Caused by: KrbException: Identifier doesn't match expected value (906)

Note:

These KrbException error messages are displayed only if you enable debugging output. See Appendix
D - Enabling Debugging Output for the Sun Kerberos Classes.

Solution:

Although there are several possible problems that can cause these two KrbException error messages to display, here
are some actions you can take to solve the most likely problems:

• If you are using CentOS/Red Hat Enterprise Linux 5.6 or higher, or Ubuntu, which use AES-256 encryption by
default for tickets, you must install the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy
File on all cluster and Hadoop user machines. For information about how to verify the type of encryption used in
your cluster, see Step 3: If you are Using AES-256 Encryption, Install the JCE Policy File on page 50. Alternatively,
you can change your kdc.conf or krb5.conf to not use AES-256 by removing aes256-cts:normal from the
supported_enctypes field of the kdc.conf or krb5.conf file. Note that after changing the kdc.conf file,
you'll need to restart both the KDC and the kadmin server for those changes to take affect. You may also need to
recreate or change the password of the relevant principals, including potentially the TGT principal
(krbtgt/REALM@REALM).

• In the [realms] section of your kdc.conf file, in the realm corresponding to HADOOP.LOCALDOMAIN, add (or
replace if it's already present) the following variable:

supported_enctypes = des3-hmac-sha1:normal arcfour-hmac:normal des-hmac-sha1:normal
des-cbc-md5:normal des-cbc-crc:normal des-cbc-crc:v4 des-cbc-crc:afs3

• Recreate the hdfs keytab file and mapred keytab file using the -norandkey option in the xst command (for
details, see Step 4: Create and Deploy the Kerberos Principals and Keytab Files on page 51).

kadmin.local: xst -norandkey -k hdfs.keytab hdfs/fully.qualified.domain.name
HTTP/fully.qualified.domain.name
kadmin.local: xst -norandkey -k mapred.keytab mapred/fully.qualified.domain.name
HTTP/fully.qualified.domain.name

The NameNode starts but clients cannot connect to it and error message contains enctype code 18.

Description:

TheNameNode keytab file does not have an AES256 entry, but client tickets do contain an AES256 entry. TheNameNode
starts but clients cannot connect to it. The error message doesn't refer to "AES256", but does contain an enctype code
"18".

144 | Cloudera Security

Authentication

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Solution:

Make sure the "Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File" is installed or remove
aes256-cts:normal from thesupported_enctypes field of thekdc.conforkrb5.conf file. Formore information,
see the first suggested solution above for Problem 5.

For more information about the Kerberos encryption types, see
http://www.iana.org/assignments/kerberos-parameters/kerberos-parameters.xml.

(MRv1 Only) Jobs won't run and TaskTracker is unable to create a local mapred directory.

Description:

The TaskTracker log contains the following error message:

11/08/17 14:44:06 INFO mapred.TaskController: main : user is atm
11/08/17 14:44:06 INFO mapred.TaskController: Failed to create directory
/var/log/hadoop/cache/mapred/mapred/local1/taskTracker/atm - No such file or directory
11/08/17 14:44:06 WARN mapred.TaskTracker: Exception while localization
java.io.IOException: Job initialization failed (20)
 at
org.apache.hadoop.mapred.LinuxTaskController.initializeJob(LinuxTaskController.java:191)

 at org.apache.hadoop.mapred.TaskTracker$4.run(TaskTracker.java:1199)
 at java.security.AccessController.doPrivileged(Native Method)
 at javax.security.auth.Subject.doAs(Subject.java:396)
 at
org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1127)
 at org.apache.hadoop.mapred.TaskTracker.initializeJob(TaskTracker.java:1174)
 at org.apache.hadoop.mapred.TaskTracker.localizeJob(TaskTracker.java:1089)
 at org.apache.hadoop.mapred.TaskTracker.startNewTask(TaskTracker.java:2257)
 at org.apache.hadoop.mapred.TaskTracker$TaskLauncher.run(TaskTracker.java:2221)
Caused by: org.apache.hadoop.util.Shell$ExitCodeException:
 at org.apache.hadoop.util.Shell.runCommand(Shell.java:255)
 at org.apache.hadoop.util.Shell.run(Shell.java:182)
 at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:375)
 at
org.apache.hadoop.mapred.LinuxTaskController.initializeJob(LinuxTaskController.java:184)

 ... 8 more

Solution:

Make sure the value specified for mapred.local.dir is identical in mapred-site.xml and taskcontroller.cfg.
If the values are different, the error message above is returned.

(MRv1 Only) Jobs will not run and TaskTracker is unable to create a Hadoop logs directory.

Description:

The TaskTracker log contains an error message similar to the following :

11/08/17 14:48:23 INFO mapred.TaskController: Failed to create directory
/home/atm/src/cloudera/hadoop/build/hadoop-0.23.2-cdh3u1-SNAPSHOT/logs1/userlogs/job_201108171441_0004
 - No such file or directory
11/08/17 14:48:23 WARN mapred.TaskTracker: Exception while localization
java.io.IOException: Job initialization failed (255)
 at
org.apache.hadoop.mapred.LinuxTaskController.initializeJob(LinuxTaskController.java:191)

 at org.apache.hadoop.mapred.TaskTracker$4.run(TaskTracker.java:1199)
 at java.security.AccessController.doPrivileged(Native Method)
 at javax.security.auth.Subject.doAs(Subject.java:396)
 at
org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1127)
 at org.apache.hadoop.mapred.TaskTracker.initializeJob(TaskTracker.java:1174)
 at org.apache.hadoop.mapred.TaskTracker.localizeJob(TaskTracker.java:1089)

Cloudera Security | 145

Authentication

http://www.iana.org/assignments/kerberos-parameters/kerberos-parameters.xml

 at org.apache.hadoop.mapred.TaskTracker.startNewTask(TaskTracker.java:2257)
 at org.apache.hadoop.mapred.TaskTracker$TaskLauncher.run(TaskTracker.java:2221)
Caused by: org.apache.hadoop.util.Shell$ExitCodeException:
 at org.apache.hadoop.util.Shell.runCommand(Shell.java:255)
 at org.apache.hadoop.util.Shell.run(Shell.java:182)
 at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:375)
 at
org.apache.hadoop.mapred.LinuxTaskController.initializeJob(LinuxTaskController.java:184)

 ... 8 more

Solution:

In MRv1, the default value specified for hadoop.log.dir in mapred-site.xml is
/var/log/hadoop-0.20-mapreduce. The path must be owned and be writable by the mapred user. If you change
the default value specified for hadoop.log.dir, make sure the value is identical in mapred-site.xml and
taskcontroller.cfg. If the values are different, the error message above is returned.

After you enable cross-realm trust, you can run Hadoop commands in the local realm but not in the remote realm.

Description:

After you enable cross-realm trust, authenticating as a principal in the local realm will allow you to successfully run
Hadoop commands, but authenticating as a principal in the remote realmwill not allow you to run Hadoop commands.
Themost common cause of this problem is that the principals in the two realms either do not have the same encryption
type, or the cross-realm principals in the two realms do not have the same password. This issuemanifests itself because
you are able to get Ticket Granting Tickets (TGTs) from both the local and remote realms, but you are unable to get a
service ticket to allow the principals in the local and remote realms to communicate with each other.

Solution:

On the localMIT KDC server host, type the following command in the kadmin.local or kadmin shell to add the cross-realm
krbtgt principal:

kadmin: addprinc -e "<enc_type_list>"
krbtgt/YOUR-LOCAL-REALM.COMPANY.COM@AD-REALM.COMPANY.COM

where the <enc_type_list> parameter specifies the types of encryption this cross-realm krbtgt principal will support:
AES, DES, or RC4 encryption. You can specify multiple encryption types using the parameter in the command above,
what's important is that at least one of the encryption types parameters corresponds to the encryption type found in
the tickets granted by the KDC in the remote realm. For example:

kadmin: addprinc -e "aes256-cts:normal rc4-hmac:normal des3-hmac-sha1:normal"
krbtgt/YOUR-LOCAL-REALM.COMPANY.COM@AD-REALM.COMPANY.COM

(MRv1 Only) Jobs won't run and cannot access files in mapred.local.dir

Description:

The TaskTracker log contains the following error message:

WARN org.apache.hadoop.mapred.TaskTracker: Exception while localization
java.io.IOException: Job initialization failed (1)

Solution:

1. Add the mapred user to the mapred and hadoop groups on all hosts.
2. Restart all TaskTrackers.

146 | Cloudera Security

Authentication

Users are unable to obtain credentials when running Hadoop jobs or commands.

Description:

This error occurs because the ticket message is too large for the default UDP protocol. An error message similar to the
following may be displayed:

13/01/15 17:44:48 DEBUG ipc.Client: Exception encountered while connecting to the server
 : javax.security.sasl.SaslException:
GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism
level: Fail to create credential.
(63) - No service creds)]

Solution:

Force Kerberos to use TCP instead of UDP by adding the following parameter to libdefaults in the krb5.conf file
on the client(s) where the problem is occurring.

[libdefaults]
udp_preference_limit = 1

If you choose to manage krb5.conf through Cloudera Manager, this will automatically get added to krb5.conf.

Note:

When sending a message to the KDC, the library will try using TCP before UDP if the size of the ticket
message is larger than the setting specified for the udp_preference_limit property. If the ticket
message is smaller thanudp_preference_limit setting, thenUDPwill be tried before TCP. Regardless
of the size, both protocols will be tried if the first attempt fails.

Request is a replay exceptions in the logs.

Description:

Symptom: The following exception shows up in the logs for one or more of the Hadoop daemons:

2013-02-28 22:49:03,152 INFO ipc.Server (Server.java:doRead(571)) - IPC Server listener
 on 8020: readAndProcess threw exception javax.security.sasl.SaslException: GSS initiate
 failed [Caused by GSSException: Failure unspecified at GSS-API level (Mechanism l
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: Failure
 unspecified at GSS-API level (Mechanism level: Request is a replay (34))]
 at
com.sun.security.sasl.gsskerb.GssKrb5Server.evaluateResponse(GssKrb5Server.java:159)
 at org.apache.hadoop.ipc.Server$Connection.saslReadAndProcess(Server.java:1040)

 at org.apache.hadoop.ipc.Server$Connection.readAndProcess(Server.java:1213)
 at org.apache.hadoop.ipc.Server$Listener.doRead(Server.java:566)
 at org.apache.hadoop.ipc.Server$Listener$Reader.run(Server.java:363)
Caused by: GSSException: Failure unspecified at GSS-API level (Mechanism level: Request
 is a replay (34))
 at sun.security.jgss.krb5.Krb5Context.acceptSecContext(Krb5Context.java:741)
 at sun.security.jgss.GSSContextImpl.acceptSecContext(GSSContextImpl.java:323)
 at sun.security.jgss.GSSContextImpl.acceptSecContext(GSSContextImpl.java:267)
 at
com.sun.security.sasl.gsskerb.GssKrb5Server.evaluateResponse(GssKrb5Server.java:137)
 ... 4 more
Caused by: KrbException: Request is a replay (34)
 at sun.security.krb5.KrbApReq.authenticate(KrbApReq.java:300)
 at sun.security.krb5.KrbApReq.<init>(KrbApReq.java:134)
 at sun.security.jgss.krb5.InitSecContextToken.<init>(InitSecContextToken.java:79)

 at sun.security.jgss.krb5.Krb5Context.acceptSecContext(Krb5Context.java:724)
 ... 7 more

Cloudera Security | 147

Authentication

In addition, this problem can manifest itself as performance issues for all clients in the cluster, including dropped
connections, timeouts attempting to make RPC calls, and so on.

Likely causes:

• Multiple services in the cluster are using the same kerberos principal. All secure clients that run on multiple
machines should use unique kerberos principals for eachmachine. For example, rather than connecting as a service
principal myservice@EXAMPLE.COM, services should have per-host principals such as
myservice/host123.example.com@EXAMPLE.COM.

• Clocks not in synch: All hosts should run NTP so that clocks are kept in synch between clients and servers.

CDH services fail to start

Possible Causes: Check that the encryption types are matched between your KDC and krb5.conf on all hosts.

Solution: If you are using AES-256, follow the instructions at Step 2: If You are Using AES-256 Encryption, Install the
JCE Policy File on page 20 to deploy the JCE policy file on all hosts.

148 | Cloudera Security

Authentication

Encryption

The goal of encryption is to ensure that only authorized users can view, use, or contribute to a data set. These security
controls add another layer of protection against potential threats by end-users, administrators and other malicious
actors on the network. Data protection can be applied at a number of levels within Hadoop:

• OS Filesystem-level - Encryption can be applied at the Linux operating system file system level to cover all files in
a volume. An example of this approach is ClouderaNavigator Encrypt (formerly Gazzang zNcrypt) which is available
for Cloudera customers licensed for Cloudera Navigator. Navigator Encrypt operates at the Linux volume level, so
it can encrypt cluster data inside and outside HDFS, such as temp/spill files, configuration files and metadata
databases (to be used only for data related to a CDH cluster). Navigator Encrypt must be used with Navigator Key
Trustee (formerly Gazzang zTrustee).

• HDFS-level - Encryption applied by the HDFS client software. HDFS Data At Rest Encryption on page 187 operates
at the HDFS folder level, enabling encryption to be applied only to the HDFS folders where it is needed. Cannot
encrypt any data outside HDFS. To ensure reliable key storage (so that data is not lost), Navigator Key Trustee
should be used, while the default Java keystore can be used for test purposes.

• Network-level - Encryption can be applied to encrypt data just before it gets sent across a network and to decrypt
it as soon as it is received. In Hadoop this means coverage for data sent from client user interfaces as well as
service-to-service communication like remote procedure calls (RPCs). This protection uses industry-standard
protocols such as SSL/TLS.

SSL Certificates Overview
This topic will guide you through the different certificate strategies that you can employ on your cluster to allow SSL
clients to securely connect to servers using trusted certificates or certificates issued by trusted authorities. The set of
certificates required depends upon the certificate provisioning strategy you implement. The following strategies, among
others, are possible:

• Certificate per host: In this strategy, you obtain one certificate for each host on which at least one SSL daemon
role is running. All services on a given host will share this single certificate.

• Certificate for multiple hosts: Using the SubjectAltName extension, it is possible to obtain a certificate that is
bound to a list of specific DNS names. One such certificate could be used to protect all hosts in the cluster, or
some subset of the cluster hosts. The advantage of this approach over a wildcard certificate is that it allows you
to limit the scope of the certificate to a specific set of hosts. The disadvantage is that it requires you to update
and redeploy the certificate whenever a host is added or removed from the cluster.

• Wildcard certificate: You may also choose to obtain a single wildcard certificate to be shared by all services on
all hosts in the cluster. This strategy requires that all hosts belong to the same domain. For example, if the hosts
in the cluster have DNS names node1.example.com ... node100.example.com, you can obtain a certificate
for *.example.com. Note that only one level of wildcarding is allowed; a certificate bound to *.example.com
will not work for a daemon running on node1.subdomain.example.com.

Note: Wildcard domain certificates and certificates using the SubjectAlternativeName extension are
not supported at this time.

When choosing an approach to certificate provisioning, bear in mind that SSL must be enabled for all core Hadoop
services (HDFS, MapReduce, and YARN) as a group. For example, if you are running HDFS and YARN on your cluster,
you cannot choose to enable SSL for HDFS, but not for YARN. You must enable it for both services, which implies that
you must make certificates available to all daemon roles of both services. With a certificate-per-host strategy, for
example, you will need to obtain a certificate for each host on which an HDFS or YARN daemon role is running.

Cloudera Security | 149

Encryption

http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise/cloudera-navigator/encryption-and-key-management-in-hadoop.html

Creating Certificates

The following sectionswill walk you through obtaining certificates from commercial Certificate Authorities and creating
self-signed test certificates.

Using Keytool

Keytool is a utility for creating and managing certificates and cryptographic keys, and is part of the standard JDK
distribution. The keytool executable usually resides in $JAVA_HOME/bin.

Keytool stores certificates and keys in a file known as a keystore .While several different keystore types are supported,
by default keytool uses the Java KeyStore (JKS) format.

Java-based services such as HDFS, MapReduce, and YARN use the JKS format by default. For this reason it is particularly
convenient to use keytool for managing keys and certificates for these services. In the following topics, we assume
you are using keytool.

For additional information on keytool, refer the keytool documentation.

Using OpenSSL

Python-based services such as Hue expect certificates and keys to be stored in PEM format.Whenmanaging certificates
and keys for such services, you may find it convenient to use the openssl tool.

Refer the openssl documentation for more information.

Obtaining a Production Certificate from a Commercial CA

Once you have decided on a certificate-provisioning strategy, and have determined which hosts require certificates,
you will typically purchase the necessary certificates from a commercial Certificate Authority (CA). The procedure for
applying for a certificate varies from one CA to another, but typically involves providing some form of proof that you
are the legitimate owner of the domain name for which you are requesting a certificate, generating a key pair, and
submitting a Certificate Signing Request (CSR) to the CA.

As noted above, you may find it convenient to use the Java keytool utility to generate your key pair and CSR, and to
manage your certificates. The CA you choosewill provide instructions for obtaining and installing a certificate; typically,
there will be separate sets of instructions for different web and application servers. The instructions for Java-based
servers (Tomcat, for example), will usually describe the following process comprising three keytool commands to
obtain a certificate:

1. keytool -genkeypair to generate a public/private key pair and create the keystore.
2. keytool -certreq to create the CSR.
3. keytool -importcert to import the signed certificate into the keystore.

For example, to generate a public/private key pair for the domain name node1.example.com, you would use a
command similar to the one shown below:

$ keytool -genkeypair -keystore node1.keystore -alias node1 \
-dname "CN=node1.example.com,O=Hadoop" -keyalg RSA \
-keysize 2048 -storepass changeme -keypass changeme

This command generates a pair of 2048-bit keys using the RSA key algorithm, one of several available. The keys are
stored in a keystore file called node1.keystore, in a keystore entry identified by by the alias node1. The keystore
password (which protects the keystore as a whole) and the key password (which protects the private key stored in the
node1 entry) are set using the -storepass and -keypass options (respectively). -keypassmust be set to the same
password value as -storepass for Cloudera Manager to access the keystore.

To create a CSR, you would use a command similar to the following:

$ keytool -certreq -keystore node1.keystore -alias node1 \
-storepass changeme -keypass changeme -file node1.csr

150 | Cloudera Security

Encryption

http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#KeyManagement
http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html
https://www.openssl.org/docs/apps/openssl.html

This command generates the CSR, and stores it in a file called node1.csr. Once you've submitted your CSR to the CA,
and received the CA's reply (containing the signed certificate), you will use the following keytool -importcert
command to import the reply into your keystore:

$ keytool -importcert -keystore node1.keystore -alias node1 \
-storepass changeme -keypass changeme -trustcacerts -file node1.crt

Here we assume that the CA's reply is stored in the file node1.crt.

Important: This section describes a generic procedure using keytool to obtain a certificate from a
commercial Certificate Authority. This procedure will differ from one CA to another and Cloudera
recommends you consult your CA's documentation for more specifics.

Creating Self-Signed Test Certificates

Important: Cloudera strongly recommends against the use of self-signed certificates in production
clusters.

It is also possible to create your own test certificates. These certificates are typically self-signed; that is, they are signed
by your own private key, rather than that of an external CA. Such test certificates are useful during testing and bringup
of a cluster.

To generate a self-signed certificate, use keytool -genkeypair. (In addition to creating a public/private key pair,
this command wraps the public key into a self-signed certificate.) For example, the following command creates a
self-signed test certificate for the host node1.example.com, and stores it in a keystore named node1.keystore:

$ keytool -genkeypair -keystore node1.keystore -keyalg RSA \
-alias node1 -dname "CN=node1.example.com,O=Hadoop" \
-storepass changeme -keypass changeme

By default, self-signed certificates as created above are only valid for 90 days. To increase this period, use the -validity
<val_days> parameter to specify the number of days for which the certificate should be considered valid.

Creating Java Keystores and Truststores

Typically, a keystore is used in one of two distinct ways:

• The keystore contains private keys and certificates used by SSL servers to authenticate themselves to SSL clients.
By convention, such files are referred to as keystores.

• When used as a truststore, the file contains certificates of trusted SSL servers, or of Certificate Authorities trusted
to identify servers. There are no private keys in the truststore.

Note: The foregoing assumes that certificate-based authentication is being used in one direction
only—that is, SSL servers are using certificates to authenticate themselves to clients. It is also possible
for clients to authenticate themselves to servers using certificates. (This is known as mutual
authentication.) Throughout this document, we assume that client certificates are not in use.

While all SSL clients must have access to a truststore, it is not always necessary to create and deploy truststores across
a cluster. The standard JDK distribution includes a default truststore which is pre-provisioned with the root certificates
of a number of well-known Certificate Authorities. If you do not provide a custom truststore, the Hadoop daemons
load this default truststore. Therefore, if you are using certificates issued by a CA in the default truststore, you do not
need to provide custom truststores. However, you must consider the following before you decide to use the default
truststore:

• If you choose to use the default truststore, it is your responsibility to maintain it. You may need to remove the
certificates of CAs you do not deem trustworthy, or add or update the certificates of CAs you trust. Use the
keytool utility to perform these actions.

Cloudera Security | 151

Encryption

Security Considerations for Keystores and Truststores

Note: While the strategy for certificate deployment you selectwill ultimately depend upon the security
policies you wish to implement, the following guidelines may prove useful.

Because keystores contain private keys, while truststores do not, the security requirements for keystores are more
stringent. In particular:

• Hadoop SSL requires that truststores and the truststore password be stored, in plaintext, in a configuration file
that is readable by all.

• Keystore and key passwords are stored, in plaintext, in a file that is readable only by members of the appropriate
group.

These considerations should inform your choice of which keys and certificates to store in the keystores and truststores
you will deploy across your cluster.

• Keystores should contain a minimal set of keys and certificates. A reasonable strategy would be to create a unique
keystore for each host, which would contain only the keys and certificates needed by the Hadoop SSL services
running on the host. In most cases, the keystore would contain a single key/certificate entry.

• On the other hand, because truststores do not contain sensitive information, it is reasonable to create a single
truststore for an entire cluster. On a production cluster, such a truststorewould often contain a single CA certificate
(or certificate chain), since you would typically choose to have all certificates issued by a single CA.

•
Important: Do not use the same password for truststores and keystores/keys.

Since truststore passwords are stored in the clear in files readable by all, doing so would compromise the security
of the private keys in the keystore.

Creating Keystores

Once you have settled on a storage plan for your keys and certificates, you can use keytool to create or update the
necessary keystores and truststores. To create a new keystore with a certificate see Creating Certificates on page 150.

In many cases, you will already have created the set of keystores that you need. If you have followed the approach of
creating a separate keystore for each private key and certificate, andwish tomaintain this arrangementwhen deploying
the keystores, no additional steps are required to prepare the keystores for deployment. If you wish to reorganize your
keys and certificates into a different set of keystores, you can use keytool -importkeystore to transfer entries
from one keystore to another.

Creating Truststores

The steps involved in preparing the truststores to be used in your deployment depend on whether you have decided
to use the default Java truststore, or to create custom truststores:

• If you are using the default truststore, you may need to add CA certificates (or certificate chains) to the truststore,
or delete them from the truststore.

• If you are creating custom truststores, you will need to build the truststores by importing trusted certificates into
new truststores. The trusted certificates can be CA certificates (typically downloaded from the CA's website), or
self-signed certificates that you have created.

As shown in the examples below, when creating a truststore you must select a password. All truststore passwords for
a given service must be the same. In practice, this restriction rarely comes into play, since it is only relevant when you
wish to create distinct custom truststores for each host.

The following sections provide examples of the steps required for several common scenarios:

152 | Cloudera Security

Encryption

Example 1: Adding a CA Certificate to the alternative Default Truststore

In this example, we assume that you have chosen to use the default Java truststore, but have obtained a certificate
from a CA not included in the truststore. (This situation can also arise if the CA that issued your certificate has an entry
in the default truststore, but the particular certificate product you purchased requires an alternate CA certificate chain.)

1. Locate the default truststore on your system. The default truststore is located in the
$JAVA_HOME/jre/lib/security/cacerts file. This contains the default CA information shippedwith the JDK.
Create an alternate default file called jssecacerts in the same location as the cacerts file. You can now safely
append CA certificates for any private or public CAs not present in the default cacerts file, while keeping the
original file intact.

The alternate file will always be read unless the javax.net.ssl.trustStore flag is set in the arguments for
the startup of the java process.

For our example, we will be following this recommendation by copying the default cacerts file into the new
jssecacerts file.

$ cp $JAVA_HOME/jre/lib/security/cacerts \
 $JAVA_HOME/jre/lib/security/jssecacerts

If you use a copy of the cacerts file, remember the default keystore password is changeit.

2. Import the CA certificate into the default truststore. Assuming that the file myCA-root.cer contains the CA’s
certificate, which you have previously downloaded from the CA’s web site, the following command imports this
certificate into the alternative default truststore.

Note: Test the trust relationship before you import any intermediary CA certificates. Trust should
be derived from the root CA only. Import intermediary CA certificates only if necessary.

$ keytool -importcert -file myCA-root.cer -alias myCA \
-keystore /usr/java/default/jre/lib/security/jssecacerts \
-storepass changeit

When you give this command, you will be prompted to confirm that you trust the certificate. Be sure to verify
that the certificate is genuine before importing it.

Important: Any updates you make to the default truststore must be made on all hosts in the cluster.

Example 2: Creating a Custom Truststore Containing a Single CA Certificate Chain

In this example, we demonstrate how to use keytool to create a custom truststore. We assume all certificates were
issued by a single CA, so a truststore containing the certificate chain for that CA will serve for all hosts in the cluster.

Our example certificate chain consists of a root certificate and a single intermediate certificate. We assume that you
have downloaded these and saved them in the files myCA-root.cer and myCA-intermediate.cer (respectively).
The steps below show the commands needed to build a custom truststore containing the root and intermediate
certificates.

1. Import the root certificate and create the truststore:

$ keytool -importcert -keystore my.truststore -alias myCA-root \
-storepass trustchangeme -file myCA-root.cer

You will be prompted to confirm that the root certificate is trustworthy. Be sure to verify that the certificate is
genuine before you import it.

Cloudera Security | 153

Encryption

2. Import the intermediate certificate into the truststore created in Step 1:

$ keytool -importcert -keystore my.truststore \
-alias myCA-intermediate -storepass trustchangeme \
-file myCA-intermediate.cer

Example 3: Creating a Custom Truststore Containing Self-Signed Test Certificates

Important: Cloudera strongly recommends against the use of self-signed certificates in production
clusters.

This example is particularly relevant when setting up a test cluster. We assume that you have generated a set of
self-signed test certificates for the hosts in the cluster, and wish to create a single truststore that can be deployed on
all hosts. Because the certificates are self-signed, we cannot simply construct a truststore containing a single certificate
chain, as in the previous example.When a client receives a self-signed certificate froma server during the SSL handshake,
it must be able to find the server’s certificate in the truststore, since no other signing certificate exists to establish
trust. Therefore, the truststore must contain all the test certificates.

We assume that the test certificates reside in keystores named node1.keystore … node100.keystore, which
were created following the steps described in Creating Self-Signed Test Certificates.

1. Export the test certificate for node1.example.com:

$ keytool -exportcert -keystore node1.keystore -alias node1 \
-storepass changeme -file node1.cer

2. Import the test certificate into the truststore:

keytool -importcert -keystore my.truststore -alias node1 \
-storepass trustchangeme -file node1.cer -noprompt

Here we specify the -noprompt option to suppress the prompt asking you to confirm that the certificate is
trustworthy. Since you created the certificate yourself, this confirmation is unnecessary.

3. Repeat Steps 1 and 2 for node2.keystore … node100.keystore.

Private Key and Certificate Reuse Across Java Keystores and OpenSSL

This topic provides a quick tutorial on exporting/importing private keys for reuse from a Java keystore to OpenSSL and
vice versa. Regardless of the procedure followed to create host private keys and certificates, sometimes it becomes
necessary to reuse those private keys and certificates by other services on the same host. For example, if you used
OpenSSL to create private keys and certificates for a service, you can reuse those keys for a Java-based service on the
same host by converting them to the Java keystore format.

The documentation for Configuring TLS Security for Cloudera Manager describes both approaches to creating private
keys, using Java keystore, and OpenSSL.

Why Reuse a Private Key?

Certificate authorities generally revoke previous generations of certificates issued to a host. Hence, a host cannot have
2 sets of CA-issued certificates and have both be valid. Once a certificate is issued to a host, it then becomes necessary
to reuse the private key that requested the certificate, and the CA-issued certificate across different services, Java-based
and otherwise.

Note: This following sections assume the default paths set up in Configuring TLS Encryption Only for
Cloudera Manager.

154 | Cloudera Security

Encryption

Conversion from Java Keystore to OpenSSL

First, use keytool to export the private key and certificate to a PKCS12 file as a transitional file format that can then
be split up into individual key and certificate files by the openssl command line. Replace cmhost and hostname in
the commands below with the actual hostname of the server that is managing the certificate and keys.

$ keytool -importkeystore -srckeystore /opt/cloudera/security/jks/hostname-keystore.jks
 \
-srcstorepass password -srckeypass password -destkeystore /tmp/hostname-keystore.p12 \

-deststoretype PKCS12 -srcalias hostname -deststorepass password -destkeypass password

Now use openssl to split the PKCS12 file created above into first, the certificate file, and then the private key file.
While the CA-issued certificate can be used as is, the command has been provided here for completeness.

$ openssl pkcs12 -in /tmp/hostname-keystore.p12 -passin pass:password -nokeys \
-out /opt/cloudera/security/x509/hostname.pem

$ openssl pkcs12 -in /tmp/hostname-keystore.p12 -passin pass:password -nocerts \
-out /opt/cloudera/security/x509/hostname.key -passout pass:password

Note that the method above generates a key with a password. For services such as Hue and Impala that require keys
without passwords, you can use the following command:

$ openssl rsa -in /opt/cloudera/security/x509/hostname.key \
-passin pass:password -out /opt/cloudera/security/x509/hostname.pem

Conversion from OpenSSL to Java Keystore

First, convert the openssl private key and certificate files into a PKCS12 file. The PKCS12 file can then be imported
into a Java keystore file. Replace hostname in the commands below with the FQDN for the host whose certificate is
being imported.

$ openssl pkcs12 -export -in /opt/cloudera/security/x509/hostname.pem \
-inkey /opt/cloudera/security/x509/hostname.key -out /tmp/hostname.p12 \
-name hostname -passin pass:password -passout pass:password

$ keytool -importkeystore -srckeystore /tmp/hostname.p12 -srcstoretype PKCS12 \
-srcstorepass password -alias hostname -deststorepass password
-destkeypass password -destkeystore /opt/cloudera/security/jks/hostname-keystore.jks

Configuring TLS Security for Cloudera Manager

Important:

• Cloudera strongly recommends that you set up a fully functional CDH cluster and Cloudera
Manager before you configure the Cloudera Manager Server and Agents to use TLS.

• When TLS is enabled, ClouderaManager continues to accept HTTP requests on port 7180 (default)
but immediately redirects clients to port 7183 for HTTPS connectivity.

• When Level 3 TLS is configured, to add new hosts running Agents, you must manually deploy the
Cloudera Manager agent and daemon packages for your platform, issue a new certificate for the
host, configure /etc/cloudera-scm-agent/config.ini to use SSL/TLS, and then bring the
host online.

Or, you can disable TLS to add the host, configure the new host for TLS, and then re-enable with
the proper configuration in place. Either approach is valid, based on your needs.

• For all hosts running Agents, Cloudera recommends that you first create the keystore in Java,
and then export the key and certificate using openSSL for use by the Agent or Hue.

Cloudera Security | 155

Encryption

Transport Layer Security (TLS) provides encryption and authentication in communication between the ClouderaManager
Server and Agents. Encryption prevents snooping, and authentication helps prevent problems caused by malicious
servers or agents.

Cloudera Manager supports three levels of TLS security.

• Level 1 (Good) - This level encrypts communication between the browser and Cloudera Manager, and between
Agents and the ClouderaManager Server. See Configuring TLS Encryption Only for ClouderaManager on page 156
followed by Level 1: Configuring TLS Encryption for Cloudera Manager Agents on page 160 for instructions. Level
1 encryption prevents snooping of commands and controls ongoing communication betweenAgents and Cloudera
Manager.

• Level 2 (Better) - This level encrypts communication between the Agents and the Server, and provides strong
verification of the Cloudera Manager Server certificate by Agents. See Level 2: Configuring TLS Verification of
ClouderaManager Server by the Agents on page 161. Level 2 provides Agents with additional security by verifying
trust for the certificate presented by the Cloudera Manager Server.

• Level 3 (Best) - This includes encrypted communication between the Agents and the Server, strong verification of
the Cloudera Manager Server certificate by the Agents, and authentication of Agents to the Cloudera Manager
Server using self-signed or CA-signed certs. See Level 3: Configuring TLS Authentication of Agents to the Cloudera
Manager Server on page 163. Level 3 TLS prevents cluster Servers frombeing spoofed by untrusted Agents running
on a host. Cloudera recommends that you configure Level 3 TLS encryption for untrusted network environments
before enabling Kerberos authentication. This provides secure communication of keytabs between the Cloudera
Manager Server and verified Agents across the cluster.

Important: You must finish configuring Level 1 and Level 2 TLS to configure Level 3 encryption. To
enable TLS encryption for all connections between your Web browser running the Cloudera Manager
Admin Console and the Cloudera Manager Server, see the first 2 steps of Level 1: Configuring TLS
Encryption for Cloudera Manager Agents on page 160.

For details on how HTTPS communication is handled Cloudera Manager Agents and Cloudera Management Services
daemons, see HTTPS Communication in Cloudera Manager on page 167.

Configuring TLS Encryption Only for Cloudera Manager

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Important: The sequence of steps described in the following topics to configure Level 1 through 3
TLS will each build upon the steps of the previous level. The procedure and examples provided in
these topics, are based on this concept.

Before enabling TLS security for Cloudera Manager, you must create a keystore, submit a certificate-signing request,
and install the issued certificate for the Server. You do this using the Oracle JDK keytool command-line tool. If you
are using a Private CA, append its certificate (and any required intermediary certificates) to the alternate default
truststore provided with the JDK for inherent trust. This process is described in detail in Configuring SSL Encryption in
Cloudera Manager Deployments.

The table below shows the paths for managing certificates in the following examples . These paths persist during any
upgrades and should be removedmanually if the host is removed fromaCDH cluster. Note that the folders and filepaths
listed here can reside anywhere on the system and must be created on every host, especially as later sections move
on to creating certificates for each host.

Note: Set permissions on the paths such that scm-user, hue, Hadoop service users (or groups), and
root users can read the private key, certificate, and keystore and truststore files.

DescriptionExample Property Values

FQDN for Cloudera Manager Server host.cmhost.sec.cloudera.com

156 | Cloudera Security

Encryption

http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

DescriptionExample Property Values

Base location for security-related files./opt/cloudera/security

Location for openssl key/, cert/ and cacerts/ files
to be used by the Cloudera Manager Agent and Hue.

/opt/cloudera/security/x509

Location for the Java-basedkeystore/ andtruststore/
files for use by Cloudera Manager and Java-based cluster
services.

/opt/cloudera/security/jks

Location for CA certificates (root and
intermediary/subordinate CAs). One PEM file per CA in
the chain is required.

/opt/cloudera/security/CAcerts

Important:

• You must use the Oracle JDK keytool. The following procedure requires use of the
Cloudera-installed Oracle JDK (or JDK downloaded from Oracle). Do not use both keytool and
OpenJDK, or varying versions of JDK command line tools like keytool. If necessary, set your
PATH so that the Oracle JDK is first. For example:

$ export JAVA_HOME=/usr/java/jdk1.7.0_67-cloudera
$ export PATH=$JAVA_HOME/bin:$PATH

• Set -keypass to the same value as -storepass. Cloudera Manager assumes that the same
password is used to access both the key and the keystore, and therefore, does not support
separate values for -keypass and -storepass.

Step 1: Create the Cloudera Manager Server Keystore, Generate a Certificate Request, and Install the Certificate

The following procedure assumes that a private Certificate Authority is used, and therefore trust must be established
for that private CA. If a known public CA such as Verisign or GeoTrust is used, you may not need to explicitly establish
trust for the issued certificates. Newer public CAs might not be present yet in the JDK default cacerts file. If you have
problemswith the import process (such as keytool error: java.lang.Exception: Failed to establish chain
from reply), follow the steps for trusting private CAs below.

1. Assuming the paths documented in the table above have been created, use keytool to generate a Java keystore
and Certificate Signing Request (CSR) for the Cloudera Manager Server. Replace cmhost and
cmhost.sec.cloudera.com in the commands below with your hostname and FQDN. For example:

$ keytool -genkeypair -alias cmhost -keyalg RSA -keystore \
/opt/cloudera/security/jks/cmhost-keystore.jks -keysize 2048 -dname \
"CN=cmhost.sec.cloudera.com,OU=Support,O=Cloudera,L=Denver,ST=Colorado,C=US" \
-storepass password -keypass password

• -alias is a label used only in the keystore. In this example, the hostname is used for easy tracking and
management of the key and certificate. Ensure that -alias is consistent across all your commands.

• -keyalg is the algorithmused to generate the key. RSA allows key lengths greater than 1024 bits for certificate
requests.

• -dname allows you to provide the certificate subject as a single line. If not specified, you will be prompted
for the values of the certificate subject information. In that case, use the host FQDN that agents and browsers
will use to connect to in the subject First and Last name (CN) question prompt.

• /opt/cloudera/security/jks/cmhost-keystore.jks is an example path to the keystore where you
store the keystore file and where the Cloudera Manager Server host can access it.

• -keypassmust be set to the same password value as -storepass for Cloudera Manager to access the
keystore.

Cloudera Security | 157

Encryption

2. Generate a certificate signing request for the host (in this example, cmhost).

$ keytool -certreq -alias cmhost \
-keystore /opt/cloudera/security/jks/cmhost-keystore.jks \
-file /opt/cloudera/security/x509/cmhost.csr -storepass password \
-keypass password

3. Submit the .csr file created by the -certreq command to your Certificate Authority to obtain a server certificate.
When possible, work with certificates in the default Base64 (ASCII) format. You can easily modify Base64-encoded
files from .CER or .CRT to .PEM. The file is in ASCII format if you see the opening and closing lines as follows:

-----BEGIN CERTIFICATE-----
(the encoded certificate is represented by multiple lines of exactly 64 characters,
except
for the last line which can contain 64 characters or less.)
-----END CERTIFICATE-----

If your issued certificate is in binary (DER) format, adjust the commands according to the keytool documentation.

4. Copy the root CA certificate and any intermediary or subordinate CA certificates to
/opt/cloudera/security/CAcerts/.

Important: For a private CA, you must import the private CA and intermediary or subordinate
CA certificates into an alternative default JDK truststore jssecacerts, before importing them
to your Java keystore.

a. Import the root CA certificate first, followed by any intermediary or subordinate CA certificates. Substitute
$JAVA_HOME in the command below with the path for your Oracle JDK.

$ sudo cp $JAVA_HOME/jre/lib/security/cacerts $JAVA_HOME/jre/lib/security/jssecacerts

$ sudo keytool -importcert -alias RootCA -keystore $JAVA_HOME/jre/lib/security/jssecacerts
 \
-file /opt/cloudera/security/CAcerts/RootCA.cer -storepass changeit

$ sudo keytool -importcert -alias SubordinateCA -keystore \
$JAVA_HOME/jre/lib/security/jssecacerts \
-file /opt/cloudera/security/CAcerts/SubordinateCA.cer -storepass changeit

Repeat for as many subordinate or intermediary CA certificates as needed. The default -storepass for the
cacerts file is changeit. After completing this step, copy the jssecacerts file created to the same path
on all cluster hosts.

b. Import the Private CA certificates into your Java keystore file. Import the root CA certificate first.

$ keytool -importcert -trustcacerts -alias RootCA -keystore \
/opt/cloudera/security/jks/<cmhost-keystore>.jks -file \
/opt/cloudera/security/CAcerts/RootCA.cer -storepass password

$ keytool -importcert -trustcacerts -alias SubordinateCA -keystore \
/opt/cloudera/security/jks/<cmhost-keystore>.jks -file \
/opt/cloudera/security/CAcerts/SubordinateCA.cer -storepass password

Repeat for as many subordinate/intermediary CA certificates as needed.

5. Copy the signed certificate file provided to a location where it can be used by the Cloudera Manager Agents (and
Hue if necessary).

$ cp certificate-file.cer /opt/cloudera/security/x509/cmhost.pem

158 | Cloudera Security

Encryption

Install it with the following keytool command:

$ keytool -importcert -trustcacerts -alias cmhost \
-file /opt/cloudera/security/x509/cmhost.pem \
-keystore /opt/cloudera/security/jks/cmhost-keystore.jks -storepass password

Youmust see the following response verifying that the certificate has been properly imported against its private
key.

Certificate reply was installed in keystore

Because the issued certificate has been imported by the Java keystore, the original certificate-signing request
(.CSR) and certificate files are no longer needed by Java services on that host, and the certificate and private key
are now accessed through the keystore.

However, you still must export the private key from the Jave keystore to make the certificate usable by Hue and
the ClouderaManager Agent. For instructions on reusing certificates, see Private Key and Certificate Reuse Across
Java Keystores and OpenSSL on page 154.

Step 2: Enable HTTPS for the Cloudera Manager Admin Console and Specify Server Keystore Properties

1. Log into the Cloudera Manager Admin Console.
2. Select Administration > Settings.
3. Click the Security category.
4. Configure the following TLS settings:

DescriptionProperty

The complete path to the keystore file. In the example, this path would be:

/opt/cloudera/security/jks/cmhost-keystore.jks

Path to TLS Keystore File

The password for keystore: passwordKeystore Password

Check this box to enable TLS encryption for Cloudera Manager.Use TLS Encryption for
Admin Console

5. Click Save Changes to save the settings.
6.

Step 3: Specify SSL Truststore Properties for Cloudera Management Services

When enabling TLS for the ClouderaManager UI, youmust set the Java truststore location and password in the Cloudera
Management Services configuration. If this is not done, services such as the Host Monitor and Service Monitor will be
unable to connect to Cloudera Manager and will not start.

1. Open the Cloudera Manager Admin Console and navigate to the Cloudera Management Service.
2. Click Configuration.
3. In the Search field, type SSL to show the SSL properties (found under the Service-Wide > Security category).
4. Edit the following SSL properties according to your cluster configuration.

DescriptionProperty

Path to the client truststore file used in HTTPS communication. The contents of
this truststore can be modified without restarting the Cloudera Management
Service roles. By default, changes to its contents are picked upwithin ten seconds.

SSL Client Truststore File
Location

Password for the client truststore file.SSL Client Truststore File
Password

5. Click Save Changes.

Cloudera Security | 159

Encryption

6. Restart the ClouderaManagement Service. Formore information, see HTTPS Communication in ClouderaManager
on page 167.

Step 4: Restart the Cloudera Manager Server

Restart the Cloudera Manager Server by running service cloudera-scm-server restart from the Cloudera
Manager host command prompt.

You should now be able to connect to the Cloudera Manager Admin Console using an HTTPS browser connection. If a
private CA certificate or self-signed certificate is used, you must establish trust in the browser for your certificate.
Certificates issued by public commercial CAs should be trusted by your browser and other Java or OpenSSL-based
services.

For more information on establishing trust for certificates, see SSL Certificates Overview on page 149 or the relevant
JDK documentation.

Level 1: Configuring TLS Encryption for Cloudera Manager Agents

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Prerequisite:

You must have completed the steps described at Configuring TLS Encryption Only for Cloudera Manager.

Step 1: Enable Agent Connections to Cloudera Manager to use TLS

In this step, you enable TLS properties for Cloudera Manager Agents and their connections to the Cloudera Manager
Server. To configure agents to connect to Cloudera Manager over TLS, log into the Cloudera Manager Admin Console.

Note: If you are using a private certificate authority to sign certificate requests, see information on
establishing trust for this CA in Configuring TLS Encryption Only for Cloudera Manager on page 156.

1. Log into the Cloudera Manager Admin Console.
2. Select Administration > Settings.
3. Click the Security category.
4. Configure the following TLS settings in the Cloudera Manager Server:

DescriptionProperty

Enable TLS encryption for Agents connecting to the
Server. The Agents will still connect to the defined agent

Use TLS Encryption for Agents

listener port for ClouderaManager (default: 7182). This
property negotiates TLS connections to the service at
this point.

5. Click Save Changes.

Step 2: Enable and Configure TLS on the Agent Hosts

To enable and configure TLS, you must specify values for the TLS properties in the
/etc/cloudera-scm-agent/config.ini configuration file on all Agent hosts.

1. On theAgent host, open the/etc/cloudera-scm-agent/config.ini configuration file and edit the following
property:

DescriptionProperty

Specify 1 to enable TLS on the Agent, or 0 (zero) to disable TLS.use_tls

160 | Cloudera Security

Encryption

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html#X509TrustManager

2. Repeat this step on every Agent host. You can copy the Agent’s config.ini file across all hosts since this file by
default does not have host specific information within it. If youmodify properties such as listening_hostname
or listening_ip address in config.ini, you must configure the file individually for each host.

Step 3: Restart the Cloudera Manager Server

Restart the Cloudera Manager Server with the following command to activate the TLS configuration settings.

$ sudo service cloudera-scm-server restart

Step 4: Restart the Cloudera Manager Agents

On every Agent host, restart the Agent:

$ sudo service cloudera-scm-agent restart

Step 5: Verify that the Server and Agents are Communicating

In the Cloudera Manager Admin Console, open the Hosts page. If the Agents heartbeat successfully, TLS encryption is
working properly.

Level 2: Configuring TLS Verification of Cloudera Manager Server by the Agents

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This level of TLS security requires that you provide a server certificate that is signed, either directly or through a chain,
by a trusted root certificate authority (CA), to the Cloudera Manager Server. You must also provide the certificate of
the CA that signed the Server certificate. For test environments, you can use a self-signed server certificate.

Note: If the ClouderaManager Server certificate or the associated CA certificate is missing or expired,
Agents will not communicate with the Cloudera Manager Server.

Step 1: Configure TLS encryption

If you have not done so, configure TLS encryption to use this level of security. For instructions, see Configuring TLS
Encryption Only for Cloudera Manager on page 156 and Level 1: Configuring TLS Encryption for Cloudera Manager
Agents on page 160.

Step 2: Copy the CA Certificate or Cloudera Manager Server's .pem file to the Agents

1. Agents can verify the Cloudera Manager Server using either the Server certificate or the associated root CA
certificate. Pick any one of the following approaches to proceed:

• Copy the Cloudera Manager Server .pem file to the Agent host

1. For verification by the Agent, copy the Server .pem file (for example, cmhost.pem) to any directory
on the Agent host. In the examples, this path is /opt/cloudera/security/x509/cmhost.pem.

2. On the Agent host, open the /etc/cloudera-scm-agent/config.ini configuration file and edit
the following properties.

DescriptionProperty

Point this property to the copied .pem file on the Agent host; in this example,
/opt/cloudera/security/x509/cmhost-cert.pem.

verify_cert_file

Set this property to 1.use_tls

OR

• Copy the CA certificates to the Agent host

Cloudera Security | 161

Encryption

1. If you have a CA-signed certificate, copy the root CA or intermediate CA certificates in PEM format to the
Agent host. In the example, the CA certificates are copied to /opt/cloudera/security/CAcerts/*.

2. On the Agent host, open the /etc/cloudera-scm-agent/config.ini configuration file and edit
the following properties.

DescriptionProperty

Point this property to the directory on the Agent host with the copied CA
certificates; in the example, /opt/cloudera/security/CAcerts/.

verify_cert_dir

Set this property to 1.use_tls

Note: When configuring the verify_cert_dir property, the openss-perl package
is required to provide the c_rehash command that is necessary to generate the Subject
Name hash values that need to be linked to the certificates to make them usable. See
the comments in the config.ini file for more information.

The following example is for RHEL-compatible systems. The package name for
Debian-based systems is the same.Afterthe package is installed, go to the CA certificate
path and run the c_rehash command. This generates symbolic links to the certificate
in that location, with "." being the current path, as follows:

$ yum -y install openssl-perl
$ cd /opt/cloudera/security/CAcerts/
$ c_rehash .
 Doing .
 w2k8-1-root.pem => 4507f087.0
 w2k8-2-intermediary.pem => 082ba6df.0
$ls -l
total 8.0K
lrwxrwxrwx 1 root root 23 Oct 6 22:44 082ba6df.0 ->
w2k8-2-intermediary.pem
lrwxrwxrwx 1 root root 15 Oct 6 22:44 4507f087.0 ->
w2k8-1-root.pem
-rw-r----- 1 root root 2.1K Oct 6 17:23 w2k8-1-root.pem
-rw-r----- 1 root root 2.8K Oct 6 17:23
w2k8-2-intermediary.pem

2. Based on the approach you select in step 1, repeat the steps on every Agent host. You can copy the Agent’s
config.ini file across all hosts. However, if you modify properties such as listening_hostname or
listening_ip address in config.ini, you must configure config.ini for each host individually.

Step 3: Restart the Cloudera Manager Agents

On every Agent host, restart the Agent:

$ sudo service cloudera-scm-agent restart

Step 4: Restart the Cloudera Management Services

To restart the Cloudera Management Service from the Cloudera Manager Admin Console:

1. On the Home page, click

to the right of the service name and select Restart.
2. Click Start on the next screen to confirm. When you see a Finished status, the service has restarted.

162 | Cloudera Security

Encryption

Step 5: Verify that the Server and Agents are communicating

In the Cloudera Manager Admin Console, open the Hosts page. If the Agents heartbeat successfully, the Server and
Agents are communicating. If not, check theAgent log/var/log/cloudera-scm-agent/cloudera-scm-agent.log,
which shows errors if the connection fails.

Level 3: Configuring TLS Authentication of Agents to the Cloudera Manager Server

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This is the highest level of TLS security supported for Cloudera Manager Server-Agent communications, and requires
you to create private keys and Certificate Signing Requests (CSR) for each cluster node. A Certificate Authority (CA)
can then sign the CSR, thus providing a server certificate for each host. Agentswill then need to authenticate themselves
to Cloudera Manager using this server certificate.

This can be completed one of two ways, depending on the approach you choose to configuring TLS on your cluster.

• Approach A - Use OpenSSL to create private keys and request CA-signed certificates for every Agent on your
cluster. Approach A is faster if you only need to enable TLS for Cloudera Manager Server-Agent communication.

• Approach B - Create a Java truststore file that contains the Agent and CA certificates, and authenticate Agents
against this truststore file. If you plan to enable TLS communication for all CDH services cluster-wide, including
Java-based components, consider using Approach B.

Steps for creating self-signed certificates are not included. Self-signed certificates are not recommended for production
environments.

Note: Wildcard domain certificates and certificates using the SubjectAlternativeName extension are
not supported at this time.

Step 1: Configure TLS encryption

If you have not already done so, you must configure TLS encryption to use this third level of security. For instructions,
see Configuring TLS Encryption Only for Cloudera Manager on page 156 and Configuring TLS Encryption for Cloudera
Manager.

Step 2: Configure TLS Verification of Server Trust by Agents

If you have not already done so, you must configure TLS Verification of Server Trust by Agents. For instructions, see
Configuring TLS Authentication of Server to Agents.

Important:

Steps 3, 4, and 5 can be completed one of two ways, depending on the approach you choose to
configuring TLS on your cluster.

• Approach A - Use OpenSSL to create private keys and request CA-signed certificates for every
Agent on your cluster. Approach A is faster if you only need to enable TLS for Cloudera Manager
Server-Agent communication.

• Approach B - Create a Java truststore file that contains the Agent and CA certificates, and
authenticate Agents against this truststore file. If you plan to enable TLS communication for all
CDH services cluster-wide, including Java-based components, consider using Approach B.

Irrespective of the path you select, it will still be possible to reuse OpenSSL private keys and certificates
by exporting to a Java keystore and vice versa. For instructions, see Private Key and Certificate Reuse
Across Java Keystores and OpenSSL on page 154.

After choosing an approach, follow steps 3-5 for all hosts in your cluster.

Cloudera Security | 163

Encryption

Approach A: Using OpenSSL to Create Private Keys and Request Agent Certificates

If the Cloudera Manager Server is running Management Services or CDH components (and therefore, has a Cloudera
Manager Agent installed), you do not need to re-create a private key for the Server host. Follow the steps in Private
Key and Certificate Reuse Across Java Keystores and OpenSSL on page 154 to reuse the host certificate. Follow steps
3-5 for all remaining cluster hosts.

Approach A Step 3: Generate the private key and certificate signing request for the Agent using OpenSSL.

Run the following command on the Agent, replacing hostnamewith your actual hostname. The -subj command line
option allows you to provide the certificate subject as a single line.If you do not specify the certificate subject as an
argument, you are prompted for the values of the certificate subject information. In that case, use the host FQDN that
Agents will use to connect from in the subject First and Last name (CN) question prompt. Country (C) requires a 2
letter country code. The "/" is replaced with "," in the actual CSR and private key file.

$ openssl req -subj
'/CN=hostname.sec.cloudera.com/OU=Support/O=Cloudera/L=Denver/ST=Colorado/C=US' \
-out /opt/cloudera/security/x509/hostname.csr -new -newkey rsa:2048 \
-keyout /opt/cloudera/security/x509/hostname.key -passout pass:password

password provides a password to protect the private key file. Keep the password in a safe place; you must provide a
key password file to the Agent to complete configuration.

Approach A Step 4: Submit the certificate signing request to your CA and distribute the issued certificates.

The CSR file created (/opt/cloudera/security/x509/hostname.csr) is collected fromcluster hosts for submission
to the certificate authority (CA) for signing. In the example paths, you copy the issued CA-signed certificate file to
/opt/cloudera/security/x509 on each cluster host. For easy management and tracking of files, name the files
in the hostname.pem format, replacing hostname with the actual hostname.

Note: Certificate file extensions of .cer, .crt, and .pem are interchangeable. Rename the files so they
have a .pem extension, and can therefore be used by the Agent and Hue (or any other Python-based
component).

The CSR can be examined with the following command:

$ openssl req -text -noout -verify -in /opt/cloudera/security/x509/hostname.csr

The issued certificate file can be examined with the following command:

$ openssl x509 -in /opt/cloudera/security/x509/hostname.pem -text -noout

Approach A Step 5 (Optional): Import the OpenSSL private key and certificate into the per-host Java keystore.

Follow the steps in Private Key and Certificate Reuse Across Java Keystores and OpenSSL on page 154 for this step.

Important: If you are using Approach A, skip to step 6 to continue.

Approach B: Creating a Java Keystore and Importing Signed Agent Certificates into it

If the Cloudera Manager Server is running Management Services or CDH components (and therefore, has a Cloudera
Manager Agent installed), you do not need to re-create a private key for the Server host. Follow the steps in Private
Key and Certificate Reuse Across Java Keystores and OpenSSL on page 154 to reuse the host certificate. Follow steps
3-5 for all remaining cluster hosts.

164 | Cloudera Security

Encryption

Approach B - Step 3: Create a Java Keystore and private key for a host

Create a Java Keystore and private key files for an Agent host as follows:

$ keytool -genkeypair -alias hostname -keyalg RSA -keystore \
/opt/cloudera/security/jks/hostname-keystore.jks -keysize 2048 -dname \
"CN=cmhost.sec.cloudera.com,OU=Support,O=Cloudera,L=Denver,ST=Colorado,C=US" \
-storepass password -keypass password

password provides a password to protect the private key file. Note the password in a safe place; you must provide a
key password file to the Agent to complete configuration.

Approach B - Step 4: Generate a certificate signing request and install the issued certificate into the Java Keystore

1. Generate a certificate signing request (CSR) and submit it to your CA for a signed certificate.

$ keytool -certreq -alias hostname \
-keystore /opt/cloudera/security/jks/hostname-keystore.jks \
-file /opt/cloudera/security/x509/hostname.csr \
-storepass password -keypass password

2. If you are using a Private CA, first import the root CA certificate followed by the intermediary/subordinate CA
certificates into the Java keystore created previously.

 $ keytool -importcert -trustcacerts -alias RootCA -keystore \
/opt/cloudera/security/jks/hostname-keystore.jks -file \
/opt/cloudera/security/CAcerts/RootCA.cer -storepass password

Repeat the following for all subordinate/intermediary CA certificates presented.

$ keytool -importcert -trustcacerts -alias SubordinateCA -keystore \
/opt/cloudera/security/jks/hostname-keystore.jks -file \
/opt/cloudera/security/CAcerts/SubordinateCA.cer -storepass password

3. Copy the issued signed certificate file provided by your CA to the location from where it will be imported by the
Cloudera Manager Agent and possibly Hue.

$ cp certificate-file.cer /opt/cloudera/security/x509/hostname.pem

4. Import the issued certificate file into the previously created Java keystore (.jks) with the following command:

$ keytool -import -trustcacerts -alias <hostname> \
-keystore /opt/cloudera/security/jks/<hostname>-keystore.jks \
-file /opt/cloudera/security/x509/<hostname>.pem -storepass password

Approach B - Step 5: Export the private key from the Java keystore and convert it with OpenSSL for reuse by Agent

Follow the steps in Private Key and Certificate Reuse Across Java Keystores and OpenSSL on page 154.

Step 6: Create a File that Contains the Password for the Key

The Agent reads the password from a text file, not from the command line. The password file allows you to use file
permissions to protect the password. For our example the password file was created at,
/etc/cloudera-scm-agent/agentkey.pw.

Step 7: Configure the Agent with its Private Key and Certificate

1. On theAgent host, open the/etc/cloudera-scm-agent/config.ini configuration file and edit the following
properties:

Cloudera Security | 165

Encryption

DescriptionProperty

Name of the client key file.client_key_file

Name of the client key password file, agentkey.pw.client_keypw_file

Name of the client certificate file.client_cert_file

2. Repeat these steps on every Agent host.

Step 8: Verify that steps 3-7 Were Completed for every Agent Host in Your Cluster

Important: EachAgent's private key and certificate that you import into the ClouderaManager Server's
truststore must be unique.

Step 9: Create a Truststore by Importing CA and Agent Certificates

Perform this step on the Cloudera Manager server, where the new truststore is used to authenticate Agents.

Create a new truststore file (/opt/cloudera/security/jks/truststore.jks) and import the CA root and
intermediary/subordinate certificates to this truststore. The new truststore functions like a keystore, containing only
certificates and no private key.

Note: Alternatively, you can use the existing Cloudera Manager keystore, containing the CA
intermediate and root certificates, as the truststore. However, Cloudera recommends separating the
two files, because the new truststore can be copied to and used by all hosts in the cluster when
enabling SSL/TLS for CDH services.

1. Create a trusted keystore using the keytool command and import the root CA certificate to this truststore.

$ keytool -importcert -noprompt -keystore /opt/cloudera/security/jks/truststore.jks \
-alias root_CA -file root.crt -storepass password

2. Import any remaining intermediary/subordinate CA certificates into the truststore.

$ keytool -importcert -noprompt -keystore /opt/cloudera/security/jks/truststore.jks
-alias int_CA -file intermediate-CA.pem -storepass password

3. Collect all hostname.pem certificate files from all cluster hosts in a location that Cloudera Manager Server can
access. You can now import all the host certificates (hostname.pem) into the new truststore.

$ keytool -keystore /opt/cloudera/security/jks/truststore.jks \
-importcert -alias hostname -file hostname.pem -storepass password

Consider creating a for loop on a list of hostnames to speed up this process.

$ for HOST in 'cat hostlist.txt'; do keytool -keystore
/opt/cloudera/security/jks/truststore.jks \
-importcert -alias $HOST -file $HOST.pem -storepass password

Step 10: Enable Agent Authentication and Configure the Cloudera Manager Server to Use the New Truststore

1. Log into the Cloudera Manager Admin Console.
2. Select Administration > Settings.
3. Click the Security category.
4. Configure the following TLS settings:

166 | Cloudera Security

Encryption

DescriptionSetting

Select this option to enable TLS authentication of Agents to the Server.UseTLSAuthenticationofAgents
to Server

Specify the full filesystem path to the truststore located on the Cloudera
Manager Server host; in the example,
/opt/cloudera/security/jks/truststore.jks

Path to Truststore

Specify the password for the truststore.Truststore Password

5. Click Save Changes to save the settings.

Step 12: Restart the Cloudera Manager Server

$ sudo service cloudera-scm-server restart

Step 13: Restart the Cloudera Manager Agents

On every Agent host, restart the Agent:

$ sudo service cloudera-scm-agent restart

Step 14: Verify that the Server and Agents Are Communicating

In ClouderaManager Admin Console, open the Hosts page. If the Agents heartbeat successfully, the Server and Agents
are communicating. If they are not, you may see an error in the Server, such as a null CA chain error. This implies
that either the truststore does not contain the Agent certificate, or the Agent is not presenting the certificate. Check
all of your settings, and check the Server log to verify that TLS and Agent validation have been enabled correctly.

HTTPS Communication in Cloudera Manager

Both the Cloudera Manager Agent and the roles that make up the Cloudera Management Service use HTTPS to
communicate with Cloudera Manager and CDH services. This topic aims to explain how the various aspects of HTTPS
communication are handled by the Cloudera Manager Agents and the Cloudera Management Service roles.

Cloudera Manager Agents use HTTPS to communicate with HBase, HDFS,Impala, MapReduce, and YARN to collect
monitoring data.

Cloudera Manager Agent

Configuring TLS communication between the Cloudera Manager Server and Agents is outlined in Configuring TLS
Security for ClouderaManager on page 155. You can configure the certificates available for server certificate verification
using the verify_cert_dir parameter in the Agent config.ini file. See the comments in the config.ini file
for a detailed explanation of this property. You can also use the existing value for the verify_cert_file parameter.

When the Cloudera Manager Agent communicates with CDH services using HTTPS:

• If verify_cert_file or verify_cert_dir are configured in the Agent config.ini, the Agent uses these
settings to verify the server certificates. If these settings are not configured, no certificate verification occurs. If
certificate verification is performed for the ClouderaManager Server, it must also be performed for CDH daemons.

• An Agent never participates in mutual TLS authentication with any CDH service. Instead, each service has its own
authentication scheme. Most services use Kerberos authentication, but Impala uses HTTP digest.

User Impact

This depends on how you use certificates.

• If you do not need certificate verification, do not configure verify_cert_file or verify_cert_dir. However,
this leaves you vulnerable to man-in-the-middle attacks.

Cloudera Security | 167

Encryption

• If you are using a CA-signed certificate, configure the Agent accordingly. Adding new services or enabling SSL/TLS
on a service requires no changes to the Agent configuration because the CA verifies the certificates used by any
new servers brought online.

• If you are using self-signed certificates, the certificate for each new service that uses HTTPS must be available to
the Agent. Modify the file pointed to by verify_cert_file (Agent restart required), or the directory pointed
to by verify_cert_dir, to contain the new certificate.

Cloudera Management Services

Some Cloudera Management Service roles act as HTTPS clients when communicating with Cloudera Manager entities
and CDH services.

You can verify server certificates in two ways:

• Configure a truststore through Cloudera Manager to perform certificate verification on the certificates of the
servers with which it communicates. If this truststore is configured, it is used to verify server certificates.

OR

• If no truststore is configured through Cloudera Manager, the default Java truststore (cacerts) is used to verify
certificates.

The following table shows Cloudera Management Service roles that act as HTTPS clients as Cloudera Manager entities,
and CDH services that communicate with them as HTTPS servers.This table does not depict the entirety of the roles'
communication, only communications over HTTPS.

Table 5: HTTPS Communication Between Cloudera Management Service Roles and Cloudera Manager Entities

Communicating HTTPS ServersRoles as HTTPS Clients

Activity Monitor • Cloudera Manager Server
• JobTracker Web Server
• Oozie server (may involve the load balancer in an HA configuration)

Host Monitor • Cloudera Manager Server

Service Monitor • Cloudera Manager Server
• NameNode(s) Web Server(s)
• Impala StateStore Web Server
• YARN ResourceManager(s) Web Server(s)
• YARN JobHistory Web Server
• Oozie server (directly, not through the load balancer)

Event Server • Cloudera Manager Server

Reports Manager • Cloudera Manager Server
• NameNode(s) Web Servers

Note: The Cloudera Navigator roles also act as HTTPS clients, but are outside the scope of this
document.

The Cloudera Management Service roles communicate using HTTPS as follows:

• If the Cloudera Management Service SSL Client Truststore File Location parameter is configured, the roles use
this truststore to verify server certificates. If this parameter is not set, the default Java truststore is used to verify
certificates. Without using safety valves, you cannot verify certificates for some Cloudera Management Service
roles but not for others. Nor can you verify certificates for only a subset of the HTTPS communication by a role.

168 | Cloudera Security

Encryption

• The Cloudera Management Service roles never participate in mutual TLS authentication with any CDH service or
with the Cloudera Manager Server. Instead, each service has its own authentication scheme: Kerberos for most
services, HTTP digest for Impala. For the Cloudera Manager Server, this authentication is session-based.

User Impact

This depends on how you use certificates:

• If you use a CA-signed certificate, configure the Cloudera Management Service SSL Client Truststore File Location
parameter to point to a truststore that contains the CA certificate. Adding a new service or enabling TLS on an
existing service requires no changes to the ClouderaManagement Service configuration because the CA certificate
verifies the certificates used by any new servers brought online. Alternatively, this CA-signed certificate can be
added to the default Java truststore.

• If you are using self-signed certificates, the certificate for each new service that uses HTTPS must be available to
the Agent.. You must modify the truststore pointed to by the Cloudera Management Service SSL Client Truststore
File Location parameter. Truststore changes are required on each host on which a Cloudera Management Service
daemon is running. Changes to the truststore do not require a role restart, and should be picked up within 10
seconds by default.

If the Cloudera Management Service SSL Client Truststore File Location is not used, the certificate must be made
available in the default Java truststore. The Cloudera Management Service role must be restarted for this change
to take effect.

Troubleshooting SSL/TLS Connectivity

The openssl tool can be run from the host that is running the Cloudera Manager Agent or client service that should
be inspected for connectivity issues. You should also test whether the certificate in use by the host is recognized by a
trusted CA during the TLS/SSL negotiation.

Use the following command to inspect the connection.

$ openssl s_client -connect [host.fqdn.name]:[port]

For example:

$ openssl s_client -connect test1.sec.cloudera.com:7183

A return code 0 means openssl was able to establish trust of the server through its library of trusted public CAs. If
the certificate was self-signed or provided by a private CA it might be necessary to add the private CA or self-signed
certificate to the truststore using the openssl command. Adding the path to the root CA, -CAfile
</path/to/root-ca.pem>, should allow openssl to verify your self-signed or private CA-signed certificate as
follows:

$ openssl s_client -connect test1.sec.cloudera.com:7183 -CAfile \
/opt/cloudera/security/CAcerts/RootCA.pem

Note that providing only the Root CA certificate is necessary to eatablish trust for this test. The result from the command
is successful when you see the return code 0 as follows:

...
 Verify return code: 0 (ok)

By default, the Cloudera Manager Server writes logs to the
/etc/cloudera-scm-server/cloudera-scm-server.log file on startup. Successful start of the server process
with the certificate will show logs similar to the following:

2014-10-06 21:33:47,515 INFO WebServerImpl:org.mortbay.log: jetty-6.1.26.cloudera.2
2014-10-06 21:33:47,572 INFO WebServerImpl:org.mortbay.log: Started
SslSelectChannelConnector@0.0.0.0:7183

Cloudera Security | 169

Encryption

2014-10-06 21:33:47,573 INFO WebServerImpl:org.mortbay.log: Started
SelectChannelConnector@0.0.0.0:7180
2014-10-06 21:33:47,573 INFO WebServerImpl:com.cloudera.server.cmf.WebServerImpl: Started
 Jetty server.

Configuring SSL for Cloudera Navigator

Important: The following instructions assume you have a Java keystore set up on the Navigator
Metadata Server host.

1. Open the Cloudera Manager Admin Console and navigate to the Cloudera Management Service.
2. Click Configuration.
3. Go to the Navigator Metadata Server Default Group > Advanced category, and add the following strings to the

Navigator Metadata Server Advanced Configuration Snippet (Safety Valve) for cloudera-navigator.properties
property.

nav.http.enable_ssl=true
nav.ssl.keyStore=<path to jks keystore with signed server certificate installed>
nav.ssl.keyStorePassword=<password>

4. Click Save Changes.
5. Restart the Navigator Metadata server.

Note: Once you have enabled SSL, the Quick Links in Cloudera Manager pointing to the Cloudera
Navigator UI will not work as they use HTTP, not HTTPS.

Configuring SSL/TLS Encryption for CDH Services
This section describes how to configure encryption for CDH services (HDFS, MapReduce, YARN, HBase, Hive, Impala,
Hue and Oozie) focusing on SSL.

Prerequisites

• Cloudera recommends securing a cluster using Kerberos authentication before enabling encryption such as SSL
on a cluster. If you enable SSL for a cluster that does not already have Kerberos authentication configured, a
warning will be displayed.

• The following sections assume that you have created all the certificates required for SSL communication. If not,
for information on how to do this, see Creating Certificates.

• The certificates and keys to be deployed in your cluster should be organized into the appropriate set of keystores
and truststores. For more information, see Creating Java Keystores and Truststores on page 151.

Hadoop Services as SSL Servers and Clients

Hadoop services differ in their use of TLS/SSL as follows:

• HDFS, MapReduce, and YARN daemons act as both TLS/SSL servers and clients.
• HBase daemons act as TLS/SSL servers only.
• Oozie daemons act as TLS/SSL servers only.
• Hue acts as an TLS/SSL client to all of the above.

Daemons that act as TLS/SSL servers load the keystores when starting up. When a client connects to an TLS/SSL server
daemon, the server transmits the certificate loaded at startup time to the client, which then uses its truststore to
validate the server’s certificate.

170 | Cloudera Security

Encryption

Configuring SSL for HDFS, YARN and MapReduce

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Before You Begin

• Before enabling SSL, keystores containing certificates bound to the appropriate domain names will need to be
accessible on all hosts on which at least one HDFS, MapReduce, or YARN daemon role is running.

• Since HDFS, MapReduce, and YARN daemons act as SSL clients as well as SSL servers, they must have access to
truststores. In many cases, the most practical approach is to deploy truststores to all hosts in the cluster, as it may
not be desirable to determine in advance the set of hosts on which clients will run.

• Keystores for HDFS, MapReduce and YARN must be owned by the hadoop group, and have permissions 0440
(that is, readable by owner and group). Truststores must have permissions 0444 (that is, readable by all)

• Cloudera Manager supports SSL configuration for HDFS, MapReduce and YARN at the service level. For each of
these services, you must specify absolute paths to the keystore and truststore files. These settings apply to all
hosts on which daemon roles of the service in question run. Therefore, the paths you choose must be valid on all
hosts.

An implication of this is that the keystore file names for a given service must be the same on all hosts. If, for
example, you have obtained separate certificates for HDFS daemons on hosts node1.example.com and
node2.example.com, you might have chosen to store these certificates in files called hdfs-node1.keystore
and hdfs-node2.keystore (respectively). When deploying these keystores, youmust give them both the same
name on the target host — for example, hdfs.keystore.

• Multiple daemons running on a host can share a certificate. For example, in case there is a DataNode and an Oozie
server running on the same host, they can use the same certificate.

Configuring SSL for HDFS

1. Navigate to the HDFS service and click Configuration.
2. In the Search field, type SSL to show the SSL properties (found under the Service-Wide > Security category).
3. Edit the following properties according to your cluster configuration:

DescriptionProperty

Path to the keystore file containing the server certificate and private key.SSL Server Keystore File
Location

Password for the server keystore file.SSL Server Keystore File
Password

Password that protects the private key contained in the server keystore.SSL Server Keystore Key
Password

4. If you are not using the default truststore, configure SSL client truststore properties:

Important: The HDFS properties below define a cluster-wide default truststore that can be
overridden by YARN andMapReduce (see the Configuring SSL for YARN andMapReduce section
below).

DescriptionProperty

Path to the client truststore file. This truststore contains certificates of trusted
servers, or of Certificate Authorities trusted to identify servers.

Cluster-WideDefault SSL Client
Truststore Location

Password for the client truststore file.Cluster-WideDefault SSL Client
Truststore Password

5. Cloudera recommends you enable Web UI authentication for the HDFS service.

Cloudera Security | 171

Encryption

Enter web consoles in the Search field to bring up the Enable Authentication for HTTP Web-Consoles property
(found under the Service-Wide>Security category). Check the property to enable web UI authentication.

Enables authentication for hadoopHTTPweb-consoles for all roles of this service.

Note: This is effective only if security is enabled for the HDFS
service.

Enable Authentication for
HTTP Web-Consoles

6. Click Save Changes.
7. Follow the procedure described in the following Configuring TLS/SSL for YARN and MapReduce section, at the

end of which you will be instructed to restart all the affected services (HDFS, MapReduce and YARN).

Configuring SSL for YARN and MapReduce

Perform the following steps to configure SSL for the YARN or MapReduce services:

1. Navigate to the YARN orMapReduce service and click Configuration.
2. In the Search field, type SSL to show the SSL properties (found under the Service-Wide > Security category).
3. Edit the following properties according to your cluster configuration:

DescriptionProperty

Path to the keystore file containing the server certificate and private key.SSL Server Keystore File
Location

Password for the server keystore file.SSL Server Keystore File
Password

Password that protects the private key contained in the server keystore.SSL Server Keystore Key
Password

4. Configure the following SSL client truststore properties for MRv1 or YARN only if you want to override the
cluster-wide defaults set by the HDFS properties configured above.

DescriptionProperty

Path to the client truststore file. This truststore contains certificates of trusted
servers, or of Certificate Authorities trusted to identify servers.

SSL Client Truststore File
Location

Password for the client truststore file.SSL Client Truststore File
Password

5. Cloudera recommends you enable Web UI authentication for the service in question.

Enter web consoles in the Search field to bring up the Enable Authentication for HTTP Web-Consoles property
(found under the Service-Wide>Security category). Check the property to enable web UI authentication.

Enables authentication for hadoopHTTPweb-consoles for all roles of this service.

Note: This is effective only if security is enabled for the HDFS
service.

Enable Authentication for
HTTP Web-Consoles

6. Click Save Changes.
7. Navigate to the HDFS service and in the Search field, type Hadoop SSL Enabled. Click the value for the Hadoop

SSL Enabled property and select the checkbox to enable SSL communication for HDFS, MapReduce, and YARN.

172 | Cloudera Security

Encryption

DescriptionProperty

Enable SSL encryption for HDFS, MapReduce, and YARN web UIs, as well as
encrypted shuffle for MapReduce and YARN.

Hadoop SSL Enabled

8. Click Save Changes to commit the changes.
9. Restart all affected services (HDFS, MapReduce and YARN), as well as their dependent services.

Configuring SSL for HBase

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Before You Begin

• Before enabling SSL, ensure that keystores containing certificates bound to the appropriate domain names will
need to be accessible on all hosts on which at least one HBase daemon role is running.

• Keystores for HBase must be owned by the hbase group, and have permissions 0440 (that is, readable by owner
and group).

• You must specify absolute paths to the keystore and truststore files. These settings apply to all hosts on which
daemon roles of the HBase service run. Therefore, the paths you choose must be valid on all hosts.

• ClouderaManager supports the SSL configuration for HBase at the service level. Ensure you specify absolute paths
to the keystore and truststore files. These settings apply to all hosts on which daemon roles of the service in
question run. Therefore, the paths you choose must be valid on all hosts.

An implication of this is that the keystore file names for a given service must be the same on all hosts. If, for
example, you have obtained separate certificates for HBase daemons on hosts node1.example.com and
node2.example.com, youmight have chosen to store these certificates in files called hbase-node1.keystore
and hbase-node2.keystore (respectively). When deploying these keystores, you must give them both the
same name on the target host — for example, hbase.keystore.

Procedure

The steps for configuring and enabling SSL for HBase are similar to those for HDFS, YARN and MapReduce:

1. Navigate to the HBase service and click Configuration.
2. In the Search field, type SSL to show the HBase SSL properties (found under the Service-Wide > Security category).
3. Edit the following SSL properties according to your cluster configuration:

Table 6: HBase SSL Properties

DescriptionProperty

Path to the keystore file containing the server certificate and private key.SSL Server Keystore File
Location

Password for the server keystore file.SSL Server Keystore File
Password

Password that protects the private key contained in the server keystore.SSL Server Keystore Key
Password

4. Check theWeb UI SSL Encryption Enabled property.

Enable SSL encryption for the HBase Master, Region Server, Thrift Server, and
REST Server web UIs.

WebUI SSL Encryption Enabled

5. Click Save Changes.
6. Restart the HBase service.

Cloudera Security | 173

Encryption

Configuring SSL for Oozie

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Before You Begin

• Keystores for Oozie must be readable by the oozie user. This could be a copy of the Hadoop services' keystore
with permissions 0440 and owned by the oozie group.

• Truststores must have permissions 0444 (that is, readable by all).
• Specify absolute paths to the keystore and truststore files. These settings apply to all hosts on which daemon

roles of the Oozie service run. Therefore, the paths you choose must be valid on all hosts.
• In case there is a DataNode and an Oozie server running on the same host, they can use the same certificate.

For more information on obtaining signed certificates and creating keystores, see SSL Certificates Overview on page
149. You can also view the upstream documentation located here.

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.3.x . If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

Using Cloudera Manager

The steps for configuring and enabling Hadoop SSL for Oozie are as follows:

1. Open the Cloudera Manager Admin Console and navigate to the Oozie service.
2. Click Configuration.
3. In the Search field, type SSL to show the Oozie SSL properties (found under the Service-Wide > Security category).
4. Edit the following SSL properties according to your cluster configuration.

Table 7: Oozie SSL Properties

DescriptionProperty

Check this field to enable SSL for Oozie.Use SSL

Location of the keystore file on the local file system.Oozie SSL Keystore File

Password for the keystore.Oozie SSL Keystore Password

5. Click Save Changes.
6. Restart the Oozie service.

Using the Command Line

To configure the Oozie server to use SSL:

1. Stop Oozie by running

sudo /sbin/service oozie stop

2. To enable SSL, set the MapReduce version that the Oozie server should work with using the alternatives
command.

Note: The alternatives command is only available on RHEL systems. For SLES, Ubuntu and
Debian systems, the command is update-alternatives.

174 | Cloudera Security

Encryption

https://archive.cloudera.com/cdh5/cdh/5/oozie/AG_Install.html#Setting_Up_Oozie_with_HTTPS_SSL
http://www.cloudera.com/content/support/en/documentation.html

For RHEL systems, to use YARN with SSL:

alternatives --set oozie-tomcat-conf /etc/oozie/tomcat-conf.https

For RHEL systems, to use MapReduce (MRv1) with SSL:

alternatives --set oozie-tomcat-conf /etc/oozie/tomcat-conf.https.mr1

Important:

The OOZIE_HTTPS_KEYSTORE_PASS variable must be the same as the password used when
creating the keystore file. If you used a password other than password, you'll have to change
the value of the OOZIE_HTTPS_KEYSTORE_PASS variable in this file.

3. Start Oozie by running

sudo /sbin/service oozie start

Connect to the Oozie Web UI using SSL (HTTPS)

Use https://oozie.server.hostname:11443/oozie though most browsers should automatically redirect you
if you use http://oozie.server.hostname:11000/oozie.

Additional Considerations when Configuring SSL for Oozie HA

Configure the load balancer to perform SSL pass-through. This will allow clients talking to Oozie to use the SSL certificate
provided by the Oozie servers (so the load balancer will not need one). Consult your load balancer's documentation
on how to configure this. Make sure to point the load balancer at the https://HOST:HTTPS_PORT addresses for
your Oozie servers. Clients can then connect to the load balancer at https://LOAD_BALANCER_HOST:PORT.

Configuring Encrypted Communication Between Hive and Client Drivers

This topic describes how to set up encrypted communication between HiveServer2 and its clients. Encrypting Hive
communication depends on whether you are using Kerberos authentication for communications between HiveServer2
and JDBC/ODBC client drivers.

With Kerberos Enabled

With Kerberos authentication enabled, traffic between theHive JDBC orODBC drivers andHiveServer2 can be encrypted
using SASL-QOP which allows you to preserve both data integrity (using checksums to validate message integrity) and
confidentiality (by encryptingmessages). For instructions, see Configuring Encrypted Client/Server Communication for
Kerberos-enabled HiveServer2 Connections on page 175.

Without Kerberos Enabled

If you are using any alternate means of authentication, such as LDAP, between HiveServer2 and its clients, you can
configure Secure Socket Layer (SSL) communication between them. For instructions, see Configuring Encrypted
Client/Server Communication for non-Kerberos HiveServer2 Connections on page 176. For more information on
configuring SSL truststores and keystores, see SSL Certificates Overview on page 149.

Configuring Encrypted Client/Server Communication for Kerberos-enabled HiveServer2 Connections

With Kerberos authentication enabled, traffic between theHive JDBC orODBC drivers andHiveServer2 can be encrypted
which allows you to preserve data integrity (using checksums to validate message integrity) and confidentiality (by

Cloudera Security | 175

Encryption

encrypting messages). This can be enabled by setting the hive.server2.thrift.sasl.qop property in
hive-site.xml. For example,

<property>
<name>hive.server2.thrift.sasl.qop</name>
<value>auth-conf</value>
<description>Sasl QOP value; one of 'auth', 'auth-int' and 'auth-conf'</description>
</property>

Valid settings for the value field are:

• auth: Authentication only (default)
• auth-int: Authentication with integrity protection
• auth-conf: Authentication with confidentiality protection

The parameter value that you specify above in the HiveServer2 configuration, shouldmatch that specified in the Beeline
client connection JDBC URL. For example:

!connect jdbc:hive2://ip-10-5-15-197.us-west-2.compute.internal:10000/default; \
principal=hive/_HOST@US-WEST-2.COMPUTE.INTERNAL;sasl.qop=auth-conf

Configuring Encrypted Client/Server Communication for non-Kerberos HiveServer2 Connections

You can use either Cloudera Manager or the command-line to enable SSL encryption for non-Kerberized client
connections to HiveServer2.

Using Cloudera Manager

The steps for configuring and enabling SSL for Hive are as follows:

1. Open the Cloudera Manager Admin Console and navigate to the Hive service.
2. Click Configuration.
3. In the Search field, type SSL to show the Hive SSL properties (found under the Service-Wide > Security category).
4. Edit the following SSL properties according to your cluster configuration.

Table 8: Hive SSL Properties

DescriptionProperty

Enable support for encrypted client-server communication using Secure Socket
Layer (SSL) for HiveServer2 connections. Not applicable for Kerberos-enabled
connections.

Enable SSL for HiveServer

Path to the SSL keystore.Keystore File Path

Password for the keystore.Keystore Password

5. Click Save Changes.
6. Restart the Hive service.

Using the Command Line

• To enable SSL, add the following configuration parameters to hive-site.xml :

<property>
 <name>hive.server2.use.SSL</name>
 <value>true</value>
 <description>enable/disable SSL </description>
</property>

<property>
 <name>hive.server2.keystore.path</name>
 <value>keystore-file-path</value>
 <description>path to keystore file</description>

176 | Cloudera Security

Encryption

</property>

<property>
 <name>hive.server2.keystore.password</name>
 <value>keystore-file-password</value>
 <description>keystore password</description>
</property>

• The keystoremust contain the server's certificate.

• The JDBC client must add the following properties in the connection URL when connecting to a HiveServer2 using
SSL:

;ssl=true[;sslTrustStore=<Trust-Store-Path>;trustStorePassword=<Trust-Store-password>]

• Make sure one of the following is true:

• Either: sslTrustStore points to the trust store file containing the server's certificate; for example:

jdbc:hive2://localhost:10000/default;ssl=true;\
sslTrustStore=/home/usr1/ssl/trust_store.jks;trustStorePassword=xyz

• or: the Trust Store arguments are set using the Java system properties javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword; for example:

java -Djavax.net.ssl.trustStore=/home/usr1/ssl/trust_store.jks
-Djavax.net.ssl.trustStorePassword=xyz \
 MyClass jdbc:hive2://localhost:10000/default;ssl=true

For more information on using self-signed certificates and the Trust Store, see the Oracle Java SE keytool page.

Configuring SSL for Hue

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Hue as an SSL Client

Hue acts as an SSL client when communicating with Oozie, HBase and core Hadoop services. This means it may have
to authenticate authenticate HDFS, MapReduce, and YARN daemons, as well as the HBase Thrift Server, and will need
their certificates (or the relevant CA certificate) in its truststore.

Deploying the Hue Truststore:

You can create the Hue truststore by consolidating certificates of all SSL-enabled servers (or a single CA certificate
chain) that Hue communicates with into one file. This will generally include certificates of all the HDFS, MapReduce
and YARN daemons, and other SSL-enabled services such as Oozie..

The Hue truststore must be in PEM format whereas other services use JKS format by default. Hence, to populate the
Hue truststore, you will need to extract the certificates from Hadoop's JKS keystores and convert them to PEM format.
The following example assumes that hadoop-server.keystore contains the server certificate identified by alias
foo-1.example.com and password example123.

$ keytool -exportcert -keystore hadoop-server.keystore -alias foo-1.example.com \
 -storepass example123 -file foo-1.cert
$ openssl x509 -inform der -in foo-1.cert > foo-1.pem

Once you've done this for each host in the cluster, you can concatenate the PEM files into one PEM file that can serve
as the Hue truststore.

cat foo-1.pem foo-2.pem ... > huetrust.pem

Cloudera Security | 177

Encryption

http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

Note: Ensure the final PEM truststore is deployed in a location that is accessible by the Hue service.

In Cloudera Manager, set REQUESTS_CA_BUNDLE to the path of the consolidated PEM file, huetrust.pem created
above. To do this:

1. Open the Cloudera Manager Admin Console and navigate to the Hue service.
2. Click Configuration.
3. In the Search field, typeHue Service Environment to show theHue Service Environment Advanced Configuration

Snippet (Safety Valve) property (found under the Service-Wide > Advanced category).
4. Click the Value column to enable editing, and add the REQUESTS_CA_BUNDLE property set to the path of the Hue

truststore in PEM format.
5. Click Save Changes.
6. Restart the Hue service.

Hue as an SSL Server

Hue expects certificates and keys to be stored in PEM format. When managing certificates and keys for such services,
using the openssl tool may be more convenient. To configure Hue to use HTTPS, you must generate a private key
and a self-signed SSL certificate that does not require a passphrase.

openssl genrsa 4096 > server.key
openssl req -new -x509 -nodes -sha1 -key server.key > server.cert

Note: You must configure your browser to "trust" this self-signed Hue server certificate.

Ensure secure session cookies for Hue have been enabled in hue.ini under [desktop]>[[session]].

[desktop]
 [[session]]
 secure=true

For more details on configuring Hue with SSL, see this blog post.

Enabling SSL for the Hue Server using the Command Line

If you are not using Cloudera Manager, update the following properties in hue.ini under [desktop].

[desktop]
 ssl_certificate=/path/to/server.cert
 ssl_private_key=/path/to/server.key

Enabling SSL for the Hue Server in Cloudera Manager

Perform the following steps in Cloudera Manager to enable SSL for the Hue web server.

1. Open the Cloudera Manager Admin Console and navigate to the Hue service.
2. Click Configuration.
3. In the Search field, type SSL to show the Hue SSL properties (found under theHue Server Default Group category).
4. Edit the following SSL properties according to your cluster configuration.

DescriptionProperty

Enable HTTPS for the Hue web server.Enable HTTPS

Path to the SSL certificate on the host running the Hue web server.Local Path to SSL Certificate

178 | Cloudera Security

Encryption

http://gethue.com/configure-hue-with-https-ssl/

DescriptionProperty

Path to the SSL private key on the host running the Hue web server. Hue only
supports a key without a passphrase.

Local Path to SSL Private Key

5. Click Save Changes.
6. Restart the Hue service.

Configuring SSL for Impala

Impala supports SSL network encryption, between Impala and client programs, and between the Impala-related
daemons running on different nodes in the cluster. This feature is important when you also use other features such
as Kerberos authentication or Sentry authorization, where credentials are being transmitted back and forth.

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.3.x . If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

Using Cloudera Manager

To configure Impala to listen for Beeswax and HiveServer2 requests on SSL-secured ports:

1. Open the Cloudera Manager Admin Console and navigate to the Impala service.
2. Click Configuration.
3. In the Search field, type SSL to show the Impala SSL properties (found under the Service-Wide > Security category).
4. If you are not using Kerberos, edit the following SSL properties according to your cluster configuration.

Table 9: Impala SSL Properties

DescriptionProperty

Enable support for encrypted client-server communication using Secure Socket
Layer (SSL) for Impala client services.

Enable SSL for Impala Client
Services

Local path to the SSL server certificate file.SSL Server Certificate

Local path to the SSL private key file.SSL Server Private Key

ClouderaManager 5.3 does not have the ability to configure SSL when Kerberos is enabled. Hence, if you are using
Kerberos, add the following properties to the Impala Command Line Argument Advanced Configuration Snippet
(Safety Valve) property (found under the Service-Wide > Advanced category):

--ssl_server_certificate=/etc/impala/<certificate>.pem
--ssl_private_key=/etc/impala/<private_key>.pem

5. Click Save Changes.
6. Restart the Impala service.

For information on configuring SSL communication with the impala-shell interpreter, see the section below on
Configuring SSL Communication for the Impala Shell.

Using the Command Line

To enable SSL for Impala network communication, add both of the following flags to the impalad startup options:

• --ssl_server_certificate: the full path to the server certificate, on the local filesystem.

Cloudera Security | 179

Encryption

http://www.cloudera.com/content/support/en/documentation.html

• --ssl_private_key: the full path to the server private key, on the local filesystem.

If either of these flags are set, both must be set. In that case, Impala starts listening for Beeswax and HiveServer2
requests on SSL-secured ports only. (The port numbers stay the same; see Ports Used by Impala for details.)

Configuring SSL Communication for the Impala Shell

Typically, a client programhas corresponding configuration properties in ClouderaManager to verify that it is connecting
to the right server. For example, with SSL enabled for Impala, you use the following options when starting the
impala-shell interpreter:

• --ssl: enables SSL for impala-shell.
• --ca_cert: the local pathname pointing to the third-party CA certificate, or to a copy of the server certificate

for self-signed server certificates.

If --ca_cert is not set, impala-shell enables SSL, but does not validate the server certificate. This is useful for
connecting to a known-good Impala that is only running over SSL, when a copy of the certificate is not available (such
as when debugging customer installations).

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBCandODBCapplications
to Impala. See Configuring Impala to Work with JDBC and Configuring Impala to Work with ODBC for details.

Currently, the Hive JDBC driver does not support connections that use both Kerberos authentication and SSL encryption.
To use both of these security features with Impala through a JDBC application, use the Cloudera JDBC Connector as
the JDBC driver.

Configuring HttpFS to use SSL

Configure the HttpFS Server to use SSL (HTTPS)

1. Stop HttpFS by running

sudo /sbin/service hadoop-httpfs stop

2. To enable SSL, changewhich configuration theHttpFS server shouldworkwith using thealternatives command.

Note: The alternatives command is only available on RHEL systems. For SLES, Ubuntu and
Debian systems, the command is update-alternatives.

For RHEL systems, to use SSL:

alternatives --set hadoop-httpfs-tomcat-conf /etc/hadoop-httpfs/tomcat-conf.https

Important:

The HTTPFS_SSL_KEYSTORE_PASS variable must be the same as the password used when
creating the keystore file. If you used a password other than password, you'll have to change
the value of the HTTPFS_SSL_KEYSTORE_PASS variable in
/etc/hadoop-httpfs/conf/httpfs-env.sh.

3. Start HttpFS by running

sudo /sbin/service hadoop-httpfs start

Connect to the HttpFS Web UI using SSL (HTTPS)

180 | Cloudera Security

Encryption

http://www.cloudera.com/content/www/en-us/downloads.html.html

Use https://<httpfs_server_hostname>:14000/webhdfs/v1/ though most browsers should automatically
redirect you if you use http://<httpfs_server_hostname>:14000/webhdfs/v1/

Important:

If using a Self-Signed Certificate, your browser will warn you that it can't verify the certificate or
something similar. You will probably have to add your certificate as an exception.

Encrypted Shuffle and Encrypted Web UIs

Once you've enabled Kerberos, which provides for strong authentication, you can optionally enable network encryption
if you so desire. CDH 5 supports the Encrypted Shuffle and Encrypted Web UIs feature that allows encryption of the
MapReduce shuffle and web server ports using HTTPS with optional client authentication (also known as bi-directional
HTTPS, or HTTPS with client certificates). It includes:

• Hadoop configuration setting for toggling the shuffle between HTTP and HTTPS.
• Hadoop configuration setting for toggling the Web UIs to use either HTTP or HTTPS.
• Hadoop configuration settings for specifying the keystore and truststore properties (location, type, passwords)

that are used by the shuffle service, web server UIs and the reducers tasks that fetch shuffle data.
• A way to re-read truststores across the cluster (when a node is added or removed).

CDH 5 supports Encrypted Shuffle for both MRv1 and MRv2 (YARN), with common configuration properties used for
both versions. The only configuration difference is in the parameters used to enable the features:

• ForMRv1, setting the hadoop.ssl.enabled parameter in the core-site.xml file enables both the Encrypted
Shuffle and the Encrypted Web UIs. In other words, the encryption toggling is coupled for the two features.

• ForMRv2, setting the hadoop.ssl.enabled parameter enables the Encrypted Web UI feature; setting the
mapreduce.shuffle.ssl.enabled parameter in the mapred-site.xml file enables the Encrypted Shuffle
feature.

All other configuration properties apply to both the Encrypted Shuffle and Encrypted Web UI functionality.

When the Encrypted Web UI feature is enabled, all Web UIs for Hadoop components are served over HTTPS. If you
configure the systems to require client certificates, browsersmust be configuredwith the appropriate client certificates
in order to access the Web UIs.

Important:

When the Web UIs are served over HTTPS, you must specify https:// as the protocol; there is no
redirection from http://. If you attempt to access an HTTPS resource over HTTP, your browser will
probably show an empty screen with no warning.

Most components that run on top of MapReduce automatically use Encrypted Shuffle when it is configured.

Configuring Encrypted Shuffle and Encrypted Web UIs

To configure Encrypted Shuffle and Encrypted Web UIs, set the appropriate property/value pairs in the following:

• core-site.xml enables these features and defines the implementation
• mapred-site.xml enables Encrypted Shuffle for MRv2
• ssl-server.xml stores keystone and truststore settings for the server
• ssl-client.xml stores keystone and truststore settings for the client

core-site.xml Properties

To configure encrypted shuffle, set the following properties in the core-site.xml files of all nodes in the cluster:

Cloudera Security | 181

Encryption

ExplanationDefault ValueProperty

For MRv1, setting this value to true
enables both the Encrypted Shuffle

falsehadoop.ssl.enabled

and the Encrypted Web UI features.
For MRv2, this property only enables
the Encrypted WebUI; Encrypted
Shuffle is enabled with a property in
the mapred-site.xml file as
described below.

When this property is set to true,
client certificates are required for all

falsehadoop.ssl.require.client.cert

shuffle operations and all browsers
used to access Web UIs.

Cloudera recommends that this be set
to false. See Client Certificates on
page 186.

The hostname verifier to provide for
HttpsURLConnections. Valid values

DEFAULThadoop.ssl.hostname.verifier

are: DEFAULT, STRICT, STRICT_I6,
DEFAULT_AND_LOCALHOST and
ALLOW_ALL.

The KeyStoresFactory
implementation to use.

org.apache.hadoop

.security.ssl.
FileBasedKeyStoresFactory

hadoop.ssl.keystores.factory.class

Resource file from which ssl server
keystore information is extracted. This

ssl-server.xmlhadoop.ssl.server.conf

file is looked up in the classpath;
typically it should be in the
/etc/hadoop/conf/ directory.

Resource file from which ssl server
keystore information is extracted. This

ssl-client.xmlhadoop.ssl.client.conf

file is looked up in the classpath;
typically it should be in the
/etc/hadoop/conf/ directory.

Note:

All these properties should be marked as final in the cluster configuration files.

Example

<configuration>
 ...
 <property>
 <name>hadoop.ssl.require.client.cert</name>
 <value>false</value>
 <final>true</final>
 </property>

 <property>

182 | Cloudera Security

Encryption

 <name>hadoop.ssl.hostname.verifier</name>
 <value>DEFAULT</value>
 <final>true</final>
 </property>

 <property>
 <name>hadoop.ssl.keystores.factory.class</name>
 <value>org.apache.hadoop.security.ssl.FileBasedKeyStoresFactory</value>
 <final>true</final>
 </property>

 <property>
 <name>hadoop.ssl.server.conf</name>
 <value>ssl-server.xml</value>
 <final>true</final>
 </property>

 <property>
 <name>hadoop.ssl.client.conf</name>
 <value>ssl-client.xml</value>
 <final>true</final>
 </property>

 <property>
 <name>hadoop.ssl.enabled</name>
 <value>true</value>
 </property>
 ...
</configuration>

The cluster should be configured to use the Linux Task Controller in MRv1 and Linux container executor in MRv2 to
run job tasks so that they are prevented from reading the server keystore information and gaining access to the shuffle
server certificates. Refer to Appendix B - Information about Other Hadoop Security Programs for more information.

mapred-site.xml Property (MRv2 only)

To enable Encrypted Shuffle for MRv2, set the following property in the mapred-site.xml file on every node in the
cluster:

ExplanationDefault ValueProperty

If this property is set to true,
encrypted shuffle is enabled. If this

falsemapreduce.shuffle.ssl.enabled

property is not specified, it defaults to
the value of hadoop.ssl.enabled.
This value can be false when
hadoop.ssl.enabled is true but
cannot be true when
hadoop.ssl.enabled is false

This property should be marked as final in the cluster configuration files.

Example:

<configuration>
 ...
 <property>
 <name>mapreduce.shuffle.ssl.enabled</name>
 <value>true</value>
 <final>true</final>
 </property>
 ...
</configuration>

Cloudera Security | 183

Encryption

Keystore and Truststore Settings

FileBasedKeyStoresFactory is the only KeyStoresFactory that is currently implemented. It uses properties in
the ssl-server.xml and ssl-client.xml files to configure the keystores and truststores.

ssl-server.xml (Shuffle server and Web UI) Configuration

Use the following settings to configure the keystores and truststores in the ssl-server.xml file.

Note:

The ssl-server.xml should be owned by the hdfs or mapred Hadoop system user, belong to the
hadoop group, and it should have 440 permissions. Regular users should not belong to the hadoop
group.

DescriptionDefault ValueProperty

Keystore file typejksssl.server.keystore.type

Keystore file location. The mapred user should own
this file and have exclusive read access to it.

NONEssl.server.keystore.location

Keystore file passwordNONEssl.server.keystore.password

Key passwordNONEssl.server.keystore.keypassword

Truststore file typejksssl.server.truststore.type

Truststore file location. The mapred user should own
this file and have exclusive read access to it.

NONEssl.server.truststore.location

Truststore file passwordNONEssl.server.truststore.password

Truststore reload interval, in milliseconds10000ssl.server.truststore.reload.interval

Example

<configuration>
<!-- Server Certificate Store -->
<property>
 <name>ssl.server.keystore.type</name>
 <value>jks</value>
</property>
<property>
 <name>ssl.server.keystore.location</name>
 <value>${user.home}/keystores/server-keystore.jks</value>
</property>
<property>
 <name>ssl.server.keystore.password</name>
 <value>serverfoo</value>
</property>
<property>
 <name>ssl.server.keystore.keypassword</name>
 <value>serverfoo</value>
</property>

<!-- Server Trust Store -->
<property>
 <name>ssl.server.truststore.type</name>
 <value>jks</value>
</property>
<property>
 <name>ssl.server.truststore.location</name>
 <value>${user.home}/keystores/truststore.jks</value>

184 | Cloudera Security

Encryption

</property>
<property>
 <name>ssl.server.truststore.password</name>
 <value>clientserverbar</value>
</property>
<property>
 <name>ssl.server.truststore.reload.interval</name>
 <value>10000</value>
</property>
</configuration>

ssl-client.xml (Reducer/Fetcher) Configuration

Use the following settings to configure the keystores and truststores in the ssl-client.xml file. This file should be
owned by the mapred user for MRv1 and by the yarn user for MRv2; the file permissions should be 444 (read access
for all users).

DescriptionDefault ValueProperty

Keystore file typejksssl.client.keystore.type

Keystore file location. The mapred user should
own this file and it should have default
permissions.

NONEssl.client.keystore.location

Keystore file passwordNONEssl.client.keystore.password

Key passwordNONEssl.client.keystore.keypassword

Truststore file typejksssl.client.truststore.type

Truststore file location. Themapred user should
own this file and it should have default
permissions.

NONEssl.client.truststore.location

Truststore file passwordNONEssl.client.truststore.password

Truststore reload interval, in milliseconds10000ssl.client.truststore.reload.interval

Example

<configuration>

 <!-- Client certificate Store -->
 <property>
 <name>ssl.client.keystore.type</name>
 <value>jks</value>
 </property>
 <property>
 <name>ssl.client.keystore.location</name>
 <value>${user.home}/keystores/client-keystore.jks</value>
 </property>
 <property>
 <name>ssl.client.keystore.password</name>
 <value>clientfoo</value>
 </property>
 <property>
 <name>ssl.client.keystore.keypassword</name>
 <value>clientfoo</value>
 </property>

 <!-- Client Trust Store -->
 <property>
 <name>ssl.client.truststore.type</name>
 <value>jks</value>

Cloudera Security | 185

Encryption

 </property>
 <property>
 <name>ssl.client.truststore.location</name>
 <value>${user.home}/keystores/truststore.jks</value>
 </property>
 <property>
 <name>ssl.client.truststore.password</name>
 <value>clientserverbar</value>
 </property>
 <property>
 <name>ssl.client.truststore.reload.interval</name>
 <value>10000</value>
 </property>
</configuration>

Activating Encrypted Shuffle

When you have made the above configuration changes, activate Encrypted Shuffle by re-starting all TaskTrackers in
MRv1 and all NodeManagers in YARN.

Important:

Encrypted shuffle has a significant performance impact. You should benchmark this before implementing
it in production. In many cases, one or more additional cores are needed to maintain performance.

Client Certificates

Client Certificates are supported but they do not guarantee that the client is a reducer task for the job. The Client
Certificate keystore file that contains the private key must be readable by all users who submit jobs to the cluster,
which means that a rogue job could read those keystore files and use the client certificates in them to establish a
secure connection with a Shuffle server. The JobToken mechanism that the Hadoop environment provides is a better
protector of the data; each job uses its own JobToken to retrieve only the shuffle data that belongs to it. Unless the
rogue job has a proper JobToken, it cannot retrieve Shuffle data from the Shuffle server.

Important:

If your certificates are signed by a certificate authority (CA), you must include the complete chain of
CA certificates in the keystore that has the server's key.

Reloading Truststores

By default, each truststore reloads its configuration every 10 seconds. If a new truststore file is copied over the old
one, it is re-read, and its certificates replace the old ones. This mechanism is useful for adding or removing nodes from
the cluster, or for adding or removing trusted clients. In these cases, the client, TaskTracker or NodeManager certificate
is added to (or removed from) all the truststore files in the system, and the new configuration is picked up without
requiring that the TaskTracker in MRv1 and NodeManager in YARN daemons are restarted.

Note:

The keystores are not automatically reloaded. To change a keystore for a TaskTracker in MRv1 or a
NodeManager in YARN, you must restart the TaskTracker or NodeManager daemon.

The reload interval is controlled by the ssl.client.truststore.reload.interval and
ssl.server.truststore.reload.interval configuration properties in the ssl-client.xml and
ssl-server.xml files described above.

186 | Cloudera Security

Encryption

Debugging

Important:

Enable debugging only for troubleshooting, and then only for jobs running on small amounts of data.
Debugging is very verbose and slows jobs down significantly.

To enable SSL debugging in the reducers, set -Djavax.net.debug=all in the mapred.reduce.child.java.opts
property; for example:

<configuration>
 ...
 <property>
 <name>mapred.reduce.child.java.opts</name>
 <value>-Xmx200m -Djavax.net.debug=all</value>
 </property>
 ...
</configuration>

You can do this on a per-job basis, or by means of a cluster-wide setting in mapred-site.xml.

To set this property in TaskTrackersfor MRv1, set it in hadoop-env.sh:

HADOOP_TASKTRACKER_OPTS="-Djavax.net.debug=all $HADOOP_TASKTRACKER_OPTS"

To set this property in NodeManagers for YARN, set it in hadoop-env.sh:

YARN_OPTS="-Djavax.net.debug=all $YARN_OPTS"

HDFS Data At Rest Encryption

Important: Cloudera provides two solutions:

• Navigator Encrypt is production ready and available to Cloudera customers licensed for Cloudera
Navigator. Navigator Encrypt operates at the Linux volume level, so it can encrypt cluster data
inside and outside HDFS. Consult your Cloudera account team for more information.

• HDFS Encryption is production ready and operates at theHDFS directory level, enabling encryption
to be applied only to HDFS folders where needed.

HDFS Encryption implements transparent, end-to-end encryption of data read from and written to HDFS, without
requiring changes to application code. Because the encryption is end-to-end, data can be encrypted and decrypted
only by the client. HDFS does not store or have access to unencrypted data or encryption keys. This supports both,
at-rest encryption (data on persistent media, such as a disk) and in-transit encryption (data traveling over a network).

Use Cases

Data encryption is required by a number of different government, financial, and regulatory entities. For example, the
healthcare industry has HIPAA regulations, the card payment industry has PCI DSS regulations, and the United States
government has FISMA regulations. Transparent encryption in HDFS makes it easier for organizations to comply with
these regulations. Encryption can also be performed at the application-level, but by integrating it into HDFS, existing
applications can operate on encrypted data without changes. This integrated architecture implements stronger
encrypted file semantics and better coordination with other HDFS functions.

Cloudera Security | 187

Encryption

Architecture

Encryption Zones

An encryption zone is a directory in HDFS with all of its contents, that is, every file and subdirectory in it, encrypted.
The files in this directory will be transparently encrypted upon write and transparently decrypted upon read. Each
encryption zone is associated with a key which is specified when the zone is created. Each file within an encryption
zone also has its own encryption/decryption key, called the Data Encryption Key (DEK). These DEKs are never stored
persistently unless they are encrypted with the encryption zone's key. This encrypted DEK is known as the EDEK. The
EDEK is then stored persistently as part of the file's metadata on the NameNode.

A key can have multiple key versions, where each key version has its own distinct key material (that is, the portion of
the key used during encryption and decryption). Key rotation is achieved by modifying the encryption zone's key, that
is, bumping up its version. Per-file key rotation is then achieved by re-encrypting the file's DEK with the new encryption
zone key to create new EDEKs. An encryption key can be fetched either by its key name, returning the latest version
of the key, or by a specific key version.

Key Management Server

A new service needs to be added to your cluster to store, manage, and access encryption keys, called the Hadoop Key
Management Server (KMS). The KMS service is a proxy that interfaces with a backing key store on behalf of HDFS
daemons and clients. Both the backing key store and the KMS implement the Hadoop KeyProvider client API.

Encryption and decryption of EDEKs happens entirely on the KMS. More importantly, the client requesting creation or
decryption of an EDEK never handles the EDEK's encryption key (that is, the encryption zone key). When a new file is
created in an encryption zone, the NameNode asks the KMS to generate a new EDEK encrypted with the encryption
zone's key. When reading a file from an encryption zone, the NameNode provides the client with the file's EDEK and
the encryption zone key version that was used to encrypt the EDEK. The client then asks the KMS to decrypt the EDEK,
which involves checking that the client has permission to access the encryption zone key version. Assuming that is
successful, the client uses the DEK to decrypt the file's contents. All the steps for read andwrite take place automatically
through interactions between the DFSClient, the NameNode, and the KMS.

Access to encrypted file data and metadata is controlled by normal HDFS filesystem permissions. Typically, the backing
key store is configured to only allow end-user access to the encryption zone keys used to encrypt DEKs. This means
that EDEKs can be safely stored and handled by HDFS, since the hdfs user will not have access to EDEK encryption
keys. This means that if HDFS is compromised (for example, by gaining unauthorized access to a superuser account),
a malicious user only gains access to the ciphertext and EDEKs. This does not pose a security threat since access to
encryption zone keys is controlled by a separate set of permissions on the KMS and key store.

For more details on configuring the KMS, see Configuring the Key Management Server (KMS) on page 195.

Navigator Key Trustee

By default, the current implementation of HDFS encryption uses a local Java keystore for key management. This KMS
(File) service may not be sufficient for large enterprises where a more robust and secure key management solution is
required. Navigator Key Trustee is a keystore server for managing encryption keys, certificates, and passwords that is
completely integrated into Cloudera Navigator.

In order to leverage themanageable, highly-available keymanagement capabilities of the Navigator Key Trustee server,
the KMS (Navigator Key Trustee) service uses a Key Trustee-specific plugin called the TrusteeKeyProvider.

For more information on integrating Navigator Key Trustee with HDFS encryption, you can contact your Cloudera
account team.

crypto Command Line Interface

createZone

Use this command to create a new encryption zone.

-createZone -keyName <keyName> -path <path>

188 | Cloudera Security

Encryption

Where:

• path: The path of the encryption zone to be created. It must be an empty directory.
• keyName: Name of the key to use for the encryption zone.

listZones

List all encryption zones. This command requires superuser permissions.

-listZones

Enabling HDFS Encryption on a Cluster

Minimum Required Role: Full Administrator

The following sections will guide you through enabling HDFS encryption on your cluster, using the default Java
keystore-based KMS:

Important: If you want to use Navigator Key Trustee, and not the default JavaKeyStoreProvider, to
store HDFS encryption keys, youwill need to add the KMS (Navigator Key Trustee) service to Cloudera
Manager and install the Navigator Key Trustee Server. Contact your Cloudera account team for more
information.

Adding the KMS Service

1. On the Home page, click

to the right of the cluster name and select Add a Service. A list of service types display. You can add one type of
service at a time.

2. Select the KMS (File) service and click Continue.
3. Customize the assignment of role instances to hosts. You can click the View By Host button for an overview of

the role assignment by hostname ranges.

Click the field below the Key Management Server (KMS) role to display a dialog containing a list of hosts. Select
the host for the new KMS role and click OK.

4. Review and modify the JavaKeyStoreProvider Directory configuration setting if required and click Continue. The
KMS (File) service is started.

5. Click Continue, then click Finish. You are returned to the Home page.
6. Verify that the new KMS (File) service has started properly by checking its health status. If the Health Status is

Good, then the service started properly.

Enabling KMS for the HDFS Service

1. Go to the HDFS service.
2. Click the Configuration tab.
3. Go to the Service-Wide category.
4. Click the Value field for the KMS Service property and select KMS (File).
5. Click Save Changes.
6. Restart your cluster.

a. On the Home page, click

to the right of the cluster name and select Restart.
b. Click Restart that appears in the next screen to confirm. The Command Details window shows the progress

of stopping services.

Cloudera Security | 189

Encryption

When All services successfully started appears, the task is complete and you can close the Command Details
window.

7. Deploy client configuration.

a. On the Home page, click

to the right of the cluster name and select Deploy Client Configuration.
b. Click Deploy Client Configuration.

Optimizing HDFS Encryption at Rest

CDH 5.3 implements the Advanced Encryption Standard New Instructions (AES-NI), which provide substantial
performance improvements. To get these improvements, you need a recent version of libcrypto.so on HDFS and
MapReduce client hosts -- that is, any host from which you originate HDFS or MapReduce requests. Many OS versions
have an older version of the library that does not support AES-NI. The instructions that follow tell you what you need
to do for each OS version that CDH 5.3 supports.

RHEL/CentOS 6.5 or later

The installed version of libcrypto.so supports AES-NI, but you need to install the openssl-devel package on all
clients:

$ sudo yum install openssl-devel

RHEL/CentOS 6.4 or earlier 6.x versions, or SLES 11

Download and extract a newer version of libcrypto.so from a CentOS 6.5 repository and install it on all clients in
/var/lib/hadoop/extra/native/:

1. Download the latest version of the openssl package:

$ wget
http://mirror.centos.org/centos/6/os/x86_64/Packages/openssl-1.0.1e-30.el6.x86_64.rpm

Note:

The libcrypto.so in this package can be used on SLES 11 as well as RHEL/CentOS

2. Decompress the files in the package, but do not install it:

$ rpm2cpio openssl-1.0.1e-30.el6.x86_64.rpm | cpio -idmv

3. If you are using parcels, create the /var/lib/hadoop/extra/native/ directory:

$ sudo mkdir -p /var/lib/hadoop/extra/native

4. Copy the shared library into /var/lib/hadoop/extra/native/ .

Important:

Name the target file libcrypto.so, with no suffix at the end, exactly as in the command that
follows.

$ sudo cp ./usr/lib64/libcrypto.so.1.0.1e /var/lib/hadoop/extra/native/libcrypto.so

190 | Cloudera Security

Encryption

RHEL/CentOS 5

In this case, you need to build libcrypto.so and copy it to all clients:

1. On one client, compile and install openssl from source:

$ wget http://www.openssl.org/source/openssl-1.0.1j.tar.gz
$ cd openssl-1.0.1j
$./config --shared --prefix=/opt/openssl-1.0.1j
$ sudo make install

2. If you are using parcels, create the /var/lib/hadoop/extra/native/ directory:

$ sudo mkdir -p /var/lib/hadoop/extra/native

3. Copy the files into /var/lib/hadoop/extra/native/:

$ sudo cp /opt/openssl-1.0.1j/lib/libcrypto.so /var/lib/hadoop/extra/native

4. Copy the files to the remaining clients using a utility such as rsync

Debian Wheezy

The installed version of libcrypto.so supports AES-NI, but you need to install the libssl-devel package on all
clients:

$ sudo apt-get install libssl-dev

Ubuntu Precise and Ubuntu Trusty

Install the libssl-devel package on all clients:

$ sudo apt-get install libssl-dev

Testing if encryption optimization works

To verify that a client host is ready to make use of the AES-NI instruction set optimization for HDFS encryption at rest,
use the following command:

hadoop checknative

You should see a response such as the following:

14/12/12 13:48:39 INFO bzip2.Bzip2Factory: Successfully loaded & initialized native-bzip2
library system-native14/12/12 13:48:39 INFO zlib.ZlibFactory: Successfully loaded &
initialized native-zlib library
Native library checking:
hadoop: true /usr/lib/hadoop/lib/native/libhadoop.so.1.0.0
zlib: true /lib64/libz.so.1
snappy: true /usr/lib64/libsnappy.so.1
lz4: true revision:99
bzip2: true /lib64/libbz2.so.1
openssl: true /usr/lib64/libcrypto.so

If you see true in the openssl row, Hadoop has detected the right version of libcrypto.so and optimization will
work. If you see false in this row, you do not have the right version.

Configuring Encryption Properties for the HDFS and NameNode

Configure the following properties to select the encryption algorithmandKeyProvider thatwill be used during encryption.
If you do not modify these properties, the default values will use AES-CTR to encrypt your data.

Cloudera Security | 191

Encryption

Note: You may notice many of the properties described in the table below are absent from your
kms-site.xml. In such a case, the default values listed here are being used.

For a managed cluster, since the properties listed below have not been exposed in ClouderaManager,
use the corresponding safety valves if you want to specify a different value.

DescriptionProperty

Selecting an Encryption Algorithm: Set the following properties in the core-site.xml safety valve and redeploy
client configuration.

The prefix for a given crypto codec, contains a
comma-separated list of implementation classes for a

hadoop.security.crypto.codec.classes.EXAMPLECIPHERSUITE

given crypto codec (for example,EXAMPLECIPHERSUITE).
The first implementation will be used if available, others
are fallbacks.

By default, the cipher suite used is AES/CTR/NoPadding
and its default classes are
org.apache.hadoop.crypto.OpensslAesCtrCryptoCodec

and
org.apache.hadoop.crypto.JceAesCtrCryptoCodec

as described in the following properties.

Cipher suite for crypto codec.hadoop.security.crypto.cipher.suite

Default: AES/CTR/NoPadding

Comma-separated list of crypto codec implementations
for the default cipher suite: AES/CTR/NoPadding. The

hadoop.security.crypto.codec.classes.aes.ctr.nopadding

first implementation will be used if available, others are
fallbacks.

Default:
org.apache.hadoop.crypto.OpensslAesCtrCryptoCodec,

org.apache.hadoop.crypto.JceAesCtrCryptoCodec

The JCE provider name used in CryptoCodec.hadoop.security.crypto.jce.provider

Default: None

The buffer size used by CryptoInputStream and
CryptoOutputStream.

hadoop.security.crypto.buffer.size

Default: 8192

KeyProvider Configuration: Set this property in the hdfs-site.xml safety valve and restart the NameNode.

The KeyProvider to be used when interacting with
encryption keys that are used to read and write to an
encryption zone.

dfs.encryption.key.provider.uri

If you have a managed cluster, Cloudera Manager will
point to the KMS server you have enabled above.

NameNode Configuration: Set this property in the hdfs-site.xml safety valve and restart the NameNode.

When listing encryption zones, the maximum number of
zones that will be returned in a batch. Fetching the list

dfs.namenode.list.encryption.zones.num.responses

incrementally in batches improves NameNode
performance.

192 | Cloudera Security

Encryption

DescriptionProperty

Default: 100

Creating Encryption Zones

Once a KMS has been set up and the NameNode and HDFS clients have been correctly configured, an admin user can
use the hadoop key and hdfs crypto command-line tools to create encryption keys and set up new encryption
zones.

• Create an encryption key for your zone as the application user that will be using the key. For example, if you are
creating an encryption zone for HBase, create the key as the hbase user as follows:

$ sudo -u hbase hadoop key create <key_name>

• Create a new empty directory and make it an encryption zone using the key created above.

$ hadoop fs -mkdir /zone
$ hdfs crypto -createZone -keyName <key_name> -path /zone

You can verify creation of the new encryption zone by running the -listZones command. You should see the
encryption zone along with its key listed as follows:

$ sudo -u hdfs hdfs crypto -listZones
/zone <key_name>

Warning: Do not delete an encryption key as long as it is still in use for an encryption zone. This
will result in loss of access to data in that zone.

For more information and recommendations on creating encryption zones for each CDH component, see Configuring
CDH Services for HDFS Encryption on page 205.

Adding Files to an Encryption Zone

Existing data can be encrypted by coping it copied into the new encryption zones using tools like distcp. See the DistCp
Considerations section below for information on using DistCp with encrypted data files.

You can add files to an encryption zone by copying them over to the encryption zone. For example:

sudo -u hdfs hadoop distcp /user/dir /user/enczone

Additional Information:

• For more information on KMS setup and high availability configuration, see Configuring the Key Management
Server (KMS) on page 195.

• For instructions on securing the KMS using Kerberos, SSL communication and ACLs, see Securing the Key
Management Server (KMS) on page 198.

• If you want to use the KMS to encrypt data used by other CDH services, see Configuring CDH Services for HDFS
Encryption on page 205 for information on recommended encryption zones for each service.

DistCp Considerations

A common usecase for DistCp is to replicate data between clusters for backup and disaster recovery purposes. This is
typically performed by the cluster administrator, who is an HDFS superuser. To retain this workflow when using HDFS
encryption, a new virtual path prefix has been introduced, /.reserved/raw/, that gives superusers direct access to
the underlying block data in the filesystem. This allows superusers todistcp datawithout requiring access to encryption

Cloudera Security | 193

Encryption

keys, and avoids the overhead of decrypting and re-encrypting data. It also means the source and destination data will
be byte-for-byte identical, which would not have been true if the data was being re-encrypted with a new EDEK.

Warning:

When using /.reserved/raw/ to distcp encrypted data, it's important to preserve extended
attributeswith the -px flag. This is because encrypted attributes such as the EDEK are exposed through
extended attributes andmust be preserved to be able to decrypt the file.

This means that if the distcp is initiated at or above the encryption zone root, it will automatically
create a new encryption zone at the destination if it does not already exist. Hence, Cloudera
recommends you first create identical encryption zones on the destination cluster to avoid any potential
mishaps.

Copying between encrypted and unencrypted locations

By default, distcp compares checksums provided by the filesystem to verify that data was successfully copied to the
destination. When copying between an unencrypted and encrypted location, the filesystem checksums will not match
since the underlying block data is different.

In this case, you can specify the -skipcrccheck and -update flags to avoid verifying checksums.

Attack Vectors

MitigationIssueType of Exploit

Hardware Access Exploit

It can be mitigated by disabling swap,
using encrypted swap, or using mlock

Access to swap files of processes
containing DEKs. This exploit does not

These exploits assume the attacker has
gained physical access to hard drives

to prevent keys from being swapped
out.

expose cleartext, as it also requires
access to encrypted block files.

from cluster machines, that is,
DataNodes and NameNodes.

It can only be mitigated by restricting
physical access to the cluster
machines.

Access to encrypted block files. This
exploit does not expose cleartext, as
it also requires access to the DEKs.

Root Access Exploits

No mitigation required.Access to encrypted block files.

By itself, this does not expose
cleartext, as it also requires access to
encryption keys.

These exploits assume the attacker has
gained root shell access to cluster
machines running datanodes and
namenodes. Many of these exploits
cannot be addressed in HDFS, since a
malicious root user has access to the No mitigation.Dump memory of client processes to

obtain DEKs, delegation tokens,
cleartext.

in-memory state of processes holding
encryption keys and cleartext. For
these exploits, the only mitigation

No mitigation required.Recording network traffic to sniff
encryption keys and encrypted data
in transit.

By itself, insufficient to read cleartext
without the EDEK encryption key.

technique is carefully restricting and
monitoring root shell access.

No mitigation required.Dump memory of datanode process
to obtain encrypted block data.

By itself, insufficient to read cleartext
without the DEK.

194 | Cloudera Security

Encryption

MitigationIssueType of Exploit

No mitigation required.Dump memory of namenode process
to obtain encrypted data encryption
keys.

By itself, insufficient to read cleartext
without the EDEK's encryption key and
encrypted block files.

HDFS Admin Exploits

No mitigation required.Access to encrypted block files.

By itself, insufficient to read cleartext
without theEDEKandEDEKencryption
key.

These exploits assume that the
attacker has compromised HDFS, but
does not have root or hdfs user shell
access.

No mitigation required.Access to encryption zone and
encrypted file metadata (including
encrypted data encryption keys), using
-fetchImage.

By itself, insufficient to read cleartext
without EDEK encryption keys.

Root Access Exploits

This can bemitigated through periodic
key rolling policies.

A rogue user can collect keys to which
they have access, and use them later
to decrypt encrypted data.

Configuring the Key Management Server (KMS)

Hadoop KMS is a cryptographic key management server based on Hadoop's KeyProvider API. It provides a client which
is a KeyProvider implementation that interacts with the KMS using the HTTP REST API. Both the KMS and its client
supportHTTP SPNEGOKerberos authentication and SSL-secured communication. TheKMS is a Java-basedwebapplication
which runs using a pre-configured Tomcat server bundled with the Hadoop distribution.

For instructions on securing the KMS, see Securing the Key Management Server (KMS) on page 198.

Setup Configuration
KeyProvider Configuration

Configure the KMS backing KeyProvider properties in the /etc/hadoop-kms/conf/kms-site.xml configuration
file:

<property>
 <name>hadoop.kms.key.provider.uri</name>
 <value>jceks://file@/${user.home}/kms.keystore</value>
</property>

<property>
 <name>hadoop.security.keystore.java-keystore-provider.password-file</name>
 <value>kms.keystore.password</value>
</property>

The password file is looked up in Hadoop's configuration directory using CLASSPATH.

Restart the KMS for configuration changes to take effect.

Cloudera Security | 195

Encryption

KMS Cache

KMS caches keys for short periods of time to avoid excessive hits to the underlying key provider. The cache is enabled
by default and can be disabled by setting the hadoop.kms.cache.enable property to false.

The cache is used with the following methods only: getCurrentKey(), getKeyVersion() and getMetadata().

For the getCurrentKey()method, cached entries are kept for a maximum of 30000milliseconds regardless of the
number of times the key is accessed. This is to prevent stale keys from being considered current.

For the getKeyVersion()method, cached entries are kept with a default inactivity timeout of 600000milliseconds
(10 minutes). The cache and its timeout value is configurable using the following properties in the
/etc/hadoop-kms/conf/kms-site.xml configuration file:

<property>
 <name>hadoop.kms.cache.enable</name>
 <value>true</value>
</property>

<property>
 <name>hadoop.kms.cache.timeout.ms</name>
 <value>600000</value>
</property>

<property>
 <name>hadoop.kms.current.key.cache.timeout.ms</name>
 <value>30000</value>
</property>

KMS Client Configuration

The KMS client KeyProvider uses the kms scheme, and the embedded URL must be the URL of the KMS.

For example, for a KMS running on http://localhost:16000/kms, the KeyProvider URI is
kms://http@localhost:16000/kms. And for a KMS runningonhttps://localhost:16000/kms, the KeyProvider
URI is kms://https@localhost:16000/kms.

Starting/Stopping the KMS

To start or stop KMS use KMS's bin/kms.sh script. For example, to start the KMS:

hadoop-3.0.0 $ sbin/kms.sh start

Invoking the script without any parameters will list all possible parameters.

KMS Aggregated Audit logs

Audit logs are aggregated for API accesses to the GET_KEY_VERSION, GET_CURRENT_KEY, DECRYPT_EEK, and
GENERATE_EEK operations.

Entries are grouped by the <user,key,operation> for a configurable aggregation interval after which the number of
accesses to the specified end-point by the user for a given key is flushed to the audit log.

The aggregation interval is configured using the following property:

<property>
 <name>hadoop.kms.aggregation.delay.ms</name>
 <value>10000</value>
</property>

Configuring the Embedded Tomcat Server

The embedded Tomcat server can be configured using the
/etc/hadoop-kms/tomcat-conf.http/conf/server.xml.conf file. KMS pre-configures the HTTP and Admin
ports in Tomcat's server.xml.conf to 16000 and 16001. Tomcat logs are also preconfigured to go to Hadoop's
logs/ directory.

196 | Cloudera Security

Encryption

The following environment variables can be set in KMS's /etc/hadoop-kms/conf/kms-env.sh script and can be
used to alter the default ports and log directory:

• KMS_HTTP_PORT

• KMS_ADMIN_PORT

• KMS_LOG

Restart the KMS for the configuration changes to take effect.

Configuring KMS High Availability/Multiple KMSs

KMS supports multiple KMS instances behind a load balancer or VIP for scalability and HA purposes. These instances
must be specially configured to work properly as a single logical service. When using multiple KMS instances, requests
from the same user may be handled by different KMS instances.

HTTP Kerberos Principals Configuration

When KMS instances are behind a load balancer or VIP, clients will use the hostname of the VIP. For Kerberos SPNEGO
authentication, the VIP hostname is used to construct the Kerberos principal for the server, HTTP/<FQDN-VIP>. This
means for client communication, all KMS instances must have the load balancer or VIP's principal.

However, in order to allow clients to directly access a specific KMS instance, the KMS instancemust also have a Kerberos
principal with its own hostname.

Both the Kerberos service principals (for the load balancer/VIP and the actual KMS host) must be in the keytab file.
The principal name specified in the kms-site.xml configuration file must be '*' as follows:

<property>
 <name>hadoop.kms.authentication.kerberos.principal</name>
 <value>*</value>
</property>

If using HTTPS, the SSL certificate used by the KMS instance must be configured to support multiple hostnames (see
Java 7 keytool SAN extension support for details on how to do this).

HTTP Authentication Signature

KMS uses Hadoop Authentication for HTTP authentication. Hadoop Authentication issues a signed HTTP Cookie once
a client has been authenticated successfully. This HTTP Cookie has an expiration time, after which it triggers a new
authentication sequence. This is done to avoid requiring authentication for every HTTP request of a client.

A KMS instance must verify the HTTP Cookie signatures signed by other KMS instances. To do this all KMS instances
must share the signing secret which can be configured by the
hadoop.kms.authentication.signer.secret.provider property.

This secret can be shared using a Zookeeper service which must be configured in the kms-site.xml:

<property>
 <name>hadoop.kms.authentication.signer.secret.provider</name>
 <value>zookeeper</value>
 <description>
 Indicates how the secret to sign the authentication cookies will be
 stored. Options are 'random' (default), 'string' and 'zookeeper'.
 If using a setup with multiple KMS instances, 'zookeeper' should be used.
 </description>
</property>

<property>
 <name>hadoop.kms.authentication.signer.secret.provider.zookeeper.path</name>
 <value>/hadoop-kms/hadoop-auth-signature-secret</value>
 <description>
 The Zookeeper ZNode path where the KMS instances will store and retrieve
 the secret from.
 </description>
</property>

<property>

Cloudera Security | 197

Encryption

<name>hadoop.kms.authentication.signer.secret.provider.zookeeper.connection.string</name>

 <value>#HOSTNAME#:#PORT#,...</value>
 <description>
 The Zookeeper connection string, a list of hostnames and port comma
 separated.
 </description>
</property>

<property>
 <name>hadoop.kms.authentication.signer.secret.provider.zookeeper.auth.type</name>
 <value>kerberos</value>
 <description>
 The Zookeeper authentication type, 'none' or 'sasl' (Kerberos).
 </description>
</property>

<property>

<name>hadoop.kms.authentication.signer.secret.provider.zookeeper.kerberos.keytab</name>

 <value>/etc/hadoop/conf/kms.keytab</value>
 <description>
 The absolute path for the Kerberos keytab with the credentials to
 connect to Zookeeper.
 </description>
</property>

<property>

<name>hadoop.kms.authentication.signer.secret.provider.zookeeper.kerberos.principal</name>

 <value>kms/#HOSTNAME#</value>
 <description>
 The Kerberos service principal used to connect to Zookeeper.
 </description>
</property>

Securing the Key Management Server (KMS)

This topic contains information on securing the Hadoop KMS using Kerberos, SSL-communication and Access Control
Lists for operations on encryption keys.

Enabling Kerberos Authentication

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.3.x . If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

Using Cloudera Manager

Minimum Required Role: Full Administrator

To enable Kerberos for the KMS using Cloudera Manager:

1. Open the Cloudera Manager Admin Console and navigate to the KMS service.
2. Click Configuration.
3. Set the Authentication Type property to kerberos.
4. Click Save Changes.
5. Since Cloudera Manager does not automatically create the principal and keytab file for the KMS, you will need to

manually run theGenerate Credentials command. Using the top navigation bar, go toAdministration > Kerberos >
Credentials and click Generate Credentials.

198 | Cloudera Security

Encryption

http://www.cloudera.com/content/support/en/documentation.html

Note: No new principals will be created since KMS uses its host's HTTP principal.

Kerberos Mapping Rules:

The hadoop.kms.authentication.kerberos.name.rules property can only be changed using the Key
Management Server Advanced Configuration Snippet (Safety Valve) for kms-site.xml property.

To modify, the value should be copied from the hadoop.security.auth_to_local configuration property, found
in the core-site.xml file of the service.

Using the Command Line

Configure the etc/krb5.conf file with information for your KDC server. Create an HTTP principal and keytab file for
the KMS.

Configure the etc/hadoop/kms-site.xml with the following properties:

<property>
 <name>hadoop.kms.authentication.type</name>
 <value>kerberos</value>
</property>

<property>
 <name>hadoop.kms.authentication.kerberos.keytab</name>
 <value>${user.home}/kms.keytab</value>
</property>

<property>
 <name>hadoop.kms.authentication.kerberos.principal</name>
 <value>HTTP/localhost</value>
</property>

<property>
 <name>hadoop.kms.authentication.kerberos.name.rules</name>
 <value>DEFAULT</value>
</property>

Restart the KMS for the configuration changes to take effect.

Configuring the KMS Proxyuser

Each proxyuser must be configured in etc/hadoop/kms-site.xml using the following properties:

<property>
 <name>hadoop.kms.proxyuser.#USER#.users</name>
 <value>*</value>
</property>

<property>
 <name>hadoop.kms.proxyuser.#USER#.groups</name>
 <value>*</value>
</property>

<property>
 <name>hadoop.kms.proxyuser.#USER#.hosts</name>
 <value>*</value>
</property>

Where #USER# is the username of the proxyuser to be configured.

The hadoop.kms.proxyuser.#USER#.users property indicates the users that can be impersonated. The
hadoop.kms.proxyuser.#USER#.groups property indicates the groups to which the users being impersonated
must belong. At least one of these properties must be defined. If both are defined, then the configured proxyuser will
be able to impersonate any user in the users list and any user belonging to a group listed in the groups list.

Cloudera Security | 199

Encryption

The hadoop.kms.proxyuser.#USER#.hosts property indicates the host from which the proxyuser can make
impersonation requests. "*" means there are no restrictions for the #USER# regarding users, groups or hosts.

Configuring SSL for the KMS

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.3.x . If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

The steps for configuring and enabling Hadoop SSL for the KMS are as follows:

1. Open the Cloudera Manager Admin Console and navigate to the KMS service.
2. Click Configuration.
3. In the Search field, type SSL to show the KMS SSL properties (found under the Key Management Server Default

Group > Security category).
4. Edit the following SSL properties according to your cluster configuration.

Table 10: KMS SSL Properties

DescriptionProperty

Enable SSL for requests to Key Management Server.Key Management Server SSL
Enabled

Location of the keystore file on the local file system.Key Management Server SSL
Server JKS Keystore File
Password

Password for the keystore.Key Management Server SSL
Server JKS Keystore File
Location

5. Click Save Changes.
6. Restart the KMS service.

Using the Command Line

To configure KMS to work over HTTPS by setting the following properties in the etc/hadoop/kms_env.sh script:

• KMS_SSL_KEYSTORE_FILE

• KMS_SSL_KEYSTORE_PASS

In the KMS tomcat/conf directory, replace the server.xml file with the provided ssl-server.xml file.

You need to create an SSL certificate for the KMS. As the kms user, use the Java keytool command to create the SSL
certificate:

$ keytool -genkey -alias tomcat -keyalg RSA

You will be asked a series of questions in an interactive prompt. It will create the keystore file, which will be named
.keystore and located in the kms user's home directory. The password you enter for the keystore must match the value
of the KMS_SSL_KEYSTORE_PASS environment variable set in the kms-env.sh script in the configuration directory.

200 | Cloudera Security

Encryption

http://www.cloudera.com/content/support/en/documentation.html

The answer to "What is your first and last name?" (CN) must be the hostname of the machine where the KMS will be
running.

Note: Restart the KMS for the configuration changes to take effect.

Configuring Access Control Lists for the KMS

By default, the KMS ACLs are fully permissive, that is, everyone is allowed to perform all operations. However, a key
design requirement is to be able to restrict HDFS superusers from having access to key material. This prevents a
malicious superuser from having access to both (a) all the key material and (b) all the encrypted data, and thus being
able to decrypt everything.

The KMS supports both whitelist and blacklist ACLs where the blacklist overrides the whitelist. A user accessing KMS
is first checked for inclusion in the ACL for the requested operation and then checked for exclusion in the blacklist for
the operation before access is granted. Hence, add HDFS superusers to the blacklist, while allowing everyone else.

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.3.x . If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Important: See related Known Issue and listed workaround: KMS and Key Trustee ACLs do not work
in Cloudera Manager 5.3.

1. Open the Cloudera Manager Admin Console and navigate to the KMS service.
2. Click Configuration.
3. In the Search field, type acl to show the KMS ACL properties (found under the Key Management Server Default

Group category).
4. Edit the ACL properties according to your cluster configuration.
5. Click Save Changes.
6. Restart the KMS service.

Using the Command Line

KMSACLs configuration are defined in the KMSetc/hadoop/kms-acls.xml configuration file. This file is hot-reloaded
when it changes.

<property>
 <name>hadoop.kms.acl.CREATE</name>
 <value>*</value>
 <description>
 ACL for create-key operations.
 If the user does is not in the GET ACL, the key material is not returned
 as part of the response.
 </description>
</property>

<property>
 <name>hadoop.kms.blacklist.CREATE</name>
 <value>hdfs,foo</value>
 <description>
 Blacklist for create-key operations.

Cloudera Security | 201

Encryption

http://www.cloudera.com/content/support/en/documentation.html

 If the user does is in the Blacklist, the key material is not returned
 as part of the response.
 </description>
</property>

<property>
 <name>hadoop.kms.acl.DELETE</name>
 <value>*</value>
 <description>
 ACL for delete-key operations.
 </description>
</property>

<property>
 <name>hadoop.kms.blacklist.DELETE</name>
 <value>hdfs,foo</value>
 <description>
 Blacklist for delete-key operations.
 </description>
</property>

<property>
 <name>hadoop.kms.acl.ROLLOVER</name>
 <value>*</value>
 <description>
 ACL for rollover-key operations.
 If the user does is not in the GET ACL, the key material is not returned
 as part of the response.
 </description>
</property>

<property>
 <name>hadoop.kms.blacklist.ROLLOVER</name>
 <value>hdfs,foo</value>
 <description>
 Blacklist for rollover-key operations.
 </description>
</property>

<property>
 <name>hadoop.kms.acl.GET</name>
 <value>*</value>
 <description>
 ACL for get-key-version and get-current-key operations.
 </description>
</property>

<property>
 <name>hadoop.kms.blacklist.GET</name>
 <value>hdfs,foo</value>
 <description>
 ACL for get-key-version and get-current-key operations.
 </description>
</property>

<property>
 <name>hadoop.kms.acl.GET_KEYS</name>
 <value>*</value>
 <description>
 ACL for get-keys operation.
 </description>
</property>

<property>
 <name>hadoop.kms.blacklist.GET_KEYS</name>
 <value>hdfs,foo</value>
 <description>
 Blacklist for get-keys operation.
 </description>
</property>

<property>
 <name>hadoop.kms.acl.GET_METADATA</name>

202 | Cloudera Security

Encryption

 <value>*</value>
 <description>
 ACL for get-key-metadata and get-keys-metadata operations.
 </description>
</property>

<property>
 <name>hadoop.kms.blacklist.GET_METADATA</name>
 <value>hdfs,foo</value>
 <description>
 Blacklist for get-key-metadata and get-keys-metadata operations.
 </description>
</property>

 <property>
 <name>hadoop.kms.acl.SET_KEY_MATERIAL</name>
 <value>*</value>
 <description>
 Complimentary ACL for CREATE and ROLLOVER operation to allow the client
 to provide the key material when creating or rolling a key.
 </description>
</property>

<property>
 <name>hadoop.kms.blacklist.SET_KEY_MATERIAL</name>
 <value>hdfs,foo</value>
 <description>
 Complimentary Blacklist for CREATE and ROLLOVER operation to allow the client
 to provide the key material when creating or rolling a key.
 </description>
</property>

<property>
 <name>hadoop.kms.acl.GENERATE_EEK</name>
 <value>*</value>
 <description>
 ACL for generateEncryptedKey
 CryptoExtension operations
 </description>
</property>

<property>
 <name>hadoop.kms.blacklist.GENERATE_EEK</name>
 <value>hdfs,foo</value>
 <description>
 Blacklist for generateEncryptedKey
 CryptoExtension operations
 </description>
</property>

<property>
 <name>hadoop.kms.acl.DECRYPT_EEK</name>
 <value>*</value>
 <description>
 ACL for decrypt EncryptedKey
 CryptoExtension operations
 </description>
</property>

<property>
 <name>hadoop.kms.blacklist.DECRYPT_EEK</name>
 <value>hdfs,foo</value>
 <description>
 Blacklist for decrypt EncryptedKey
 CryptoExtension operations
 </description>
 </property>

Configuring Key Access Control

KMS supports access control for all non-read operations at the Key level. All Key Access operations are classified as:

• MANAGEMENT - createKey, deleteKey, rolloverNewVersion

Cloudera Security | 203

Encryption

• GENERATE_EEK - generateEncryptedKey, warmUpEncryptedKeys

• DECRYPT_EEK - decryptEncryptedKey

• READ - getKeyVersion, getKeyVersions, getMetadata, getKeysMetadata, getCurrentKey

• ALL - all of the above.

These can be defined in the etc/hadoop/kms-acls.xml as follows:

 <property>
 <name>key.acl.testKey1.MANAGEMENT</name>
 <value>*</value>
 <description>
 ACL for create-key, deleteKey and rolloverNewVersion operations.
 </description>
 </property>

 <property>
 <name>key.acl.testKey2.GENERATE_EEK</name>
 <value>*</value>
 <description>
 ACL for generateEncryptedKey operations.
 </description>
 </property>

 <property>
 <name>key.acl.testKey3.DECRYPT_EEK</name>
 <value>*</value>
 <description>
 ACL for decryptEncryptedKey operations.
 </description>
 </property>

 <property>
 <name>key.acl.testKey4.READ</name>
 <value>*</value>
 <description>
 ACL for getKeyVersion, getKeyVersions, getMetadata, getKeysMetadata,
 getCurrentKey operations
 </description>
 </property>

 <property>
 <name>key.acl.testKey5.ALL</name>
 <value>*</value>
 <description>
 ACL for ALL operations.
 </description>
 </property>

 <property>
 <name>default.key.acl.MANAGEMENT</name>
 <value>user1,user2</value>
 <description>
 default ACL for MANAGEMENT operations for all keys that are not
 explicitly defined.
 </description>
 </property>

 <property>
 <name>default.key.acl.GENERATE_EEK</name>
 <value>user1,user2</value>
 <description>
 default ACL for GENERATE_EEK operations for all keys that are not
 explicitly defined.
 </description>
 </property>

 <property>
 <name>default.key.acl.DECRYPT_EEK</name>
 <value>user1,user2</value>
 <description>
 default ACL for DECRYPT_EEK operations for all keys that are not
 explicitly defined.

204 | Cloudera Security

Encryption

 </description>
 </property>

 <property>
 <name>default.key.acl.READ</name>
 <value>user1,user2</value>
 <description>
 default ACL for READ operations for all keys that are not
 explicitly defined.
 </description>
 </property>

For all keys for which an ACL has not been explicitly configured, you can configure a default key ACL for a subset of the
operation types.

If no ACL is configured for a specific key, and no default ACL is configured for the requested operation, access will be
denied.

Note: The default ACL does not support the ALL operation qualifier.

KMS Delegation Token Configuration

KMS delegation token secret manager can be configured using the following properties:

 <property>
 <name>hadoop.kms.authentication.delegation-token.update-interval.sec</name>
 <value>86400</value>
 <description>
 How often the master key is rotated, in seconds. Default value 1 day.
 </description>
 </property>

 <property>
 <name>hadoop.kms.authentication.delegation-token.max-lifetime.sec</name>
 <value>604800</value>
 <description>
 Maximum lifetime of a delegation token, in seconds. Default value 7 days.
 </description>
 </property>

 <property>
 <name>hadoop.kms.authentication.delegation-token.renew-interval.sec</name>
 <value>86400</value>
 <description>
 Renewal interval of a delegation token, in seconds. Default value 1 day.
 </description>
 </property>

 <property>
 <name>hadoop.kms.authentication.delegation-token.removal-scan-interval.sec</name>
 <value>3600</value>
 <description>
 Scan interval to remove expired delegation tokens.
 </description>
 </property>

Configuring CDH Services for HDFS Encryption

The following topics contain recommendations for setting up HDFS encryption with various CDH services.

Hive

HDFS encryption has been designed such that files cannot be moved from one encryption zone to another encryption
zone or from encryption zones to unencrypted directories. Hence, the landing zone for data when using the LOAD
DATA INPATH command should always be inside the destination encryption zone.

Cloudera Security | 205

Encryption

If you want to use HDFS encryption with Hive, ensure you are using one of the following configurations:

Single Encryption Zone

With this configuration, you can use HDFS encryption by having all Hive data inside the same encryption zone.
Additionally, in Cloudera Manager, configure the Hive Scratch Directory (hive.exec.scratchdir) to be inside the
encryption zone.

Recommended HDFS Path: /user/hive

For example, to configure a single encryption zone for the entire Hive warehouse, you can rename /user/hive to
/user/hive-old, create an encryption zone at /user/hive, and then distcp all the data from /user/hive-old

to /user/hive.

Additionally, in Cloudera Manager, configure the Hive Scratch Directory (hive.exec.scratchdir) to be inside the
encryption zone by setting it to /user/hive/tmp, ensuring the permissions are 1777 on /user/hive/tmp.

Multiple Encryption Zones

With this configuration, you can use encrypted databases or tables with different encryption keys. The only limitation
is that in order to read data from read-only encrypted tables, users must have access to a temporary directory which
is encrypted with at least as strong encryption as the table.

For example, you can configure two encrypted tables, ezTbl1 and ezTbl2. Create two new encryption zones,
/data/ezTbl1 and /data/ezTbl2. Load data to the tables in Hive as usual using LOAD statements. See the Changed
Behavior after HDFS Encryption is Enabled section below for more information.

Other Encrypted Directories

• LOCALSCRATCHDIR: TheMapJoin optimization inHivewrites HDFS tables out to a local directory and thenuploads
them to the distributed cache. If youwant to enable encryption, youwill either need to disableMapJoin or encrypt
the local Hive Scratch directory (hive.exec.local.scratchdir).

• DOWNLOADED_RESOURCES_DIR: Jars which are added to a user session and stored in HDFS are downloaded to
hive.downloaded.resources.dir. If you want these Jar files to be encrypted, configure
hive.downloaded.resources.dir to be part of an encryption zone. This directory is local to the HiveServer2.

• NodeManager Local Directory List: Since Hive stores Jars and MapJoin files in the distributed cache, if you'd like
to use MapJoin or encrypt Jars and other resource files, the YARN configuration property, NodeManager Local
Directory List (yarn.nodemanager.local-dirs), must be configured to a set of encrypted local directories on
all nodes.

Alternatively, you can disable MapJoin by setting hive.auto.convert.join to false.

Changed Behavior after HDFS Encryption is Enabled

• Loading data from one encryption zone to another will result in a copy of the data. Distcp will be used to speed
up the process if the size of the files being copied is higher than the value specified by
HIVE_EXEC_COPYFILE_MAXSIZE. Theminimumsize limit forHIVE_EXEC_COPYFILE_MAXSIZE is 32MB,which
can be modified by changing the value for the hive.exec.copyfile.maxsize configuration property.

• When loading data to encrypted tables, Cloudera strongly recommends using a landing zone inside the same
encryption zone as the table.

– Example 1: Loading unencrypted data to an encrypted table - There are 2 approaches to doing this.

– If you're loading new unencrypted data to an encrypted table, just load the data using the LOAD DATA
... statement. Since the source data does not reside inside the encryption zone, the LOAD statement
will result in a copy. This is why Cloudera recommends landing data (that you expect to encrypt) inside
the destination encryption zone. However, this approach may use distcp to speed up the copying
process if your data is inside HDFS.

206 | Cloudera Security

Encryption

– If the data to be loaded is already inside a Hive table, you can create a new table with a LOCATION inside
an encryption zone as follows:

CREATE TABLE encrypted_table [STORED AS] LOCATION ... AS SELECT * FROM <unencrypted_table>

Note that the location specified in the CREATE TABLE statement above needs to be inside an encryption
zone. Creating a table pointing LOCATION to an unencrypted directory will not encrypt your source data.
You must copy your data to an encryption zone, and then point LOCATION to that encryption zone.

– Example 2: Loading encrypted data to an encrypted table - If the data to be loaded is already encrypted,
use the CREATE TABLE statement pointing LOCATION to the encrypted source directory where your data
is. This is the fastest way to create encrypted tables.

CREATE TABLE encrypted_table [STORED AS] LOCATION ... AS SELECT * FROM
<encrypted_source_directory>

• Users reading data from encrypted tables which are read-only, must have access to a temp directory which is
encrypted with at least as strong encryption as the table.

• Temp data is now written to a directory named .hive-staging within each table or partition
• Previously, an INSERT OVERWRITE on a partitioned table inherited permissions for new data from the existing

partition directory. With encryption enabled, permissions are inherited from the table.

Impala

Recommendations

• If HDFS encryption is enabled, configure Impala to encrypt data spilled to local disk.

• Impala does not support the LOAD DATA statement when the source and destination are in different encryption
zones. If you need to use LOAD DATA, copy the data to the table's encryption zone prior to running the statement.

• Use Cloudera Navigator to lock down the local directory where Impala UDFs are copied during execution. By
default, Impala copies UDFs into /tmp, and you can configure this location through the --local_library_dir
startup flag for the impalad daemon.

• Limit the rename operations for internal tables once encryption zones are set up. Impala cannot do an ALTER
TABLE RENAME operation to move an internal table from one database to another, if the root directories for
those databases are in different encryption zones. If the encryption zone covers a table directory but not the
parent directory associated with the database, Impala cannot do an ALTER TABLE RENAME operation to rename
an internal table even within the same database.

• Avoid structuring partitioned tables where different partitions reside in different encryption zones, or where any
partitions reside in an encryption zone that is different from the root directory for the table. Impala cannot do an
INSERT operation into any partition that is not in the same encryption zone as the root directory of the overall
table.

Steps

Start every impalad process with the --disk_spill_encryption=true flag set. This encrypts all spilled data using
AES-256-CFB. Set this flag using the Impala service configuration property, Impala Daemon Command Line Argument
Advanced Configuration Snippet (Safety Valve), found under Impala Daemon Default Group > Advanced.

Important: Impala does not selectively encrypt data based on whether the source data is already
encrypted in HDFS. This will result in atmost 15 percent performance degradationwhen data is spilled.

Cloudera Security | 207

Encryption

HBase

Recommendations

Make /hbase an encryption zone. Do not create encryption zones as subdirectories under /hbase, as HBase may
need to rename files across those subdirectories.

Steps

On a cluster without HBase currently installed, create the /hbase directory and make that an encryption zone.

On a cluster with HBase already installed, perform the following steps:

1. Stop the HBase service.
2. Move data from the /hbase directory to /hbase-tmp.
3. Create an empty /hbase directory and make it an encryption zone.
4. Distcp all data from /hbase-tmp to /hbase preserving user-group permissions and extended attributes.
5. Start the HBase service and verify that it is working as expected.
6. Remove the /hbase-tmp directory.

Search

Recommendations

Make /solr an encryption zone.

Steps

On a cluster without Solr currently installed, create the /solr directory andmake that an encryption zone. On a cluster
with Solr already installed, create an empty /solr-tmp directory, make /solr-tmp an encryption zone, distcp all
data from /solr into /solr-tmp, remove /solr and rename /solr-tmp to /solr.

Sqoop

Recommendations

• For Hive support: Ensure that you are using Sqoop with the --target-dir parameter set to a directory that is
inside the Hive encryption zone. For more details, see Hive on page 205

• For append/incremental support:Make sure that the sqoop.test.import.rootDir property points to the
same encryption zone as the above --target-dir argument.

• For HCatalog support: No special configuration should be required

Hue

Recommendations

Make /user/hue an encryption zone since that's where Oozie workflows and other Hue specific data are stored by
default.

Steps

On a cluster without Hue currently installed, create the /user/hue directory and make that an encryption zone. On
a cluster with Hue already installed, create an empty /user/hue-tmp directory, make /user/hue-tmp an encryption
zone, distcp all data from /user/hue into /user/hue-tmp, remove /user/hue and rename /user/hue-tmp to
/user/hue.

208 | Cloudera Security

Encryption

Spark

Recommendations

• By default, application event logs are stored at /user/spark/applicationHistory which can be made into
an encryption zone.

• Spark also optionally caches its jar file at /user/spark/share/lib (by default), but encrypting this directory is
not necessary.

• Spark does not encrypt shuffle data. However, if that is desired, you should configure Spark's local directory,
spark.local.dir (in Standalonemode), to reside on an encrypted disk. For YARNmode,make the corresponding
YARN configuration changes.

MapReduce and YARN
MapReduce v1

Recommendations

MRv1 stores both history and logs on local disks by default. Even if you do configure history to be stored on HDFS, the
files are not renamed. Hence, no special configuration is required.

MapReduce v2 (YARN)

Recommendations

Make /user/history a single encryption zone, since history files are moved between the intermediate and done
directories, and HDFS encryption does not allow moving encrypted files across encryption zones.

Steps

On a cluster with MRv2 (YARN) installed, create the /user/history directory and make that an encryption zone. If
/user/history already exists and is not empty, create an empty /user/history-tmp directory, make
/user/history-tmp an encryption zone,distcp all data from/user/history into/user/history-tmp, remove
/user/history and rename /user/history-tmp to /user/history.

HDFS Encryption Troubleshooting

This topic contains HDFS Encryption-specific troubleshooting information in the form of issues you might face when
encrypting HDFS files/directories and their workarounds.

Retrieval of encryption keys fails

Description
You see the following error when trying to list encryption keys

user1@example-sles-4:~> hadoop key list
Cannot list keys for KeyProvider: KMSClientProvider[https:
//example-sles-2.example.com:16000/kms/v1/]: Retrieval of all keys failed.

Solution
Make sure your truststore has been updated with the relevant certificate(s), such as the Key Trustee server certificate.

DistCp between unencrypted and encrypted locations fails

Description
By default, DistCp compares checksums provided by the filesystem to verify that data was successfully copied to the
destination. However, when copying between unencrypted and encrypted locations, the filesystem checksums will
not match since the underlying block data is different.

Cloudera Security | 209

Encryption

Solution
Specify the -skipcrccheck and -update distcp flags to avoid verifying checksums.

Cannot move encrypted files to trash

Description

With HDFS encryption enabled, you cannot move encrypted files or directories to the trash directory.

Solution

To remove encrypted files/directories, use the following commandwith the -skipTrash flag specified to bypass trash.

rm -r -skipTrash /testdir

NameNode - KMS communication fails after long periods of inactivity

Description

Encrypted files and encryption zones cannot be created if a long period of time (by default, 20 hours) has passed since
the last time the KMS and NameNode communicated.

Solution

Important: Upgrading your cluster to the latest CDH 5 release will fix this problem. For instructions,
see Upgrading from an Earlier CDH 5 Release to the Latest Release.

For lower CDH 5 releases, there are two possible workarounds to this issue :

• You can increase the KMS authentication token validity period to a very high number. Since the default value is
10 hours, this bug will only be encountered after 20 hours of no communication between the NameNode and the
KMS. Add the following property to the kms-site.xmlSafety Valve:

<property>
<name>hadoop.kms.authentication.token.validity</name>
<value>SOME VERY HIGH NUMBER</value>
</property>

• You can switch the KMS signature secret provider to the string secret provider by adding the following property
to the kms-site.xml Safety Valve:

<property>
<name>hadoop.kms.authentication.signature.secret</name>
<value>SOME VERY SECRET STRING</value>
</property>

Configuring Encrypted HDFS Data Transport
This topic describes how to configure encrypted HDFS data transport using both, ClouderaManager, and the command
line.

Using Cloudera Manager

Minimum Required Role: Full Administrator

To enable encryption of data transfered between DataNodes and clients, and among DataNodes, proceed as follows:

1. Enable Hadoop security using Kerberos.
2. Select the HDFS service.
3. Click the Configuration tab.

210 | Cloudera Security

Encryption

4. Expand the Service-Wide category and click the Security subcategory. Configure the following properties:

DescriptionProperty

Check this field to enable wire encryption.Enable Data Transfer
Encryption

Optionally configure the algorithm used to encrypt data.Data Transfer Encryption
Algorithm

Select privacy.Hadoop RPC Protection

5. Click Save Changes.
6. Restart the HDFS service.

Using the Command Line

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.3.x . If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

To enable encrypted data transport using the command line, proceed as follows:

1. Enable the Hadoop Security using Kerberos, following these instructions.
2. Set the optional RPC encryption by setting hadoop.rpc.protection to "privacy" in the core-site.xml file

in both client and server configurations.

Note:

If RPC encryption is not enabled, transmission of other HDFS data is also insecure.

3. Set dfs.encrypt.data.transfer to true in the hdfs-site.xml file on all server systems.
4. Restart all daemons.

Cloudera Security | 211

Encryption

http://www.cloudera.com/content/support/en/documentation.html

Authorization

Authorization is concerned with who or what has access or control over a given resource or service. Since Hadoop
merges together the capabilities of multiple varied, and previously separate IT systems as an enterprise data hub that
stores andworks on all datawithin an organization, it requiresmultiple authorization controls with varying granularities.
In such cases, Hadoop management tools simplify setup and maintenance by:

• Tying all users to groups, which can be specified in existing LDAP or AD directories.
• Providing role-based access control for similar interaction methods, like batch and interactive SQL queries. For

example, Apache Sentry permissions apply to Hive (HiveServer2) and Impala.

CDH currently provides the following forms of access control:

• Traditional POSIX-style permissions for directories and files, where each directory and file is assigned a single
owner and group. Each assignment has a basic set of permissions available; file permissions are simply read, write,
and execute, and directories have an additional permission to determine access to child directories.

• Extended Access Control Lists (ACLs) for HDFS that provide fine-grained control of permissions for HDFS files by
allowing you to set different permissions for specific named users or named groups.

• Apache HBase uses ACLs to authorize various operations (READ, WRITE, CREATE, ADMIN) by column, column
family, and column family qualifier. HBase ACLs are granted and revoked to both users and groups.

• Role-based access control with Apache Sentry.As of ClouderaManager 5.1.x, Sentry permissions can be configured
using either policy files or the database-backed Sentry service.

– The Sentry service is the preferred way to set up Sentry permissions. See The Sentry Service on page 217 for
more information.

– For the policy file approach to configuring Sentry, see Sentry Policy File Authorization on page 240.

Cloudera Manager User Roles
Minimum Required Role: User Administrator (also provided by Full Administrator)

Access to Cloudera Manager features is controlled by user accounts. For more information about user accounts, see
Cloudera Manager User Accounts. Among the properties of a user account is the user role, which determines the
Cloudera Manager features visible to the user and the actions the user can perform. All the tasks in the Cloudera
Manager documentation indicate which role is required to perform the task.

Note: The full set of roles are available with Cloudera Enterprise; Cloudera Express supports only the
Read-Only and Full Administrator roles. When a Cloudera Enterprise Data Hub Edition trial license
expires, only userswith Read-Only and Full Administrator roles are allowed to log in. A Full Administrator
must change the role of any other user to Read-Only or Full Administrator before that user can log
in.

User Roles

A Cloudera Manager user account can be assigned one of the following roles with associated permissions:

• Auditor

– View data in Cloudera Manager.
– View audit events.

• Read-Only - Allows the user to:

– View data in Cloudera Manager.
– View service and monitoring information.

212 | Cloudera Security

Authorization

The Read-Only role does not allow the user to add services or take any actions that affect the state of the cluster.

• Limited Operator

– View data in Cloudera Manager.
– View service and monitoring information.
– Decommission hosts (except hosts running Cloudera Management Service roles).

The Limited Operator role does not allow the user to add services or take any other actions that affect the state
of the cluster.

• Operator

– View data in Cloudera Manager.
– View service and monitoring information.
– Stop, start, and restart clusters, services (except the Cloudera Management Service), and roles.
– Decommission and recommission hosts (except hosts running Cloudera Management Service roles).
– Decommission and recommission roles (except Cloudera Management Service roles).
– Start, stop, and restart KMS.

The Operator role does not allow the user to add services, roles, or hosts, or take any other actions that affect
the state of the cluster.

• Configurator

– View data in Cloudera Manager.
– Perform all Operator operations.
– Configure services (except the Cloudera Management Service).
– Enter and exit maintenance mode.
– Manage dashboards (including Cloudera Management Service dashboards).

• Cluster Administrator - View all data and perform all actions except the following:

– Administer Cloudera Navigator.
– View replication schedules and snapshot policies.
– View audit events.
– Manage user accounts and configuration of external authentication.

• BDR Administrator

– View data in Cloudera Manager.
– View service and monitoring information.
– Perform replication and define snapshot operations.

• Navigator Administrator

– View data in Cloudera Manager.
– View service and monitoring information.
– Administer Cloudera Navigator.
– View audit events.

• User Administrator - Allows the user to:

– View data in Cloudera Manager.
– View service and monitoring information.
– Manage user accounts and configuration of external authentication.

• Key Administrator

– View data in Cloudera Manager.
– Configure HDFS encryption, administer Key Trustee Server, and manage encryption keys.

Cloudera Security | 213

Authorization

– Start, stop, and restart KMS

• Full Administrator - Full Administrators have permissions to view all data and do all actions, including reconfiguring
and restarting services, and administering other users.

Determining the Role of the Currently Logged in User

1. Click the logged-in username at the far right of the top navigation bar. The role displays right under the username.
For example:

Removing the Full Administrator User Role

In some organizations, security policies may prohibit the use of the Full Administrator role. The Full Administrator role
is created during Cloudera Manager installation, but you can remove it as long as you have at least one remaining user
account with User Administrator privileges.

To remove the Full Administrator user role, perform the following steps.

1. Add at least one user account with User Administrator privileges, or ensure that at least one such user account
already exists.

2. Ensure that there is only a single user account with Full Administrator privileges.
3. While logged in as the single remaining Full Administrator user, select your own user account and either delete

it or assign it a new user role.

Warning: After you delete the last Full Administrator account, you will be logged out immediately
and will not be able to log in unless you have access to another user account. Also, it will no longer
be possible to create or assign Full Administrators.

A consequence of removing the Full Administrator role is that some tasks may require collaboration between two or
more users with different user roles. For example:

• If the machine that the Cloudera Navigator roles are running on needs to be replaced, the Cluster Administrator
will want to move all the roles running on that machine to a different machine. The Cluster Administrator can
move any non-Navigator roles by deleting and re-adding them, but would need a Navigator Administrator to
perform the stop, delete, add, and start actions for the Cloudera Navigator roles.

• In order to take HDFS snapshots, snapshots must be enabled on the cluster by a Cluster Administrator, but the
snapshots themselves must be taken by a BDR Administrator.

Cloudera Navigator User Roles
User roles determine the Cloudera Navigator features visible to the user and the actions the user can perform.

User Roles

A Cloudera Navigator user account can be assigned one of the following user roles:

• Lineage Viewer - Search for entities, view metadata, and view lineage.
• Auditing Viewer - View audit events and create audit reports.
• Policy Viewer - View metadata policies.
• Metadata Administrator - Search for entities, view metadata, view lineage, and edit metadata.
• Policy Administrator - View, create, update, and delete metadata policies.
• User Administrator - Administer role assignments to groups.

214 | Cloudera Security

Authorization

• Full Administrator - Full access, including role assignments to groups.

The user roles and associated permissions are summarized as follows:

Table 11: Cloudera Navigator User Roles

Administer
Role Group
Mapping

Write
Policies

Read
Policies

Write
Metadata
(Edit)

Read
Metadata
(Search)

Read
Lineage

Read
Audit

User
Role

Full
Administrator

User
Administrator

Auditing
Viewer

Lineage
Viewer

Metadata
Administrator

Policy
Viewer

Policy
Administrator

Determining the Roles of the Currently Logged in User

To display the Cloudera Navigator user roles for the currently logged-in user:

1. Click the username in the upper right.
2. ClickMy roles.
3. The Roles pop-upwindowwill appear, displaying all roles assigned to the LDAP or Active Directory groups to which

the current user belongs.

The selection of menus displayed in the upper right indicates the user's access to Cloudera Navigator features, as
determined by the roles associated with the user's LDAP or Active Directory groups. For example, a Full Administrator
will see the Search, Audits, Policies, and Administrationmenus, while a user with the Policy Administrator role will
only see the Search and Policiesmenus.

Enabling HDFS Extended ACLs
As of CDH 5.1, HDFS supports POSIX Access Control Lists (ACLs), as well as the traditional POSIX permissions model
already supported. ACLs control access of HDFS files by providing a way to set different permissions for specific named
users or named groups.

Enabling ACLs

By default, ACLs are disabled on a cluster. To enable them, set the dfs.namenode.acls.enabled property to true
in the NameNode's hdfs-site.xml.

Cloudera Security | 215

Authorization

Important: Ensure that all users and groups resolve on the NameNode for ACLs to work as expected.

<property>
<name>dfs.namenode.acls.enabled</name>
<value>true</value>
</property>

Commands

To set and get file access control lists (ACLs), use the file system shell commands, setfacl and getfacl.

getfacl

hdfs dfs -getfacl [-R] <path>

<!-- COMMAND OPTIONS
<path>: Path to the file or directory for which ACLs should be listed.
-R: Use this option to recursively list ACLs for all files and directories.
-->

Examples:

<!-- To list all ACLs for the file located at /user/hdfs/file -->
hdfs dfs -getfacl /user/hdfs/file

<!-- To recursively list ACLs for /user/hdfs/file -->
hdfs dfs -getfacl -R /user/hdfs/file

setfacl

hdfs dfs -setfacl [-R] [-b|-k -m|-x <acl_spec> <path>]|[--set <acl_spec> <path>]

<!-- COMMAND OPTIONS
<path>: Path to the file or directory for which ACLs should be set.
-R: Use this option to recursively list ACLs for all files and directories.
-b: Revoke all permissions except the base ACLs for user, groups and others.
-k: Remove the default ACL.
-m: Add new permissions to the ACL with this option. Does not affect existing permissions.
-x: Remove only the ACL specified.
<acl_spec>: Comma-separated list of ACL permissions.
--set: Use this option to completely replace the existing ACL for the path specified.
 Previous ACL entries will no longer apply.
-->

Examples:

<!-- To give user ben read & write permission over /user/hdfs/file -->
hdfs dfs -setfacl -m user:ben:rw- /user/hdfs/file

<!-- To remove user alice's ACL entry for /user/hdfs/file -->
hdfs dfs -setfacl -x user:alice /user/hdfs/file

<!-- To give user hadoop read & write access, and group or others read-only access -->
hdfs dfs -setfacl --set user::rw-,user:hadoop:rw-,group::r--,other::r-- /user/hdfs/file

More details about using this feature can be found in the HDFS Permissions Guide on the Apache website.

216 | Cloudera Security

Authorization

http://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists

The Sentry Service

Important: This is the documentation for the Sentry service introduced in CDH 5.1. If you want to
use Sentry's previous policy file approach to secure your data, see Sentry Policy File Authorization on
page 240.

The Sentry service is a RPC server that stores the authorization metadata in an underlying relational database and
provides RPC interfaces to retrieve and manipulate privileges. It supports secure access to services using Kerberos.
The service serves authorization metadata from the database backed storage; it does not handle actual privilege
validation. The Hive and Impala services are clients of this service and will enforce Sentry privileges when configured
to use Sentry.

The motivation behind introducing a new Sentry service is to make it easier to handle user privileges than the existing
policy file approach. Providing a database instead, allows you to use the more traditional GRANT/REVOKE statements
to modify privileges.

For more information on installing, upgrading and configuring the Sentry service, see:

Prerequisites

• CDH 5.1.x (or higher) managed by Cloudera Manager 5.1.x (or higher). See the Cloudera Manager Administration
Guide and Cloudera Installation Guide for instructions.

• HiveServer2 and the Hive Metastore running with strong authentication. For HiveServer2, strong authentication
is either Kerberos or LDAP. For the HiveMetastore, only Kerberos is considered strong authentication (to override,
see Securing the Hive Metastore on page 230).

• Impala 1.4.0 (or higher) runningwith strong authentication.With Impala, either Kerberos or LDAP can be configured
to achieve strong authentication.

• Implement Kerberos authentication on your cluster. For instructions, see Enabling Kerberos Authentication Using
the Wizard on page 17.

Terminologies

• An object is an entity protected by Sentry's authorization rules. The objects supported in the current release are
server, database, table, and URI.

• A role is a collection of rules for accessing a given Hive object.
• A privilege is granted to a role to govern access to an object. Supported privileges are:

Table 12: Valid privilege types and the objects they apply to

ObjectPrivilege

SEVER, DB, TABLEINSERT

DB, TABLESELECT

SERVER, TABLE, DB, URIALL

• A user is an entity that is permitted by the authentication subsystem to access the Hive service. This entity can
be a Kerberos principal, an LDAP userid, or an artifact of some other pluggable authentication system supported
by HiveServer2.

• A group connects the authentication system with the authorization system. It is a collection of one or more users
who have been granted one or more authorization roles. Sentry allows a set of roles to be configured for a group.

• A configured group provider determines a user’s affiliationwith a group. The current release supports HDFS-backed
groups and locally configured groups.

Cloudera Security | 217

Authorization

Privilege Model

Sentry uses a role-based privilege model with the following characteristics.

• Allows any user to execute show function, desc function, and show locks.
• Allows the user to see only those tables and databases for which this user has privileges.
• Requires a user to have the necessary privileges on the URI to execute HiveQL operations that take in a location.

Examples of such operations include LOAD, IMPORT, and EXPORT.

Important:

• When Sentry is enabled, you must use Beeline to execute Hive queries. Hive CLI is not supported
with Sentry.

• When Sentry is enabled, a user with no privileges on a database will not be allowed to connect
to HiveServer2. This is because the use <database> command is now executed as part of the
connection to HiveServer2, which is why the connection fails. See HIVE-4256.

For more information, see Appendix: Authorization Privilege Model for Hive and Impala on page 220.

User to Group Mapping

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Group mappings in Sentry can be summarized as in the figure below.

218 | Cloudera Security

Authorization

https://issues.apache.org/jira/browse/HIVE-4256

The Sentry service only uses HadoopUserGroup mappings. You can refer Configuring LDAP Group Mappings on page
125 for details on configuring LDAP group mappings in Hadoop.

Important: Cloudera strongly recommends against using Hadoop's LdapGroupsMapping provider.
LdapGroupsMapping should only be used in cases where OS-level integration is not possible.
Production clusters require an identity provider that works well with all applications, not just Hadoop.
Hence, often the preferred mechanism is to use tools such as SSSD, VAS or Centrify to replicate LDAP
groups.

Cloudera Security | 219

Authorization

Appendix: Authorization Privilege Model for Hive and Impala

Privileges can be granted on different objects in the Hive warehouse. Any privilege that can be granted is associated
with a level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the base object
automatically inherits it. For instance, if a user has ALL privileges on the database scope, then (s)he has ALL privileges
on all of the base objects contained within that scope.

Important:

Note that because of this object hierarchy, it is possible for a user to read data from a database that
the user does not have access to. For example, you have two roles:

• role1 - full access to database1 and database2
• role2 - full access to database1, no access to database2

A user with role1 can create a view in database1 based on a table in database2. Because role2 has
access to database1, a user with role2 can read the data in that view from database2.

Object Hierarchy in Hive

Server
 URI
 Database
 Table
 Partition
 Columns
 View
 Index
 Function/Routine
 Lock

Table 13: Valid privilege types and objects they apply to

ObjectPrivilege

DB, TABLEINSERT

DB, TABLESELECT

SERVER, TABLE, DB, URIALL

Note that when you grant ALL on a URI, those permissions extend into the subdirectories in that path. For example, if
a role has ALL on the following URI:

• hdfs://host:port/directory_A/directory_B

That role will also have ALL on these directories:

• hdfs://host:port/directory_A/directory_B/directory_C

• hdfs://host:port/directory_A/directory_B/directory_C/directory_D

• hdfs://host:port/directory_A/directory_B/directory_E

URI permissions do not affect HDFS ACL's.

Table 14: Privilege hierarchy

Privileges on container
object that implies
privileges on the base
object

Container object that
contains the base object

Granular privileges on
object

Base Object

ALLSERVERALLDATABASE

220 | Cloudera Security

Authorization

Privileges on container
object that implies
privileges on the base
object

Container object that
contains the base object

Granular privileges on
object

Base Object

ALLDATABASEINSERTTABLE

ALLDATABASESELECTTABLE

ALLDATABASESELECTVIEW

Table 15: Privilege table for Hive & Impala operations

OthersURIPrivilegesScopeOperation

ALLSERVERCREATE DATABASE

ALLDATABASEDROP DATABASE

ALLDATABASECREATE TABLE

ALLTABLEDROP TABLE

SELECT on TABLEALLDATABASE; SELECT on
TABLE

CREATE VIEW

ALLVIEW/TABLEDROP VIEW

ALLTABLEALTER TABLE .. ADD
COLUMNS

ALLTABLEALTER TABLE .. REPLACE
COLUMNS

ALLTABLEALTER TABLE .. CHANGE
column

ALLTABLEALTER TABLE .. RENAME

ALLTABLEALTER TABLE .. SET
TBLPROPERTIES

ALLTABLEALTER TABLE .. SET
FILEFORMAT

URIALLTABLEALTER TABLE .. SET
LOCATION

ALLTABLEALTER TABLE .. ADD
PARTITION

URIALLTABLEALTER TABLE .. ADD
PARTITION location

ALLTABLEALTER TABLE .. DROP
PARTITION

ALLTABLEALTER TABLE .. PARTITION
SET FILEFORMAT

SELECT/INSERTTABLESHOW CREATE TABLE

SELECT/INSERTTABLESHOW PARTITIONs

SELECT/INSERTTABLEDESCRIBE TABLE

Cloudera Security | 221

Authorization

OthersURIPrivilegesScopeOperation

URIINSERTTABLELOAD DATA

SELECTTABLESELECT

INSERTTABLEINSERT OVERWRITE TABLE

SELECT on TABLEALLDATABASE; SELECT on
TABLE

CREATE TABLE .. AS SELECT

AnyUSE <dbName>

ALLSERVERCREATE FUNCTION

ALLTABLEALTER TABLE .. SET
SERDEPROPERTIES

ALLTABLEALTER TABLE .. PARTITION
SET SERDEPROPERTIES

Hive-Only Operations

URIINSERTTABLEINSERT OVERWRITE
DIRECTORY

SELECT + INSERTTABLEAnalyze TABLE

URIALLDATABASEIMPORT TABLE

URISELECTTABLEEXPORT TABLE

ALLTABLEALTER TABLE TOUCH

ALLTABLEALTER TABLE TOUCH
PARTITION

ALLTABLEALTER TABLE .. CLUSTERED
BY SORTED BY

ALLTABLEALTER TABLE ..
ENABLE/DISABLE

ALLTABLEALTER TABLE .. PARTITION
ENABLE/DISABLE

ALLTABLEALTER TABLE .. PARTITION.
. RENAME TO PARTITION

ALLTABLEMSCK REPAIR TABLE

ALLDATABASEALTER DATABASE

SELECT/INSERTDATABASEDESCRIBE DATABASE

SELECT/INSERTTABLESHOW COLUMNS

ALLTABLECREATE INDEX

ALLTABLEDROP INDEX

SELECT/INSERTTABLESHOW INDEXES

Allowed only for Sentry
admin users

GRANT PRIVILEGE

Allowed only for Sentry
admin users

REVOKE PRIVILEGE

222 | Cloudera Security

Authorization

OthersURIPrivilegesScopeOperation

Allowed only for Sentry
admin users

SHOW GRANT

SELECT/INSERTTABLESHOW TBLPROPERTIES

SELECT/INSERTTABLEDESCRIBE TABLE ..
PARTITION

Not AllowedADD JAR

Not AllowedADD FILE

Not AllowedDFS

Impala-Only Operations

SELECTTABLEEXPLAIN

ALLSERVERINVALIDATE METADATA

SELECT/INSERTTABLEINVALIDATE METADATA
<table name>

SELECT/INSERTTABLEREFRESH <table name>

ALLSERVERDROP FUNCTION

ALLTABLECOMPUTE STATS

Installing and Upgrading the Sentry Service

This topic describes how to install and upgrade the Sentry service. If you are migrating from Sentry policy files to the
database-backed Sentry service, see Migrating from Sentry Policy Files to the Sentry Service on page 226.

Adding the Sentry Service

Use one of the following sections to add/install the Sentry service:

Adding the Sentry Service Using Cloudera Manager

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

1. On the Home page, click

to the right of the cluster name and select Add a Service. A list of service types display. You can add one type of
service at a time.

2. Select the Sentry service and click Continue.
3. Select the radio button next to the services on which the new service should depend and click Continue.
4. Customize the assignment of role instances to hosts. The wizard evaluates the hardware configurations of the

hosts to determine the best hosts for each role. These assignments are typically acceptable, but you can reassign
role instances to hosts of your choosing, if desired.

Click a field below a role to display a dialog box containing a pageable list of hosts. If you click a field containing
multiple hosts, you can also select All Hosts to assign the role to all hosts or Custom to display the pageable hosts
dialog box.

The following shortcuts for specifying hostnames are supported:

• Range of hostnames (without the domain portion)

Cloudera Security | 223

Authorization

Matching HostsRange Definition

10.1.1.1, 10.1.1.2, 10.1.1.3, 10.1.1.410.1.1.[1-4]

host1.company.com, host2.company.com, host3.company.comhost[1-3].company.com

host07.company.com, host08.company.com, host09.company.com,
host10.company.com

host[07-10].company.com

• IP addresses
• Rack name

Click the View By Host button for an overview of the role assignment by host ranges.

5. Configure database settings. You can use either an embedded or a custom database.

a. Choose the database type:

• Leave the default setting of Use Embedded Database to have Cloudera Manager create and configure
required databases. Make a note of the auto-generated passwords.

• Select Use Custom Databases to specify external databases.

1. Enter the database host, database type, database name, username, and password for the database
that you created when you set up the database. See the Creating Databases documentation for
Sentry Server database requirements.

b. Click Test Connection to confirm that Cloudera Manager can communicate with the database using the
information you have supplied. If the test succeeds in all cases, click Continue; otherwise check and correct
the information you have provided for the database and then try the test again. (For some servers, if you are
using the embedded database, you will see a message saying the database will be created at a later step in
the installation process.) The Review Changes page displays.

6. Click Continue then click Finish. You are returned to the Home page.
7. Verify the new service is started properly by checking the health status for the new service. If the Health Status

is Good, then the service started properly.
8. To use the Sentry service, begin by enabling Hive and Impala for the service.

Installing Sentry Using the Command Line

Use the following the instructions, depending on your operating system, to install the latest version of Sentry.

Important: Configuration files

• If you install a newer version of a package that is already on the system, configuration files that
you have modified will remain intact.

• If you uninstall a package, the packagemanager renames any configuration files you havemodified
from <file> to <file>.rpmsave. If you then re-install the package (probably to install a new
version) the packagemanager creates a new <file>with applicable defaults. You are responsible
for applying any changes captured in the original configuration file to the new configuration file.
In the case of Ubuntu and Debian upgrades, you will be prompted if you have made changes to
a file for which there is a new version; for details, see Automatic handling of configuration files
by dpkg.

CommandOS

$ sudo yum install sentryRHEL

$ sudo zypper install sentrySLES

224 | Cloudera Security

Authorization

http://www.debian.org/doc/debian-policy/ap-pkg-conffiles.html
http://www.debian.org/doc/debian-policy/ap-pkg-conffiles.html

CommandOS

$ sudo apt-get update;
$ sudo apt-get install sentry

Ubuntu or Debian

Starting the Sentry Service

Perform the following steps to start the Sentry service on your cluster.

1. Set the SENTRY_HOME and HADOOP_HOME parameters.
2. Create the Sentry database schema using the Sentry schematool. Sentry, by default, does not initialize the schema.

The schematool is a built-inway for you to deploy the backend schema required by the Sentry service. For example,
the following command uses the schematool to initialize the schema for a MySQL database.

bin/sentry --command schema-tool --conffile <sentry-site.xml> --dbType mysql --initSchema

Alternatively, you can set the sentry.verify.schema.version configuration property to false. However,
this is not recommended.

3. Start the Sentry service.

bin/sentry --command service --conffile <sentry-site.xml>

Upgrading the Sentry Service

Use one of the following sections to upgrade the Sentry service:

Upgrading the Sentry Service Using Cloudera Manager

If you have a cluster managed by Cloudera Manager, go to Upgrading CDH and Managed Services Using Cloudera
Manager and follow the instructions depending on the version of CDH you are upgrading to. If you are upgrading from
CDH 5.1, you will notice an extra step in the procedure to upgrade the Sentry database schema.

For command-line instructions, continue reading.

Upgrading the Sentry Service Using the Command Line

1. Stop the Sentry service by identifying the PID of the Sentry Service and use the kill command to end the process:

ps -ef | grep sentry
kill -9 <PID>

Replace <PID> with the PID of the Sentry Service.
2. Remove the previous version of Sentry.

CommandOS

$ sudo yum remove sentryRHEL

$ sudo zypper remove sentrySLES

$ sudo apt-get remove sentryUbuntu or Debian

3. Install the new version of Sentry.

CommandOS

$ sudo yum install sentryRHEL

$ sudo zypper install sentrySLES

$ sudo apt-get update;
$ sudo apt-get install sentry

Ubuntu or Debian

Cloudera Security | 225

Authorization

4. (From CDH 5.1 to CDH 5.x) Upgrade Sentry Database Schema

Use the Sentry schematool to upgrade the database schema as follows:

bin/sentry --command schema-tool --conffile <sentry-site.xml> --dbType <db-type>
--upgradeSchema

Where <db-type> should be either mysql, postgres or oracle.

5. Start the Sentry Service

a. Set the SENTRY_HOME and HADOOP_HOME parameters.
b. Run the following command:

bin/sentry --command service --conffile <sentry-site.xml>

Migrating from Sentry Policy Files to the Sentry Service

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

The following steps describe how you can upgrade from Sentry's policy file-based approach to the newdatabase-backed
Sentry service.

1. If you haven't already done so, upgrade your cluster to the latest version of CDH and Cloudera Manager. Refer
the Cloudera Manager Administration Guide for instructions.

2. Disable the existing Sentry policy file for any Hive or Impala services on the cluster. To do this:

a. Navigate to the Hive or Impala service.
b. Click the Configuration tab.
c. Under the Service-Wide > Policy File Based Sentry category, uncheck the Enable Sentry Authorization using

Policy Files checkbox. Cloudera Manager will throw a validation error if you attempt to configure the Sentry
service while this property is checked.

d. Repeat for any remaining Hive or Impala services.

3. Add the new Sentry service to your cluster. For instructions, see Adding the Sentry Service on page 223.
4. To begin using the Sentry service, see Enabling the Sentry Service Using Cloudera Manager on page 226 and

Configuring Impala as a Client for the Sentry Service on page 229.
5. Use the command-line interface Beeline to issue grants to the Sentry service to match the contents of your old

policy file(s). For more details on the Sentry service and examples on using Grant/Revoke statements to match
your policy file, see Hive SQL Syntax for Use with Sentry on page 232.

Configuring the Sentry Service

This topic describes how to enable the Sentry service for Hive and Impala, and configuring the Hive metastore to
communicate with the service.

Enabling the Sentry Service Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Before Enabling the Sentry Service

• Ensure you satisfy all the Prerequisites on page 217 for the Sentry service.
• The Hive warehouse directory (/user/hive/warehouse or any path you specify as
hive.metastore.warehouse.dir in your hive-site.xml) must be owned by the Hive user and group.

– Permissions on the warehouse directory must be set as follows (see following Note for caveats):

– 771 on the directory itself (for example, /user/hive/warehouse)
– 771 on all subdirectories (for example, /user/hive/warehouse/mysubdir)

226 | Cloudera Security

Authorization

– All files and subdirectories should be owned by hive:hive

For example:

$ sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

Note:

• If you set hive.warehouse.subdir.inherit.perms to true in hive-site.xml,
the permissions on the subdirectories will be set when you set permissions on the
warehouse directory itself.

• If a user has access to any object in the warehouse, that user will be able to execute
use default. This ensures thatuse default commands issued by legacy applications
work when Sentry is enabled.

Important: These instructions override the recommendations in the Hive section of the CDH
5 Installation Guide.

• Disable impersonation for HiveServer2 in the Cloudera Manager Admin Console:

1. Go to the Hive service.
2. Click the Configuration tab.
3. Under the HiveServer2 role group, uncheck the HiveServer2 Enable Impersonation property, and click Save

Changes.

• If you are using MapReduce, enable the Hive user to submit MapReduce jobs.

1. Open the Cloudera Manager Admin Console and go to the MapReduce service.
2. Click the Configuration tab.
3. Under a TaskTracker role group go to the Security category.
4. Set theMinimum User ID for Job Submission property to zero (the default is 1000) and click Save Changes.
5. Repeat steps 1-4 for every TaskTracker role group for the MapReduce service that is associated with Hive, if

more than one exists.
6. Restart the MapReduce service.

• If you are using YARN, enable the Hive user to submit YARN jobs.

1. Open the Cloudera Manager Admin Console and go to the YARN service.
2. Click the Configuration tab.
3. Under a NodeManager role group go to the Security category.
4. Ensure the Allowed System Users property includes the hive user. If not, add hive and click Save Changes.
5. Repeat steps 1-4 for every NodeManager role group for the YARN service that is associated with Hive, if more

than one exists.
6. Restart the YARN service.

Important: Ensure you have unchecked the Enable Sentry Authorization using Policy Files
configuration property for both Hive and Impala under the Service-Wide > Policy File Based Sentry
category before you proceed.

Enabling the Sentry Service for Hive

1. Go to the Hive service.
2. Click the Configuration tab.

Cloudera Security | 227

Authorization

3. In the Service-Wide category, set the Sentry Service property to Sentry.
4. Restart the Hive service.

Enabling the Sentry Service for Impala

1. Enable the Sentry service for Hive (as instructed above).
2. Go to the Impala service.
3. Click the Configuration tab.
4. In the Service-Wide category, set the Sentry Service property to Sentry.
5. Restart Impala.

Enabling the Sentry Service for Hue
To interact with Sentry using Hue, enable the Sentry service as follows:

1. Enable the Sentry service for Hive and Impala (as instructed above).
2. Go to the Hue service.
3. Click the Configuration tab.
4. In the Service-Wide category, set the Sentry Service property to Sentry.
5. Restart Hue.

Enabling the Sentry Service Using the Command Line

Important:

• If you use Cloudera Manager, do not use these command-line instructions.
• This information applies specifically to CDH 5.3.x . If you use an earlier version of CDH, see the

documentation for that version located at Cloudera Documentation.

Before Enabling the Sentry Service

• The Hive warehouse directory (/user/hive/warehouse or any path you specify as
hive.metastore.warehouse.dir in your hive-site.xml) must be owned by the Hive user and group.

– Permissions on the warehouse directory must be set as follows (see following Note for caveats):

– 771 on the directory itself (for example, /user/hive/warehouse)
– 771 on all subdirectories (for example, /user/hive/warehouse/mysubdir)
– All files and subdirectories should be owned by hive:hive

For example:

$ sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

Note:

• If you set hive.warehouse.subdir.inherit.perms to true in hive-site.xml,
the permissions on the subdirectories will be set when you set permissions on the
warehouse directory itself.

• If a user has access to any object in the warehouse, that user will be able to execute
use default. This ensures thatuse default commands issued by legacy applications
work when Sentry is enabled.

Important: These instructions override the recommendations in the Hive section of the CDH
5 Installation Guide.

228 | Cloudera Security

Authorization

http://www.cloudera.com/content/support/en/documentation.html

• HiveServer2 impersonation must be turned off.
• If you are using MapReduce, you must enable the Hive user to submit MapReduce jobs. You can ensure that this

is true by setting the minimum user ID for job submission to 0. Edit the taskcontroller.cfg file and set
min.user.id=0.

If you are using YARN, you must enable the Hive user to submit YARN jobs, add the user hive to the
allowed.system.users configuration property. Edit the container-executor.cfg file and add hive to the
allowed.system.users property. For example,

allowed.system.users = nobody,impala,hive

Important: You must restart the cluster and HiveServer2 after changing these values.

Configuring HiveServer2 for the Sentry Service

Add the following properties to hive-site.xml to allow the Hive service to communicate with the Sentry service.

<property>
 <name>hive.security.authorization.task.factory</name>
 <value>org.apache.sentry.binding.hive.SentryHiveAuthorizationTaskFactoryImpl</value>
</property>
<property>
 <name>hive.server2.session.hook</name>
 <value>org.apache.sentry.binding.hive.HiveAuthzBindingSessionHook</value>
</property>
<property>
 <name>hive.sentry.conf.url</name>
 <value>file:///{{PATH/TO/DIR}}/sentry-site.xml</value>
</property>

Configuring the Hive Metastore for the Sentry Service

Add the following properties to hive-site.xml to allow the Hivemetastore to communicate with the Sentry service.

<property>
 <name>hive.metastore.client.impl</name>
 <value>org.apache.sentry.binding.metastore.SentryHiveMetaStoreClient</value>
 <description>Sets custom Hive metastore client which Sentry uses to filter out
metadata.</description>
</property>

<property>
 <name>hive.metastore.pre.event.listeners</name>
 <value>org.apache.sentry.binding.metastore.MetastoreAuthzBinding</value>
 <description>list of comma separated listeners for metastore events.</description>
</property>

<property>
 <name>hive.metastore.event.listeners</name>
 <value>org.apache.sentry.binding.metastore.SentryMetastorePostEventListener</value>

 <description>list of comma separated listeners for metastore, post
events.</description>
</property>

Configuring Impala as a Client for the Sentry Service

Set the following configuration properties in sentry-site.xml.

<property>
 <name>sentry.service.client.server.rpc-port</name>
 <value>3893</value>
</property>
<property>

Cloudera Security | 229

Authorization

 <name>sentry.service.client.server.rpc-address</name>
 <value>hostname</value>
</property>
<property>
 <name>sentry.service.client.server.rpc-connection-timeout</name>
 <value>200000</value>
</property>
<property>
 <name>sentry.service.security.mode</name>
 <value>none</value>
</property>

Youmust also add the following configuration properties to Impala's/etc/default/impala file. Formore information
, see Configuring Impala Startup Options through the Command Line.

• On the catalogd and the impalad.

--sentry_config=<absolute path to sentry service configuration file>

• On the impalad.

--server_name=<server name>

If the --authorization_policy_file flag is set, Impala will use the policy file-based approach. Otherwise,
the database-backed approach will be used to implement authorization.

Configuring Pig and HCatalog for the Sentry Service

Once you have the Sentry service up and running, and Hive has been configured to use the Sentry service, there are
some configuration changes you must make to your cluster to allow Pig, MapReduce (using HCatLoader, HCatStorer)
and WebHCat queries to access Sentry-secured data stored in Hive.

Since the Hive warehouse directory is owned by hive:hive, with its permissions set to 771, with these settings, other
user requests such as commands coming through Pig jobs, WebHCat queries, and MapReduce jobs, may fail. To give
these users access, perform the following configuration changes:

• Use HDFS ACLs to define permissions on a specific directory or file of HDFS. This directory/file is generally mapped
to a database, table, partition, or a data file.

• Users running these jobs should have the required permissions in Sentry to add new metadata or read metadata
from the Hive Metastore Server. For instructions on how to set up the required permissions, see Hive SQL Syntax
for Use with Sentry on page 232. You can use HiveServer2's command line interface, Beeline to update the Sentry
database with the user privileges.

Examples:

• A user who is using Pig HCatLoader will require read permissions on a specific table or partition. In such a case,
you can GRANT read access to the user in Sentry and set the ACL to read and execute, on the file being accessed.

• A user who is using Pig HCatStorer will require ALL permissions on a specific table. In this case, you GRANT ALL
access to the user in Sentry and set the ACL to write and execute, on the table being used.

Securing the Hive Metastore

It's important that the Hive metastore be secured. If you want to override the Kerberos prerequisite for the Hive
metastore, set thesentry.hive.testing.mode property totrue to allow Sentry toworkwithweaker authentication
mechanisms. Add the following property to the HiveServer2 and Hive metastore's sentry-site.xml:

<property>
 <name>sentry.hive.testing.mode</name>
 <value>true</value>
</property>

Impala does not require this flag to be set.

230 | Cloudera Security

Authorization

Warning: Cloudera strongly recommends against enabling this property in production. Use Sentry's
testing mode only in test environments.

You can also set the property in Cloudera Manager. Go to the Hive service and open the Configuration tab. Search for
the Hive Service Advanced Configuration Snippet (Safety Valve) for sentry-site.xml. Click the plus sign (+) to add a
new property with the following values:

• Name: sentry.hive.testing.mode
• Value: true

You canturn on Hive metastore security using the instructions in Cloudera Security. To secure the Hive metastore; see
Hive Metastore Server Security Configuration on page 81.

Using User-Defined Functions with HiveServer2

The ADD JAR command does notwork with HiveServer2 and the Beeline client when Beeline runs on a different host.
As an alternative to ADD JAR, Hive's auxiliary paths functionality should be used. There are some differences in the
procedures for creating permanent functions and temporary functionswhen Sentry is enabled. For detailed instructions,
see:

• User-Defined Functions (UDFs) with HiveServer2 Using Cloudera Manager

OR

• User-Defined Functions (UDFs) with HiveServer2 Using the Command Line

.

Sentry Debugging and Failure Scenarios

This topic describes how Sentry deals with conflicting policies, how to debug Sentry authorization request failures and
how different CDH components respond when the Sentry service fails.

Resolving Policy Conflicts

Sentry treats all policies independently. Hence, for any operation, if Sentry can find a policy that allows it, that operation
will be allowed. Consider an example with a table, test_db.test_tbl, whose HDFS directory is located at
hdfs://user/hive/warehouse/test_db.db/test_tbl, and grant the following conflicting privileges to a user
with the role, test_role. That is, you are granting ALL privilege to the role test_role on the URI, but only the
SELECT privilege on the table itself.

GRANT ALL ON URI 'hdfs:///user/hive/warehouse/test_db.db/test_tbl' to role test_role;
USE test_db;
GRANT SELECT ON TABLE test_tbl to role test_role;

With these privileges, all users with the role test_role will be able to carry out the EXPORT TABLE operation even
though they should only have SELECT privileges on test_db.test_tbl:

EXPORT TABLE <another-table-user-can-read> TO
'hdfs:///user/hive/warehouse/test_db.db/test_tbl'

Debugging Failed Sentry Authorization Requests

Sentry logs all facts that lead up to authorization decisions at the debug level. If you do not understand why Sentry is
denying access, the best way to debug is to temporarily turn on debug logging:

• In ClouderaManager, add log4j.logger.org.apache.sentry=DEBUG to the logging settings for your service
through the corresponding Logging Safety Valve field for Impala or HiveServer2.

• On systems not managed by Cloudera Manager, add log4j.logger.org.apache.sentry=DEBUG to the
log4j.properties file on each host in the cluster, in the appropriate configuration directory for each service.

Cloudera Security | 231

Authorization

Specifically, look for exceptions and messages such as:

FilePermission server..., RequestPermission server...., result [true|false]

which indicate each evaluation Sentrymakes. TheFilePermission is from the policy file, whileRequestPermission
is the privilege required for the query. A RequestPermission will iterate over all appropriate FilePermission
settings until a match is found. If no matching privilege is found, Sentry returns false indicating “Access Denied” .

Sentry Service Failure Scenarios

If the Sentry service fails and you attempt to access the Hive warehouse, Hive, Impala and HDFS will behave as follows:

• Hive: Queries to the Hive warehouse will fail with an authentication error.
• Impala: The Impala Catalog server caches Sentry privileges. If Sentry goes down, Impala queries will continue to

work and will be authorized against this cached copy of the metadata. However, authorization DDLs such as
CREATE ROLE or GRANT ROLE will fail.

• HDFS/Sentry Synchronized Permissions:Affected HDFS files will continue to use a cached copy of the synchronized
ACLs for a configurable period of time (by default, 60 seconds), after which they will fall back to NameNode ACLs.

• Solr: Solr does not use the Sentry service, hence there will be no impact.

Hive SQL Syntax for Use with Sentry

Sentry permissions can be configured through Grant and Revoke statements issued either interactively or
programmatically through the HiveServer2 SQL command line interface, Beeline (documentation available here). Note
that since Hive CLI does not work with HiveServer2, it cannot be used to configure Sentry permissions.

In HUE, the Sentry Admin that creates roles and grants privileges must belong to a group that has ALL privileges on the
server. For example, you can create a role for the group that contains the hive or impala user, and grant ALL ON SERVER
to that role:

CREATE ROLE <admin role>;
GRANT ALL ON SERVER <server1> TO ROLE <admin_role>;
GRANT ROLE <admin role> TO GROUP <hive>;

Important:

• When Sentry is enabled, you must use Beeline to execute Hive queries. Hive CLI is not supported
with Sentry.

• Note that there are some differences in syntax between Hive and the corresponding Impala SQL
statements. For the Impala syntax, see SQL Statements.

CREATE ROLE Statement
The CREATE ROLE statement creates a role to which privileges can be granted. Privileges can be granted to roles,
which can then be assigned to users. A user that has been assigned a role will only be able to exercise the privileges
of that role.

Only users that have administrative privileges can create/drop roles. By default, the hive, impala and hue users have
admin privileges in Sentry.

CREATE ROLE [role_name];

DROP ROLE Statement
The DROP ROLE statement can be used to remove a role from the database. Once dropped, the role will be revoked
for all users to whom it was previously assigned. Queries that are already executing will not be affected. However,

232 | Cloudera Security

Authorization

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-Beeline%E2%80%93NewCommandLineShell

since Hive checks user privileges before executing each query, active user sessions in which the role has already been
enabled will be affected.

DROP ROLE [role_name];

GRANT ROLE Statement
The GRANT ROLE statement can be used to grant roles to groups. Only Sentry admin users can grant roles to a group.

GRANT ROLE role_name [, role_name]
 TO GROUP <groupName> [,GROUP <groupName>]

REVOKE ROLE Statement
The REVOKE ROLE statement can be used to revoke roles from groups. Only Sentry admin users can revoke the role
from a group.

REVOKE ROLE role_name [, role_name]
 FROM GROUP <groupName> [,GROUP <groupName>]

GRANT <PRIVILEGE> Statement
In order to grant privileges on an object to a role, the user must be a Sentry admin user.

GRANT
 <PRIVILEGE> [, <PRIVILEGE>]
 ON <OBJECT> <object_name>
 TO ROLE <roleName> [,ROLE <roleName>]

REVOKE <PRIVILEGE> Statement
Since only authorized admin users can create roles, consequently only Sentry admin users can revoke privileges from
a group.

REVOKE
 <PRIVILEGE> [, <PRIVILEGE>]
 ON <OBJECT> <object_name>
 FROM ROLE <roleName> [,ROLE <roleName>]

GRANT <PRIVILEGE> ... WITH GRANT OPTION

With CDH 5.2, you can delegate granting and revoking privileges to other roles. For example, a role that is granted a
privilege WITH GRANT OPTION can GRANT/REVOKE the same privilege to/from other roles. Hence, if a role has the
ALL privilege on a database and the WITH GRANT OPTION set, users granted that role can execute GRANT/REVOKE
statements only for that database or child tables of the database.

GRANT
 <PRIVILEGE>
 ON <OBJECT> <object_name>
 TO ROLE <roleName>
 WITH GRANT OPTION

Only a role with GRANT option on a specific privilege or its parent privilege can revoke that privilege from other roles.
Once the following statement is executed, all privileges with and without grant option are revoked.

REVOKE
 <PRIVILEGE>
 ON <OBJECT> <object_name>
 FROM ROLE <roleName>

Hive does not currently support revoking only the WITH GRANT OPTION from a privilege previously granted to a role.
To remove the WITH GRANT OPTION, revoke the privilege and grant it again without the WITH GRANT OPTION flag.

Cloudera Security | 233

Authorization

SET ROLE Statement
The SET ROLE statement can be used to specify a role to be enabled for the current session. A user can only enable
a role that has been granted to them. Any roles not listed and not already enabled are disabled for the current session.
If no roles are enabled, the user will have the privileges granted by any of the roles that (s)he belongs to.

To enable a specific role:

SET ROLE <roleName>;

To enable all roles:

SET ROLE ALL;

No roles enabled:

SET ROLE NONE;

SHOW Statement

To list all the roles in the system (only for sentry admin users):

SHOW ROLES;

To list all the roles in effect for the current user session:

SHOW CURRENT ROLES;

To list all the roles assigned to the given <groupName> (only allowed for Sentry admin users and others users that are
part of the group specified by <groupName>):

SHOW ROLE GRANT GROUP <groupName>;

The SHOW statement can also be used to list the privileges that have been granted to a role or all the grants given to a
role for a particular object.

To list all the grants for the given <roleName> (only allowed for Sentry admin users and other users that have been
granted the role specified by <roleName>):

SHOW GRANT ROLE <roleName>;

To list all the grants for a role on the given <objectName> (only allowed for Sentry admin users and other users that
have been granted the role specified by <roleName>):

SHOW GRANT ROLE <roleName> on OBJECT <objectName>;

Example: Using Grant/Revoke Statements to Match an Existing Policy File

Here is a sample policy file:

[groups]
Assigns each Hadoop group to its set of roles
manager = analyst_role, junior_analyst_role
analyst = analyst_role
jranalyst = junior_analyst_role
customers_admin = customers_admin_role
admin = admin_role

[roles] # The uris below define a define a landing skid which
the user can use to import or export data from the system.
Since the server runs as the user "hive" files in that directory
must either have the group hive and read/write set or

234 | Cloudera Security

Authorization

be world read/write.
analyst_role = server=server1->db=analyst1, \
 server=server1->db=jranalyst1->table=*->action=select
 server=server1->uri=hdfs://ha-nn-uri/landing/analyst1
junior_analyst_role = server=server1->db=jranalyst1, \
 server=server1->uri=hdfs://ha-nn-uri/landing/jranalyst1

Implies everything on server1.
admin_role = server=server1

The following sections show how you can use the new GRANT statements to assign privileges to roles (and assign roles
to groups) to match the sample policy file above.

Grant privileges to analyst_role:

CREATE ROLE analyst_role;
GRANT ALL ON DATABASE analyst1 TO ROLE analyst_role;
GRANT SELECT ON DATABASE jranalyst1 TO ROLE analyst_role;
GRANT ALL ON URI 'hdfs://ha-nn-uri/landing/analyst1' \
TO ROLE analyst_role;

Grant privileges to junior_analyst_role:

CREATE ROLE junior_analyst_role;
GRANT ALL ON DATABASE jranalyst1 TO ROLE junior_analyst_role;
GRANT ALL ON URI 'hdfs://ha-nn-uri/landing/jranalyst1' \
TO ROLE junior_analyst_role;

Grant privileges to admin_role:

CREATE ROLE admin_role
GRANT ALL ON SERVER server TO ROLE admin_role;

Grant roles to groups:

GRANT ROLE admin_role TO GROUP admin;
GRANT ROLE analyst_role TO GROUP analyst;
GRANT ROLE jranalyst_role TO GROUP jranalyst;

Synchronizing HDFS ACLs and Sentry Permissions

This topic introduces an HDFS-Sentry plugin that allows you to configure synchronization of Sentry privileges with HDFS
ACLs for specific HDFS directories.

Previously, when Sentry was used to secure data in Hive or Impala, it was difficult to securely share the same HDFS
data files with other components such as Pig, MapReduce, Spark, HDFS client and so on. You had two options:

• You could set ownership for the entire Hivewarehouse to hive:hive and not allow other components any access
to the data. While this is secure, it does not allow for sharing.

• Use HDFS ACLs and synchronize Sentry privileges and HDFS ACLs manually. For example, if a user only has the
Sentry SELECT privilege on a table, that user should only be able to read the table data files, and not write to
those HDFS files.

Introduction

To solve the problem stated above, CDH5.3 introduces integration of Sentry andHDFS permissions thatwill automatically
keep HDFS ACLs in sync with the privileges configured with Sentry. This feature offers the easiest way to share data
between Hive, Impala and other components such as MapReduce, Pig, and so on, while setting permissions for that
data with just one set of rules through Sentry. It maintains the ability of Hive and Impala to set permissions on views,
in addition to tables, while access to data outside of Hive and Impala (for example, reading files off HDFS) requires
table permissions. HDFS permissions for some or all of the files that are part of tables defined in the Hive Metastore
will now be controlled by Sentry.

Cloudera Security | 235

Authorization

This change consists of three components:

• An HDFS NameNode plugin
• A Sentry-Hive Metastore plugin
• A Sentry Service plugin

Sentry will translate table permissions to the appropriate corresponding ACL on the underlying table files in HDFS. For
example, if a user group is assigned to a Sentry role that has SELECT permission on a particular table, then that user
group will also have read access to the HDFS files that are part of that table. When listing those files in HDFS, you will
see this permission listed as an HDFS ACL. The mapping of Sentry privileges to HDFS ACL permissions is as follows:

• SELECT privilege -> Read access on the file.
• INSERT privilege -> Write access on the file.
• ALL privilege -> Read and Write access on the file.

Important:

• With synchronization enabled, your ability to set HDFS permissions for those files is disabled.
Permissions for those particular files can be set only through Sentry, andwhen examined through
HDFS these permissions appear as HDFS ACLs.

A configurable set of users (such as hive and impala) will have full access to the files
automatically. This ensures that a key requirement of using Sentry with Hive and Impala— giving
these processes full access to regulate permissions on underlying data files— ismet automatically.

• Tables that are not associated with Sentry (that is, have no user with Sentry privileges to access
them) will retain their old ACLs.

• There are no HDFS permissions associatedwith table views. That is, even if you have a view giving
you access to some columns of a table, this does not translate to any HDFS permissions on the
file(s).

• Synchronized privileges are not persisted to HDFS. This means that when this feature is disabled,
HDFS privileges will return to their original values.

• If the Sentry service fails, affectedHDFS fileswill continue to use a cached copy of the synchronized
ACLs for a configurable period of time (by default, 60 seconds), after which they will fall back to
NameNode ACLs.

• Sentry HDFS synchronization does not support Hive metastore HA.

Prompting HDFS ACL Changes

URIs do not have an impact on the HDFS-Sentry plugin. Therefore, you cannot manage all of your HDFS ACLs with the
HDFS-Sentry plugin and you must continue to use standard HDFS ACLs for data outside of Hive.

HDFS ACL changes are triggered on:

• Hive DATABASE object LOCATION (HDFS) when a role is granted to the object
• Hive TABLE object LOCATION (HDFS) when a role is granted to the object

HDFS ACL changes are not triggered by:

• Hive URI LOCATION (HDFS) when a role is granted to a URI
• Hive SERVER object when a role is granted to the object. HDFS ACLs are not updated if a role is assigned to the

SERVER. The privileges are inherited by child objects in standard Sentry interactions, but the plugin does not trickle
the privileges down.

• Permissions granted on views. Views are not synchronized as objects in the HDFS file system.

Prerequisites

• CDH 5.3.0 (or later) managed by Cloudera Manager 5.3.0 (or later)

236 | Cloudera Security

Authorization

• (Strongly Recommended) Implement Kerberos authentication on your cluster.

The following conditions must be also be true when enabling Sentry-HDFS synchronization. Failure to comply with any
of these will result in validation errors.

• You must use the Sentry service, not policy file-based authorization.
• Enabling HDFS Extended Access Control Lists (ACLs) is required.
• There must be exactly one Sentry service dependent on HDFS.
• The Sentry service must have exactly one Sentry Server role.
• The Sentry service must have exactly one dependent Hive service.
• The Hive service must have exactly one Hive Metastore role (that is, High Availability should not be enabled).

Enabling the HDFS-Sentry Plugin Using Cloudera Manager

1. Go to the HDFS service.
2. Click the Configuration tab.
3. Navigate to the Service-Wide category and check the Check HDFS Permissions checkbox.
4. Under the Service-Wide category go to Security.
5. Check the Enable Sentry Synchronization checkbox.
6. Use the Sentry Synchronization Path Prefixes property to list HDFS path prefixes where Sentry permissions should

be enforced. Multiple HDFS path prefixes can be specified. By default, this property points to
user/hive/warehouse and must always be non-empty. HDFS privilege synchronization will not occur for tables
located outside the HDFS regions listed here.

7. Click Save Changes.
8. Restart the cluster. Note that itmay take an additional twominutes after cluster restart for privilege synchronization

to take effect.

Enabling the HDFS-Sentry Plugin Using the Command Line

Important:

• If you use Cloudera Manager, do not use these command-line instructions.
• This information applies specifically to CDH 5.3.x. If you use an earlier version of CDH, see the

documentation for that version located at Cloudera Documentation.

To enable the Sentry plugins on an unmanaged cluster, you must explicitly allow the hdfs user to interact with Sentry,
and install the plugin packages as described in the following sections.

Allowing the hdfs user to connect with Sentry

For an unmanaged cluster, add hdfs to the sentry.service.allow.connect property in sentry-site.xml.

<property>
 <name>sentry.service.allow.connect</name>
 <value>impala,hive,hue,hdfs</value>
</property>

Installing the HDFS-Sentry Plugin

Note: Install Cloudera Repository

Before using the instructions on this page to install the package, install the Cloudera yum, zypper/YaST
or apt repository, and install or upgrade CDH 5 and make sure it is functioning correctly. For
instructions, see Installing the Latest CDH 5 Release.

Use the following the instructions, depending on your operating system, to install the sentry-hdfs-plugin package.
The package must be installed (at a minimum) on the following hosts:

Cloudera Security | 237

Authorization

http://www.cloudera.com/content/support/en/documentation.html

• The host running the NameNode and Secondary NameNode
• The host running the Hive Metastore
• The host running the Sentry Service

CommandOS

$ sudo yum install sentry-hdfs-pluginRHEL-compatible

$ sudo zypper install sentry-hdfs-pluginSLES

$ sudo apt-get install sentry-hdfs-pluginUbuntu or Debian

Configuring the HDFS NameNode Plugin

Add the following properties to the hdfs-site.xml file on the NameNode host.

<property>
<name>dfs.namenode.acls.enabled</name>
<value>true</value>
</property>

<property>
<name>dfs.namenode.authorization.provider.class</name>
<value>org.apache.sentry.hdfs.SentryAuthorizationProvider</value>
</property>

<property>
<name>dfs.permissions</name>
<value>true</value>
</property>

<!-- Comma-separated list of HDFS path prefixes where Sentry permissions should be
enforced. -->
<!-- Privilege synchronization will occur only for tables located in HDFS regions
specified here. -->
<property>
<name>sentry.authorization-provider.hdfs-path-prefixes</name>
<value>/user/hive/warehouse</value>
</property>

<property>
<name>sentry.hdfs.service.security.mode</name>
<value>kerberos</value>
</property>

<property>
<name>sentry.hdfs.service.server.principal</name>
<value> SENTRY_SERVER_PRINCIPAL (for eg : sentry/_HOST@VPC.CLOUDERA.COM)</value>
</property>

<property>
<name>sentry.hdfs.service.client.server.rpc-port</name>
<value>SENTRY_SERVER_PORT</value>
</property>

<property>
<name>sentry.hdfs.service.client.server.rpc-address</name>
<value>SENTRY_SERVER_HOST</value>
</property>

Configuring the Hive Metastore Plugin

Add the following properties to hive-site.xml on the Hive Metastore Server host.

<property>
<name>sentry.metastore.plugins</name>
<value>org.apache.sentry.hdfs.MetastorePlugin</value>
</property>

<property>

238 | Cloudera Security

Authorization

<name>sentry.hdfs.service.client.server.rpc-port</name>
<value> SENTRY_SERVER_PORT </value>
</property>

<property>
<name>sentry.hdfs.service.client.server.rpc-address</name>
<value> SENTRY_SERVER_HOSTNAME </value>
</property>

<property>
<name>sentry.hdfs.service.client.server.rpc-connection-timeout</name>
<value>200000</value>
</property>

<property>
<name>sentry.hdfs.service.security.mode</name>
<value>kerberos</value>
</property>

<property>
<name>sentry.hdfs.service.server.principal</name>
<value> SENTRY_SERVER_PRINCIPAL (for eg : sentry/_HOST@VPC.CLOUDERA.COM)</value>
</property>

Configuring the Sentry Service Plugin

Add the following properties to the sentry-site.xml file on the NameNode host.

<property>
<name>sentry.service.processor.factories</name>
<value>org.apache.sentry.provider.db.service.thrift.SentryPolicyStoreProcessorFactory,
org.apache.sentry.hdfs.SentryHDFSServiceProcessorFactory</value>
</property>

<property>
<name>sentry.policy.store.plugins</name>
<value>org.apache.sentry.hdfs.SentryPlugin</value>
</property>

Important: Once all the configuration changes are complete, restart your cluster. Note that it may
take an additional two minutes after cluster restart for privilege synchronization to take effect.

Testing the Sentry Synchronization Plugins

The following tasks should help you make sure that Sentry-HDFS synchronization has been enabled and configured
correctly:

For a folder that has been enabled for the plugin, such as the Hive warehouse, try accessing the files in that folder
outside Hive and Impala. For this, you should know what tables those HDFS files belong to and the Sentry permissions
on those tables. Attempt to view ormodify the Sentry permissions settings over those tables using one of the following
tools:

• (Recommended) Hue's Security application
• HiveServer2 CLI
• Impala CLI
• Access the table files directly in HDFS. For example:

– List files inside the folder and verify that the file permissions shown in HDFS (including ACLs) match what was
configured in Sentry.

– Run a MapReduce, Pig or Spark job that accesses those files. Pick any tool besides HiveServer2 and Impala

Cloudera Security | 239

Authorization

Reporting Metrics for the Sentry Service

Metrics for the Sentry service can now be reported using either JMX or console. To obtain the metrics in JSON format,
you can use the Sentry Web Server which by default, listens on port 51000. Use the following properties to enable and
configure metric reports.

Specify the tool being used to report metrics.sentry.service.reporter

Value: jmx or console

Set this property to true to enable reporting of metrics by the Sentry Web
Server.

sentry.service.web.enable

Default: false

Configure the port on which the Sentry Web Server listens for metrics.sentry.service.web.port

Default: 51000

Sentry Policy File Authorization

Important: This is the documentation for configuring Sentry using the policy file approach. Cloudera
recommends you use the database-backed Sentry service introduced in CDH 5.1 to secure your data.
See The Sentry Service on page 217 for more information.

Sentry enables role-based, fine-grained authorization for HiveServer2, Cloudera Impala and Cloudera Search.

For more information on installing, upgrading and configuring policy file authorization, see:

Prerequisites

Sentry depends on an underlying authentication framework to reliably identify the requesting user. It requires:

• CDH 4.3.0 or higher.
• HiveServer2 and the Hive Metastore running with strong authentication. For HiveServer2, strong authentication

is either Kerberos or LDAP. For the HiveMetastore, only Kerberos is considered strong authentication (to override,
see Securing the Hive Metastore on page 257).

• Impala 1.2.1 (or higher) runningwith strong authentication.With Impala, either Kerberos or LDAP can be configured
to achieve strong authentication. Auditing of authentication failures is supported only with CDH 4.4.0 and Impala
1.2.1 or higher.

• Implement Kerberos authentication on your cluster. This is to prevent a user bypassing the authorization and
gaining direct access to the underlying data.

Terminologies

• An object is an entity protected by Sentry's authorization rules. The objects supported in the current release are
server, database, table, and URI.

• A role is a collection of rules for accessing a given Hive object.
• A privilege is granted to a role to govern access to an object. Supported privileges are:

Table 16: Valid privilege types and the objects they apply to

ObjectPrivilege

SEVER, DB, TABLEINSERT

DB, TABLESELECT

SERVER, TABLE, DB, URIALL

240 | Cloudera Security

Authorization

• A user is an entity that is permitted by the authentication subsystem to access the Hive service. This entity can
be a Kerberos principal, an LDAP userid, or an artifact of some other pluggable authentication system supported
by HiveServer2.

• A group connects the authentication system with the authorization system. It is a collection of one or more users
who have been granted one or more authorization roles. Sentry allows a set of roles to be configured for a group.

• A configured group provider determines a user’s affiliationwith a group. The current release supports HDFS-backed
groups and locally configured groups.

Privilege Model

Sentry uses a role-based privilege model with the following characteristics.

• Allows any user to execute show function, desc function, and show locks.
• Allows the user to see only those tables and databases for which this user has privileges.
• Requires a user to have the necessary privileges on the URI to execute HiveQL operations that take in a location.

Examples of such operations include LOAD, IMPORT, and EXPORT.

Important:

• When Sentry is enabled, you must use Beeline to execute Hive queries. Hive CLI is not supported
with Sentry.

• When Sentry is enabled, a user with no privileges on a database will not be allowed to connect
to HiveServer2. This is because the use <database> command is now executed as part of the
connection to HiveServer2, which is why the connection fails. See HIVE-4256.

For more information, see Authorization Privilege Model for Hive and Impala on page 247.

Granting Privileges

For example, a rule for the Select privilege on table customers from database sales would be formulated as
follows:

server=server1->db=sales->table=customer->action=Select

Each object must be specified as a hierarchy of the containing objects, from server to table, followed by the privilege
granted for that object. A role can containmultiple such rules, separated by commas. For example, a rolemight contain
the Select privilege for the customer and items tables in the sales database, and the Insert privilege for the
sales_insights table in the reports database. You would specify this as follows:

sales_reporting =
\server=server1->db=sales->table=customer->action=Select,
\server=server1->db=sales->table=items>action=Select,
\server=server1->db=reports->table=sales_insights>action=Insert

User to Group Mapping

You can configure Sentry to use either Hadoop groups or groups defined in the policy file. By default, Sentry looks up
groups locally, but it can be configured to look up Hadoop groups using LDAP (for Active Directory). Local groups will
be looked up on the host Sentry runs on. For Hive, this will be the host running HiveServer2. Group mappings in Sentry
can be summarized as in the figure below:

Cloudera Security | 241

Authorization

https://issues.apache.org/jira/browse/HIVE-4256

Important: You can use either Hadoop groups or local groups, but not both at the same time. Local
groups are traditionally used for a quick proof-of-concept, while Hadoop groups are more commonly
used in production. Refer Configuring LDAP Group Mappings on page 125 for details on configuring
LDAP group mappings in Hadoop.

Policy File

The sections that follow contain notes on creating and maintaining the policy file, and using URIs to load external data
and JARs.

242 | Cloudera Security

Authorization

Warning: An invalid policy file will be ignored while logging an exception. This will lead to a situation
where users will lose access to all Sentry-protected data, since default Sentry behaviour is deny unless
a user has been explicitly granted access. (Note that if only the per-DB policy file is invalid, it will
invalidate only the policies in that file.)

Storing the Policy File

Considerations for storing the policy file(s) in HDFS include:

1. Replication count - Because the file is read for each query in Hive and read once every five minutes by all Impala
daemons, you should increase this value; since it is a small file, setting the replication count equal to the number
of slave nodes in the cluster is reasonable.

2. Updating the file - Updates to the file are reflected immediately, so you should write them to a temporary copy
of the file first, and then replace the existing file with the temporary one after all the updates are complete. This
avoids race conditions caused by reads on an incomplete file.

Defining Roles

Keep in mind that role definitions are not cumulative; the definition that is further down in the file replaces the older
one. For example, the following results in role1 having privilege2, not privilege1 and privilege2.

role1 = privilege1
role1 = privilege2

Role names are scoped to a specific file. For example, if you give role1 the ALL privilege on db1 in the global policy
file and give role1 ALL on db2 in the per-db db2 policy file, the user will be given both privileges.

URIs

Any command which references a URI such as CREATE TABLE EXTERNAL, LOAD, IMPORT, EXPORT, and more, in
addition to CREATE TEMPORARY FUNCTION requires the URI privilege. This is an important security control because
without this users could simply create an external table over an existing table they do not have access to and bypass
Sentry.

URIs must start with either hdfs:// or file://. If a URI starts with anything else, it will cause an exception and the
policy file will be invalid.

When defining URIs for HDFS, you must also specify the NameNode. For example:

data_read = server=server1->uri=file:///path/to/dir,\
server=server1->uri=hdfs://namenode:port/path/to/dir

Important: Because the NameNode host and port must be specified, Cloudera strongly recommends
you use High Availability (HA). This ensures that the URI will remain constant even if the NameNode
changes.

Loading Data

Data can be loaded using a landing skid, either in HDFS or using a local/NFS directory where HiveServer2/Impala run.
The following privileges can be used to grant a role access to a loading skid:

• Load data from a local/NFS directory:

server=server1->uri=file:///path/to/nfs/local/to/nfs

Cloudera Security | 243

Authorization

• Load data from HDFS (MapReduce, Pig, and so on):

server=server1->uri=hdfs://ha-nn-uri/data/landing-skid

In addition to the privilege in Sentry, the hive or impala user will require the appropriate file permissions to access
the data being loaded. Groups can be used for this purpose. For example, create a group hive-users, and add the
hive and impala users along with the users who will be loading data, to this group.

The exampleusermod andgroupadd commands below are only applicable to locally defined groups on theNameNode,
JobTracker, and ResourceManager. If you use another system for group management, equivalent changes should be
made in your group management system.

$ groupadd hive-users
$ usermod -G someuser,hive-users someuser
$ usermod -G hive,hive-users hive

External Tables

External tables require the ALL@database privilege in addition to the URI privilege. When data is being inserted
through the EXTERNAL TABLE statement, or is referenced from an HDFS location outside the normal Hive database
directories, the user needs appropriate permissions on the URIs corresponding to those HDFS locations. This means
that the URI location must either be owned by the hive:hive user OR the hive/impala users must be members of
the group that owns the directory.

You can configure access to the directory using a URI as follows:

[roles]
someuser_home_dir_role = server=server1->uri=hdfs://ha-nn-uri/user/someuser

You should now be able to create an external table:

CREATE EXTERNAL TABLE ...
LOCATION 'hdfs://ha-nn-uri/user/someuser/mytable';

Sample Sentry Configuration Files

This section provides a sample configuration.

Policy Files

The following is an example of a policy file with a per-DB policy file. In this example, the first policy file,
sentry-provider.ini would exist in HDFS; hdfs://ha-nn-uri/etc/sentry/sentry-provider.inimight
be an appropriate location. The per-DB policy file is for the customer's database. It is located at
hdfs://ha-nn-uri/etc/sentry/customers.ini.

sentry-provider.ini

[databases]
Defines the location of the per DB policy file for the customers DB/schema
customers = hdfs://ha-nn-uri/etc/sentry/customers.ini

[groups]
Assigns each Hadoop group to its set of roles
manager = analyst_role, junior_analyst_role
analyst = analyst_role
jranalyst = junior_analyst_role
customers_admin = customers_admin_role
admin = admin_role

[roles]
The uris below define a define a landing skid which
the user can use to import or export data from the system.

244 | Cloudera Security

Authorization

Since the server runs as the user "hive" files in that directory
must either have the group hive and read/write set or
be world read/write.
analyst_role = server=server1->db=analyst1, \
 server=server1->db=jranalyst1->table=*->action=select
 server=server1->uri=hdfs://ha-nn-uri/landing/analyst1
junior_analyst_role = server=server1->db=jranalyst1, \
 server=server1->uri=hdfs://ha-nn-uri/landing/jranalyst1

Implies everything on server1 -> customers. Privileges for
customers can be defined in the global policy file even though
customers has its only policy file. Note that the Privileges from
both the global policy file and the per-DB policy file
are merged. There is no overriding.
customers_admin_role = server=server1->db=customers

Implies everything on server1.
admin_role = server=server1

customers.ini

[groups]
manager = customers_insert_role, customers_select_role
analyst = customers_select_role

[roles]
customers_insert_role = server=server1->db=customers->table=*->action=insert
customers_select_role = server=server1->db=customers->table=*->action=select

Important: Sentry does not support using the view keyword in policy files. If you want to define a
role against a view, use the keyword table instead. For example, to define the role analyst_role
against the view col_test_view:

[roles]
analyst_role =
server=server1->db=default->table=col_test_view->action=select

Sentry Configuration File

The following is an example of a sentry-site.xml file.

Important: If you are using Cloudera Manager 4.6 (or earlier), make sure you do not store
sentry-site.xml in /etc/hive/conf ; that directory is regenerated whenever the Hive client
configurations are redeployed. Instead, use a directory such as /etc/sentry to store the sentry
file.

If you are using Cloudera Manager 4.7 (or higher), Cloudera Manager will create and deploy
sentry-site.xml for you.See The Sentry Service on page 217 formore details on configuring Sentry
with Cloudera Manager.

sentry-site.xml

<configuration>
 <property>
 <name>hive.sentry.provider</name>

<value>org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider</value>

 </property>

 <property>
 <name>hive.sentry.provider.resource</name>

Cloudera Security | 245

Authorization

 <value>/path/to/authz-provider.ini</value>
 <!--
 If the hdfs-site.xml points to HDFS, the path will be in HDFS;
 alternatively you could specify a full path, e.g.:
 hdfs://namenode:port/path/to/authz-provider.ini
 file:///path/to/authz-provider.ini
 -->
 </property>

 <property>
 <name>sentry.hive.server</name>
 <value>server1</value>
 </property>
</configuration>

Accessing Sentry-Secured Data Outside Hive/Impala

When Sentry is enabled, the hive user owns all data within the Hive warehouse. However, unlike traditional database
systems the enterprise data hub allows for multiple engines to execute over the same dataset.

Note: Cloudera strongly recommends you use Hive/Impala SQL queries to access data secured by
Sentry, as opposed to accessing the data files directly.

However, there are scenarios where fully vetted and reviewed jobs will also need to access the data stored in the Hive
warehouse. A typical scenario would be a secured MapReduce transformation job that is executed automatically as
an application user. In such cases it's important to know that the user executing this job will also have full access to
the data in the Hive warehouse.

Scenario One: Authorizing Jobs

Problem

A reviewed, vetted, and automated job requires access to the Hive warehouse and cannot use Hive/Impala to access
the data.

Solution

Create a group which contains hive, impala, and the user executing the automated job. For example, if the etl user
is executing the automated job, you can create a group called hive-users which contains the hive, impala, and
etl users.

The exampleusermod and groupadd commands beloware only applicable to locally defined groups on theNameNode,
JobTracker, and ResourceManager. If you use another system for group management, equivalent changes should be
made in your group management system.

$ groupadd hive-users
$ usermod -G hive,impala,hive-users hive
$ usermod -G hive,impala,hive-users impala
$ usermod -G etl,hive-users etl

Once you have added users to the hive-users group, change directory permissions in the HDFS:

$ hadoop fs -chgrp -R hive:hive-users /user/hive/warehouse
$ hadoop fs -chmod -R 770 /user/hive/warehouse

Scenario Two: Authorizing Group Access to Databases

Problem

One group of users, grp1 should have full access to the database, db1, outside of Sentry. The database, db1 should
not be accessible to any other groups, outside of Sentry. Sentry should be used for all other authorization needs.

Solution

246 | Cloudera Security

Authorization

Place the hive and impala users in grp1.

$ usermod -G hive,impala,grp1 hive
$ usermod -G hive,impala,grp1 impala

Then change group ownerships of all directories and files in db1 to grp1, and modify directory permissions in the
HDFS. This example is only applicable to local groups on a single host.

$ hadoop fs -chgrp -R hive:grp1 /user/hive/warehouse/db1.db
$ hadoop fs -chmod -R 770 /user/hive/warehouse/db1.db

Debugging Failed Sentry Authorization Requests

Sentry logs all facts that lead up to authorization decisions at the debug level. If you do not understand why Sentry is
denying access, the best way to debug is to temporarily turn on debug logging:

• In ClouderaManager, add log4j.logger.org.apache.sentry=DEBUG to the logging settings for your service
through the corresponding Logging Safety Valve field for the Impala, Hive Server 2, or Solr Server services.

• On systems not managed by Cloudera Manager, add log4j.logger.org.apache.sentry=DEBUG to the
log4j.properties file on each host in the cluster, in the appropriate configuration directory for each service.

Specifically, look for exceptions and messages such as:

FilePermission server..., RequestPermission server...., result [true|false]

which indicate each evaluation Sentrymakes. TheFilePermission is from the policy file, whileRequestPermission
is the privilege required for the query. A RequestPermission will iterate over all appropriate FilePermission
settings until a match is found. If no matching privilege is found, Sentry returns false indicating “Access Denied” .

Authorization Privilege Model for Hive and Impala

Privileges can be granted on different objects in the Hive warehouse. Any privilege that can be granted is associated
with a level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the base object
automatically inherits it. For instance, if a user has ALL privileges on the database scope, then (s)he has ALL privileges
on all of the base objects contained within that scope.

Object Hierarchy in Hive

Server
 URI
 Database
 Table
 Partition
 Columns
 View
 Index
 Function/Routine
 Lock

Table 17: Valid privilege types and objects they apply to

ObjectPrivilege

DB, TABLEINSERT

DB, TABLESELECT

SERVER, TABLE, DB, URIALL

Note that when you grant ALL on a URI, those permissions extend into the subdirectories in that path. For example, if
a role has ALL on the following URI:

Cloudera Security | 247

Authorization

• hdfs://host:port/directory_A/directory_B

That role will also have ALL on these directories:

• hdfs://host:port/directory_A/directory_B/directory_C

• hdfs://host:port/directory_A/directory_B/directory_C/directory_D

• hdfs://host:port/directory_A/directory_B/directory_E

URI permissions do not affect HDFS ACL's.

Table 18: Privilege hierarchy

Privileges on container
object that implies
privileges on the base
object

Container object that
contains the base object

Granular privileges on
object

Base Object

ALLSERVERALLDATABASE

ALLDATABASEINSERTTABLE

ALLDATABASESELECTTABLE

ALLDATABASESELECTVIEW

Table 19: Privilege table for Hive & Impala operations

OthersURIPrivilegesScopeOperation

ALLSERVERCREATE DATABASE

ALLDATABASEDROP DATABASE

ALLDATABASECREATE TABLE

ALLTABLEDROP TABLE

SELECT on TABLEALLDATABASE; SELECT on
TABLE

CREATE VIEW

ALLVIEW/TABLEDROP VIEW

ALLTABLEALTER TABLE .. ADD
COLUMNS

ALLTABLEALTER TABLE .. REPLACE
COLUMNS

ALLTABLEALTER TABLE .. CHANGE
column

ALLTABLEALTER TABLE .. RENAME

ALLTABLEALTER TABLE .. SET
TBLPROPERTIES

ALLTABLEALTER TABLE .. SET
FILEFORMAT

URIALLTABLEALTER TABLE .. SET
LOCATION

ALLTABLEALTER TABLE .. ADD
PARTITION

248 | Cloudera Security

Authorization

OthersURIPrivilegesScopeOperation

URIALLTABLEALTER TABLE .. ADD
PARTITION location

ALLTABLEALTER TABLE .. DROP
PARTITION

ALLTABLEALTER TABLE .. PARTITION
SET FILEFORMAT

SELECT/INSERTTABLESHOW CREATE TABLE

SELECT/INSERTTABLESHOW PARTITIONs

SELECT/INSERTTABLEDESCRIBE TABLE

URIINSERTTABLELOAD DATA

SELECTTABLESELECT

INSERTTABLEINSERT OVERWRITE TABLE

SELECT on TABLEALLDATABASE; SELECT on
TABLE

CREATE TABLE .. AS SELECT

AnyUSE <dbName>

ALLSERVERCREATE FUNCTION

ALLTABLEALTER TABLE .. SET
SERDEPROPERTIES

ALLTABLEALTER TABLE .. PARTITION
SET SERDEPROPERTIES

Hive-Only Operations

URIINSERTTABLEINSERT OVERWRITE
DIRECTORY

SELECT + INSERTTABLEAnalyze TABLE

URIALLDATABASEIMPORT TABLE

URISELECTTABLEEXPORT TABLE

ALLTABLEALTER TABLE TOUCH

ALLTABLEALTER TABLE TOUCH
PARTITION

ALLTABLEALTER TABLE .. CLUSTERED
BY SORTED BY

ALLTABLEALTER TABLE ..
ENABLE/DISABLE

ALLTABLEALTER TABLE .. PARTITION
ENABLE/DISABLE

ALLTABLEALTER TABLE .. PARTITION.
. RENAME TO PARTITION

ALLTABLEMSCK REPAIR TABLE

ALLDATABASEALTER DATABASE

SELECT/INSERTDATABASEDESCRIBE DATABASE

Cloudera Security | 249

Authorization

OthersURIPrivilegesScopeOperation

SELECT/INSERTTABLESHOW COLUMNS

ALLTABLECREATE INDEX

ALLTABLEDROP INDEX

SELECT/INSERTTABLESHOW INDEXES

Allowed only for Sentry
admin users

GRANT PRIVILEGE

Allowed only for Sentry
admin users

REVOKE PRIVILEGE

Allowed only for Sentry
admin users

SHOW GRANT

SELECT/INSERTTABLESHOW TBLPROPERTIES

SELECT/INSERTTABLEDESCRIBE TABLE ..
PARTITION

Not AllowedADD JAR

Not AllowedADD FILE

Not AllowedDFS

Impala-Only Operations

SELECTTABLEEXPLAIN

ALLSERVERINVALIDATE METADATA

SELECT/INSERTTABLEINVALIDATE METADATA
<table name>

SELECT/INSERTTABLEREFRESH <table name>

ALLSERVERDROP FUNCTION

ALLTABLECOMPUTE STATS

Installing and Upgrading Sentry for Policy File Authorization

Sentry stores the configuration as well as privilege policies in files. The sentry-site.xml file contains configuration
options such as group association provider, privilege policy file location, and so on. The policy file
contains the privileges and groups. It has a .ini file format and can be stored on a local file system or HDFS.

Sentry is plugged into Hive as session hooks which you configure in hive-site.xml. The vsentry package must be
installed; it contains the required JAR files. You must also configure properties in the Sentry Configuration File on page
245.

Important:

If you have not already done so, install the Cloudera yum, zypper/YaST or apt repository before
using the following commands. For instructions, see Installing the Latest CDH 5 Release.

Installing Sentry

Use the following the instructions, depending on your operating system, to install the latest version of Sentry.

250 | Cloudera Security

Authorization

Important: Configuration files

• If you install a newer version of a package that is already on the system, configuration files that
you have modified will remain intact.

• If you uninstall a package, the packagemanager renames any configuration files you havemodified
from <file> to <file>.rpmsave. If you then re-install the package (probably to install a new
version) the packagemanager creates a new <file>with applicable defaults. You are responsible
for applying any changes captured in the original configuration file to the new configuration file.
In the case of Ubuntu and Debian upgrades, you will be prompted if you have made changes to
a file for which there is a new version; for details, see Automatic handling of configuration files
by dpkg.

CommandOS

$ sudo yum install sentryRHEL

$ sudo zypper install sentrySLES

$ sudo apt-get update;
$ sudo apt-get install sentry

Ubuntu or Debian

Upgrading Sentry

If you are upgrading fromCDH 5.x to the latest CDH release, see Installing Sentry on page 250 to install the latest version.

Configuring Sentry Policy File Authorization Using Cloudera Manager

This topic describes how to configure Sentry policy files and enable policy file authorization for CDH services using
Cloudera Manager.

Configuring User to Group Mappings

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Hadoop Groups

1. Go to the Hive service.
2. Click the Configuration tab.
3. Under the Service-Wide category, go to the Policy File Based Sentry section.
4. Set the Sentry User to Group Mapping Class property to

org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider.
5. Click Save Changes.
6. Restart the Hive service.

Local Groups

1. Define local groups in the [users] section of the Policy File on page 242. For example:

[users]
user1 = group1, group2, group3
user2 = group2, group3

2. Modify Sentry configuration as follows:

a. Go to the Hive service.
b. Click the Configuration tab.
c. Under the Service-Wide category, go to the Policy File Based Sentry section.
d. Set the Sentry User to Group Mapping Class property to

org.apache.sentry.provider.file.LocalGroupResourceAuthorizationProvider.

Cloudera Security | 251

Authorization

http://www.debian.org/doc/debian-policy/ap-pkg-conffiles.html
http://www.debian.org/doc/debian-policy/ap-pkg-conffiles.html

e. Click Save Changes.
f. Restart the Hive service.

Enabling URIs for Per-DB Policy Files

The ADD JAR command does notwork with HiveServer2 and the Beeline client when Beeline runs on a different host.
As an alternative to ADD JAR, Hive's auxiliary paths functionality should be used as described in the following steps.

Important: Enabling URIs in per-DB policy files introduces a security risk by allowing the owner of
the db-level policy file to grant himself/herself load privileges to anything the hive user has read
permissions for in HDFS (including data in other databases controlled by different db-level policy files).

Add the following string to the Java configuration options for HiveServer2 during startup.

-Dsentry.allow.uri.db.policyfile=true

Using User-Defined Functions with HiveServer2

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

The ADD JAR command does notwork with HiveServer2 and the Beeline client when Beeline runs on a different host.
As an alternative to ADD JAR, Hive's auxiliary paths functionality should be used. There are some differences in the
procedures for creating permanent functions and temporary functions. For detailed instructions, see User-Defined
Functions (UDFs) with HiveServer2 Using Cloudera Manager.

Enabling Policy File Authorization for Hive

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Ensure the Prerequisites on page 240 have been satisfied.
2. The Hive warehouse directory (/user/hive/warehouse or any path you specify as
hive.metastore.warehouse.dir in your hive-site.xml) must be owned by the Hive user and group.

• Permissions on the warehouse directory must be set as follows (see following Note for caveats):

– 771 on the directory itself (for example, /user/hive/warehouse)
– 771 on all subdirectories (for example, /user/hive/warehouse/mysubdir)
– All files and subdirectories should be owned by hive:hive

For example:

$ sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

Note:

• If you set hive.warehouse.subdir.inherit.perms to true in hive-site.xml,
the permissions on the subdirectories will be set when you set permissions on the
warehouse directory itself.

• If a user has access to any object in the warehouse, that user will be able to execute
use default. This ensures thatuse default commands issued by legacy applications
work when Sentry is enabled. Note that you can protect objects in the default database
(or any other database) by means of a policy file.

Important: These instructions override the recommendations in the Hive section of the CDH
5 Installation Guide.

252 | Cloudera Security

Authorization

3. Disable impersonation for HiveServer2:

a. Go to the Hive service.
b. Click the Configuration tab.
c. Under the HiveServer2 role group, uncheck the HiveServer2 Enable Impersonation property, and click Save

Changes.

4. Create the Sentry policy file, sentry-provider.ini, as an HDFS file.
5. Enable the Hive user to submit MapReduce jobs.

a. Go to the MapReduce service.
b. Click the Configuration tab.
c. Under a TaskTracker role group go to the Security category.
d. Set theMinimum User ID for Job Submission property to zero (the default is 1000) and click Save Changes.
e. Repeat steps 5.a-5.d for every TaskTracker role group for theMapReduce service that is associated with Hive,

if more than one exists.
f. Restart the MapReduce service.

6. Enable the Hive user to submit YARN jobs.

a. Go to the YARN service.
b. Click the Configuration tab.
c. Under a NodeManager role group go to the Security category.
d. Ensure the Allowed System Users property includes the hive user. If not, add hive and click Save Changes.
e. Repeat steps 6.a-6.d for every NodeManager role group for the YARN service that is associated with Hive, if

more than one exists.
f. Restart the YARN service.

7. Go to the Hive service.
8. Click the Configuration tab.
9. Under the Service-Wide category, go to the Policy File Based Sentry section.
10. Check Enable Sentry Authorization Using Policy Files, then click Save Changes.
11. You must restart the cluster and HiveServer2 after changing these values, whether you use Cloudera Manager or

not.

Configuring Group Access to the Hive Metastore

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

You can configure the Hive Metastore to reject connections from users not listed in the Hive group proxy list (in HDFS).
If you do not configure this override, the Hive Metastore will use the value in the core-site HDFS configuration. To
configure the Hive group proxy list:

1. Go to the Hive service.
2. Click the Configuration tab.
3. Click the Proxy category.
4. In the Hive Metastore Access Control and Proxy User Groups Override property, specify a list of groups whose

users are allowed to access the Hive Metastore. If you do not specify "*" (wildcard), you will be warned if the
groups do not include hive and impala (if the Impala service is configured) in the list of groups.

5. Click Save Changes.
6. Restart the Hive service.

Enabling Policy File Authorization for Impala

For a cluster managed by ClouderaManager, perform the following steps to enable policy file authorization for Impala.

1. Enable Sentry's policy file based authorization for Hive. For details, see Enabling Policy File Authorization for Hive
on page 252.

2. Go to the Cloudera Manager Admin Console and navigate to the Impala service.

Cloudera Security | 253

Authorization

3. Click the Configuration tab.
4. Under the Service-Wide category, go to the Policy File Based Sentry section.
5. Check Enable Sentry Authorization Using Policy Files, then click Save Changes.
6. Restart the Impala service.

For more details, see Starting the impalad Daemon with Sentry Authorization Enabled on page 258.

Enabling Sentry Authorization for Solr

Minimum Required Role: Full Administrator

1. Ensure the following requirements are satisfied:

• Cloudera Search 1.1.1 or higher or CDH 5 or higher.
• A secure Hadoop cluster.

2. Create the policy file sentry-provider.ini as an HDFS file. When you create the policy file
sentry-provider.ini follow the instructions in the Policy File section in Configuring Sentry for Search (CDH
4) orSearch Authentication on page 104. The file must be owned by owned by the solr user in the solr group,
with perms=600. By default ClouderaManager assumes the policy file is in theHDFS location/user/solr/sentry.
To configure the location:

a. Go to the Solr service.
b. Click the Configuration tab.
c. Under the Service-Wide category, select Sentry andmodify the path in the Sentry Global Policy File property.
d. Click Save Changes.

3. Under the Service-Wide category, go to the Policy File Based Sentry section.
4. Check Enable Sentry Authorization Using Policy Files, then click Save Changes.
5. Restart the Solr service.

For more details, see Enabling Sentry Authorization for Search on page 268.

Configuring Sentry to Enable BDR Replication

Cloudera recommends the following steps when configuring Sentry and data replication is enabled.

• Group membership should be managed outside of Sentry (as typically OS groups, LDAP groups, and so on are
managed) and replication for them also should be handled outside of Cloudera Manager.

• In Cloudera Manager, set up HDFS replication for the Sentry files of the databases that are being replicated
(separately using Hive replication).

• On the source cluster:

– Use a separate Sentry policy file for every database
– Avoid placing any group or role info (except for server admin info) in the global Sentry policy file (to avoid

manual replication/merging with the global file on the target cluster)
– To avoid manual fix up of URI privileges, ensure that the URIs for the data are the same on both the source

and target cluster

• On the target cluster:

– In the global Sentry policy file, manually add the DB name - DB filemapping entries for the databases being
replicated

– Manually copy the server admin info from the global Sentry policy file on the source to the policy on the
target cluster

– For the databases being replicated, avoid adding more privileges (adding tables specific to target cluster may
sometimes require adding extra privileges to allow access to those tables). If any target cluster specific
privileges absolutely need to be added for a database, add them to the global Sentry policy file on the target
cluster since the per database files would be overwritten periodically with source versions during scheduled
replication.

254 | Cloudera Security

Authorization

http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_sentry.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_sentry.html

Configuring Sentry Policy File Authorization Using the Command Line

This topic describes how to configure Sentry policy files and enable policy file authorization for unmanaged CDH services
using the command line.

Configuring User to Group Mappings

Hadoop Groups

Set the hive.sentry.provider property in sentry-site.xml.

<property>
<name>hive.sentry.provider</name>
<value>org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider</value>
</property>

Local Groups

1. Define local groups in the [users] section of the Policy File on page 242. For example:

[users]
user1 = group1, group2, group3
user2 = group2, group3

2. Modify Sentry configuration as follows:

In sentry-site.xml, set hive.sentry.provider as follows:

<property>
<name>hive.sentry.provider</name>
<value>org.apache.sentry.provider.file.LocalGroupResourceAuthorizationProvider</value>
</property>

Enabling URIs for Per-DB Policy Files

The ADD JAR command does notwork with HiveServer2 and the Beeline client when Beeline runs on a different host.
As an alternative to ADD JAR, Hive's auxiliary paths functionality should be used as described in the following steps.

Important: Enabling URIs in per-DB policy files introduces a security risk by allowing the owner of
the db-level policy file to grant himself/herself load privileges to anything the hive user has read
permissions for in HDFS (including data in other databases controlled by different db-level policy files).

Add the following string to the Java configuration options for HiveServer2 during startup.

-Dsentry.allow.uri.db.policyfile=true

Using User-Defined Functions with HiveServer2

The ADD JAR command does notwork with HiveServer2 and the Beeline client when Beeline runs on a different host.
As an alternative to ADD JAR, Hive's auxiliary paths functionality should be used as described in the following steps.
There are some differences in the procedures for creating permanent functions and temporary functions. For detailed
instructions, see User-Defined Functions (UDFs) with HiveServer2 Using the Command Line.

Enabling Policy File Authorization for Hive

Prerequisites
In addition to the Prerequisites on page 240 above, make sure that the following are true:

• The Hive warehouse directory (/user/hive/warehouse or any path you specify as
hive.metastore.warehouse.dir in your hive-site.xml) must be owned by the Hive user and group.

Cloudera Security | 255

Authorization

Permissions on the warehouse directory must be set as follows (see following Note for caveats):–

771 on the directory itself (for example, /user/hive/warehouse)–
– 771 on all subdirectories (for example, /user/hive/warehouse/mysubdir)
– All files and subdirectories should be owned by hive:hive

For example:

$ sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

Note:

• If you set hive.warehouse.subdir.inherit.perms to true in hive-site.xml,
the permissions on the subdirectories will be set when you set permissions on the
warehouse directory itself.

• If a user has access to any object in the warehouse, that user will be able to execute
use default. This ensures thatuse default commands issued by legacy applications
work when Sentry is enabled. Note that you can protect objects in the default database
(or any other database) by means of a policy file.

Important: These instructions override the recommendations in the Hive section of the CDH
5 Installation Guide.

• HiveServer2 impersonation must be turned off.
• The Hive user must be able to submit MapReduce jobs. You can ensure that this is true by setting the minimum

user ID for job submission to 0. Edit the taskcontroller.cfg file and set min.user.id=0.

To enable the Hive user to submit YARN jobs, add the user hive to the allowed.system.users configuration
property. Edit the container-executor.cfg file and add hive to the allowed.system.users property. For
example,

allowed.system.users = nobody,impala,hive

Important:

• You must restart the cluster and HiveServer2 after changing this value, whether you use
Cloudera Manager or not.

• These instructions override the instructions under Configuring MRv1 Security on page 61
• These instructions override the instructions under Configuring YARN Security on page 64

Configuration Changes Required

To enable Sentry, add the following properties to hive-site.xml:

<property>
<name>hive.server2.session.hook</name>
<value>org.apache.sentry.binding.hive.HiveAuthzBindingSessionHook</value>
</property>

<property>
<name>hive.sentry.conf.url</name>
<value></value>
<description>sentry-site.xml file location</description>
</property>

256 | Cloudera Security

Authorization

<property>
<name>hive.metastore.client.impl</name>
<value>org.apache.sentry.binding.metastore.SentryHiveMetaStoreClient</value>
<description>Sets custom Hive Metastore client which Sentry uses to filter out
metadata.</description>
</property>

Securing the Hive Metastore

It's important that the Hive metastore be secured. If you want to override the Kerberos prerequisite for the Hive
metastore, set thesentry.hive.testing.mode property totrue to allow Sentry toworkwithweaker authentication
mechanisms. Add the following property to the HiveServer2 and Hive metastore's sentry-site.xml:

<property>
 <name>sentry.hive.testing.mode</name>
 <value>true</value>
</property>

Impala does not require this flag to be set.

Warning: Cloudera strongly recommends against enabling this property in production. Use Sentry's
testing mode only in test environments.

You canturn on Hive metastore security using the instructions in Cloudera Security. To secure the Hive metastore; see
Hive Metastore Server Security Configuration on page 81.

Enabling Policy File Authorization for Impala

First, enable Sentry's policy file based authorization for Hive. For details, see Enabling Policy File Authorization for Hive
on page 255.

See Enabling Sentry Authorization for Impala on page 257 for details on configuring Impala to work with Sentry policy
files.

Enabling Sentry in Cloudera Search

See Enabling Sentry in Cloudera Search for CDH 5 on page 271 for details on securing Cloudera Search with Sentry.

Enabling Sentry Authorization for Impala
Authorization determines which users are allowed to access which resources, and what operations they are allowed
to perform. In Impala 1.1 and higher, you use the Sentry open source project for authorization. Sentry adds a fine-grained
authorization framework for Hadoop. By default (when authorization is not enabled), Impala does all read and write
operations with the privileges of the impala user, which is suitable for a development/test environment but not for
a secure production environment. When authorization is enabled, Impala uses the OS user ID of the user who runs
impala-shell or other client program, and associates various privileges with each user.

Note: Sentry is typically used in conjunction with Kerberos authentication, which defines which hosts
are allowed to connect to each server. Using the combination of Sentry and Kerberos preventsmalicious
users from being able to connect by creating a named account on an untrustedmachine. See Enabling
Kerberos Authentication for Impala on page 96 for details about Kerberos authentication.

The Sentry Privilege Model

Privileges can be granted on different objects in the schema. Any privilege that can be granted is associated with a
level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the child object automatically
inherits it. This is the same privilege model as Hive and other database systems such as MySQL.

Cloudera Security | 257

Authorization

The object hierarchy covers Server, URI, Database, and Table. (The Table privileges apply to views as well; anywhere
you specify a table name, you can specify a view name instead.) Currently, you cannot assign privileges at the partition
or column level. The way you implement column-level or partition-level privileges is to create a view that queries just
the relevant columns or partitions, and assign privileges to the view rather than the underlying table or tables.

A restricted set of privileges determines what you can do with each object:

SELECT privilege

Lets you read data from a table or view, for example with the SELECT statement, the INSERT...SELECT syntax,
or CREATE TABLE...LIKE. Also required to issue the DESCRIBE statement or the EXPLAIN statement for a query
against a particular table. Only objects for which a user has this privilege are shown in the output for SHOW
DATABASES and SHOW TABLES statements. The REFRESH statement and INVALIDATE METADATA statements
only access metadata for tables for which the user has this privilege.

INSERT privilege

Lets you write data to a table. Applies to the INSERT and LOAD DATA statements.

ALL privilege

Lets you create or modify the object. Required to run DDL statements such as CREATE TABLE, ALTER TABLE, or
DROP TABLE for a table, CREATE DATABASE or DROP DATABASE for a database, or CREATE VIEW, ALTER VIEW,
or DROP VIEW for a view. Also required for the URI of the “location” parameter for the CREATE EXTERNAL TABLE
and LOAD DATA statements.

Privileges can be specified for a table or view before that object actually exists. If you do not have sufficient privilege
to perform an operation, the error message does not disclose if the object exists or not.

Originally, privileges were encoded in a policy file, stored in HDFS. This mode of operation is still an option, but the
emphasis of privilege management is moving towards being SQL-based. Although currently Impala does not have
GRANT or REVOKE statements, Impala can make use of privileges assigned through GRANT and REVOKE statements
done through Hive. The mode of operation with GRANT and REVOKE statements instead of the policy file requires that
a special Sentry service be enabled; this service stores, retrieves, and manipulates privilege information stored inside
the metastore database.

Starting the impalad Daemon with Sentry Authorization Enabled

To run the impalad daemon with authorization enabled, you add one or more options to the IMPALA_SERVER_ARGS
declaration in the /etc/default/impala configuration file:

• The -server_name option turns on Sentry authorization for Impala. The authorization rules refer to a symbolic
server name, and you specify the name to use as the argument to the -server_name option.

• If you specify just -server_name, Impala uses the Sentry service for authorization, relying on the results of GRANT
and REVOKE statements issued through Hive. (This mode of operation is available in Impala 1.4.0 and higher.)
Prior to Impala 1.4.0, or if you want to continue storing privilege rules in the policy file, also specify the
-authorization_policy_file option as in the following item.

• Specifying the-authorization_policy_fileoption in addition to-server_namemakes Impala read privilege
information from a policy file, rather than from the metastore database. The argument to the
-authorization_policy_file option specifies the HDFS path to the policy file that defines the privileges on
different schema objects.

For example, you might adapt your /etc/default/impala configuration to contain lines like the following. To use
the Sentry service rather than the policy file:

IMPALA_SERVER_ARGS=" \
-server_name=server1 \
...

Or to use the policy file, as in releases prior to Impala 1.4:

IMPALA_SERVER_ARGS=" \
-authorization_policy_file=/user/hive/warehouse/auth-policy.ini \

258 | Cloudera Security

Authorization

-server_name=server1 \
...

The preceding examples set up a symbolic name of server1 to refer to the current instance of Impala. This symbolic
name is used in the following ways:

• In an environment managed by Cloudera Manager, the server name is specified through Impala > Service-Wide
> Advanced > Server Name for Sentry Authorization and Hive > Service-Wide > Advanced > Server Name for
Sentry Authorization. The valuesmust be the same for both, so that Impala and Hive can share the privilege rules.
Restart the Impala and Hive services after setting or changing this value.

• In an environment not managed by Cloudera Manager, you specify this value for the sentry.hive.server
property in thesentry-site.xml configuration file for Hive, aswell as in the-server_name option forimpalad.

If the impalad daemon is not already running, start it as described in Starting Impala. If it is already running,
restart it with the command sudo /etc/init.d/impala-server restart. Run the appropriate commands
on all the nodes where impalad normally runs.

• If you use the mode of operation using the policy file, the rules in the [roles] section of the policy file refer to
this same server1 name. For example, the following rule sets up a role report_generator that lets users with
that role query any table in a database named reporting_db on a nodewhere the impalad daemonwas started
up with the -server_name=server1 option:

[roles]
report_generator = server=server1->db=reporting_db->table=*->action=SELECT

When impalad is started with one or both of the -server_name=server1 and -authorization_policy_file
options, Impala authorization is enabled. If Impala detects any errors or inconsistencies in the authorization settings
or the policy file, the daemon refuses to start.

Using Impala with the Sentry Service (CDH 5.1 or higher only)

When you use the Sentry service rather than the policy file, you set up privileges through GRANT and REVOKE statement
in either Impala or Hive, then both components use those same privileges automatically. (Impala added the GRANT
and REVOKE statements in Impala 2.0.0 / CDH 5.2.0.)

Hive already had GRANT and REVOKE statements prior to CDH 5.1, but those statements were not production-ready.
CDH 5.1 is the first release where those statements use the Sentry framework and are considered GA level. If you used
the Hive GRANT and REVOKE statements prior to CDH 5.1, you must set up these privileges with the CDH 5.1 versions
of GRANT and REVOKE to take advantage of Sentry authorization.

For information about using the updated Hive GRANT and REVOKE statements, see Sentry service topic in the CDH 5
Security Guide.

Using Impala with the Sentry Policy File

The policy file is a file that you put in a designated location in HDFS, and is read during the startup of the impalad
daemonwhen you specify both the -server_name and -authorization_policy_file startup options. It controls
which objects (databases, tables, and HDFS directory paths) can be accessed by the user who connects to impalad,
and what operations that user can perform on the objects.

Note:

In CDH5 and higher, Cloudera recommendsmanaging privileges through SQL statements, as described
in Using Impalawith the Sentry Service (CDH 5.1 or higher only) on page 259. If you are still using policy
files, plan to migrate to the new approach some time in the future.

The location of the policy file is listed in the auth-site.xml configuration file. To minimize overhead, the security
information from this file is cached by each impalad daemon and refreshed automatically, with a default interval of

Cloudera Security | 259

Authorization

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_sg_sentry_service.html

5 minutes. After making a substantial change to security policies, restart all Impala daemons to pick up the changes
immediately.

Policy File Location and Format

The policy file uses the familiar .ini format, divided into the major sections [groups] and [roles]. There is also
an optional[databases] section,which allows you to specify a specific policy file for a particular database, as explained
in Using Multiple Policy Files for Different Databases on page 264. Another optional section, [users], allows you to
override the OS-level mapping of users to groups; that is an advanced technique primarily for testing and debugging,
and is beyond the scope of this document.

In the [groups] section, you define various categories of users and select which roles are associated with each
category. The group and user names correspond to Linux groups and users on the server where the impalad daemon
runs.

The group and user names in the [groups] section correspond to Linux groups and users on the server where the
impalad daemon runs. When you access Impala through the impalad interpreter, for purposes of authorization, the
user is the logged-in Linux user and the groups are the Linux groups that user is a member of. When you access Impala
through the ODBC or JDBC interfaces, the user and password specified through the connection string are used as login
credentials for the Linux server, and authorization is based on that user name and the associated Linux group
membership.

In the [roles] section, you a set of roles. For each role, you specify precisely the set of privileges is available. That
is, which objects users with that role can access, and what operations they can perform on those objects. This is the
lowest-level category of security information; the other sections in the policy file map the privileges to higher-level
divisions of groups and users. In the [groups] section, you specify which roles are associated with which groups. The
group and user names correspond to Linux groups and users on the server where the impalad daemon runs. The
privileges are specified using patterns like:

server=server_name->db=database_name->table=table_name->action=SELECT
server=server_name->db=database_name->table=table_name->action=CREATE
server=server_name->db=database_name->table=table_name->action=ALL

For the server_name value, substitute the same symbolic name you specify with the impalad -server_name option.
You can use * wildcard characters at each level of the privilege specification to allow access to all such objects. For
example:

server=impala-host.example.com->db=default->table=t1->action=SELECT
server=impala-host.example.com->db=*->table=*->action=CREATE
server=impala-host.example.com->db=*->table=audit_log->action=SELECT
server=impala-host.example.com->db=default->table=t1->action=*

When authorization is enabled, Impala uses the policy file as a whitelist, representing every privilege available to any
user on any object. That is, only operations specified for the appropriate combination of object, role, group, and user
are allowed; all other operations are not allowed. If a group or role is defined multiple times in the policy file, the last
definition takes precedence.

To understand the notion of whitelisting, set up aminimal policy file that does not provide any privileges for any object.
When you connect to an Impala node where this policy file is in effect, you get no results for SHOW DATABASES, and
an error when you issue any SHOW TABLES, USE database_name, DESCRIBE table_name, SELECT, and or other
statements that expect to access databases or tables, even if the corresponding databases and tables exist.

The contents of the policy file are cached, to avoid a performance penalty for each query. The policy file is re-checked
by each impalad node every 5 minutes. When you make a non-time-sensitive change such as adding new privileges
or new users, you can let the change take effect automatically a few minutes later. If you remove or reduce privileges,
and want the change to take effect immediately, restart the impalad daemon on all nodes, again specifying the
-server_name and -authorization_policy_file options so that the rules from the updated policy file are
applied.

260 | Cloudera Security

Authorization

Examples of Policy File Rules for Security Scenarios

The following examples show rules that might go in the policy file to deal with various authorization-related scenarios.
For illustration purposes, this section shows several very small policy fileswith only a few rules each. In your environment,
typically you would definemany roles to cover all the scenarios involving your own databases, tables, and applications,
and a smaller number of groups, whose members are given the privileges from one or more roles.

A User with No Privileges

If a user has no privileges at all, that user cannot access any schema objects in the system. The error messages do not
disclose the names or existence of objects that the user is not authorized to read.

This is the experience you want a user to have if they somehow log into a system where they are not an authorized
Impala user. In a real deployment with a filled-in policy file, a user might have no privileges because they are not a
member of any of the relevant groups mentioned in the policy file.

Examples of Privileges for Administrative Users

When an administrative user has broad access to tables or databases, the associated rules in the [roles] section
typically use wildcards and/or inheritance. For example, in the following sample policy file, db=* refers to all databases
and db=*->table=* refers to all tables in all databases.

Omitting the rightmost portion of a rule means that the privileges apply to all the objects that could be specified there.
For example, in the following sample policy file, the all_databases role has all privileges for all tables in all databases,
while the one_database role has all privileges for all tables in one specific database. The all_databases role does
not grant privileges on URIs, so a group with that role could not issue a CREATE TABLE statement with a LOCATION
clause. The entire_server role has all privileges on both databases and URIs within the server.

[groups]
supergroup = all_databases

[roles]
read_all_tables = server=server1->db=*->table=*->action=SELECT
all_tables = server=server1->db=*->table=*
all_databases = server=server1->db=*
one_database = server=server1->db=test_db
entire_server = server=server1

A User with Privileges for Specific Databases and Tables

If a user has privileges for specific tables in specific databases, the user can access those things but nothing else. They
can see the tables and their parent databases in the output ofSHOW TABLES andSHOW DATABASES,USE the appropriate
databases, and perform the relevant actions (SELECT and/or INSERT) based on the table privileges. To actually create
a table requires the ALL privilege at the database level, so you might define separate roles for the user that sets up a
schema and other users or applications that perform day-to-day operations on the tables.

The following sample policy file shows some of the syntax that is appropriate as the policy file grows, such as the #
comment syntax, \ continuation syntax, and comma separation for roles assigned to groups or privileges assigned to
roles.

[groups]
cloudera = training_sysadmin, instructor
visitor = student

[roles]
training_sysadmin = server=server1->db=training, \
server=server1->db=instructor_private, \
server=server1->db=lesson_development
instructor = server=server1->db=training->table=*->action=*, \
server=server1->db=instructor_private->table=*->action=*, \
server=server1->db=lesson_development->table=lesson*
This particular course is all about queries, so the students can SELECT but not INSERT
 or CREATE/DROP.
student = server=server1->db=training->table=lesson_*->action=SELECT

Cloudera Security | 261

Authorization

Privileges for Working with External Data Files

When data is being inserted through the LOAD DATA statement, or is referenced from an HDFS location outside the
normal Impala database directories, the user also needs appropriate permissions on the URIs corresponding to those
HDFS locations.

In this sample policy file:

• The external_table role lets us insert into and query the Impala table, external_table.sample.
• The staging_dir role lets us specify the HDFS path /user/cloudera/external_data with the LOAD DATA

statement. Remember, when Impala queries or loads data files, it operates on all the files in that directory, not
just a single file, so any Impala LOCATION parameters refer to a directory rather than an individual file.

• We included the IP address and port of the Hadoop name node in the HDFS URI of the staging_dir rule. We
found those details in /etc/hadoop/conf/core-site.xml, under the fs.default.name element. That is
what we use in any roles that specify URIs (that is, the locations of directories in HDFS).

• We start this example after the table external_table.sample is already created. In the policy file for the
example,we have already taken away theexternal_table_admin role from thecloudera group, and replaced
it with the lesser-privileged external_table role.

• We assign privileges to a subdirectory underneath /user/cloudera in HDFS, because such privileges also apply
to any subdirectories underneath. If we had assigned privileges to the parent directory /user/cloudera, it would
be too likely to mess up other files by specifying a wrong location by mistake.

• The cloudera under the [groups] section refers to the cloudera group. (In the demoVMused for this example,
there is a cloudera user that is a member of a cloudera group.)

Policy file:

[groups]
cloudera = external_table, staging_dir

[roles]
external_table_admin = server=server1->db=external_table
external_table = server=server1->db=external_table->table=sample->action=*
staging_dir =
server=server1->uri=hdfs://127.0.0.1:8020/user/cloudera/external_data->action=*

impala-shell session:

[localhost:21000] > use external_table;
Query: use external_table
[localhost:21000] > show tables;
Query: show tables
Query finished, fetching results ...
+--------+
| name |
+--------+
| sample |
+--------+
Returned 1 row(s) in 0.02s

[localhost:21000] > select * from sample;
Query: select * from sample
Query finished, fetching results ...
+-----+
| x |
+-----+
| 1 |
| 5 |
| 150 |
+-----+
Returned 3 row(s) in 1.04s

[localhost:21000] > load data inpath '/user/cloudera/external_data' into table sample;
Query: load data inpath '/user/cloudera/external_data' into table sample
Query finished, fetching results ...
+--+
| summary |

262 | Cloudera Security

Authorization

+--+
| Loaded 1 file(s). Total files in destination location: 2 |
+--+
Returned 1 row(s) in 0.26s
[localhost:21000] > select * from sample;
Query: select * from sample
Query finished, fetching results ...
+-------+
| x |
+-------+
| 2 |
| 4 |
| 6 |
| 8 |
| 64738 |
| 49152 |
| 1 |
| 5 |
| 150 |
+-------+
Returned 9 row(s) in 0.22s

[localhost:21000] > load data inpath '/user/cloudera/unauthorized_data' into table
sample;
Query: load data inpath '/user/cloudera/unauthorized_data' into table sample
ERROR: AuthorizationException: User 'cloudera' does not have privileges to access:
hdfs://127.0.0.1:8020/user/cloudera/unauthorized_data

Controlling Access at the Column Level through Views

If a user has SELECT privilege for a view, they can query the view, even if they do not have any privileges on the
underlying table. To see the details about the underlying table throughEXPLAINorDESCRIBE FORMATTED statements
on the view, the user must also have SELECT privilege for the underlying table.

Important:

The types of data that are considered sensitive and confidential differ depending on the jurisdiction
the type of industry, or both. For fine-grained access controls, set up appropriate privileges based on
all applicable laws and regulations.

Be careful using the ALTER VIEW statement to point an existing view at a different base table or a
new set of columns that includes sensitive or restricted data. Make sure that any users who have
SELECT privilege on the view do not gain access to any additional information they are not authorized
to see.

The following example shows how a system administrator could set up a table containing some columns with sensitive
information, then create a view that only exposes the non-confidential columns.

[localhost:21000] > create table sensitive_info
 > (
 > name string,
 > address string,
 > credit_card string,
 > taxpayer_id string
 >);
[localhost:21000] > create view name_address_view as select name, address from
sensitive_info;

Then the following policy file specifies read-only privilege for that view, without authorizing access to the underlying
table:

[groups]
cloudera = view_only_privs

[roles]
view_only_privs = server=server1->db=reports->table=name_address_view->action=SELECT

Cloudera Security | 263

Authorization

Thus, a user with the view_only_privs role could access through Impala queries the basic information but not the
sensitive information, even if both kinds of information were part of the same data file.

You might define other views to allow users from different groups to query different sets of columns.

Separating Administrator Responsibility from Read and Write Privileges

Remember that to create a database requires full privilege on that database, while day-to-day operations on tables
within that database can be performed with lower levels of privilege on specific table. Thus, you might set up separate
roles for each database or application: an administrative one that could create or drop the database, and a user-level
one that can access only the relevant tables.

For example, this policy file divides responsibilities between users in 3 different groups:

• Members of the supergroup group have the training_sysadmin role and so can set up a database named
training.

• Members of the cloudera group have the instructor role and so can create, insert into, and query any tables
in the training database, but cannot create or drop the database itself.

• Members of the visitor group have the student role and so can query those tables in the training database.

[groups]
supergroup = training_sysadmin
cloudera = instructor
visitor = student

[roles]
training_sysadmin = server=server1->db=training
instructor = server=server1->db=training->table=*->action=*
student = server=server1->db=training->table=*->action=SELECT

Using Multiple Policy Files for Different Databases

For an Impala cluster with many databases being accessed by many users and applications, it might be cumbersome
to update the security policy file for each privilege change or each new database, table, or view. You can allow security
to be managed separately for individual databases, by setting up a separate policy file for each database:

• Add the optional [databases] section to the main policy file.
• Add entries in the [databases] section for each database that has its own policy file.
• For each listed database, specify the HDFS path of the appropriate policy file.

For example:

[databases]
Defines the location of the per-DB policy files for the 'customers' and 'sales'
databases.
customers = hdfs://ha-nn-uri/etc/access/customers.ini
sales = hdfs://ha-nn-uri/etc/access/sales.ini

To enable URIs in per-DB policy files, add the following string in the ClouderaManager field Impala Service Environment
Advanced Configuration Snippet (Safety Valve):

JAVA_TOOL_OPTIONS="-Dsentry.allow.uri.db.policyfile=true"

Important: Enabling URIs in per-DB policy files introduces a security risk by allowing the owner of
the db-level policy file to grant himself/herself load privileges to anything the impala user has read
permissions for in HDFS (including data in other databases controlled by different db-level policy files).

Setting Up Schema Objects for a Secure Impala Deployment

Remember that in your role definitions, you specify privileges at the level of individual databases and tables, or all
databases or all tables within a database. To simplify the structure of these rules, plan ahead of time how to name
your schema objects so that data with different authorization requirements is divided into separate databases.

264 | Cloudera Security

Authorization

If you are adding security on top of an existing Impala deployment, remember that you can rename tables or even
move them between databases using the ALTER TABLE statement. In Impala, creating new databases is a relatively
inexpensive operation, basically just creating a new directory in HDFS.

You can also plan the security scheme and set up the policy file before the actual schema objects named in the policy
file exist. Because the authorization capability is based on whitelisting, a user can only create a new database or table
if the required privilege is already in the policy file: either by listing the exact name of the object being created, or a *
wildcard to match all the applicable objects within the appropriate container.

Privilege Model and Object Hierarchy

Privileges can be granted on different objects in the schema. Any privilege that can be granted is associated with a
level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the child object automatically
inherits it. This is the same privilege model as Hive and other database systems such as MySQL.

The kinds of objects in the schema hierarchy are:

Server
URI
Database
 Table

The server name is specified by the -server_name option when impalad starts. Specify the same name for all
impalad nodes in the cluster.

URIs represent the HDFS paths you specify as part of statements such as CREATE EXTERNAL TABLE and LOAD DATA.
Typically, you specify what look like UNIX paths, but these locations can also be prefixed with hdfs:// to make clear
that they are really URIs. To set privileges for a URI, specify the name of a directory, and the privilege applies to all the
files in that directory and any directories underneath it.

There are not separate privileges for individual table partitions or columns. To specify read privileges at this level, you
create a view that queries specific columns and/or partitions from a base table, and give SELECT privilege on the view
but not the underlying table. See Overview of Impala Views for details about views in Impala.

URIs must start with either hdfs:// or file://. If a URI starts with anything else, it will cause an exception and the
policy file will be invalid. When defining URIs for HDFS, you must also specify the NameNode. For example:

data_read = server=server1->uri=file:///path/to/dir, \
server=server1->uri=hdfs://namenode:port/path/to/dir

Warning:

Because theNameNode host and portmust be specified, Cloudera strongly recommends you use High
Availability (HA). This ensures that the URI will remain constant even if the NameNode changes.

data_read = server=server1->uri=file:///path/to/dir,\
server=server1->uri=hdfs://ha-nn-uri/path/to/dir

Table 20: Valid privilege types and objects they apply to

ObjectPrivilege

DB, TABLEINSERT

DB, TABLESELECT

SERVER, TABLE, DB, URIALL

Cloudera Security | 265

Authorization

Note:

Although this document refers to the ALL privilege, currently if you use the policy file mode, you do
not use the actual keyword ALL in the policy file. When you code role entries in the policy file:

• To specify the ALL privilege for a server, use a role like server=server_name.
• To specify the ALL privilege for a database, use a role like

server=server_name->db=database_name.
• To specify the ALL privilege for a table, use a role like

server=server_name->db=database_name->table=table_name->action=*.

OthersURIPrivilegesScopeOperation

SELECTTABLEEXPLAIN

URIINSERTTABLELOAD DATA

ALLSERVERCREATE DATABASE

ALLDATABASEDROP DATABASE

ALLDATABASECREATE TABLE

ALLTABLEDROP TABLE

SELECT/INSERTTABLEDESCRIBE TABLE

ALLTABLEALTER TABLE .. ADD
COLUMNS

ALLTABLEALTER TABLE .. REPLACE
COLUMNS

ALLTABLEALTER TABLE .. CHANGE
column

ALLTABLEALTER TABLE .. RENAME

ALLTABLEALTER TABLE .. SET
TBLPROPERTIES

ALLTABLEALTER TABLE .. SET
FILEFORMAT

URIALLTABLEALTER TABLE .. SET
LOCATION

ALLTABLEALTER TABLE .. ADD
PARTITION

URIALLTABLEALTER TABLE .. ADD
PARTITION location

ALLTABLEALTER TABLE .. DROP
PARTITION

ALLTABLEALTER TABLE .. PARTITION
SET FILEFORMAT

ALLTABLEALTER TABLE .. SET
SERDEPROPERTIES

SELECT on TABLEALLDATABASE; SELECT on
TABLE

CREATE VIEW

266 | Cloudera Security

Authorization

OthersURIPrivilegesScopeOperation

ALLVIEW/TABLEDROP VIEW

ALL, SELECTYou need ALL privilege
on the named view and

ALTER VIEW

the parent database,
plus SELECT privilege
for any tables or views
referenced by the view
query. Once the view is
created or altered by a
high-privileged system
administrator, it can be
queried by a
lower-privileged user
who does not have full
query privileges for the
base tables. (This is how
you implement
column-level security.)

URIALLTABLEALTER TABLE .. SET
LOCATION

ALL, SELECTDatabase (ALL), URI
(SELECT)

CREATE EXTERNAL TABLE

SELECTTABLESELECT

AnyUSE <dbName>

ALLSERVERCREATE FUNCTION

ALLSERVERDROP FUNCTION

SELECT/INSERTTABLEREFRESH <table name>

ALLSERVERINVALIDATE METADATA

SELECT/INSERTTABLEINVALIDATE METADATA
<table name>

ALLTABLECOMPUTE STATS

SELECT/INSERTTABLESHOWTABLE STATS, SHOW
PARTITIONS

SELECT/INSERTTABLESHOW COLUMN STATS

SELECTDATABASESHOW FUNCTIONS

No special privileges
needed to issue the

SHOW TABLES

statement, but only
shows objects you
are authorized for

No special privileges
needed to issue the

SHOW DATABASES, SHOW
SCHEMAS

statement, but only
shows objects you
are authorized for

Cloudera Security | 267

Authorization

Debugging Failed Sentry Authorization Requests

Sentry logs all facts that lead up to authorization decisions at the debug level. If you do not understand why Sentry is
denying access, the best way to debug is to temporarily turn on debug logging:

• In ClouderaManager, add log4j.logger.org.apache.sentry=DEBUG to the logging settings for your service
through the corresponding Logging Safety Valve field for the Impala, Hive Server 2, or Solr Server services.

• On systems not managed by Cloudera Manager, add log4j.logger.org.apache.sentry=DEBUG to the
log4j.properties file on each host in the cluster, in the appropriate configuration directory for each service.

Specifically, look for exceptions and messages such as:

FilePermission server..., RequestPermission server...., result [true|false]

which indicate each evaluation Sentrymakes. TheFilePermission is from the policy file, whileRequestPermission
is the privilege required for the query. A RequestPermission will iterate over all appropriate FilePermission
settings until a match is found. If no matching privilege is found, Sentry returns false indicating “Access Denied” .

Managing Sentry for Impala through Cloudera Manager

To enable the Sentry service for Impala and Hive, set Hive/Impala > Service-Wide > Sentry Service parameter to the
Sentry service. Then restart Impala and Hive. Simply adding Sentry service as a dependency and restarting enables
Impala and Hive to use the Sentry service.

To set the server name to use when granting server level privileges, set the Hive > Service-Wide > Advanced > Server
Name for Sentry Authorization parameter. When using Sentry with the Hive Metastore, you can specify the list of
users that are allowed to bypass Sentry Authorization in HiveMetastore usingHive > Service-Wide > Security > Bypass
Sentry Authorization Users. These are usually service users that already ensure all activity has been authorized.

Note: The Hive/Impala > Service-Wide > Policy File Based Sentry tab contains parameters only
relevant to configuring Sentry using policy files. In particular, make sure that Enable Sentry
Authorization using Policy Files parameter is unchecked when using the Sentry service. Cloudera
Manager throws a validation error if you attempt to configure the Sentry service and policy file at the
same time.

The DEFAULT Database in a Secure Deployment

Because of the extra emphasis on granular access controls in a secure deployment, you should move any important
or sensitive information out of the DEFAULT database into a named database whose privileges are specified in the
policy file. Sometimes you might need to give privileges on the DEFAULT database for administrative reasons; for
example, as a place you can reliably specify with a USE statement when preparing to drop a database.

Enabling Sentry Authorization for Search
Sentry enables role-based, fine-grained authorization for Cloudera Search. Sentry can apply a range of restrictions to
various tasks, such accessing data or creating collections. These restrictions are consistently applied, regardless of the
way users attempt to complete actions. For example, restricting access to data in a collection restricts that access
whether queries come from the command line, from a browser, or through the admin console.

Follow the instructions below to configure Sentry under CDH 4.5 or later or CDH 5. Sentry is included in the Search
installation.

Note: Sentry for Search depends on Kerberos authentication. For additional information on using
Kerberos with Search, see Search Authentication on page 104.

Note that this document is for configuring Sentry for Cloudera Search. For information about alternateways to configure
Sentry or for information about installing Sentry for other services, see:

268 | Cloudera Security

Authorization

• Setting Up Search Authorization with Sentry for instructions for using Cloudera Manager 4 to install and configure
Search Authorization with Sentry.

• Impala Security for instructions on using Impala with Sentry.
• Sentry Installation to install the version of Sentry that was provided with CDH 4.
• Sentry Installation to install the version of Sentry that was provided with CDH 5.

Roles and Collection-Level Privileges

Sentry uses a role-based privilege model. A role is a set of rules for accessing a given Solr collection. Access to each
collection is governed by privileges: Query, Update, or All (*).

For example, a rule for the Query privilege on collection logs would be formulated as follows:

collection=logs->action=Query

A role can contain multiple such rules, separated by commas. For example the engineer_rolemight contain the
Query privilege for hive_logs and hbase_logs collections, and the Update privilege for the current_bugs
collection. You would specify this as follows:

engineer_role = collection=hive_logs->action=Query, collection=hbase_logs->action=Query,
 collection=current_bugs->action=Update

Users and Groups

• Auseris an entity that is permitted by the Kerberos authentication system to access the Search service.
• Agroupconnects the authentication system with the authorization system. It is a set of one or more users who

have been granted one or more authorization roles. Sentry allows a set of roles to be configured for a group.
• A configured group providerdetermines a user’s affiliationwith a group. The current release supports HDFS-backed

groups and locally configured groups. For example,

dev_ops = dev_role, ops_role

Here the group dev_ops is granted the roles dev_role and ops_role. The members of this group can complete
searches that are allowed by these roles.

User to Group Mapping

You can configure Sentry to use either Hadoop groups or groups defined in the policy file.

Important: You can use either Hadoop groups or local groups, but not both at the same time. Use
local groups if you want to do a quick proof-of-concept. For production, use Hadoop groups.

To configure Hadoop groups:

Set the sentry.provider property in sentry-site.xml to
org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider.

Note: Note that, by default, this uses local shell groups. See the Group Mapping section of the HDFS
Permissions Guide for more information.

OR

To configure local groups:

Cloudera Security | 269

Authorization

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/latest/Cloudera-Manager-Managing-Clusters/cmmc_sentry_search_config.html
http://www.cloudera.com/documentation/enterprise/latest/topics/impala_security.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH4-Installation-Guide/cdh4ig_sentry.html
https://archive.cloudera.com/cdh4/cdh/4/hadoop/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html

1. Define local groups in a [users] section of the Sentry Configuration File on page 271, sentry-site.xml. For
example:

[users]
user1 = group1, group2, group3
user2 = group2, group3

2. In sentry-site.xml, set search.sentry.provider as follows:

<property>
 <name>sentry.provider</name>
 <value>org.apache.sentry.provider.file.LocalGroupResourceAuthorizationProvider</value>

 </property>

Setup and Configuration

This release of Sentry stores the configuration as well as privilege policies in files. The sentry-site.xml file contains
configuration options such as privilege policy file location. The Policy File on page 270 contains the privileges and groups.
It has a .ini file format and should be stored on HDFS.

Sentry is automatically installed when you install Cloudera Search for CDH or Cloudera Search 1.1.0 or later.

Policy File

The sections that follow contain notes on creating and maintaining the policy file.

Warning: An invalid configuration disables all authorization while logging an exception.

Storing the Policy File

Considerations for storing the policy file(s) include:

1. Replication count - Because the file is read for each query, you should increase this; 10 is a reasonable value.
2. Updating the file - Updates to the file are only reflected when the Solr process is restarted.

Defining Roles

Keep in mind that role definitions are not cumulative; the newer definition replaces the older one. For example, the
following results in role1 having privilege2, not privilege1 and privilege2.

role1 = privilege1
role1 = privilege2

Sample Configuration

This section provides a sample configuration.

Note: Sentrywith CDH Search does not supportmultiple policy files. Other implementations of Sentry
such as Sentry for Hive do support different policy files for different databases, but Sentry for CDH
Search has no such support for multiple policies.

Policy File

The following is an example of a CDH Search policy file. The sentry-provider.ini would exist in an HDFS location
such as hdfs://ha-nn-uri/user/solr/sentry/sentry-provider.ini.

270 | Cloudera Security

Authorization

Note: Use separate policy files for each Sentry-enabled service. Using one file for multiple services
results in each service failing on the other services' entries. For example, with a combined Hive and
Search file, Search would fail on Hive entries and Hive would fail on Search entries.

sentry-provider.ini

[groups]
Assigns each Hadoop group to its set of roles
engineer = engineer_role
ops = ops_role
dev_ops = engineer_role, ops_role
hbase_admin = hbase_admin_role

[roles]
The following grants all access to source_code.
"collection = source_code" can also be used as syntactic
sugar for "collection = source_code->action=*"
engineer_role = collection = source_code->action=*

The following imply more restricted access.
ops_role = collection = hive_logs->action=Query
dev_ops_role = collection = hbase_logs->action=Query

#give hbase_admin_role the ability to create/delete/modify the hbase_logs collection
hbase_admin_role = collection=admin->action=*, collection=hbase_logs->action=*

Sentry Configuration File

The following is an example of a sentry-site.xml file.

sentry-site.xml

<configuration>
 <property>
 <name>hive.sentry.provider</name>

<value>org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider</value>

 </property>

 <property>
 <name>sentry.solr.provider.resource</name>
 <value>/path/to/authz-provider.ini</value>
 <!--
 If the HDFS configuration files (core-site.xml, hdfs-site.xml)
 pointed to by SOLR_HDFS_CONFIG in /etc/default/solr
 point to HDFS, the path will be in HDFS;
 alternatively you could specify a full path,
 e.g.:hdfs://namenode:port/path/to/authz-provider.ini
 -->
 </property>

Enabling Sentry in Cloudera Search for CDH 5

Enabling Sentry is achieved by adding two properties to /etc/default/solr. If your Search installation is managed
by Cloudera Manager, then these properties are added automatically. If your Search installation is not managed by
Cloudera Manager, you must make these changes yourself. The variable SOLR_AUTHORIZATION_SENTRY_SITE
specifies the path to sentry-site.xml. The variable SOLR_AUTHORIZATION_SUPERUSER specifies the first part of
SOLR_KERBEROS_PRINCIPAL. This is solr for the majority of users, as solr is the default. Settings are of the form:

SOLR_AUTHORIZATION_SENTRY_SITE=/location/to/sentry-site.xml
SOLR_AUTHORIZATION_SUPERUSER=solr

To enable sentry collection-level authorization checking on a new collection, the instancedir for the collection must
use a modified version of solrconfig.xml with Sentry integration. The command solrctl instancedir
--generate generates two versions of solrconfig.xml: the standard solrconfig.xmlwithout sentry integration,

Cloudera Security | 271

Authorization

and the sentry-integrated version called solrconfig.xml.secure. To use the sentry-integrated version, replace
solrconfig.xml with solrconfig.xml.secure before creating the instancedir.

If you have an existing collection using the standard solrconfig.xml called foo and an instancedir of the same
name, perform the following steps:

generate a fresh instancedir
solrctl instancedir --generate foosecure
download the existing instancedir from ZK into subdirectory foo
solrctl instancedir --get foo foo
replace the existing solrconfig.xml with the sentry-enabled one
cp foosecure/conf/solrconfig.xml.secure foo/conf/solrconfig.xml
update the instancedir in ZK
solrctl instancedir --update foo foo
reload the collection
solrctl collection --reload foo

If you have an existing collection using a version of solrconfig.xml that you have modified, contact Support for
assistance.

Providing Document-Level Security Using Sentry

For role-based access control of a collection, an administrator modifies a Sentry role so it has query, update, or
administrative access, as described above.

Collection-level authorization is useful when the access control requirements for the documents in the collection are
the same, but users may want to restrict access to a subset of documents in a collection. This finer-grained restriction
could be achieved by defining separate collections for each subset, but this is difficult to manage, requires duplicate
documents for each collection, and requires that these documents be kept synchronized.

Document-level access control solves this issue by associating authorization tokenswith each document in the collection.
This enables granting Sentry roles access to sets of documents in a collection.

Document-Level Security Model

Document-level security depends on a chain of relationships between users, groups, roles, and documents.

• Users are assigned to groups.
• Groups are assigned to roles.
• Roles are stored as "authorization tokens" in a specified field in the documents.

Document-level security supports restricting which documents can be viewed by which users. Access is provided by
adding roles as "authorization tokens" to a specified document field. Conversely, access is implicitly denied by omitting
roles from the specified field. In other words, in a document-level security enabled environment, a user might submit
a query that matches a document; if the user is not part of a group that has a role has been granted access to the
document, the result is not returned.

For example, Alice might belong to the administrators group. The administrators group may belong to the doc-mgmt
role. A document could be ingested and the doc-mgmt role could be added at ingest time. In such a case, if Alice
submitted a query that matched the document, Search would return the document, since Alice is then allowed to see
any document with the "doc-mgmt" authorization token.

Similarly, Bob might belong to the guests group. The guests group may belong to the public-browser role. If Bob tried
the same query as Alice, but the document did not have the public-browser role, Search would not return the result
because Bob does not belong to a group that is associated with a role that has access.

Note that collection-level authorization rules still apply, if enabled. Even if Alice is able to view a document given
document-level authorization rules, if she is not allowed to query the collection, the query will fail.

Roles are typically added to documents when those documents are ingested, either via the standard Solr APIs or, if
using morphlines, the setValuesmorphline command.

Enabling Document-Level Security

272 | Cloudera Security

Authorization

http://kitesdk.org/docs/current/kite-morphlines/morphlinesReferenceGuide.html#/setValues

Cloudera Search supports document-level security in Search for CDH 5.1 and later. Document-level security is disabled
by default, so the first step in using document-level security is to enable the feature by modifying the
solrconfig.xml.secure file. Remember to replace the solrconfig.xml with this file, as described in Enabling
Sentry in Cloudera Search for CDH 5 on page 271.

To enable document-level security, change solrconfig.xml.secure. The default file contents are as follows:

<searchComponent name="queryDocAuthorization">
 <!-- Set to true to enabled document-level authorization -->

 <bool name="enabled">false</bool>

 <!-- Field where the auth tokens are stored in the document -->
 <str name="sentryAuthField">sentry_auth</str>

 <!-- Auth token defined to allow any role to access the document.
 Uncomment to enable. -->

 <!--<str name="allRolesToken">*</str>-->

</searchComponent>

• The enabled Boolean determines whether document-level authorization is enabled. To enable document level
security, change this setting to true.

• The sentryAuthField string specifies the name of the field that is used for storing authorization information.
You can use the default setting ofsentry_auth or you can specify someother string that youwill use for assigning
values on ingest.

Note: This field must exist as an explicit or dynamic field in the schema. sentry_auth exists in
the default schema.xml.

• The allRolesToken string represents a special token defined to allow any role access to the document. By
default, this feature is disabled. To enable this feature, uncomment the specification and specify the token. This
token should be different from the name of any sentry role to avoid collision. By default it is "*". This feature is
useful when first configuring document level security or it can be useful in granting all roles access to a document
when the set of roles may change. See Best Practices for additional information.

Best Practices

Using allRolesToken

You may want to grant every user that belongs to a role access to certain documents. One way to accomplish this is
to specify all known roles in the document, but this requires updating or re-indexing the document if you add a new
role. Alternatively, an allUser role, specified in the Sentry .ini file, could contain all valid groups, but this role would
need to be updated every time a new group was added to the system. Instead, specifying allRolesToken allows any
user that belongs to a valid role to access the document. This access requires no updating as the system evolves.

In addition, allRolesTokenmay be useful for transitioning a deployment to use document-level security. Instead of
having to define all the roles upfront, all the documents can be specified with allRolesToken and later modified as
the roles are defined.

Consequences of Document-Level Authorization Only Affecting Queries

Document-level security does not prevent users from modifying documents or performing other update operations
on the collection. Update operations are only governed by collection-level authorization.

Document-level security can be used to prevent documents being returned in query results. If users are not granted
access to a document, those documents are not returned even if that user submits a query that matches those
documents. This does not have affect attempted updates.

Cloudera Security | 273

Authorization

Consequently, it is possible for a user to not have access to a set of documents based on document-level security, but
to still be able to modify the documents via their collection-level authorization update rights. This means that a user
can delete all documents in the collection. Similarly, a user might modify all documents, adding their authorization
token to each one. After such a modification, the user could access any document via querying. Therefore, if you are
restricting access using document-level security, consider granting collection-level update rights only to those users
you trust and assume they will be able to access every document in the collection.

Limitations on Query Size

By default queries support up to 1024 Boolean clauses. As a result, queries containing more that 1024 clauses may
cause errors. Because authorization information is added by Sentry as part of a query, using document-level security
can increase the number of clauses. In the case where users belong to many roles, even simple queries can become
quite large. If a query is too large, an error of the following form occurs:

org.apache.lucene.search.BooleanQuery$TooManyClauses: maxClauseCount is set to 1024

To change the supported number of clauses, edit the maxBooleanClauses setting in solrconfig.xml. For example,
to allow 2048 clauses, you would edit the setting so it appears as follows:

<maxBooleanClauses>2048</maxBooleanClauses>

For maxBooleanClauses to be applied as expected, make any change to this value to all collections and then restart
the service. Youmustmake this change to all collections because this optionmodifies a global Lucene property, affecting
all Solr cores. If different solrconfig.xml files have different values for this property, the effective value is determined
per host, based on the first Solr core to be initialized.

Enabling Secure Impersonation

Secure Impersonation is a feature that allows a user to make requests as another user in a secure way. For example,
to allow the following impersonations:

• User hue can make requests as any user from any host.
• User foo can make requests as any member of group bar, from host1 or host2.

Configure the following properties in /etc/default/solr:

SOLR_SECURITY_ALLOWED_PROXYUSERS=hue,foo
SOLR_SECURITY_PROXYUSER_hue_HOSTS=*
SOLR_SECURITY_PROXYUSER_hue_GROUPS=*
SOLR_SECURITY_PROXYUSER_foo_HOSTS=host1,host2
SOLR_SECURITY_PROXYUSER_foo_GROUPS=bar

SOLR_SECURITY_ALLOWED_PROXYUSERS lists all of the users allowed to impersonate. For a user x in
SOLR_SECURITY_ALLOWED_PROXYUSERS, SOLR_SECURITY_PROXYUSER_x_HOSTS list the hosts x is allowed to
connect from in order to impersonate, and SOLR_SECURITY_PROXYUSERS_x_GROUPS lists the groups that the users
is allowed to impersonate members of. Both GROUPS and HOSTS support the wildcard * and both GROUPS and HOSTS
must be defined for a specific user.

Note: ClouderaManager has its ownmanagement of secure impersonation for Hue. To add additional
users for Secure Impersonation, use the environment variable safety value for Solr to set the
environment variables as above. Be sure to include hue in SOLR_SECURITY_ALLOWED_PROXYUSERS
if you want to use secure impersonation for hue.

Debugging Failed Sentry Authorization Requests

Sentry logs all facts that lead up to authorization decisions at the debug level. If you do not understand why Sentry is
denying access, the best way to debug is to temporarily turn on debug logging:

274 | Cloudera Security

Authorization

• In ClouderaManager, add log4j.logger.org.apache.sentry=DEBUG to the logging settings for your service
through the corresponding Logging Safety Valve field for the Impala, Hive Server 2, or Solr Server services.

• On systems not managed by Cloudera Manager, add log4j.logger.org.apache.sentry=DEBUG to the
log4j.properties file on each host in the cluster, in the appropriate configuration directory for each service.

Specifically, look for exceptions and messages such as:

FilePermission server..., RequestPermission server...., result [true|false]

which indicate each evaluation Sentrymakes. TheFilePermission is from the policy file, whileRequestPermission
is the privilege required for the query. A RequestPermission will iterate over all appropriate FilePermission
settings until a match is found. If no matching privilege is found, Sentry returns false indicating “Access Denied” .

Appendix: Authorization Privilege Model for Search

The tables below refer to the request handlers defined in the generated solrconfig.xml.secure. If you are not
using this configuration file, the below may not apply.

admin is a special collection in sentry used to represent administrative actions. A non-administrative request may only
require privileges on the collection on which the request is being performed. This is called collection1 in this
appendix. An administrative request may require privileges on both the admin collection and collection1. This is
denoted as admincollection1 in the tables below.

Table 21: Privilege table for non-administrative request handlers

Collections that Require PrivilegeRequired PrivilegeRequest Handler

collection1QUERYselect

collection1QUERYquery

collection1QUERYget

collection1QUERYbrowse

collection1QUERYtvrh

collection1QUERYclustering

collection1QUERYterms

collection1QUERYelevate

collection1QUERYanalysis/field

collection1QUERYanalysis/document

collection1UPDATEupdate

collection1UPDATEupdate/json

collection1UPDATEupdate/csv

Table 22: Privilege table for collections admin actions

Collections that Require PrivilegeRequired PrivilegeCollection Action

admin, collection1UPDATEcreate

admin, collection1UPDATEdelete

admin, collection1UPDATEreload

Cloudera Security | 275

Authorization

Collections that Require PrivilegeRequired PrivilegeCollection Action

admin, collection1

Note: collection1
here refers to the name
of the alias, not the
underlying collection(s).
For example,
http://YOUR-HOST:8983/

solr/admin/collections?action=

CREATEALIAS&name=collection1

&collections=underlyingCollection

UPDATEcreateAlias

admin, collection1

Note: collection1
here refers to the name
of the alias, not the
underlying collection(s).
For example,
http://YOUR-HOST:8983/

solr/admin/collections?action=

DELETEALIAS&name=collection1

UPDATEdeleteAlias

admin, collection1UPDATEsyncShard

admin, collection1UPDATEsplitShard

admin, collection1UPDATEdeleteShard

Table 23: Privilege table for core admin actions

Collections that Require PrivilegeRequired PrivilegeCollection Action

admin, collection1UPDATEcreate

admin, collection1UPDATErename

admin, collection1UPDATEload

admin, collection1UPDATEunload

admin, collection1UPDATEstatus

adminUPDATEpersist

admin, collection1UPDATEreload

admin, collection1UPDATEswap

admin, collection1UPDATEmergeIndexes

admin, collection1UPDATEsplit

admin, collection1UPDATEprepRecover

admin, collection1UPDATErequestRecover

admin, collection1UPDATErequestSyncShard

admin, collection1UPDATErequestApplyUpdates

276 | Cloudera Security

Authorization

Table 24: Privilege table for Info and AdminHandlers

Collections that Require PrivilegeRequired PrivilegeRequest Handler

adminQUERYLukeRequestHandler

adminQUERYSystemInfoHandler

adminQUERYSolrInfoMBeanHandler

adminQUERYPluginInfoHandler

adminQUERYThreadDumpHandler

adminQUERYPropertiesRequestHandler

adminQUERY, UPDATE (or *)LogginHandler

adminQUERYShowFileRequestHandler

Configuring HBase Authorization
After you have configured HBase authentication as described in the previous section, you must establish authorization
rules for the resources that a client is allowed to access. HBase currently allows you to establish authorization rules at
the table, column and cell-level. Cell-level authorization is fully supported since CDH 5.2.

Understanding HBase Access Levels

HBase access levels are granted independently of each other and allow for different types of operations at a given
scope.

• Read (R) - can read data at the given scope
• Write (W) - can write data at the given scope
• Execute (X) - can execute coprocessor endpoints at the given scope
• Create (C) - can create tables or drop tables (even those they did not create) at the given scope
• Admin (A) - can perform cluster operations such as balancing the cluster or assigning regions at the given scope

The possible scopes are:

• Superuser - superusers can perform any operation available in HBase, to any resource. The user who runs HBase
on your cluster is a superuser, as are any principals assigned to the configuration property hbase.superuser in
hbase-site.xml on the HMaster.

• Global - permissions granted at global scope allow the admin to operate on all tables of the cluster.
• Namespace - permissions granted at namespace scope apply to all tables within a given namespace.
• Table - permissions granted at table scope apply to data or metadata within a given table.
• ColumnFamily - permissions granted at ColumnFamily scope apply to cells within that ColumnFamily.
• Cell - permissions granted at Cell scope apply to that exact cell coordinate. This allows for policy evolution along

with data. To change an ACL on a specific cell, write an updated cell with new ACL to the precise coordinates of
the original. If you have a multi-versioned schema and want to update ACLs on all visible versions, you'll need to
write new cells for all visible versions. The application has complete control over policy evolution. The exception
is append and increment processing. Appends and increments can carry an ACL in the operation. If one is
included in the operation, then it will be applied to the result of the append or increment. Otherwise, the ACL
of the existing cell being appended to or incremented is preserved.

The combination of access levels and scopes creates a matrix of possible access levels that can be granted to a user.
In a production environment, it is useful to think of access levels in terms of what is needed to do a specific job. The
following list describes appropriate access levels for some common types of HBase users. It is important not to grant
more access than is required for a given user to perform their required tasks.

Cloudera Security | 277

Authorization

• Superusers - In a production system, only the HBase user should have superuser access. In a development
environment, an administrator may need superuser access in order to quickly control and manage the cluster.
However, this type of administrator should usually be a Global Admin rather than a superuser.

• Global Admins - A global admin can perform tasks and access every table in HBase. In a typical production
environment, an admin should not have Read or Write permissions to data within tables.

– A global adminwith Admin permissions can perform cluster-wide operations on the cluster, such as balancing,
assigning or unassigning regions, or calling an explicit major compaction. This is an operations role.

– A global adminwith Create permissions can create or drop any tablewithin HBase. This ismore of a DBA-type
role.

In a production environment, it is likely that different users will have only one of Admin and Create permissions.

Warning:

In the current implementation, a Global Adminwith Admin permission can grant himself Read
and Write permissions on a table and gain access to that table's data. For this reason, only grant
Global Admin permissions to trusted user who actually need them.

Also be aware that a Global Admin with Create permission can perform a Put operation on
the ACL table, simulating a grant or revoke and circumventing the authorization check for
Global Admin permissions. This issue (but not the first one) is fixed in CDH 5.3 and higher, as
well as CDH 5.2.1. It is not fixed in CDH 4.x or CDH 5.1.x.

Due to these issues, be cautious with granting Global Admin privileges.

• Table Admins - A table admin can perform administrative operations only on that table. A table adminwith Create
permissions can create snapshots from that table or restore that table from a snapshot. A table admin with Admin
permissions can perform operations such as splits or major compactions on that table.

• Users - Users can read or write data, or both. Users can also execute coprocessor endpoints, if given Executable
permissions.

Important:

If you are using Kerberos principal names when setting ACLs for users, note that Hadoop uses only
the first part (short) of the Kerberos principal when converting it to the user name. Hence, for the
principal ann/fully.qualified.domain.name@YOUR-REALM.COM, HBase ACLs should only be
set for user ann.

Table 25: Real-World Example of Access Levels

This table shows some typical job descriptions at a hypothetical company and the permissions they might require in
order to get their jobs done using HBase.

DescriptionPermissionsScopeJob Title

Manages the cluster and
gives access to Junior
Administrators.

Admin, CreateGlobalSenior Administrator

Creates tables and gives
access to Table
Administrators.

CreateGlobalJunior Administrator

Maintains a table from an
operations point of view.

AdminTableTable Administrator

278 | Cloudera Security

Authorization

DescriptionPermissionsScopeJob Title

Creates reports from HBase
data.

ReadTableData Analyst

Puts data into HBase and
uses HBase data to perform
operations.

Read, WriteTableWeb Application

Further Reading

• Access Control Matrix
• Security - Apache HBase Reference Guide

Enable HBase Authorization

HBase authorization is built on top of the Coprocessors framework, specifically AccessController Coprocessor.

To enable HBase authorization, add the following properties to the hbase-site.xml file on every HBase server host
(Master or RegionServer):

<property>
 <name>hbase.security.authorization</name>
 <value>true</value>
</property>
<property>
 <name>hbase.coprocessor.master.classes</name>
 <value>org.apache.hadoop.hbase.security.access.AccessController</value>
</property>
<property>
 <name>hbase.coprocessor.region.classes</name>

<value>org.apache.hadoop.hbase.security.token.TokenProvider,org.apache.hadoop.hbase.security.access.AccessController</value>
</property>

Note: Once the Access Controller coprocessor is enabled, any user who uses the HBase shell will be
subject to access control. Access control will also be in effect for native (Java API) client access to
HBase.

Configure Access Control Lists for Authorization

Now that HBase has the security coprocessor enabled, you can set ACLs using the HBase shell. Start the HBase shell
as usual.

Important:

The host running the shell must be configured with a keytab file as described in Configuring Kerberos
Authentication for HBase.

The commands that control ACLs take the following form. Group names are prefixed with the @ symbol.

hbase> grant <user> <permissions> [@<namespace> [<table>[<column family>[<column
qualifier>]]]] # grants permissions

hbase> revoke <user> <permissions> [@<namespace> [<table> [<column family> [<column
 qualifier>]]] # revokes permissions

hbase> user_permission <table>
 # displays existing permissions

Cloudera Security | 279

Authorization

http://hbase.apache.org/book/appendix_acl_matrix.html
http://hbase.apache.org/book/security.html

In the above commands, fields encased in <> are variables, and fields in [] are optional. The permissions variable
must consist of zero or more character from the set "RWCA".

• R denotes read permissions, which is required to perform Get, Scan, or Exists calls in a given scope.
• W denotes write permissions, which is required to perform Put, Delete, LockRow, UnlockRow,

IncrementColumnValue, CheckAndDelete, CheckAndPut, Flush, or Compact in a given scope.
• X denotes execute permissions, which is required to execute coprocessor endpoints.
• C denotes create permissions, which is required to perform Create, Alter, or Drop in a given scope.
• A denotes admin permissions, which is required to perform Enable, Disable, Snapshot, Restore, Clone,

Split, MajorCompact, Grant, Revoke, and Shutdown in a given scope.

For example:

grant 'user1', 'RWC'
grant 'user2', 'RW', 'tableA'
grant 'user3', 'C', '@my_namespace'

Be sure to review the information in Understanding HBase Access Levels on page 277 to understand the implications
of the different access levels.

280 | Cloudera Security

Authorization

Overview of Impala Security

Impala includes a fine-grained authorization framework for Hadoop, based on the Sentry open source project. Sentry
authorization was added in Impala 1.1.0. Together with the Kerberos authentication framework, Sentry takes Hadoop
security to a new level needed for the requirements of highly regulated industries such as healthcare, financial services,
and government. Impala also includes an auditing capability; Impala generates the audit data, the Cloudera Navigator
product consolidates the audit data from all nodes in the cluster, and Cloudera Manager lets you filter, visualize, and
produce reports. The auditing feature was added in Impala 1.1.1.

The Impala security features have several objectives. At the most basic level, security prevents accidents or mistakes
that could disrupt application processing, delete or corrupt data, or reveal data to unauthorized users. More advanced
security features and practices can harden the system against malicious users trying to gain unauthorized access or
perform other disallowed operations. The auditing feature provides a way to confirm that no unauthorized access
occurred, and detect whether any such attemptsweremade. This is a critical set of features for production deployments
in large organizations that handle important or sensitive data. It sets the stage for multi-tenancy, where multiple
applications run concurrently and are prevented from interfering with each other.

The material in this section presumes that you are already familiar with administering secure Linux systems. That is,
you should know the general security practices for Linux andHadoop, and their associated commands and configuration
files. For example, you should know how to create Linux users and groups, manage Linux group membership, set Linux
and HDFS file permissions and ownership, and designate the default permissions and ownership for new files. You
should be familiar with the configuration of the nodes in your Hadoop cluster, and know how to apply configuration
changes or run a set of commands across all the nodes.

The security features are divided into these broad categories:

authorization

Which users are allowed to access which resources, andwhat operations are they allowed to perform? Impala relies
on the open source Sentry project for authorization. By default (when authorization is not enabled), Impala does
all read and write operations with the privileges of the impala user, which is suitable for a development/test
environment but not for a secure production environment. When authorization is enabled, Impala uses the OS user
ID of the user who runs impala-shell or other client program, and associates various privileges with each user.
See Enabling Sentry Authorization for Impala on page 257 for details about setting up and managing authorization.

authentication

How does Impala verify the identity of the user to confirm that they really are allowed to exercise the privileges
assigned to that user? Impala relies on the Kerberos subsystem for authentication. See Enabling Kerberos
Authentication for Impala on page 96 for details about setting up and managing authentication.

auditing

What operations were attempted, and did they succeed or not? This feature provides a way to look back and
diagnose whether attempts were made to perform unauthorized operations. You use this information to track
down suspicious activity, and to see where changes are needed in authorization policies. The audit data produced
by this feature is collected by the Cloudera Manager product and then presented in a user-friendly form by the
Cloudera Manager product. See Auditing Impala Operations for details about setting up and managing auditing.

These other topics in the Security Guide cover how Impala integrates with security frameworks such as Kerberos, LDAP,
and Sentry:

• Impala Authentication on page 96
• Enabling Sentry Authorization for Impala on page 257

Security Guidelines for Impala
The following are the major steps to harden a cluster running Impala against accidents and mistakes, or malicious
attackers trying to access sensitive data:

Cloudera Security | 281

Overview of Impala Security

• Secure the root account. The root user can tamper with the impalad daemon, read and write the data files in
HDFS, log into other user accounts, and access other system services that are beyond the control of Impala.

• Restrict membership in the sudoers list (in the /etc/sudoers file). The users who can run the sudo command
can do many of the same things as the root user.

• Ensure the Hadoop ownership and permissions for Impala data files are restricted.

• Ensure the Hadoop ownership and permissions for Impala log files are restricted.

• Ensure that the Impala web UI (available by default on port 25000 on each Impala node) is password-protected.
See Impala Web User Interface for Debugging for details.

• Create a policy file that specifies which Impala privileges are available to users in particular Hadoop groups (which
by defaultmap to LinuxOS groups). Create the associated Linux groups using the groupadd command if necessary.

• The Impala authorization featuremakes use of theHDFS file ownership and permissionsmechanism; for background
information, see the CDH HDFS Permissions Guide. Set up users and assign them to groups at the OS level,
corresponding to the different categories of users with different access levels for various databases, tables, and
HDFS locations (URIs). Create the associated Linux users using the useradd command if necessary, and add them
to the appropriate groups with the usermod command.

• Design your databases, tables, and views with database and table structure to allow policy rules to specify simple,
consistent rules. For example, if all tables related to an application are inside a single database, you can assign
privileges for that database and use the * wildcard for the table name. If you are creating views with different
privileges than the underlying base tables, you might put the views in a separate database so that you can use
the * wildcard for the database containing the base tables, while specifying the precise names of the individual
views. (For specifying table or database names, you either specify the exact name or * to mean all the databases
on a server, or all the tables and views in a database.)

• Enable authorization by running the impalad daemons with the -server_name and
-authorization_policy_file options on all nodes. (The authorization feature does not apply to the
statestored daemon, which has no access to schema objects or data files.)

• Set up authentication using Kerberos, to make sure users really are who they say they are.

Securing Impala Data and Log Files
One aspect of security is to protect files from unauthorized access at the filesystem level. For example, if you store
sensitive data in HDFS, you specify permissions on the associated files and directories in HDFS to restrict read andwrite
permissions to the appropriate users and groups.

If you issue queries containing sensitive values in the WHERE clause, such as financial account numbers, those values
are stored in Impala log files in the Linux filesystem and you must secure those files also. For the locations of Impala
log files, see Using Impala Logging.

All Impala read and write operations are performed under the filesystem privileges of the impala user. The impala
user must be able to read all directories and data files that you query, and write into all the directories and data files
for INSERT and LOAD DATA statements. At a minimum, make sure the impala user is in the hive group so that it
can access files and directories shared between Impala and Hive. See User Account Requirements for more details.

Setting file permissions is necessary for Impala to function correctly, but is not an effective security practice by itself:

• The way to ensure that only authorized users can submit requests for databases and tables they are allowed to
access is to set up Sentry authorization, as explained in Enabling Sentry Authorization for Impala on page 257.With
authorization enabled, the checking of the user ID and group is done by Impala, and unauthorized access is blocked
by Impala itself. The actual low-level read and write requests are still done by the impala user, so you must have
appropriate file and directory permissions for that user ID.

282 | Cloudera Security

Overview of Impala Security

https://archive.cloudera.com/cdh/3/hadoop/hdfs_permissions_guide.html

• You must also set up Kerberos authentication, as described in Enabling Kerberos Authentication for Impala on
page 96, so that users can only connect from trusted hosts. With Kerberos enabled, if someone connects a new
host to the network and creates user IDs that match your privileged IDs, they will be blocked from connecting to
Impala at all from that host.

Installation Considerations for Impala Security
Impala 1.1 comes set up with all the software and settings needed to enable security when you run the impalad
daemon with the new security-related options (-server_name and -authorization_policy_file). You do not
need to change any environment variables or install any additional JAR files. In a clustermanaged by ClouderaManager,
you do not need to change any settings in Cloudera Manager.

Securing the Hive Metastore Database
It is important to secure theHivemetastore, so that users cannot access the names or other information about databases
and tables the through the Hive client or by querying the metastore database. Do this by turning on Hive metastore
security, using the instructions in the CDH 5 Security Guide for securing different Hive components:

• Secure the Hive Metastore.
• In addition, allow access to the metastore only from the HiveServer2 server, and then disable local access to the

HiveServer2 server.

Securing the Impala Web User Interface
The instructions in this section presume you are familiar with the .htpasswdmechanism commonly used to
password-protect pages on web servers.

Password-protect the ImpalawebUI that listens on port 25000 by default. Set up a.htpasswd file in the$IMPALA_HOME
directory, or start both the impalad and statestored daemons with the --webserver_password_file option
to specify a different location (including the filename).

This file should only be readable by the Impala process and machine administrators, because it contains (hashed)
versions of passwords. The username / password pairs are not derived from Unix usernames, Kerberos users, or any
other system. Thedomain field in the password filemustmatch the domain supplied to Impala by the new command-line
option --webserver_authentication_domain. The default is mydomain.com.

Impala also supports using HTTPS for secure web traffic. To do so, set --webserver_certificate_file to refer
to a valid .pem SSL certificate file. Impala will automatically start using HTTPS once the SSL certificate has been read
and validated. A .pem file is basically a private key, followed by a signed SSL certificate; make sure to concatenate both
parts when constructing the .pem file.

If Impala cannot find or parse the .pem file, it prints an error message and quits.

Note:

If the private key is encrypted using a passphrase, Impalawill ask for that passphrase on startup, which
is not useful for a large cluster. In that case, remove the passphrase and make the .pem file readable
only by Impala and administrators.

When you turn on SSL for the Impala web UI, the associated URLs change from http:// prefixes to
https://. Adjust any bookmarks or application code that refers to those URLs.

Cloudera Security | 283

Overview of Impala Security

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_sg_hive_security.html
http://en.wikipedia.org/wiki/.htpasswd

Configuring Secure Access for Impala Web Servers

Cloudera Manager supports two methods of authentication for secure access to the Impala Catalog Server, Daemon,
and StateStoreweb servers: password-based authentication and TLS/SSL certificate authentication.

Authentication for the three types of daemons can be configured independently.

Configuring Password Authentication

1. Navigate to Clusters > Impala Service > Configuration.
2. Search for "password" using the Search box in the Configuration tab. This should display the password-related

properties (Username and Password properties) for the Impala Daemon, StateStore, and Catalog Server. If there
are multiple role groups configured for Impala Daemon instances, the search should display all of them.

3. Enter a username and password into these fields.
4. Click Save Changes, and restart the Impala service.

Now when you access theWeb UI for the Impala Daemon, StateStore, or Catalog Server, you are asked to log in before
access is granted.

Configuring TLS/SSL Certificate Authentication

1. Create or obtain an TLS/SSL certificate.
2. Place the certificate, in .pem format, on the hosts where the Impala Catalog Server and StateStore are running,

and on each host where an Impala Daemon is running. It can be placed in any location (path) you choose. If all
the Impala Daemons are members of the same role group, then the .pem file must have the same path on every
host.

3. Navigate to Clusters > Impala Service > Configuration.
4. Search for "certificate" using the Search box in the Configuration tab. This should display the certificate file location

properties for the Impala Catalog Server, Impala Daemon, and StateStore. If there are multiple role groups
configured for Impala Daemon instances, the search should display all of them.

5. In the property fields, enter the full path name to the certificate file.
6. Click Save Changes, and restart the Impala service.

Important: If Cloudera Manager cannot find the .pem file on the host for a specific role instance,
that role will fail to start.

When you access the Web UI for the Impala Catalog Server, Impala Daemon, and StateStore, https will be used.

284 | Cloudera Security

Overview of Impala Security

Miscellaneous Topics

This section comprisesmiscellaneous security guide topics that youmay find useful once you have secured your cluster
with authentication, encryption and authorization techniques.

Jsvc, Task Controller and Container Executor Programs
This section contains information about the following Hadoop security programs:

MRv1 and YARN: The jsvc Program

The jsvc program is part of the bigtop-jsvc package and installed in either /usr/lib/bigtop-utils/jsvc or
/usr/libexec/bigtop-utils/jsvc depending on the particular Linux flavor.

jsvc (more info) is used to start the DataNode listening on low port numbers. Its entry point is the
SecureDataNodeStarter class, which implements the Daemon interface that jsvc expects. jsvc is run as root,
and calls the SecureDataNodeStarter.init(...)method while running as root. Once the
SecureDataNodeStarter class has finished initializing, jsvc sets the effective UID to be the hdfs user, and then
calls SecureDataNodeStarter.start(...). SecureDataNodeStarter then calls the regular DataNode entry
point, passing in a reference to the privileged resources it previously obtained.

MRv1 Only: The Linux TaskController Program

A setuid binary called task-controller is part of the hadoop-0.20-mapreduce package and is installed in either
/usr/lib/hadoop-0.20-mapreduce/sbin/Linux-amd64-64/task-controller or
/usr/lib/hadoop-0.20-mapreduce/sbin/Linux-i386-32/task-controller.

This task-controller program, which is used on MRv1 only, allows the TaskTracker to run tasks under the Unix
account of the user who submitted the job in the first place. It is a setuid binary that must have a very specific set of
permissions and ownership in order to function correctly. In particular, it must:

1. Be owned by root
2. Be owned by a group that contains only the user running the MapReduce daemons
3. Be setuid
4. Be group readable and executable

This corresponds to the ownership root:mapred and the permissions 4754.

Here is the output of ls on a correctly-configured Task-controller:

-rwsr-xr-- 1 root mapred 30888 Mar 18 13:03 task-controller

The TaskTracker will check for this configuration on start up, and fail to start if the Task-controller is not configured
correctly.

YARN Only: The Linux Container Executor Program

A setuid binary called container-executor is part of the hadoop-yarn package and is installed in
/usr/lib/hadoop-yarn/bin/container-executor.

Thiscontainer-executorprogram,which is used on YARNonly and supported onGNU/Linux only, runs the containers
as the user who submitted the application. It requires all user accounts to be created on the cluster nodes where the
containers are launched. It uses a setuid executable that is included in the Hadoop distribution. The NodeManager
uses this executable to launch and kill containers. The setuid executable switches to the user who has submitted the
application and launches or kills the containers. For maximum security, this executor sets up restricted permissions
and user/group ownership of local files and directories used by the containers such as the shared objects, jars,

Cloudera Security | 285

Miscellaneous Topics

http://commons.apache.org/daemon/jsvc.html

intermediate files, log files, and so on. As a result, only the application owner and NodeManager can access any of the
local files/directories including those localized as part of the distributed cache.

The container-executor program must have a very specific set of permissions and ownership in order to function
correctly. In particular, it must:

1. Be owned by root
2. Be owned by a group that contains only the user running the YARN daemons
3. Be setuid
4. Be group readable and executable

This corresponds to the ownership root:yarn and the permissions 6050.

---Sr-s--- 1 root yarn 91886 2012-04-01 19:54 container-executor

Important: Configuration changes to the Linux container executor could result in local NodeManager
directories (such as usercache) being left with incorrect permissions. To avoid this, when making
changes using either Cloudera Manager or the command line, first manually remove the existing
NodeManager local directories from all configured local directories
(yarn.nodemanager.local-dirs), and let the NodeManager recreate the directory structure.

Task-controller and Container-executor Error Codes

When you set up a secure cluster for the first time and debug problems with it, the task-controller or
container-executormay encounter errors. These programs communicate these errors to the TaskTracker or
NodeManager daemon via numeric error codes whichwill appear in the TaskTracker or NodeManager logs respectively
(/var/log/hadoop-mapreduce or /var/log/hadoop-yarn). The following sections list the possible numeric
error codes with descriptions of what they mean:

• MRv1 ONLY: Task-controller Error Codes on page 286
• YARN ONLY: Container-executor Error Codes on page 288

MRv1 ONLY: Task-controller Error Codes

The following table applies to the task-controller in MRv1.

DescriptionNameNumeric
Code

INVALID_ARGUMENT_NUMBER1 • Incorrect number of arguments provided for
the given task-controller command

• Failure to initialize the job localizer

The user passed to the task-controller does not
exist.

INVALID_USER_NAME2

The task-controller does not recognize the
command it was asked to execute.

INVALID_COMMAND_PROVIDED3

The user passed to the task-controllerwas the super
user.

SUPER_USER_NOT_ALLOWED_TO_RUN_TASKS4

The passed TaskTracker root does not match the
configured TaskTracker root (mapred.local.dir),
or does not exist.

INVALID_TT_ROOT5

Either could not read the local groups database, or
could not set UID or GID

SETUID_OPER_FAILED6

286 | Cloudera Security

Miscellaneous Topics

DescriptionNameNumeric
Code

The task-controller could not execute the task
launcher script.

UNABLE_TO_EXECUTE_TASK_SCRIPT7

The task-controller could not kill the task it was
passed.

UNABLE_TO_KILL_TASK8

The PID passed to the task-controller was negative
or 0.

INVALID_TASK_PID9

The task-controller could not resolve the path of
the task launcher script file.

ERROR_RESOLVING_FILE_PATH10

The path to the task launcher script file contains
relative components (for example, "..").

RELATIVE_PATH_COMPONENTS_IN_FILE_PATH11

The task-controller did not have permission to stat
a file it needed to check the ownership of.

UNABLE_TO_STAT_FILE12

A file which the task-controller must change the
ownership of has the wrong the ownership.

FILE_NOT_OWNED_BY_TASKTRACKER13

The mapred.local.dir is not configured, could
not be read by the task-controller, or could not have
its ownership secured.

PREPARE_ATTEMPT_DIRECTORIES_FAILED14

The task-controller could not get, stat, or secure
the job directory or job working working directory.

INITIALIZE_JOB_FAILED15

The task-controller could not find or could not
change the ownership of the task log directory to
the passed user.

PREPARE_TASK_LOGS_FAILED16

The hadoop.log.dir is not configured.INVALID_TT_LOG_DIR17

The task-controller could not determine the job
directory path or the task launcher script path.

OUT_OF_MEMORY18

Could not get a unique value for, stat, or the local
distributed cache directory.

INITIALIZE_DISTCACHEFILE_FAILED19

Could not get, stat, or secure the per-user task
tracker directory.

INITIALIZE_USER_FAILED20

The task-controller could not concatenate two
paths, most likely because it ran out of memory.

UNABLE_TO_BUILD_PATH21

The task-controller binary does not have the correct
permissions set. See Information about Other
Hadoop Security Programs.

INVALID_TASKCONTROLLER_PERMISSIONS22

The task-controller could not find or could not
change the ownership of the job log directory to
the passed user.

PREPARE_JOB_LOGS_FAILED23

The taskcontroller.cfg file is missing, malformed, or
has incorrect permissions.

INVALID_CONFIG_FILE24

Cloudera Security | 287

Miscellaneous Topics

DescriptionNameNumeric
Code

There are several causes for this error. Some
common causes are:

Unknown Error255

• There are user accounts on your cluster that
have a user ID less than the value specified for
the min.user.id property in the
taskcontroller.cfg file. The default value
is 1000 which is appropriate on Ubuntu
systems, but may not be valid for your
operating system. For information about
setting min.user.id in the
taskcontroller.cfg file, see this step.

• Jobs won't run and the TaskTracker is unable
to create a Hadoop logs directory. For more
information, see (MRv1 Only) Jobs will not run
and TaskTracker is unable to create a Hadoop
logs directory. on page 145.

• This error is often caused by previous errors;
look earlier in the log file for possible causes.

YARN ONLY: Container-executor Error Codes

The codes in the table apply to the container-executor in YARN, but are used by the LinuxContainerExecutor only.

DescriptionNameNumeric
Code

INVALID_ARGUMENT_NUMBER1 • Incorrect number of arguments provided for
the given task-controller command

• Failure to initialize the container localizer

The user passed to the task-controller does not
exist.

INVALID_USER_NAME2

The container-executor does not recognize the
command it was asked to run.

INVALID_COMMAND_PROVIDED3

The passed NodeManager root does not match the
configured NodeManager root

INVALID_NM_ROOT5

(yarn.nodemanager.local-dirs), or does not
exist.

Either could not read the local groups database, or
could not set UID or GID

SETUID_OPER_FAILED6

The container-executor could not run the container
launcher script.

UNABLE_TO_EXECUTE_CONTAINER_SCRIPT7

The container-executor could not signal the
container it was passed.

UNABLE_TO_SIGNAL_CONTAINER8

The PID passed to the container-executor was
negative or 0.

INVALID_CONTAINER_PID9

288 | Cloudera Security

Miscellaneous Topics

DescriptionNameNumeric
Code

The container-executor couldn't allocate enough
memory while reading the container-executor.cfg

OUT_OF_MEMORY18

file, or while getting the paths for the container
launcher script or credentials files.

Couldn't get, stat, or secure the per-user
NodeManager directory.

INITIALIZE_USER_FAILED20

The container-executor couldn't concatenate two
paths, most likely because it ran out of memory.

UNABLE_TO_BUILD_PATH21

The container-executor binary does not have the
correct permissions set. See Information about
Other Hadoop Security Programs.

INVALID_CONTAINER_EXEC_PERMISSIONS22

The container-executor.cfg file is missing,
malformed, or has incorrect permissions.

INVALID_CONFIG_FILE24

Could not set the session ID of the forked container.SETSID_OPER_FAILED25

Failed to write the value of the PID of the launched
container to the PID file of the container.

WRITE_PIDFILE_FAILED26

This error has several possible causes. Some
common causes are:

Unknown Error255

• User accounts on your cluster have a user ID
less than the value specified for the
min.user.id property in the
container-executor.cfg file. The default
value is 1000 which is appropriate on Ubuntu
systems, but may not be valid for your
operating system. For information about
setting min.user.id in the
container-executor.cfg file, see this step.

• This error is often caused by previous errors;
look earlier in the log file for possible causes.

Sqoop, Pig, and Whirr Security Support Status
Here is a summary of the status of security in the other CDH 5 components:

• Sqoop 1 and Pig support security with no configuration required.
• Sqoop 2 and Whirr do not support security in CDH 5.

Setting Up a Gateway Node to Restrict Cluster Access
Use the instructions that follow to set up and use a Hadoop cluster that is entirely firewalled off from outside access;
the only exception will be one node which will act as a gateway. Client machines can access the cluster through the
gateway using the REST API.

HttpFS will be used to allow REST access to HDFS, and Oozie will allow REST access for submitting and monitoring jobs.

Cloudera Security | 289

Miscellaneous Topics

Installing and Configuring the Firewall and Gateway

Follow these steps:

1. Choose a cluster node to be the gateway machine.
2. Install and configure the Oozie server by following the standard directions starting here: Installing Oozie.
3. Install HttpFS.
4. Start the Oozie server:

$ sudo service oozie start

5. Start the HttpFS server:

$ sudo service hadoop-httpfs start

6. Configure firewalls.

Block all access from outside the cluster.

• The gateway node should have ports 11000 (oozie) and 14000 (hadoop-httpfs) open.
• Optionally, to maintain access to theWeb UIs for the cluster's JobTrackers, NameNode, and so on, open their

HTTP ports: see Ports Used by Components of CDH 5.

7. Optionally configure authentication in simple mode (default) or using Kerberos. See HttpFS Authentication on
page 83 to configure Kerberos for HttpFS and Oozie Authentication on page 102 to configure Kerberos for Oozie.

8. Optionally encrypt communication using HTTPS for Oozie by following these directions.

Accessing HDFS

With the Hadoop client:

All of the standard hadoop fs commands will work; just make sure to specify -fs webhdfs://HOSTNAME:14000.
For example (where GATEWAYHOST is the hostname of the gateway machine):

$ hadoop fs -fs webhdfs://GATEWAYHOST:14000 -cat /user/me/myfile.txt
Hello World!

Without the Hadoop client:

You can run all of the standard hadoop fs commands by using the WebHDFS REST API and any program that can
do GET , PUT, POST, and DELETE requests; for example:

$ curl "http://GATEWAYHOST:14000/webhdfs/v1/user/me/myfile.txt?op=OPEN&user.name=me"
Hello World!

Important: The user.name parameter is valid only if security is disabled. In a secure cluster, you must
a initiate a valid Kerberos session.

In general, the command will look like this:

$ curl "http://GATEWAYHOST/webhdfs/v1/PATH?[user.name=USER&]op=…"

You can find a full explanation of the commands in the WebHDFS REST API documentation.

Submitting and Monitoring Jobs

The Oozie REST API supports the direct submission of jobs for MapReduce, Pig, and Hive; Oozie automatically creates
a workflow with a single action. For any other action types, or to execute anything more complicated than a single job,
you must create an actual workflow. Required files (JAR files, input data, and so on.) must already exist on HDFS; if
they do not, you can use HttpFS to upload the files.

290 | Cloudera Security

Miscellaneous Topics

https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-project-dist/hadoop-hdfs/WebHDFS.html

With the Oozie client:

All of the standard Oozie commands will work. You can find a full explanation of the commands in the documentation
for the command-line utilities.

Without the Oozie client:

You can run all of the standard Oozie commands by using the REST API and any program that can do GET, PUT, and
POST requests. You can find a full explanation of the commands in the Oozie Web Services API documentation.

Logging a Security Support Case
Before you log a support case, ensure you have either part or all of the following information to help Support investigate
your case:

• If possible, provide a diagnostic data bundle following the instructions in Collecting and Sending Diagnostic Data
to Cloudera.

• Provide details about the issue such as what was observed and what the impact was.
• Provide any error messages that were seen, using screen capture if necessary & attach to the case.
• If you were running a command or performing a series of steps, provide the commands and the results, captured

to a file if possible.
• Specify whether the issue took place in a new install or a previously-working cluster.
• Mention any configuration changes made in the follow-up to the issue being seen.
• Specify the type of release environment the issue is taking place in, such as sandbox, development, or production.
• The severity of the impact and whether it is causing outage.

Kerberos Issues

• For Kerberos issues, your krb5.conf and kdc.conf files are valuable for support to be able to understand your
configuration.

• If you are having trouble with client access to the cluster, provide the output for klist -ef after kiniting as the
user account on the client host in question. Additionally, confirm that your ticket is renewable by running kinit
-R after successfully kiniting.

• Specify if you are authenticating (kiniting) with a user outside of the Hadoop cluster's realm (such as Active
Directory, or another MIT Kerberos realm).

• If using AES-256 encryption, ensure you have the Unlimited Strength JCE Policy Files deployed on all cluster and
client nodes.

SSL/TLS Issues

• Specify whether you are using a private/commercial CA for your certificates, or if they are self-signed.
• Clarify what services you are attempting to setup SSL/TLS for in your description.
• When troubleshooting SSL/TLS trust issues, provide the output of the following openssl command:

openssl s_client -connect host.fqdn.name:port

LDAP Issues

• Specify the LDAP service in use (Active Directory, OpenLDAP, one of Oracle Directory Server offerings, OpenDJ,
etc)

• Provide a screenshot of the LDAP configuration screen you are working with if you are troubleshooting setup
issues.

• Be prepared to troubleshoot using the ldapsearch command (requires the openldap-clients package) on
the host where LDAP authentication or authorization issues are being seen.

Cloudera Security | 291

Miscellaneous Topics

https://archive.cloudera.com/cdh5/cdh/5/oozie/DG_CommandLineTool.html
https://archive.cloudera.com/cdh5/cdh/5/oozie/WebServicesAPI.html

Using Antivirus Software on CDH Hosts
If you use antivirus software on your servers, consider configuring it to skip scans on certain types of Hadoop-specific
resources. It can take a long time to scan large files or directories with a large number of files. In addition, if your
antivirus software locks files or directories as it scans them, those resourceswill be unavailable to your Hadoop processes
during the scan, and can cause latency or unavailability of resources in your cluster. Consider skipping scans on the
following types of resources:

• Scratch directories used by services such as Impala
• Log directories used by various Hadoop services
• Data directories which can grow to petabytes in size

The specific directory names and locations depend on the services your cluster uses and your configuration. In general,
avoid scanning very large directories and filesystems. Instead, limit write access to these locations using security
mechanisms such as access controls at the level of the operating system, HDFS, or at the service level.

292 | Cloudera Security

Miscellaneous Topics

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting frommechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to thatWork or DerivativeWorks thereof, that is intentionally submitted to Licensor for inclusion in theWork
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving theWork, but excluding communication that is conspicuouslymarked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whoma Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare DerivativeWorks of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license tomake, havemade,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

Cloudera | 293

Appendix: Apache License, Version 2.0

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within theWork constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the DerivativeWorks; or, within a display generated by the DerivativeWorks, if andwherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure ormalfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

294 | Cloudera

Appendix: Apache License, Version 2.0

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Cloudera | 295

Appendix: Apache License, Version 2.0

	Table of Contents
	About this Guide
	Authentication
	Configuring Authentication in Cloudera Manager
	Cloudera Manager User Accounts
	User Authentication
	User Roles
	Determining the Role of the Currently Logged in User
	Changing the Logged-In Internal User Password
	Adding an Internal User Account
	Assigning User Roles
	Changing an Internal User Account Password
	Deleting Internal User Accounts

	Configuring External Authentication for Cloudera Manager
	Configuring Authentication Using Active Directory
	Configuring Authentication Using an OpenLDAP-compatible Server
	Configuring Authentication Using an External Program
	Configuring Authentication Using SAML
	Preparing Files
	Configuring Cloudera Manager
	Configuring the IDP
	Verifying Authentication and Authorization

	Kerberos Principals and Keytabs
	Enabling Kerberos Authentication Using the Wizard
	Step 1: Install Cloudera Manager and CDH
	Overview of the User Accounts and Groups in CDH and Cloudera Manager to Support Security

	Step 2: If You are Using AES-256 Encryption, Install the JCE Policy File
	Step 3: Get or Create a Kerberos Principal for the Cloudera Manager Server
	Creating the Cloudera Manager Principal

	Step 4: Enabling Kerberos Using the Wizard
	Before you Begin Using the Wizard
	KDC Information
	KRB5 Configuration
	Import KDC Account Manager Credentials
	Configure HDFS DataNode Ports
	Enabling Kerberos
	Congratulations

	Step 5: Create the HDFS Superuser
	Step 6: Get or Create a Kerberos Principal for Each User Account
	Step 7: Prepare the Cluster for Each User
	Step 8: Verify that Kerberos Security is Working
	Step 9: (Optional) Enable Authentication for HTTP Web Consoles for Hadoop Roles

	Enabling Kerberos Authentication for Single User Mode or Non-Default Users
	Viewing and Regenerating Kerberos Principals
	Mapping Kerberos Principals to Short Names
	Using Auth-to-Local Rules to Isolate Cluster Users

	Configuring YARN for Long-running Applications
	Enabling Kerberos Authentication Without the Wizard
	Step 1: Install Cloudera Manager and CDH
	Overview of the User Accounts and Groups in CDH and Cloudera Manager to Support Security

	Step 2: If You are Using AES-256 Encryption, Install the JCE Policy File
	Step 3: Get or Create a Kerberos Principal for the Cloudera Manager Server
	Creating the Cloudera Manager Principal

	Step 4: Import KDC Account Manager Credentials
	Step 5: Configure the Kerberos Default Realm in the Cloudera Manager Admin Console
	Step 6: Stop All Services
	Step 7: Enable Hadoop Security
	Step 8: Wait for the Generate Credentials Command to Finish
	Step 9: Enable Hue to Work with Hadoop Security using Cloudera Manager
	Step 10: (Flume Only) Use Substitution Variables for the Kerberos Principal and Keytab
	Step 11: (CDH 4.0 and 4.1 only) Configure Hue to Use a Local Hive Metastore
	Step 12: Start All Services
	Step 13: Deploy Client Configurations
	Step 14: Create the HDFS Superuser Principal
	Step 15: Get or Create a Kerberos Principal for Each User Account
	Step 16: Prepare the Cluster for Each User
	Step 17: Verify that Kerberos Security is Working
	Step 18: (Optional) Enable Authentication for HTTP Web Consoles for Hadoop Roles

	Configuring Authentication in Cloudera Navigator
	Configuring External Authentication for Cloudera Navigator
	Configuring Cloudera Navigator Authentication Using Active Directory
	Configuring Cloudera Navigator Authentication Using an OpenLDAP-compatible Server

	Managing Users and Groups for Cloudera Navigator
	Assigning Cloudera Navigator User Roles to LDAP or Active Directory Groups

	Configuring Authentication in CDH Using the Command Line
	Enabling Kerberos Authentication for Hadoop Using the Command Line
	Step 1: Install CDH 5
	Step 2: Verify User Accounts and Groups in CDH 5 Due to Security
	Step 2a (MRv1 only): Verify User Accounts and Groups in MRv1
	MRv1: Directory Ownership in the Local File System
	MRv1: Directory Ownership on HDFS
	Step 2b (YARN only): Verify User Accounts and Groups in YARN
	YARN: Directory Ownership in the Local File System
	YARN: Directory Ownership on HDFS

	Step 3: If you are Using AES-256 Encryption, Install the JCE Policy File
	Step 4: Create and Deploy the Kerberos Principals and Keytab Files
	When to Use kadmin.local and kadmin
	To create the Kerberos principals
	To create the Kerberos keytab files
	To deploy the Kerberos keytab files

	Step 5: Shut Down the Cluster
	Step 6: Enable Hadoop Security
	Step 7: Configure Secure HDFS
	To configure secure HDFS
	To enable SSL for HDFS

	Optional Step 8: Configuring Security for HDFS High Availability
	Optional Step 9: Configure secure WebHDFS
	Optional Step 10: Configuring a secure HDFS NFS Gateway
	Step 11: Set Variables for Secure DataNodes
	Step 12: Start up the NameNode
	Information about the kinit Command

	Step 12: Start up a DataNode
	Step 14: Set the Sticky Bit on HDFS Directories
	Step 15: Start up the Secondary NameNode (if used)
	Step 16: Configure Either MRv1 Security or YARN Security
	Configuring MRv1 Security
	Step 1: Configure Secure MRv1
	Step 2: Start up the JobTracker
	Step 3: Start up a TaskTracker
	Step 4: Try Running a Map/Reduce Job

	Configuring YARN Security
	Step 1: Configure Secure YARN
	Step 2: Start up the ResourceManager
	Step 3: Start up the NodeManager
	Step 4: Start up the MapReduce Job History Server
	Step 5: Try Running a Map/Reduce YARN Job
	(Optional) Step 6: Configuring YARN for long-running applications

	Flume Authentication
	Configuring Flume's Security Properties
	Writing as a single user for all HDFS sinks in a given Flume agent
	Writing as different users across multiple HDFS sinks in a single Flume agent
	Limitations

	Flume Account Requirements
	Testing the Flume HDFS Sink Configuration
	Writing to a Secure HBase cluster

	HBase Authentication
	Configuring Kerberos Authentication for HBase
	Step 1: Configure HBase Servers to Authenticate with a Secure HDFS Cluster
	Step 2: Configure HBase Servers and Clients to Authenticate with a Secure ZooKeeper

	Configuring Secure HBase Replication
	Configuring the HBase Client TGT Renewal Period

	HCatalog Authentication
	Before You Start
	Step 1: Create the HTTP keytab file
	Step 2: Configure WebHCat to Use Security
	Step 3: Create Proxy Users
	Step 4: Verify the Configuration

	Hive Authentication
	HiveServer2 Security Configuration
	Enabling Kerberos Authentication for HiveServer2
	Using LDAP Username/Password Authentication with HiveServer2
	Configuring LDAPS Authentication with HiveServer2
	Pluggable Authentication
	Trusted Delegation with HiveServer2
	HiveServer2 Impersonation
	Securing the Hive Metastore
	Disabling the Hive Client/Server Authentication

	Hive Metastore Server Security Configuration
	Using Hive to Run Queries on a Secure HBase Server

	HttpFS Authentication
	Configuring the HttpFS Server to Support Kerberos Security
	Using curl to access an URL Protected by Kerberos HTTP SPNEGO

	Hue Authentication
	Hue Security Enhancements
	Configuring Kerberos Authentication for Hue
	Integrating Hue with LDAP
	Importing LDAP Users and Groups
	Synchronizing LDAP Users and Groups
	LDAPS/StartTLS support

	Configuring Hue for SAML
	Step 1: Install swig and openssl packages
	Step 2: Install libraries to support SAML in Hue
	Step 3: Update the Hue configuration file
	Step 3a: Update the SAML metadata file
	Step 3b: Private key and certificate files
	Step 3c: Configure Hue to use SAML Backend

	Step 4: Restart the Hue server

	Impala Authentication
	Enabling Kerberos Authentication for Impala
	Requirements for Using Impala with Kerberos
	Configuring Impala to Support Kerberos Security
	Enabling Kerberos for Impala

	Enabling Kerberos for Impala with a Proxy Server
	Enabling Impala Delegation for Kerberos Users
	Using TLS/SSL with Business Intelligence Tools

	Enabling LDAP Authentication for Impala
	Requirements for Using Impala with LDAP
	Kerberos Authentication for Connections Between Impala Components

	Server-Side LDAP Setup
	Support for Custom Bind Strings
	Secure LDAP Connections
	LDAP Authentication for impala-shell Interpreter
	Enabling Impala Delegation for LDAP Users
	LDAP Restrictions for Impala

	Using Multiple Authentication Methods with Impala
	Configuring Impala Delegation for Hue and BI Tools
	Enabling Delegation in Cloudera Manager

	Llama Authentication
	Configuring Llama to Support Kerberos Security

	Oozie Authentication
	Configuring Kerberos Authentication for the Oozie Server
	Configuring Oozie HA with Kerberos

	Search Authentication
	Configuring Search to Use Kerberos
	Using Kerberos

	ZooKeeper Authentication
	Configuring ZooKeeper Server for Kerberos Authentication
	Configuring the ZooKeeper Client Shell to Support Kerberos Security
	Verifying the Configuration

	FUSE Kerberos Configuration
	Using kadmin to Create Kerberos Keytab Files
	To create the Kerberos keytab files

	Configuring the Mapping from Kerberos Principals to Short Names
	Mapping Rule Syntax
	Principal Translation
	Acceptance Filter
	Short Name Substitution
	Converting Principal Names to Lowercase
	Example Rules
	Default Rule
	Testing Mapping Rules

	Enabling Debugging Output for the Sun Kerberos Classes

	Configuring a Cluster-dedicated MIT KDC with Cross-Realm Trust
	When to use kadmin.local and kadmin
	Setting up a Cluster-Dedicated KDC and Default Realm for the Hadoop Cluster
	Using a Cluster-Dedicated KDC with a Central MIT KDC
	Using a Cluster-Dedicated MIT KDC with Active Directory

	Integrating Hadoop Security with Active Directory
	Configuring a Local MIT Kerberos Realm to Trust Active Directory
	On the Active Directory Server
	On the MIT KDC Server
	On All of the Cluster Hosts

	Integrating Hadoop Security with Alternate Authentication
	Configuring the AuthenticationFilter to use Kerberos
	Creating an AltKerberosAuthenticationHandler Subclass
	Enabling Your AltKerberosAuthenticationHandler Subclass
	Enabling Your AltKerberosAuthenticationHandler Subclass on Hadoop Web UIs
	Enabling Your AltKerberosAuthenticationHandler Subclass on Oozie Web UI

	Example Implementation for Oozie

	Configuring LDAP Group Mappings
	Using Cloudera Manager
	Using the Command Line

	Hadoop Users in Cloudera Manager and CDH
	Authenticating Kerberos Principals in Java Code
	Using a Web Browser to Access an URL Protected by Kerberos HTTP SPNEGO
	Troubleshooting Authentication Issues
	Sample Kerberos Configuration files: krb5.conf, kdc.conf, kadm5.acl
	Potential Security Problems and Their Solutions
	Issues with Generate Credentials
	Running any Hadoop command fails after enabling security.
	Java is unable to read the Kerberos credentials cache created by versions of MIT Kerberos 1.8.1 or higher.
	java.io.IOException: Incorrect permission
	A cluster fails to run jobs after security is enabled.
	The NameNode does not start and KrbException Messages (906) and (31) are displayed.
	The NameNode starts but clients cannot connect to it and error message contains enctype code 18.
	(MRv1 Only) Jobs won't run and TaskTracker is unable to create a local mapred directory.
	(MRv1 Only) Jobs will not run and TaskTracker is unable to create a Hadoop logs directory.
	After you enable cross-realm trust, you can run Hadoop commands in the local realm but not in the remote realm.
	(MRv1 Only) Jobs won't run and cannot access files in mapred.local.dir
	Users are unable to obtain credentials when running Hadoop jobs or commands.
	Request is a replay exceptions in the logs.
	CDH services fail to start

	Encryption
	SSL Certificates Overview
	Creating Certificates
	Using Keytool
	Using OpenSSL
	Obtaining a Production Certificate from a Commercial CA
	Creating Self-Signed Test Certificates

	Creating Java Keystores and Truststores
	Security Considerations for Keystores and Truststores
	Creating Keystores
	Creating Truststores

	Private Key and Certificate Reuse Across Java Keystores and OpenSSL
	Conversion from Java Keystore to OpenSSL
	Conversion from OpenSSL to Java Keystore

	Configuring TLS Security for Cloudera Manager
	Configuring TLS Encryption Only for Cloudera Manager
	Step 1: Create the Cloudera Manager Server Keystore, Generate a Certificate Request, and Install the Certificate
	Step 2: Enable HTTPS for the Cloudera Manager Admin Console and Specify Server Keystore Properties
	Step 3: Specify SSL Truststore Properties for Cloudera Management Services
	Step 4: Restart the Cloudera Manager Server

	Level 1: Configuring TLS Encryption for Cloudera Manager Agents
	Step 1: Enable Agent Connections to Cloudera Manager to use TLS
	Step 2: Enable and Configure TLS on the Agent Hosts
	Step 3: Restart the Cloudera Manager Server
	Step 4: Restart the Cloudera Manager Agents
	Step 5: Verify that the Server and Agents are Communicating

	Level 2: Configuring TLS Verification of Cloudera Manager Server by the Agents
	Step 1: Configure TLS encryption
	Step 2: Copy the CA Certificate or Cloudera Manager Server's .pem file to the Agents
	Step 3: Restart the Cloudera Manager Agents
	Step 4: Restart the Cloudera Management Services
	Step 5: Verify that the Server and Agents are communicating

	Level 3: Configuring TLS Authentication of Agents to the Cloudera Manager Server
	Step 1: Configure TLS encryption
	Step 2: Configure TLS Verification of Server Trust by Agents
	Approach A: Using OpenSSL to Create Private Keys and Request Agent Certificates
	Approach B: Creating a Java Keystore and Importing Signed Agent Certificates into it
	Step 6: Create a File that Contains the Password for the Key
	Step 7: Configure the Agent with its Private Key and Certificate
	Step 8: Verify that steps 3-7 Were Completed for every Agent Host in Your Cluster
	Step 9: Create a Truststore by Importing CA and Agent Certificates
	Step 10: Enable Agent Authentication and Configure the Cloudera Manager Server to Use the New Truststore
	Step 12: Restart the Cloudera Manager Server
	Step 13: Restart the Cloudera Manager Agents
	Step 14: Verify that the Server and Agents Are Communicating

	HTTPS Communication in Cloudera Manager
	Cloudera Manager Agent
	Cloudera Management Services

	Troubleshooting SSL/TLS Connectivity

	Configuring SSL for Cloudera Navigator
	Configuring SSL/TLS Encryption for CDH Services
	Prerequisites
	Hadoop Services as SSL Servers and Clients
	Configuring SSL for HDFS, YARN and MapReduce
	Configuring SSL for HBase
	Configuring SSL for Oozie
	Using Cloudera Manager
	Using the Command Line
	Additional Considerations when Configuring SSL for Oozie HA

	Configuring Encrypted Communication Between Hive and Client Drivers
	Configuring Encrypted Client/Server Communication for Kerberos-enabled HiveServer2 Connections
	Configuring Encrypted Client/Server Communication for non-Kerberos HiveServer2 Connections
	Using Cloudera Manager
	Using the Command Line

	Configuring SSL for Hue
	Hue as an SSL Client
	Hue as an SSL Server

	Configuring SSL for Impala
	Using Cloudera Manager
	Using the Command Line
	Using TLS/SSL with Business Intelligence Tools

	Configuring HttpFS to use SSL
	Encrypted Shuffle and Encrypted Web UIs
	Configuring Encrypted Shuffle and Encrypted Web UIs
	Activating Encrypted Shuffle
	Client Certificates
	Reloading Truststores
	Debugging

	HDFS Data At Rest Encryption
	Use Cases
	Architecture
	Encryption Zones
	Key Management Server
	Navigator Key Trustee

	crypto Command Line Interface
	Enabling HDFS Encryption on a Cluster
	Adding the KMS Service
	Enabling KMS for the HDFS Service
	Optimizing HDFS Encryption at Rest
	Configuring Encryption Properties for the HDFS and NameNode
	Creating Encryption Zones
	Adding Files to an Encryption Zone

	DistCp Considerations
	Attack Vectors
	Configuring the Key Management Server (KMS)
	Setup Configuration
	KeyProvider Configuration
	KMS Cache
	KMS Client Configuration
	Starting/Stopping the KMS
	KMS Aggregated Audit logs
	Configuring the Embedded Tomcat Server

	Configuring KMS High Availability/Multiple KMSs
	HTTP Kerberos Principals Configuration
	HTTP Authentication Signature

	Securing the Key Management Server (KMS)
	Enabling Kerberos Authentication
	Using Cloudera Manager
	Using the Command Line

	Configuring the KMS Proxyuser
	Configuring SSL for the KMS
	Using Cloudera Manager
	Using the Command Line

	Configuring Access Control Lists for the KMS
	Using Cloudera Manager
	Using the Command Line

	Configuring Key Access Control
	KMS Delegation Token Configuration

	Configuring CDH Services for HDFS Encryption
	Hive
	Other Encrypted Directories
	Changed Behavior after HDFS Encryption is Enabled

	Impala
	HBase
	Search
	Sqoop
	Hue
	Spark
	MapReduce and YARN
	MapReduce v1
	MapReduce v2 (YARN)

	HDFS Encryption Troubleshooting
	Retrieval of encryption keys fails
	DistCp between unencrypted and encrypted locations fails
	Cannot move encrypted files to trash
	NameNode - KMS communication fails after long periods of inactivity

	Configuring Encrypted HDFS Data Transport
	Using Cloudera Manager
	Using the Command Line

	Authorization
	Cloudera Manager User Roles
	User Roles
	Determining the Role of the Currently Logged in User
	Removing the Full Administrator User Role

	Cloudera Navigator User Roles
	User Roles
	Determining the Roles of the Currently Logged in User

	Enabling HDFS Extended ACLs
	Enabling ACLs
	Commands

	The Sentry Service
	Prerequisites
	Terminologies
	Privilege Model
	User to Group Mapping
	Appendix: Authorization Privilege Model for Hive and Impala
	Object Hierarchy in Hive

	Installing and Upgrading the Sentry Service
	Adding the Sentry Service
	Upgrading the Sentry Service

	Migrating from Sentry Policy Files to the Sentry Service
	Configuring the Sentry Service
	Enabling the Sentry Service Using Cloudera Manager
	Enabling the Sentry Service Using the Command Line
	Before Enabling the Sentry Service
	Configuring HiveServer2 for the Sentry Service
	Configuring the Hive Metastore for the Sentry Service
	Configuring Impala as a Client for the Sentry Service

	Configuring Pig and HCatalog for the Sentry Service
	Securing the Hive Metastore
	Using User-Defined Functions with HiveServer2

	Sentry Debugging and Failure Scenarios
	Resolving Policy Conflicts
	Debugging Failed Sentry Authorization Requests
	Sentry Service Failure Scenarios

	Hive SQL Syntax for Use with Sentry
	Example: Using Grant/Revoke Statements to Match an Existing Policy File

	Synchronizing HDFS ACLs and Sentry Permissions
	Prompting HDFS ACL Changes
	Prerequisites
	Enabling the HDFS-Sentry Plugin Using Cloudera Manager
	Enabling the HDFS-Sentry Plugin Using the Command Line
	Installing the HDFS-Sentry Plugin
	Configuring the HDFS NameNode Plugin
	Configuring the Hive Metastore Plugin
	Configuring the Sentry Service Plugin

	Testing the Sentry Synchronization Plugins

	Reporting Metrics for the Sentry Service

	Sentry Policy File Authorization
	Prerequisites
	Terminologies
	Privilege Model
	User to Group Mapping
	Policy File
	Sample Sentry Configuration Files
	Accessing Sentry-Secured Data Outside Hive/Impala
	Scenario One: Authorizing Jobs
	Scenario Two: Authorizing Group Access to Databases

	Debugging Failed Sentry Authorization Requests
	Authorization Privilege Model for Hive and Impala
	Object Hierarchy in Hive

	Installing and Upgrading Sentry for Policy File Authorization
	Installing Sentry
	Upgrading Sentry

	Configuring Sentry Policy File Authorization Using Cloudera Manager
	Configuring User to Group Mappings
	Enabling URIs for Per-DB Policy Files
	Using User-Defined Functions with HiveServer2
	Enabling Policy File Authorization for Hive
	Configuring Group Access to the Hive Metastore
	Enabling Policy File Authorization for Impala
	Enabling Sentry Authorization for Solr
	Configuring Sentry to Enable BDR Replication

	Configuring Sentry Policy File Authorization Using the Command Line
	Configuring User to Group Mappings
	Enabling URIs for Per-DB Policy Files
	Using User-Defined Functions with HiveServer2
	Enabling Policy File Authorization for Hive
	Securing the Hive Metastore
	Enabling Policy File Authorization for Impala
	Enabling Sentry in Cloudera Search

	Enabling Sentry Authorization for Impala
	The Sentry Privilege Model
	Starting the impalad Daemon with Sentry Authorization Enabled
	Using Impala with the Sentry Service (CDH 5.1 or higher only)
	Using Impala with the Sentry Policy File
	Policy File Location and Format
	Examples of Policy File Rules for Security Scenarios
	Using Multiple Policy Files for Different Databases

	Setting Up Schema Objects for a Secure Impala Deployment
	Privilege Model and Object Hierarchy
	Debugging Failed Sentry Authorization Requests
	Managing Sentry for Impala through Cloudera Manager
	The DEFAULT Database in a Secure Deployment

	Enabling Sentry Authorization for Search
	Roles and Collection-Level Privileges
	Users and Groups
	User to Group Mapping

	Setup and Configuration
	Policy File
	Storing the Policy File
	Defining Roles

	Sample Configuration
	Policy File
	Sentry Configuration File

	Enabling Sentry in Cloudera Search for CDH 5
	Providing Document-Level Security Using Sentry
	Enabling Secure Impersonation
	Debugging Failed Sentry Authorization Requests
	Appendix: Authorization Privilege Model for Search

	Configuring HBase Authorization
	Understanding HBase Access Levels
	Enable HBase Authorization
	Configure Access Control Lists for Authorization

	Overview of Impala Security
	Security Guidelines for Impala
	Securing Impala Data and Log Files
	Installation Considerations for Impala Security
	Securing the Hive Metastore Database
	Securing the Impala Web User Interface

	Miscellaneous Topics
	Jsvc, Task Controller and Container Executor Programs
	MRv1 and YARN: The jsvc Program
	MRv1 Only: The Linux TaskController Program
	YARN Only: The Linux Container Executor Program
	Task-controller and Container-executor Error Codes
	MRv1 ONLY: Task-controller Error Codes
	YARN ONLY: Container-executor Error Codes

	Sqoop, Pig, and Whirr Security Support Status
	Setting Up a Gateway Node to Restrict Cluster Access
	Installing and Configuring the Firewall and Gateway
	Accessing HDFS
	Submitting and Monitoring Jobs

	Logging a Security Support Case
	Kerberos Issues
	SSL/TLS Issues
	LDAP Issues

	Using Antivirus Software on CDH Hosts

	Appendix: Apache License, Version 2.0

