cloudera

Apache HBase Guide

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or

service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logos mentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from Cloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.

395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Cloudera Enterprise 6.3.x
Date: September 30, 2021

Table of Contents

Apache HBase GUIdE.......cccccieeuiiieeniiieniiieniiiieniiiieneitnsiensnecssnssersnsssssnssssensssssnssssnnsasas]

(0o o =0 =Y [T ST =] 1Y =PSRRI 7
MANAEING HB S, . i ee i e s s s e e e e e e e e e eeeeee e e e e et et e e e s e et s e st et ebsbaaa e aeeaeaeeaaaeaaaeaeeerereenrannes 7
HB S SO CUNIEY i ee ettt s s s s s s e e e e e e e eeeeeeeeeeee e et et et e e e be st sbatsss s aaeeseeeeeeeeeeaeeneeeeeeeeesennns 7
|2 TN 2=T o] o= 4 o VOO PRRPPPPR 7
HBAsE High AVAilability.....cccoie e e e e e e e e e e e e e e e e e e s e e aabbaeaeeeeeaeeeeessnnsrnraneeees 8
TrOUDBIESNOOTING HBASE......ciiiiiiiiie ettt e ettt e e ettt e e e et e e e e e sebeeeeeeaabaeeeesstaseeeaanssseeesanssaseesanssaneeesanes 8
Upstream INformation fOr HBasSe.........ciiiiiiiiiiiiiiiiiee ettt ettt e et e e e st e e e e sbteeeessntaeeeesassaeeeesennes 8

Configuration Settings for HBase.......ccccciieuiiiieiiiieniiiinicieeicrenescrenecesensserensessensessensesd

USING DINS With HBaSB...eeiiiiiiieiiiiiiiei e ettt e e e e e e e e e ettt e e e e e e e e e e s e aaetaaaeeaeaaeeesasassstasaesseaaaeeeesaansssrananees 9
Using the Network Time Protocol (NTP) With HBaSE........ccccuiiiiiiiiiiiee ettt e 9
Setting User LIMits fOr HBaSE.....iiiuiiiiiiiiiiie ettt et e e et e e e st e e e s bt e e e e e eaabaeeeeaabeeeeeennsraeeeesnnsenas 9
Using df s. dat anode. max. transfer.threads WIith HBaSE..........ccooiiiiiiiiiiiiiiiee e 11
Configuring BUCKETCACE iN HBASE......cuuiiieiiiiiee ettt e e et e e et e e e e et e e e e e e s areeeeesnnraeeeeennees 11
Configuring ENCryption iN HBASE......uiiiiiiiiieieiiiiie ettt e et e e e et e e e et e e e e s e e e e e e sbaeeeeesnabaeeeesnnsaeeeesnnsees 11
Enabling Hedged REAAS fOr HBASE.......cuiiiiiiiieiciiiiee sttt ettt eett et e e ettt e e s et e e e s eabaeeeessabteeeesenssaeeesenssneaesanns 11
Accessing HBase by using the HBAsE Shell.......uuv et e e e e e e e e re e e e e e e e e 12
HBOSE SREII QVEIVIBW. ...ttt ettt sttt e ettt ettt et et e st e e st e st e st e et a e ateenateenaneenanes 12
Setting Virtual Machine Options fOr HBASE SNEII...............ooocueeee oo eeeee ettt e et e et e e e eeeeaaaeestaeaeesraaeeeans 12
SCLIPEING WItH HBGSE SREIL.....cc...eeeeeeee ettt ettt e ettt e e ettt e e et e e et e e e e ssteaeaaastaaeaassaaaeanssaaesnnssaaeasseaaans 12
|2 T O T Y T o T 1Y =Y o= LT PSRRI 13
Configuring REEIONSEIVET GrOUPING.....c.uviiieeeiiiieeeeeitieeeeeeetee e e e eeireeeeeeabaeeeeeastseeeeaasraseeeassseeeseasreeeeeanstaeeesannsens 13
TrOUBIESNOOTING HBASE.....ceiiiiiiiiiie ettt et e e et e e e e b e e e e e eataeeeeestaeeeeeaasseeeeesnsseseeeassseeeesansnneeaaan 16
Configuring the BIOCKCACNE. ... e e e e e et e e e e st ae e e e e abae e e e snbaeeeeennsaeeas 16
Configuring the SCanNer HEarthEat..uiii e e e e e e s e be e e s e sbee e e e e anees 16
Accessing HBase by using the HBASE Shell.......uu et e e e e e e et re e e e e e e e e an 17
HBOSE SREII QOVEIVIBW......c..eeeeeeeeee ettt ettt ettt st e et e et et e st e st e st e st e st e e steeateenaseenanes 17
Setting Virtual Machine Options fOr HBASE SNEII...............ooooueeeeeeeeeeeeeeeeeeeee ettt e e e e e eeeeara e e et e e e sseaeeeans 17
SCLIPEING WItH HBGSE SREIL.....cc...eeeeeeeeeeeeee ettt ettt e e ettt e e ettt e e et e e et a e e e steaeenastaaeassaaaeanssaaesnnssaaeasseaaans 17
|2 T O T Y T o T\ =Y o= LTSRS 18
USINg MapPREAUCE WIth HBASE....uuuiiiiieiie ittt e e e e e e e e e et e e e e e e e e e e s s asabtaaaeeeeeeeessasnsnsranneeeaaens 18
Configuring HBase Garbage CollECTION.cccuiiiiiieceee et e e et e e e e raaae e e e e eaarae e e e ennes 18
Configure HBase Garbage Collection Using ClOUAEra MONQGET...............cccueesieesieisieeeiee ettt 19

Disabling the BoundedByt €BUT f €5 POOIcociiiiiiiiii et 20

CoNfigUrING the HBASE CaNary.....c.uuiiiiiiiiiiee ettt e ettt e e ettt e e e e ettt e e e e st e e e e eabteaeesanbteeeeeanstaeeeessbaeeeesnsseeaeesnsseeens 20
Configure the HBase Canary USing ClOUAEIA MONGAGET............c.c..ueeeeeueeeeeiieeeeaiiieeeeeieeeestiteaeesiaeaeeaissaaesssaaessseasessssaesssees 20
Configuring the BlOCKSIZE fOr HBASE......uuiiiiiiiiiie ettt e e e e e e st e e e e aree e e e s nsraeeeeennees 21
Configuring the Blocksize for @ COIUMN FAMIUIY...............oooeueeeeeeeie ettt ettt e et e e et e e et a e et a e e easaaeeeasees 21
MONTTOTING BIOCKSIZE IMELIICS.c..eveeeeeeeieeeeeee e et ee e e et e et e e ettt e e et e e e st e e e s stteaesasssaeesssaaaasseaaasassaaenssaaasasseaennnsnees 21
Configuring the HBase BIOCKCACKE.uiiiiiiiie ettt e et e e e et e e e e abe e e e e snsbaeeeesnnees 22
CONLENLS Of tNE BIOCKCACRE.eeeeeeeeeeeeeeeeeee ettt e ettt e e et e e e ettt e e ettt e e e st a e e aasa s e e ettt e e e aasaeeeassssaeenssses 22
Deciding Whether To USe the BUCKELCACRE.c..eoeeeeriieeiieseeeee ettt ettt ettt e e n 22
123V oo KXY [1o I 1 g L=l 2] LYol (O ol £ L= SRR 22
(00 Tol (L= Y ot a0 I e T 4 (=TSSR 23
RY 740 1e IR L=] (oYl {Ole [el -2 OSSPSR 23
ADOUL the Off-REAP BUCKELCACRE.coceeieieeeieeeeeet ettt ettt ettt sttt et e e st e st e naeesnes 23
Configuring the Off-REAP BUCKETCACRE.cc.ueeeeeiieeeeeee e et e et e e et e e et e e e et e e e ettt e e et e e e et aaeaasssaaestsaaesassssaessseeas 24
(0o T o) iT={U [T o= O [o] = - USSP 29
Rt a Lol oo 1V (o] o S PN 29
GNEIAI QUOTA SYNTAX..eeneiiesiieeeieeee ettt ettt ettt ettt e st e st e st e st e e st e ettt e ate e ate e s st e e s st e sase e s bt e s astaestaeataensseenanes 30
(T ge (=2 [V Lo o kTR PPPRP 31
Lo T a L= [Lo o =3 o L] o (=2 3SR 31
R o [l [V [0} (o SO O 32
QUOLA BNJOICEOMENL ...ttt ettt s st s e st e et e ettt e st e et e st e e s et e s et e s st e s bt e et e et e enataenateenaseenanes 32
(010 To) (o Vi Te) o d [g Lo | (ol (=X TSP SPPTN 32
IMPACt Of QUOLA VIOIGEION POLICY......vveeeeeeeeeeieeeeee ettt ettt e e ettt e e et e e ettt e e et a e e asaaaeastaaeeaastaaesssaaaeasneaensssneas 33
NUMBEI-0f-TADIES QUOTAS. ..ottt e ettt e e et e e et e e e et e e ettt e e e ettt s e eassaeeeatsbaeeaatsaeeesssaeeaatsaeeeasssaeenassnas 35
NUMDEIr-0f-REGIONS QUOLAS.cc.uvveeieesiiieeee sttt ettt ettt e st e st e st e ettt et e ettt e st e e s e e s st e sateesaseesbnesseaensneesnes 35
Configuring the HBase Scanner HEartheat.uuii it e e e e e 36
Configure the Scanner Heartbeat Using ClOUAEIa MONGGET................ceeccuveeeeeieieeeiiieeeeeieeeestteeeeettaeeeitaaaestaaeeesssaaessseas 36
Limiting the Speed Of CoOMPACTIONS.iii e e et e e e e sate e e e e ssabbeeeeeebaaeeesenssaeeeeanns 36
Configure the Compaction Speed Using ClOUAEIra MONAGEL.............c...uueeeceeeeeeieeeeeeeeeeeieeeeseeeeeetaa e e et e e e steaeeesaeaeeeaseas 37
Configuring and Using the HBAs@ REST APL.......oii ittt e et e e et e e e e ate e e e s e atae e e e e naaeeeeennnees 37
INSEQIING THE REST SEIVEI ...ttt ettt ettt ettt ettt ettt et ettt e it et e st e st e et e st e et s enaneenanes 37
(0l I T ot Y Y o OSSPSR 38
Configuring HBase MUITIWAL SUPPOIT....uuiiiiiiiiieieiiieee e esie e eeit e e e e e e e e tae e e e et eeeeessbaeaeeennsaeeeeessssaeasesnssens 45
Configuring MultiWAL Support UsSing ClIOUTEIa MOANGGENccccueeeeeiieeeeeeiieeeeeeeeeetieeeeeeeeeeetaa e e et e e e steaeeesasaaeeases 45
Storing Medium Objects (MOBS) iN HBASE.........uiiiiiiiieee ettt e e e e e e et e e e e aba e e e s e ataee e e ennaeeaeesnnres 45
Configuring COIUMNS 10 SEOIE IMOBS........c.ueeeuieeeeeeeeeee ettt ettt et e e et ettt e sate e s ate e s e e steeeneas 46
HBASE MOB COUCRE PIrOPEITIES.vveeeeeeeeee et eeee e ettt e e ettt e e ettt e e e et e e e et e e e e st s e e e st e e eaatataeasssaaeaasssaeessaaesasssseeassseas 46
Configuring the MOB Cache Using ClOUAEIa MONGAGENc..cocueerueeiieeeieeeieeeiee ettt ettt e e s 47
Testing MOB Storage and RetrieVal PEIrfOrMOINCEueeeecueieeeieeeeeieeeetee e e e e ettt e e e ettt e e ettt e e e st e e e sssaeeesassasessssaeas 47
Compacting MOB FileS MONUGILY............cooueerieeeieieeeee ettt ettt ettt ettt e et e st e e e e eaneeaes 47
Configuring the Storage Policy for the Write-Ahead LOZ (WAL)......coouviiie ettt 48

Managing HBaASEe......ccccciiuiieiieiiiieiieiiicieiieeiiecsssiencissiessrsssssssassssssssssssssssssssssssnssess D0

Creating the HBasSe ROOT DirECEOIY....iiiuiiiie it eett ettt e ettt e e st e e e et e e e e e s sbaeeesennsteeeeesnsseeeeennnsees 50

LG = Lol =] 8IS 1U o [0 o TSRS 50
Configuring the HBase Thrift SEIVEr ROIE.........uuiiiiiiiiiie ettt e st e e s e are e e e e eabane e e e arees 51
O o [T aY o 1 T YT [o [] =S PROTPR 51
AdAING @ CUSTOM COPIOCESSON.cceiiutirieeeeittrteeeeitteeeesasttreeesaastaeeessastaeeessastseeesaassseeessassseeessasssseessasssseesssnssneessnnses 51
Disabling LOAdING Of COPIOCESSONS. .. uuuiiiiiiutiieeeieiteeeeeeitteeeeeeetteeeeeeetaeeeeeeteeeeesaastaeeeeaassaseeeaasssseeeaassaseesansseseaeanns 52
Enabling Hedged REAdS ON HBASE........ccciiiiiieiiiciiiee ettt e e ettt e e e e ette e e e s etta e e e e saabaeeeeseasteeeeeesraeeeeanasaeaaeanns 52
Moving HBase Master Role to ANOTNEr HOSE.........oiiiiiiiiii ittt et e e s e saae e e e eaes 52
Advanced Configuration for Write-Heavy Workloads...........cuoiiiiiiiiiiiiiicecee et 53
STArting aNd StOPPING HBASE...ciiiii it e e e e e e e e st e e e e e eeeeeesesaartataeaeeeaeeeeseansssstssneaaeeeesesanan 53
SEArting OF RESTAITING HBOSE.......ccoeeeeeeeee ettt e e e ettt e e e e e e ettt e e e e e e sttt e e e e e saasstteeaaasssssnssnseaaasessnnsssnen 53
RY (o)) o I a2 1o K-S O 53
Accessing HBase by using the HBase Shell...........ooo oot 54
HBASE SNEI QVOIVIBW. ..ottt e e et e e ettt e e e et e e ettt e e e ettt e e e assta e e st e e antseaeaasssaaeassseasannssaasansses 54
Setting Virtual Machine Options fOr HBASE SNEII...............coeeuueeeeeeeeeeeeee e eeeee e ettt e ettt e et a e e st e e et aeesaaeassaaaeeans 54
SCrIPtING WIth HBGASE SREIL.........oeoeeeiieeeeeeeeee ettt ettt et e e et e e et e et e et e ateeniteeeane e 54
Using HBase Command-Line ULIlITiEs.......ccoi i e e e e e s e e e e e e e e e e e eneaaaeeees 55
Perfor MANCEEVAl UL T ON..coiiiiiiiiiiiii et 55
LOBATEST TOOI .ttt ettt 56
WVBLL .t 57
O L TSROSO PRSRPPS 57
L0 o Yol PSSP 58
Cl BAN .. 58
VALl e = D = TR o 1= =T T 59
IMPOIrting Data INTO HBaSE.....cci i i i e e e e e e e e e e e e e e e e et et et e ee et eea e aeateeseaaaas s aasseeseeaaaaaaaaasaeeeens 61
Cho0sing the RIGht IMPOIrt IMETROU..........cc...veeeeeeeeeee et ettt e et e e et e e e et e e st e e e st ea e s nstaaesssaaesssseaesssnens 61
USING COPYTADIC. ...ttt e et e e et e e et a e ettt e e e ettt e e e et e e e ettt e e e aats e e e e atsaaaeasssaaeaatseseeaassaaeessees 61
L8R e IR e o X oo XTSRS 62
USING BUIKLOGU. ..ottt ettt e e et e e et e e ettt e e e ettt e e e e ts e e e e tss e e e aatst e e e assaaeettsaasastseaeeannseaenssees 63
(0K [e R O TR (=Tl =T e | Lol [4 Lo T SRR 65
(R le I (o e T Lo I 2 (6o 1o] Lo o FR USRS SRR 68
L8R Lo 1 T30 Lo 1 e Y o IS SRR 69
USING the APACNE TRALIft PIOXY APl......eeeeeeeeeeeeeee ettt e et e et e e ettt e e e e e e ettt e e e et e e e et e e e ettt e aeatsaaeeaatssaesssnens 69
USING TNE REST PIOXY APl ettt et e ettt e ettt e e et e e ettt e e e sttt e s et e e s asatasasstaasansseasanstaasassaaesesnnasnnnsnes 71
USING FIUM@. ..ot ettt ettt e et e e ettt e e ettt e e et e e e et e e e ettt s e e e ass e e ettt e e e ettt e e e e assaaaettsaaeantsasesaanseseessees 71
(0K [T BN Ye oo PP PPPTPSPPPPPPR 73
(8 e IR Lo T4 STO U UP SRR 74
(0 R e IR o T e Tl [e) (o EO SRR 74
USIiNG G CUSTOM MAPREAUCE JOD...........oeeeeeeeeeeeeeeeeee ettt e e e ettt e e et e e ettt e e e et e e e et e e e ettt e e e atsaaeeatseseesssseas 76
REAAING Data fromM HBaASE....ccicuiiiiie ittt e e ettt e e et e e e ettt e e e e e e abaeeeeeaaaaeeeeesnssseeeeasssseeeannneaeaaans 76
[<o [o T=To [T=To Lo KPR RSP PP 78
[Tel o)1 Te W g =e [o T=de M t=o To) fo Y gl 1o kY-SR 78

[=T Fed Yo I U= o [T UPPURRRRRRP 78

ENabling HedGed REAUS fOr HBASE...........cceeeeeeeeeeeeeeee ettt e ettt e e et e ettt e e et e e e ettt e e et e e e et e s e e aatsaaestsaaeestssaeenasneas 78

Monitoring the Performance Of HEAGEA REAUS.oueeeueeeeeeeee ettt e et e ettt e e e e et e e e ettt e e eastaaeassaaesansaaennsees 79
12 T I T =T T oY= SRS ST PP 79
Using the HBCK2 Tool to Remediate HBase CIUSLEIS......cccuuuiiiiieieeee ettt e e e e e e e e e e s rneeee s 86
R o oo g =Te I =T o £ X3 SR 87
RUNNING TNE HBCK2 TOO. oottt ettt e e e e ettt e e e e e e et eeaeeeesaass s eeaaeeesstsssssesaaeeeeessstssesaaenannas 87
Lo [e R YV L= TSR 87
FIXING ISSUBS oottt e e s e e s s s e s s s e s e s s s e s e s e s asasasasasasananasanananas 88
HBCK2 TOO! COMMANG RESFEIENCE.ccc.eveeeeeie ettt e e e ettt e e et e ettt e e et e e e st e e ettt e e aastaaeasnstaaeanssaaeensnsaennnsnes 91
Exposing HBase Metrics t0 @ GANGIIa SEIVETuuiiii ittt e et e e s sbtr e e e s snbaeeessanaaneessanes 92
Expose HBase Metrics to Ganglia Using ClOUAEra MONGGET................ueeccueeeeeeieieeeeiieeesieeeesiieeeettaa e esiaaaaessaaeeesseaaeesseas 92

Managing HBase SECUINItY.....cccciuiiiieiiieiiiniiieiieniiieiieiiieiieeiiesereesienssrsssssssssnssssnsssnsd3

HBASE AUTNENTICATION. ...ciiiiiiitii ettt ettt et e et e e s sab e e e sbb e e s bbeeesabeesbbeessnbeesnbeesanreeannn 93
Configuring HBase AULNOTIZAtiON..........uuiiiiiiiiii e e e e e e e e e e et e e e e e e e e e e esnannrraaeeeeaeeesesnnnnnes 93
UNderstanding HBASE ACCESS LEVEIS........cc..uueeeeieeeeeee e eeee ettt e e st e ettt e e e ettt e e et e e e sttt e e e aatsaaeeaassaaeasstaaeastsaaeenssssansssnes 94
ENODIE HBOSE AULNOIIZOTION.coeeeeiiieeeeeeeete ettt ettt ettt e s bt e st e st e et e e e eaes 95
Configure Access CoNtrol LiStS fOr AULROIIZATION.ccecueeeeeeiieeeeeeeeeeeee e e te e e e ttea e et e e e attaaeeestaaeessssaasassaaeesnseaeesasees 96
AUditing HBASE AULNOIIZOTION GIONTS........coeeeeeeeeeeieee e ettt e e e ettt e e e e e e ettt e e e e e e e s et aeaaeesaassseseaaaeeasssssssaaaseeasaaes 97
Configuring the HBase Thrift SEIVEN ROIE.........uuiii it et e e e are e e e e eaare e e e e nees 97
Other HBaS@ SECUITY TOPICS. .uiiiiiuiieeeiiitieteeeeiieee e e eettee e e e ette e e e e st e e e e e eabaeeeeeaabaeeeeaaasteeaeessraeaeesssaeeeesnssaneeeannsseeas 98

Troubleshooting HBaASE........ccceeiiieiiiieiiiiicrecrreecsreeesrneeessnnsesenesesenssesenssssensessess D9

Table Creation Fails after INStalling LZO...........uuiiiiiiiiie et e e e e e e e e e s re e e e e e e e e e e e e e nannranaeees 99
Thrift Server Crashes after Receiving INvalid Data...........ccocciiiiiiiiiiiiec ettt e e e e e e e e enes 99
HBase is using more disk space than XPECLEM.........cccuiiii i et e e e e eaaae e e e eaes 99

Appendix: Apache License, Version 2.0.......c.cccceiireeirieniirenernnecrnnssenenssersnssessnsens 101

Apache HBase Guide

Apache HBase is a scalable, distributed, column-oriented datastore. Apache HBase provides real-time read/write
random access to very large datasets hosted on HDFS.

Configuration Settings

HBase has a number of settings that you need to configure. For information, see Configuration Settings for HBase on
page 9.

By default, HBase ships configured for standalone mode. In this mode of operation, a single JVM hosts the HBase
Master, an HBase RegionServer, and a ZooKeeper quorum peer. HBase stores your data in a location on the local
filesystem, rather than using HDFS. Standalone mode is only appropriate for initial testing.

Pseudo-distributed mode differs from standalone mode in that each of the component processes run in a separate
JVM. It differs from distributed mode in that each of the separate processes run on the same server, rather than multiple
servers in a cluster.

Managing HBase

You can manage and configure various aspects of HBase using Cloudera Manager. For more information, see Managing
HBase on page 50.

HBase Security

For the most part, securing an HBase cluster is a one-way operation, and moving from a secure to an unsecure
configuration should not be attempted without contacting Cloudera support for guidance. For an overview security in
HBase, see Managing HBase Security on page 93.

For information about authentication and authorization with HBase, see HBase Authentication and Configuring HBase
Authorization.

HBase Replication

If your data is already in an HBase cluster, replication is useful for getting the data into additional HBase clusters. In
HBase, cluster replication refers to keeping one cluster state synchronized with that of another cluster, using the
write-ahead log (WAL) of the source cluster to propagate the changes. Replication is enabled at column family granularity.
Before enabling replication for a column family, create the table and all column families to be replicated, on the
destination cluster.

Cluster replication uses an active-push methodology. An HBase cluster can be a source (also called active, meaning
that it writes new data), a destination (also called passive, meaning that it receives data using replication), or can fulfill
both roles at once. Replication is asynchronous, and the goal of replication is consistency.

When data is replicated from one cluster to another, the original source of the data is tracked with a cluster ID, which
is part of the metadata. In CDH 6, all clusters that have already consumed the data are also tracked. This prevents
replication loops.

For more information about replication in HBase, see HBase Replication.

https://www.cloudera.com/documentation/enterprise/latest/topics/glossaries.html#glossary__glos_hdfs

HBase High Availability

Most aspects of HBase are highly available in a standard configuration. A cluster typically consists of one Master and
three or more RegionServers, with data stored in HDFS. To ensure that every component is highly available, configure
one or more backup Masters. The backup Masters run on other hosts than the active Master.

For information about configuring high availability in HBase, see HBase High Availability.

Troubleshooting HBase

The Cloudera HBase packages have been configured to place logsin/ var/ | og/ hbase. Cloudera recommends tailing
the . | og files in this directory when you start HBase to check for any error messages or failures.

For information about HBase troubleshooting, see Troubleshooting HBase on page 99.

Upstream Information for HBase

More HBase information is available on the Apache Software Foundation site on the HBase project page.

For Apache HBase documentation, see the following:

e Apache HBase Reference Guide
e Apache HBase API Guide
e Apache HBase Blogs

Because Cloudera does not support all upstream HBase features, always check the Apache HBase documentation
against the current version and supported features of HBase included in this version of the CDH distribution.

HBase has its own JIRA issue tracker.

http://hbase.apache.org/
http://hbase.apache.org/book.html
https://hbase.apache.org/apidocs/
https://blogs.apache.org/hbase/
https://issues.apache.org/jira/browse/HBASE/?selectedTab=com.atlassian.jira.jira-projects-plugin:versions-panel

Configuration Settings for HBase

This section contains information on configuring the Linux host and HDFS for HBase.

Using DNS with HBase

HBase uses the local hostname to report its IP address. Both forward and reverse DNS resolving should work. If your
server has multiple interfaces, HBase uses the interface that the primary hostname resolves to. If this is insufficient,
you can set hbase. regi onserver. dns. i nterface inthe hbase-site. xm file to indicate the primary interface.
To work properly, this setting requires that your cluster configuration is consistent and every host has the same network
interface configuration. As an alternative, you can set hbase. r egi onser ver . dns. naneser ver in the

hbase-si te. xnl file to use a different DNS name server than the system-wide default.

Using the Network Time Protocol (NTP) with HBase

The clocks on cluster members must be synchronized for your cluster to function correctly. Some skew is tolerable,
but excessive skew could generate odd behaviors. Run NTP or another clock synchronization mechanism on your
cluster. If you experience problems querying data or unusual cluster operations, verify the system time. For more
information about NTP, see the NTP website.

Setting User Limits for HBase

Because HBase is a database, it opens many files at the same time. The default setting of 1024 for the maximum number
of open files on most Unix-like systems is insufficient. Any significant amount of loading will result in failures and cause
error message such asj ava. i o. 1 OException...(Too many open files) to be logged in the HBase or HDFS
log files. For more information about this issue, see the Apache HBase Book. You may also notice errors such as:

2010- 04- 06 03:04: 37,542 |1 NFO org. apache. hadoop. hdf s. DFSCl i ent: Exception

i ncreat eBl ockQut put Stream j ava. i 0. EOFExcepti on

2010- 04- 06 03: 04: 37,542 | NFO org. apache. hadoop. hdf s. DFSCl i ent: Abandoni ng bl ock
bl k_-6935524980745310745_1391901

Another setting you should configure is the number of processes a user is permitted to start. The default number of
processes is typically 1024. Consider raising this value if you experience Qut Of Menor yExcept i on errors.

Configuring ulimit for HBase Using Cloudera Manager
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.

. Click the Configuration tab.

. Select Scope > Master or Scope > RegionServer.

. Locate the Maximum Process File Descriptors property or search for it by typing its name in the Search box.
. Edit the property value.

g b WN

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.
See Modifying Configuration Properties Using Cloudera Manager.

6. Enter a Reason for change, and then click Save Changes to commit the changes.
. Restart the role.

~

8. Restart the service.

http://www.ntp.org/
http://hbase.apache.org/book.html

Configuring ulimit for HBase Using the Command Line

o Important:

¢ Follow these command-line instructions on systems that do not use Cloudera Manager.

¢ This information applies specifically to CDH 6.3.x. See Cloudera Documentation for information
specific to other releases.

Cloudera recommends increasing the maximum number of file handles to more than 10,000. Increasing the file handles
for the user running the HBase process is an operating system configuration, not an HBase configuration. A common
mistake is to increase the number of file handles for a particular user when HBase is running as a different user. HBase
prints the ulimit it is using on the first line in the logs. Make sure that it is correct.

To change the maximum number of open files for a user, use the ul i mi t - n command while logged in as that user.

To set the maximum number of processes a user can start, usetheul i m t - ucommand. You canalso usetheul i mt
command to set many other limits. For more information, see the online documentation for your operating system,
or the output of the man ul i m t command.

To make the changes persistent, add the command to the user's Bash initialization file (typically ~/ . bash_profil e
or ~/ . bashr c). Alternatively, you can configure the settings in the Pl uggabl e Aut henticati on Mdul e (PAM
configuration files if your operating system uses PAM and includes the pam | i i t s. so shared library.

Configuring ulimit using Pluggable Authentication Modules Using the Command Line

o Important:

¢ Follow these command-line instructions on systems that do not use Cloudera Manager.

¢ This information applies specifically to CDH 6.3.x. See Cloudera Documentation for information
specific to other releases.

If you are using ul i m t, you must make the following configuration changes:

1. Inthe/etc/security/lints.conf file, add the following lines, adjusting the values as appropriate. This
assumes that your HDFS user is called hdf s and your HBase user is called hbase.

hdfs - nofile 32768
hdfs - nproc 2048
hbase - nofile 32768
hbase - nproc 2048

E,’ Note:

e Only the r oot user can edit this file.

o If this change does not take effect, check other configuration files in the
/etc/security/limts.d/ directory for lines containing the hdf s or hbase user and the
nof i | e value. Such entries may be overriding the entriesin/etc/ security/limts. conf.

To apply the changesin/etc/ security/limts.conf onUbuntuand Debian systems, add the following line in the
/ et c/ pam d/ conmon- sessi on file:

session required pamlinits.so

For more information on the ul i mi t command or per-user operating system limits, refer to the documentation for
your operating system.

http://www.cloudera.com/content/support/en/documentation.html
http://www.cloudera.com/content/support/en/documentation.html

Using df s. dat anode. max. transfer. t hreads With HBase

A Hadoop HDFS DataNode has an upper bound on the number of files that it can serve at any one time. The upper
bound is controlled by the df s. dat anode. max. t r ansf er . t hr eads property (the property is spelled in the code
exactly as shown here). Before loading, make sure you have configured the value for

df s. dat anode. max. transf er. t hr eads inthe conf/ hdf s-si t e. xrml file (by default found in

/ et c/ hadoop/ conf/ hdf s-si t e. xnl) to at least 4096 as shown below:

<property>
<nane>df s. dat anode. max. transfer.t hr eads</ nane>
<val ue>4096</ val ue>

</ property>

Restart HDFS after changing the value for df s. dat anode. nax. t r ansf er. t hr eads. If the value is not set to an
appropriate value, strange failures can occur and an error message about exceeding the number of transfer threads
will be added to the DataNode logs. Other error messages about missing blocks are also logged, such as:

06/ 12/ 14 20: 10: 31 I NFO hdfs.DFSClient: Could not obtain block

bl k_ CYYYYYYYY from any node:

java.io.|l CeException: No |live nodes contain current block. WII get new bl ock |ocations
from namenode and retry. ..

E’; Note: The property df s. dat anode. max. t r ansf er. t hr eads is a HDFS 2 property which replaces
the deprecated property df s. dat anode. nax. xci evers.

Configuring BucketCache in HBase

The default Bl ockCache implementation in HBase is Conbi nedBl ockCache, and the default off-heap Bl ockCache
is Bucket Cache. Sl abCache is now deprecated. See Configuring the HBase BlockCache on page 22 for information
about configuring the Bl ockCache using Cloudera Manager or the command line.

Configuring Encryption in HBase

It is possible to encrypt the HBase root directory within HDFS, using HDFS Transparent Encryption. This provides an
additional layer of protection in case the HDFS filesystem is compromised.

If you use this feature in combination with bulk-loading of HFiles, you must configure hbase. bul kl oad. st agi ng. di r
to point to a location within the same encryption zone as the HBase root directory. Otherwise, you may encounter
errors such as:

or g. apache. hadoop. i pc. Renot eException(java.io.| CException):
/tnp/ out put/f/5237a8430561409bb641507f 0c531448 can't be noved into an encryption zone.

You can also choose to only encrypt specific column families, which encrypts individual HFiles while leaving others
unencrypted, using HBase Transparent Encryption at Rest. This provides a balance of data security and performance.

Enabling Hedged Reads for HBase
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.

2. Click the Configuration tab.

3. Select Scope > HBASE-1 (Service-Wide).
4. Select Category > Performance.

http://hbase.apache.org/book.html#hbase.encryption.server

5. Configure the HDFS Hedged Read Threadpool Size and HDFS Hedged Read Delay Threshold properties. The
descriptions for each of these properties on the configuration pages provide more information.
6. Enter a Reason for change, and then click Save Changes to commit the changes.

Accessing HBase by using the HBase Shell

After you have started HBase, you can access the database in an interactive way by using the HBase Shell, which is a
command interpreter for HBase which is written in Ruby. Always run HBase administrative commands such as the
HBase Shell, hbck, or bulk-load commands as the HBase user (typically hbase).

hbase shell

HBase Shell Overview

¢ To get help and to see all available commands, use the hel p command.
¢ To get help on a specific command, use hel p " command" . For example:

hbase> hel p "create"

¢ To remove an attribute from a table or column family or reset it to its default value, set its value to ni | . For
example, use the following command to remove the KEEP_DELETED CELLS attribute from the f 1 column of the
users table:

hbase> alter 'users', { NAME => 'f1', KEEP_DELETED CELLS => nil }
¢ To exit the HBase Shell, type qui t .

Setting Virtual Machine Options for HBase Shell

HBase in CDH 5.2 and higher allows you to set variables for the virtual machine running HBase Shell, by using the
HBASE_SHELL_OPTS environment variable. This example sets several options in the virtual machine.

$ HBASE_SHELL_OPTS="-verbose: gc - XX: +Pri nt GCAppl i cat i onSt oppedTi me - XX: +Pri nt GChat eSt anps
- XX: +Print GCDet ai | s - Xl oggc: $HBASE_HOVE/ | ogs/ gc- hbase. | og" ./ bi n/ hbase shel |

Scripting with HBase Shell

CDH 5.2 and higher include non-interactive mode. This mode allows you to use HBase Shell in scripts, and allow the
script to access the exit status of the HBase Shell commands. To invoke non-interactive mode, use the - n or
--non-i nt eracti ve switch. This small example script shows how to use HBase Shell in a Bash script.

#!/ bi n/ bash
echo '"list' | hbase shell -n
st at us=%$?
if [$status -ne 0]; then
echo "The conmmand rmay have failed."
fi

Successful HBase Shell commands return an exit status of 0. However, an exit status other than 0 does not necessarily
indicate a failure, but should be interpreted as unknown. For example, a command may succeed, but while waiting for
the response, the client may lose connectivity. In that case, the client has no way to know the outcome of the command.
In the case of a non-zero exit status, your script should check to be sure the command actually failed before taking
further action.

CDH 5.7 and higher include the get _spl i t s command, which returns the split points for a given table:

hbase> get _splits 't2'
Total nunber of splits =5

= ["", "1o0", "20", "30", "40"]

You can also write Ruby scripts for use with HBase Shell. Example Ruby scripts are included in the
hbase- exanpl es/ src/ mai n/ ruby/ directory.

HBase Online Merge

CDH 6 supports online merging of regions. HBase splits big regions automatically but does not support merging small
regions automatically. To complete an online merge of two regions of a table, use the HBase shell to issue the online
merge command. By default, both regions to be merged should be neighbors; that is, one end key of a region should
be the start key of the other region. Although you can "force merge" any two regions of the same table, this can create
overlaps and is not recommended.

The Master and RegionServer both participate in online merges. When the request to merge is sent to the Master, the
Master moves the regions to be merged to the same RegionServer, usually the one where the region with the higher
load resides. The Master then requests the RegionServer to merge the two regions. The RegionServer processes this

request locally. Once the two regions are merged, the new region will be online and available for server requests, and
the old regions are taken offline.

For merging two consecutive regions use the following command:
hbase> nmerge_regi on ' ENCODED REG ONNAME' , ' ENCODED _REG ONNAME'
For merging regions that are not adjacent, passing t r ue as the third parameter forces the merge.

hbase> merge_regi on ' ENCODED REG ONNAVE' , ' ENCODED _REG ONNAMVE' , true

E,i Note: This command is slightly different from other region operations. You must pass the encoded
region name (ENCODED_REG ONNANME), not the full region name . The encoded region name is the
hash suffix on region names. For example, if the region name is
Test Tabl e, 0094429456, 1289497600452. 527db22f 95¢8a9e0116f 0cc13c680396, the encoded
region name portion is 527db22f 95¢8a9e0116f 0cc13c680396.

Configuring RegionServer Grouping

You can use RegionServer Grouping (rsgroup) to impose strict isolation between RegionServers by partitioning
RegionServers into distinct groups. You can use HBase Shell commands to define and manage RegionServer Grouping.

You must first create an rsgroup before you can add RegionServers to it. Once you have created an rsgroup, you can
move your HBase tables into this rsgroup so that only the RegionServers in the same rsgroup can host the regions of
the table.

E,i Note: RegionServers and tables can only belong to one rsgroup at a time. By default, all the tables
and RegionServers belong to the def aul t rsgroup.

A custom balancer implementation tracks assignments per rsgroup and moves regions to the relevant RegionServers
in that rsgroup. The rsgroup information is stored in a regular HBase table, and a ZooKeeper-based read-only cache is
used at cluster bootstrap time.

Enabling RegionServer Grouping using Cloudera Manager
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)
You must use Cloudera Manager to enable RegionServer Grouping before you can define and manage rsgroups.

1. Go to the HBase service.

. Click the Configuration tab.

. Select Scope > Master.

. Locate the HBase Coprocessor Master Classes property or search for it by typing its name in the Search box.
. Add the following property value: or g. apache. hadoop. hbase. r sgr oup. RSG oupAdni nEndpoi nt .

. Locate the Master Advanced Configuration Snippet (Safety Valve) for hbase-site.xml property or search for it
by typing its name in the Search box.

7. Click View as XML and add the following property:

D A WN

<property>

<nanme>hbase. mast er. | oadbal ancer. cl ass</ nane>

<val ue>or g. apache. hadoop. hbase. r sgr oup. RSG oupBasedLoadBal ancer </ val ue>
</ property>

8. Enter a Reason for change, and then click Save Changes to commit the changes.
9. Restart the role.
10 Restart the service.

Configuring RegionServer Grouping
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

When you add a new rsgroup, you are creating an rsgroup other than the default group. To configure a rsgroup, in the
HBase shell:

1. Add an rsgroup:

hbase> add_r sgroup ' nygroup'

2. Add RegionServers and tables to this rsgroup:

hbase> nove_servers_tabl es_rsgroup ‘ nygroup’,
["serverl:port','server2:port'],[tablel' ,'table2']

3. Run the bal ance_r sgr oup command if the tables are slow to migrate to the group’s dedicated server.

E’; Note: The term rsgroup refers to servers in a cluster with only the hostname and port. It does not
make use of the HBase ServerName type identifying RegionServers (hostname + port + start time) to
distinguish RegionServer instances.

Monitor RegionServer Grouping
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

You can monitor the status of the commands using the Tables tab on the HBase Master Ul home page. If you click on
a table name, you can see the RegionServers that are deployed.

You must manually align the RegionServers referenced in rsgroups with the actual state of nodes in the cluster that is
active and running.

Removing a RegionServer from RegionServer Grouping

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

You can remove a RegionServer by moving it to the def aul t rsgroup. Edits made using shell commands to all rsgroups,
except the def aul t rsgroup, are persisted to the system hbase: r sgr oup table. If an rsgroup references a
decommissioned RegionServer, then the rsgroup should be updated to undo the reference.

1. Move the RegionServer to the default rsgroup using the command:

hbase> nove_servers_rsgroup 'default',['serverl: port']

2. Check the list of RegionServers in your rsgourp to ensure that that the RegionServer is successfully removed using
the command:

hbase> get _rsgroup ' nygroup’

The default rsgroup’s RegionServer list mirrors the current state of the cluster. If you shut down a RegionServer that
was part of the def aul t rsgroup, and then run the get _r sgroup ' def aul t' command to list its content in the
shell, the server is no longer listed. If you move the offline server from the non-default rsgroup to def aul t, it will not
show in the def aul t list; the server will just be removed from the list.

Enabling ACL for RegionServer Grouping
Minimum Required Role: Full Administrator
You need to be a Global Admin to manage rsgroups if authorization is enabled.

To enable ACL, add the following to the hbase- si t e. xnl file, and then restart your HBase Master server:

<property>
<name>hbase. securi ty. aut hori zati on</ nane>
<val ue>t rue</ val ue>

<property>

Best Practices when using RegionServer Grouping
You must keep in mind the following best practices when using rsgroups:
Isolate System Tables

You can either have a system rsgroup where all the system tables are present or just leave the system tables in def aul t
rsgroup and have all user-space tables in non-def aul t rsgroups.

Handling Dead Nodes

You can have a special rsgroup of dead or questionable nodes to help you keep them without running until the nodes
are repaired. Be careful when replacing dead nodes in an rsgroup, and ensure there are enough live nodes before you
start moving out the dead nodes. You can move the good live nodes first before moving out the dead nodes.

If you have configured a table to be in a rsgroup, but all the RegionServers in that rsgroup die, the tables become
unavailable and you can no longer access those tables.

Troubleshooting RegionServer Grouping

If you encounter an issue when using rsgroup, check the Master log to see what is causing the issue. If an rsgroup
operation is unresponsive, restart the Master.

For example, if you have not enabled the rsgroup coprocessor endpoint in the Master, and run any of the rsgroup shell
commands, you will encounter the following error message:

ERROR: or g. apache. hadoop. hbase. excepti ons. UnknownPr ot ocol Excepti on: No regi stered master
coprocessor service found for nane RSG oupAdmi nService
at
or g. apache. hadoop. hbase. nast er . Mast er RocSer vi ces. execMast er Ser vi ce(Mast er RocSer vi ces. j ava: 604)

at

or g. apache. hadoop. hbase. shaded. pr ot obuf . gener at ed. Mist er Pr ot os$Msst er Servi ce$2. cal | B ocki ngMet hod(Mist er Frot os. j ava)
at org. apache. hadoop. hbase. i pc. RpcServer. cal | (RpcServer. java: 1140)
at org. apache. hadoop. hbase. i pc. Cal | Runner. run(Cal | Runner. java: 133)

at org. apache. hadoop. hbase. i pc. RocExecut or $Handl er. run(RpcExecut or. j ava: 277)
at org. apache. hadoop. hbase. i pc. RopcExecut or $Handl er . run(RpcExecut or . j ava: 257)

Disabling RegionServer Grouping

When you no longer require rsgroups, you can disable it for your cluster. Removing RegionServer Grouping for a cluster
on which it was enabled involves more steps in addition to removing the relevant properties from hbase-si te. xni .
You must ensure that you clean the RegionServer grouping-related metadata so that if the feature is re-enabled in the
future, the old metadata will not affect the functioning of the cluster.

To disable RegionServer Grouping:

1. Move all the tables in non-default rsgroups to def aul t RegionServer group.

#Reassigning table t1 fromthe non-default group - hbase shell
hbase> nove_tabl es_rsgroup 'default',['t1"]

2. Move all RegionServers in non-default rsgroups to def aul t regionserver group.

#Reassigning all the servers in the non-default rsgroup to default - hbase shell
hbase> nove_servers_rsgroup
"default',['regionserverl:port','regionserver2:port','regionserver3:port']

3. Remove all non-default rsgroups. def aul t rsgroup created implicitly does not have to be removed.

#renmovi ng non-default rsgroup - hbase shell
hbase> renove_rsgroup ' mygroup'

4. Remove the changes made in hbase- si t e. xml and restart the cluster.
5. Drop the table hbase: r sgr oup from HBase.

#Through hbase shell drop table hbase:rsgroup
hbase> di sabl e ' hbase: r sgroup’

0 row(s) in 2.6270 seconds

hbase> drop ' hbase: rsgroup’

0 row(s) in 1.2730 seconds

6. Remove the znode r sgr oup from the cluster ZooKeeper using zkCli.sh.

#From ZK renove the node /hbase/rsgroup through zkdi.sh
rmr / hbase/ rsgroup

Troubleshooting HBase

See Troubleshooting HBase.

Configuring the BlockCache

See Configuring the HBase BlockCache on page 22.

Configuring the Scanner Heartbeat

See Configuring the HBase Scanner Heartbeat on page 36.

Accessing HBase by using the HBase Shell

After you have started HBase, you can access the database in an interactive way by using the HBase Shell, which is a
command interpreter for HBase which is written in Ruby. Always run HBase administrative commands such as the
HBase Shell, hbck, or bulk-load commands as the HBase user (typically hbase).

hbase shell

HBase Shell Overview

¢ To get help and to see all available commands, use the hel p command.
¢ To get help on a specific command, use hel p " command" . For example:

hbase> help "create"

¢ To remove an attribute from a table or column family or reset it to its default value, set its value to ni | . For
example, use the following command to remove the KEEP_DELETED CELLS attribute from the f 1 column of the
user s table:

hbase> alter 'users', { NAME => 'f1', KEEP_DELETED CELLS => nil }
* To exit the HBase Shell, type qui t .

Setting Virtual Machine Options for HBase Shell

HBase in CDH 5.2 and higher allows you to set variables for the virtual machine running HBase Shell, by using the
HBASE_SHELL_OPTS environment variable. This example sets several options in the virtual machine.

$ HBASE SHELL_OPTS="-verbose: gc - XX: +Pri nt GCAppl i cati onSt oppedTi me - XX: +Pri nt GCDat eSt anps
- XX: +Print GCDet ai | s - Xl oggc: $HBASE_HOVE/ | ogs/ gc- hbase. | og" ./ bi n/ hbase shel |

Scripting with HBase Shell

CDH 5.2 and higher include non-interactive mode. This mode allows you to use HBase Shell in scripts, and allow the
script to access the exit status of the HBase Shell commands. To invoke non-interactive mode, use the - n or
--non-i nteracti ve switch. This small example script shows how to use HBase Shell in a Bash script.

#1/ bi n/ bash
echo 'list' | hbase shell -n
st at us=%$?
if [$status -ne 0]; then
echo "The conmand may have failed."
fi

Successful HBase Shell commands return an exit status of 0. However, an exit status other than 0 does not necessarily
indicate a failure, but should be interpreted as unknown. For example, a command may succeed, but while waiting for
the response, the client may lose connectivity. In that case, the client has no way to know the outcome of the command.
In the case of a non-zero exit status, your script should check to be sure the command actually failed before taking
further action.

CDH 5.7 and higher include the get _spl i t s command, which returns the split points for a given table:

hbase> get _splits 't2'
Total nunber of splits =5

= ["", "1o0", "20", "30", "40"]

You can also write Ruby scripts for use with HBase Shell. Example Ruby scripts are included in the
hbase- exanpl es/ src/ mai n/ ruby/ directory.

HBase Online Merge

CDH 6 supports online merging of regions. HBase splits big regions automatically but does not support merging small
regions automatically. To complete an online merge of two regions of a table, use the HBase shell to issue the online
merge command. By default, both regions to be merged should be neighbors; that is, one end key of a region should
be the start key of the other region. Although you can "force merge" any two regions of the same table, this can create
overlaps and is not recommended.

The Master and RegionServer both participate in online merges. When the request to merge is sent to the Master, the
Master moves the regions to be merged to the same RegionServer, usually the one where the region with the higher
load resides. The Master then requests the RegionServer to merge the two regions. The RegionServer processes this

request locally. Once the two regions are merged, the new region will be online and available for server requests, and
the old regions are taken offline.

For merging two consecutive regions use the following command:
hbase> merge_regi on ' ENCODED REG ONNAME' , ' ENCODED REG ONNAME'
For merging regions that are not adjacent, passing t r ue as the third parameter forces the merge.
hbase> merge_regi on ' ENCODED REG ONNAME', ' ENCODED REG ONNAME', true
E,’ Note: This command is slightly different from other region operations. You must pass the encoded
region name (ENCODED_REG ONNAME), not the full region name . The encoded region name is the
hash suffix on region names. For example, if the region name is

Test Tabl e, 0094429456, 1289497600452. 527db22f 95¢8a9e0116f 0cc13c680396, the encoded
region name portion is 527db22f 95¢8a9e0116f 0cc13¢c680396.

Using MapReduce with HBase

To run MapReduce jobs that use HBase, you need to add the HBase and Zookeeper JAR files to the Hadoop Java
classpath. You can do this by adding the following statement to each job:

Tabl eMapReducelti | . addDependencyJar s(j ob);

This distributes the JAR files to the cluster along with your job and adds them to the job's classpath, so that you do not
need to edit the MapReduce configuration.

When getting an Conf i gur at i on object for a HBase MapReduce job, instantiate it using the
HBaseConfi gurati on. creat e() method.

Configuring HBase Garbage Collection

Warning: Configuring the JVM garbage collection for HBase is an advanced operation. Incorrect
A configuration can have major performance implications for your cluster. Test any configuration changes
carefully.

Garbage collection (memory cleanup) by the JVM can cause HBase clients to experience excessive latency. See Tuning
Java Garbage Collection for HBase for a discussion of various garbage collection settings and their impacts on
performance.

http://blog.cloudera.com/blog/2014/12/tuning-java-garbage-collection-for-hbase/
http://blog.cloudera.com/blog/2014/12/tuning-java-garbage-collection-for-hbase/

To tune the garbage collection settings, you pass the relevant parameters to the JVM.

Example configuration values are not recommendations and should not be considered as such. This is not the complete
list of configuration options related to garbage collection. See the documentation for your JVM for details on these
settings.

- XX: +UseGLGC

Use the 'G1' garbage collection algorithm. You can tune G1 garbage collection to provide a consistent pause time,
which benefits long-term running Java processes such as HBase, NameNode, Solr, and ZooKeeper. For more
information about tuning G1, see the Oracle documentation on tuning garbage collection.

- XX: MaxGCPauseM | | i s=val ue

The garbage collection pause time. Set this to the maximum amount of latency your cluster can tolerate while
allowing as much garbage collection as possible.

- XX: +Par al | el Ref ProcEnabl ed
Enable or disable parallel reference processing by using a + or - symbol before the parameter name.
- XX: - Resi zePLAB

Enable or disable resizing of Promotion Local Allocation Buffers (PLABs) by using a + or - symbol before the parameter
name.

- XX: Par al | el GCThr eads=val ue
The number of parallel garbage collection threads to run concurrently.
- XX: GLNewsSi zePer cent =val ue

The percent of the heap to be used for garbage collection. If the value is too low, garbage collection is ineffective.
If the value is too high, not enough heap is available for other uses by HBase.

Configure HBase Garbage Collection Using Cloudera Manager
Minimum Required Role: Full Administrator

1. Go to the HBase service.

. Click the Configuration tab.

. Select Scope > RegionServer.
. Select Category > Advanced.

. Locate the Java Configuration Options for HBase RegionServer property or search for it by typing its name in the
Search box.

v b WN

6. Add or modify JVM configuration options.
7. Enter a Reason for change, and then click Save Changes to commit the changes.
8. Restart the role.

Using the HBase Garbage Collector with JDK11

G1GC is the default garbage collector when JDK11 is used. It operates well with large heap sizes, at least 16G, and can
cause low throughput and OOM errors in a heap constrained application environment.

You can improve the performance of G1GC by increasing the number of concurrent making threads. You can set this
number using the - XX: Conc GCThr eads=n option. By default this option is set to 10% of the available total host CPUs.
However in an environment with more CPUs, you can increase this number to add more concurrent marking threads.

Althought G1GC is the default garbage collector, you can use other garbage collector with JDK11. For example, you
can enable CMS using the - XX: +UseConcMar kSweepGC java option at runtime.

JDK11 uses the JVM unified logging framework. You can print garbage collection information with the following
command: - Xl og: gc*. The result of thiscommand is a detailed overview during and outside the pauses about garbage
collection activity, including the type of collection and time spent in specific phases of the pause. If you want to see
both the garbage collection and heap information, use the - Xl og: gc+heap option.

https://docs.oracle.com/cd/E40972_01/doc.70/e40973/cnf_jvmgc.htm

Disabling the BoundedByt eBuf f er Pool

HBase uses a BoundedByt eBuf f er Pool to avoid fragmenting the heap. The G1 garbage collector reduces the need
to avoid fragmenting the heap in some cases. If you use the G1 garbage collector, you can disable the

BoundedByt eBuf f er Pool in HBase. This can reduce the number of "old generation" items that need to be collected.
This configuration is experimental.

To disable the BoundedByt eBuf f er Pool , set the hbase. i pc. server. reservoir. enabl ed property to f al se.

Disable the BoundedByt eBuf f er Pool Using Cloudera Manager

1. Go to the HBase service.

. Click the Configuration tab.

. Select Scope > RegionServer.
. Select Category > Advanced.

. Locate the HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml property, or search
for it by typing its name in the Search box.

6. Add the following XML:

v b WN

<property>
<nanme>hbase. i pc. server. reservoir. enabl ed</ nane>
<val ue>f al se</ val ue>

</ property>

7. Enter a Reason for change, and then click Save Changes to commit the changes.
8. Restart the service.

Configuring the HBase Canary

The HBase canary is an optional service that periodically checks that a RegionServer is alive. This canary is different
from the Cloudera Service Monitoring canary and is provided by the HBase service. The HBase canary is disabled by
default. After enabling the canary, you can configure several different thresholds and intervals relating to it, as well
as exclude certain tables from the canary checks. The canary works on Kerberos-enabled clusters if you have the HBase
client configured to use Kerberos.

Configure the HBase Canary Using Cloudera Manager
Minimum Required Role: Full Administrator

1. Go to the HBase service.

. Click the Configuration tab.

. Select Scope > HBase or HBase Service-Wide.
. Select Category > Monitoring.

. Locate the HBase Canary property or search for it by typing its name in the Search box. Several properties have
Canary in the property name.

. Select the checkbox.
7. Review other HBase Canary properties to configure the specific behavior of the canary.

u b WN

()]

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.
See Modifying Configuration Properties Using Cloudera Manager.

8. Enter a Reason for change, and then click Save Changes to commit the changes.
9. Restart the role.
10 Restart the service.

Configuring the Blocksize for HBase

The blocksize is an important configuration option for HBase. HBase data is stored in one (after a major compaction)
or more (possibly before a major compaction) HFiles per column family per region. It determines both of the following:

¢ The blocksize for a given column family determines the smallest unit of data HBase can read from the column
family's HFiles.

e |t is also the basic unit of measure cached by a RegionServer in the BlockCache.

The default blocksize is 64 KB. The appropriate blocksize is dependent upon your data and usage patterns. Use the
following guidelines to tune the blocksize size, in combination with testing and benchmarking as appropriate.

Warning: The default blocksize is appropriate for a wide range of data usage patterns, and tuning
the blocksize is an advanced operation. The wrong configuration can negatively impact performance.

e Consider the average key/value size for the column family when tuning the blocksize. You can find the average
key/value size using the HFile utility:

$ hbase org. apache. hadoop. hbase.io. hfile.HFile -f /path/to/HFILE -m -v

Bl ock index size as per heapsize: 296

reader =hdf s: // srv1l. exanpl e. com 9000/ pat h/ t o/ HFI LE, \

conpr essi on=none, inMenory=fal se, \
firstKey=US6683275_20040127/ m net ype: / 1251853756871/ Put, \
| ast Key=US6684814_20040203/ m net ype: / 1251864683374/ Put, \
avgKeylLen=37, avgVal ueLen=8, \

entri es=1554, | engt h=84447

e Consider the pattern of reads to the table or column family. For instance, if it is common to scan for 500 rows on
various parts of the table, performance might be increased if the blocksize is large enough to encompass 500-1000
rows, so that often, only one read operation on the HFile is required. If your typical scan size is only 3 rows,
returning 500-1000 rows would be overkill.

It is difficult to predict the size of a row before it is written, because the data will be compressed when it is written
to the HFile. Perform testing to determine the correct blocksize for your data.

Configuring the Blocksize for a Column Family

You can configure the blocksize of a column family at table creation or by disabling and altering an existing table. These
instructions are valid whether or not you use Cloudera Manager to manage your cluster.

hbase> create ‘test_table ,{NAME => ‘'test_cf
hbase> di sable 'test_table'

hbase> alter 'test_table', {NAME => 'test_cf', BLOCKSIZE => '524288'}
hbase> enable 'test_table'

, BLOCKSI ZE => ' 262144'}

After changing the blocksize, the HFiles will be rewritten during the next major compaction. To trigger a major
compaction, issue the following command in HBase Shell.

hbase> mmj or _conpact 'test_table'

Depending on the size of the table, the major compaction can take some time and have a performance impact while
itis running.

Monitoring Blocksize Metrics

Several metrics are exposed for monitoring the blocksize by monitoring the blockcache itself.

Configuring the HBase BlockCache

In the default configuration, HBase uses a single on-heap cache. If you configure the off-heap Bucket Cache, the
on-heap cache is used for Bloom filters and indexes, and the off-heap Bucket Cache is used to cache data blocks. This
is called the Combined Blockcache configuration. The Combined Bl ockCache allows you to use a larger in-memory
cache while reducing the negative impact of garbage collection in the heap, because HBase manages the Bucket Cache
instead of relying on the garbage collector.

Contents of the BlockCache

To size the Bl ockCache correctly, you need to understand what HBase places into it.

Your data: Each time a Get or Scan operation occurs, the result is added to the BlockCache if it was not already
cached there. If you use the BucketCache, data blocks are always cached in the BucketCache.

Row keys: When a value is loaded into the cache, its row key is also cached. This is one reason to make your row
keys as small as possible. A larger row key takes up more space in the cache.

hbase:meta: The hbase: et a catalog table keeps track of which RegionServer is serving which regions. It can
consume several megabytes of cache if you have a large number of regions, and has i n- nenor y access priority,
which means HBase attempts to keep it in the cache as long as possible.

Indexes of HFiles: HBase stores its data in HDFS in a format called HFile. These HFiles contain indexes which allow
HBase to seek for data within them without needing to open the entire HFile. The size of an index is a factor of
the block size, the size of your row keys, and the amount of data you are storing. For big data sets, the size can
exceed 1 GB per RegionServer, although the entire index is unlikely to be in the cache at the same time. If you
use the BucketCache, indexes are always cached on-heap.

Bloom filters: If you use Bloom filters, they are stored in the BlockCache. If you use the BucketCache, Bloom filters
are always cached on-heap.

The sum of the sizes of these objects is highly dependent on your usage patterns and the characteristics of your data.
For this reason, the HBase Web Ul and Cloudera Manager each expose several metrics to help you size and tune the
BlockCache.

Deciding Whether To Use the BucketCache

The HBase team has published the results of exhaustive BlockCache testing, which revealed the following guidelines.

If the result of a Get or Scan typically fits completely in the heap, the default configuration, which uses the on-heap
Lr uBl ockCache, is the best choice, as the L2 cache will not provide much benefit. If the eviction rate is low,
garbage collection can be 50% less than that of the Bucket Cache, and throughput can be at least 20% higher.
Otherwise, if your cache is experiencing a consistently high eviction rate, use the Bucket Cache, which causes
30-50% of the garbage collection of Lr uBl ockCache when the eviction rate is high.

Bucket Cache using file mode on solid-state disks has a better garbage-collection profile but lower throughput
than Bucket Cache using off-heap memory.

Bypassing the BlockCache

If the data needed for a specific but atypical operation does not all fit in memory, using the BlockCache can be
counter-productive, because data that you are still using may be evicted, or even if other data is not evicted, excess
garbage collection can adversely effect performance. For this type of operation, you may decide to bypass the BlockCache.
To bypass the BlockCache for a given Scan or Get, use the set CacheBl ocks(f al se) method.

In addition, you can prevent a specific column family's contents from being cached, by setting its BLOCKCACHE
configuration to f al se. Use the following syntax in HBase Shell:

hbase> alter 'nmyTable', CONFI GURATI ON => {NAME => 'nmyCF' , BLOCKCACHE => 'false'}

https://blogs.apache.org/hbase/entry/comparing_blockcache_deploys

Cache Eviction Priorities

Both the on-heap cache and the off-heap Bucket Cache use the same cache priority mechanism to decide which cache
objects to evict to make room for new objects. Three levels of block priority allow for scan-resistance and in-memory
column families. Objects evicted from the cache are subject to garbage collection.

¢ Single access priority: The first time a block is loaded from HDFS, that block is given single access priority, which
means that it will be part of the first group to be considered during evictions. Scanned blocks are more likely to
be evicted than blocks that are used more frequently.

e Multi access priority: If a block in the single access priority group is accessed again, that block is assigned multi
access priority, which moves it to the second group considered during evictions, and is therefore less likely to be
evicted.

* In-memory access priority: If the block belongs to a column family which is configured with the i n- menory
configuration option, its priority is changed to in memory access priority, regardless of its access pattern. This
group is the last group considered during evictions, but is not guaranteed not to be evicted. Catalog tables are
configured with in-memory access priority.

To configure a column family for in-memory access, use the following syntax in HBase Shell:
hbase> alter 'nyTable', 'nyCF , CONFlI GURATION => {I N MEMORY => "true'}

To use the Java API to configure a column family for in-memory access, use the
HCol umDescri pt or. set | nMenor y(true) method.

Sizing the BlockCache

When you use the Lr uBl ockCache, the blocks needed to satisfy each read are cached, evicting older cached objects
if the Lr uBl ockCache is full. The size cached objects for a given read may be significantly larger than the actual result
of the read. For instance, if HBase needs to scan through 20 HFile blocks to return a 100 byte result, and the HFile
blocksize is 100 KB, the read will add 20 * 100 KB to the Lr uBl ockCache.

Because the Lr uBl ockCache resides entirely within the Java heap, the amount of which is available to HBase and
what percentage of the heap is available to the Lr uBl ockCache strongly impact performance. By default, the amount
of HBase heap reserved for Lr uBl ockCache (hfi | e. bl ock. cache. si ze)is. 40, or 40%. To determine the amount
of heap available for the Lr uBl ockCache, use the following formula. The 0. 99 factor allows 1% of heap to be available
as a "working area" for evicting items from the cache. If you use the BucketCache, the on-heap LruBlockCache only
stores indexes and Bloom filters, and data blocks are cached in the off-heap BucketCache.

nunber of RegionServers * heap size * hfile.block.cache.size * 0.99

To tune the size of the Lr uBl ockCache, you can add RegionServers or increase the total Java heap on a given
RegionServer to increase it, or you can tune hf i | e. bl ock. cache. si ze to reduce it. Reducing it will cause cache
evictions to happen more often, but will reduce the time it takes to perform a cycle of garbage collection. Increasing
the heap will cause garbage collection to take longer but happen less frequently.

About the Off-heap BucketCache

If the BucketCache is enabled, it stores data blocks, leaving the on-heap cache free for storing indexes and Bloom
filters. The physical location of the Bucket Cache storage can be either in memory (off-heap) or in a file stored in a
fast disk.

e Off-heap: This is the default configuration.
¢ File-based: You can use the file-based storage mode to store the Bucket Cache on an SSD or FusionlO device,

You can configure a column family to keep its data blocks in the L1 cache instead of the BucketCache, using the
HCol ummDescr i pt or . cacheDat al nL1(t rue) method or by using the following syntax in HBase Shell:

hbase> alter 'nyTable', CONFI GURATI ON => {CACHE DATA IN L1 => "true'}}

Configuring the Off-heap BucketCache

This table summaries the important configuration properties for the Bucket Cache. To configure the Bucket Cache,
see Configuring the Off-heap BucketCache Using Cloudera Manager on page 27 or Configuring the Off-heap BucketCache

Using the Command Line on page 28. The table is followed by three diagrams that show the impacts of different

blockcache settings.

Table 1: BucketCache Configuration Properties

Property

Default

Description

hbase. bucket cache. contii nedcache. enabl ed

true

When Bucket Cache is enabled, use
it as a L2 cache for Lr uBl ockCache.
If set to true, indexes and Bloom filters
are kept in the Lr uBl ockCache and
the data blocks are kept in the
Bucket Cache.

hbase. bucket cache. i oengi ne

none (Bucket Cache is disabled by
default)

Where to store the contents of the
Bucket Cache. Its value can be

of f heap,fil e: PATH, mmap: PATHor
pmem PATHwhere PATH is the path
to the file that host the file-based
cache.

hfil e. bl ock. cache. si ze

0.4

A float between 0.0 and 1.0. This
factor multiplied by the Java heap size
is the size of the L1 cache. In other
words, the percentage of the Java
heap to use for the L1 cache.

hbase. bucket cache. si ze

not set

When using Bucket Cache, thisis a
float that represents one of two
different values, depending on
whether it is a floating-point decimal
less than 1.0 or an integer greater than
1.0.

e If less than 1.0, it represents a
percentage of total heap memory
size to give to the cache.

e If greater than 1.0, it represents
the capacity of the cache in
megabytes

hbase. bucket cache. bucket . si zes

4, 8, 16, 32, 40, 48, 56, 64,
96, 128, 192, 256, 384, 512
KB

A comma-separated list of sizes for
buckets for the Bucket Cache if you
prefer to use multiple sizes. The sizes
should be multiples of the default
blocksize, ordered from smallest to
largest. The sizes you use will depend
on your data patterns. This parameter
is experimental.

- XX: MaxDi rect MenorySi ze

MaxDi r ect MenorySi ze =
Bucket Cache + 1

A JVM option to configure the
maximum amount of direct memory
available for the JVM. It is
automatically calculated and
configured based on the following

Configuration Settings for HBase

formula: MaxDi r ect MenorySi ze =
Bucket Cache size + 1 GBfor
other features using direct memory,
such as DFSClient. For example, if the
BucketCache size is 8 GB, it will be

- XX: MaxDi r ect MenorySi ze=9G

Other JVM process
memory settings

HBASE_HEAPSIZE-Xmx=
$HBASE_HEAPSIZE

HBase_OFFHEAPSIZE=0
(default to 0, which means JVM
allocates for NIO as needed)

Ui B WIN =

region server process

java managed heap

block cache

java direct memory é

. 20% minimum reserved for operations and rpc call queues

. hbase. regi onserver. gl obal . menst or e. si ze: default is 0.4, which means 40%

. hbase. regi onserver. gl obal . renst ore. si ze + hfil e. bl ock. cache. si ze <0.80, which means 80%
. hfile.block.cache. si ze: default is 0.4, which means 40%

. slack reserved for HDFS SCR/NIO: number of open HFiles *

hbase. dfs.client.read.shortcircuit.buffer.size, where
hbase. dfs.client.read.shortcircuit.buffer.sizeissetto128k.

Figure 1: Default LRUCache, L1 only block cache hbase. bucket cache. i oengi ne=NULL

Apache HBase Guide | 25

Configuration Settings for HBase

Other JVM process
memory settings
[¢
'y
& a
£ 18
o £
HBASE_HEAPSIZE-Xmx= 2 1B
$HBASE_HEAPSIZE 2 &
g s (3]
0 m
c E
G @
2 g
@ = | block cache
¥ J
z‘ ¢
c
£
)
E
HBase_OFFHEAPSIZE= g
-XX:MaxDirectMemorySize B bucket cache
m
=
o
v)

. 20% minimum reserved for operations and rpc call queues

hbase. r egi onserver. gl obal . nenst or e. si ze: default is 0.4, which means 40%

hbase. regi onserver. gl obal . menst ore. si ze + hfil e. bl ock. cache. si ze <0.80, which means 80%
. hfile. bl ock. cache. si ze: default is 0.4 which means 40%

. slack reserved for HDFS SCR/NIO: number of open HFiles *

hbase. dfs.client.read. shortcircuit.buffer.size, where
hbase. dfs.client.read.shortcircuit.buffer.sizeissetto128k.

6. hbase. bucket cache. si ze: defaultis 0.0

U h WN R

If hbase. bucket cache. si ze is float <1, it represents the percentage of total heap size.

If hbase. bucket cache. si ze is 21, it represents the absolute value in MB. It must be < HBASE_OFFHEAPSIZE

Figure 2: Default LRUCache, L1 only block cache hbase. bucket cache. i oengi ne=of f heap

Configuring the BucketCache IO Engine

Use the hbase. bucket cache. i oengi ne parameter to define where to store the content of the Bucket Cache. Its
value can be of f heap, fi | e: PATH, mmap: PATH, pmem PATH, or it can be empty. By default it is empty which means
that BucketCache is disabled.

E’; Note: PATH denotes the path to the file that host the file-based cache.

offheap

When hbase. bucket cache. i oengi ne is set to of f heap, the content of the BucketCache is stored off-heap as it is
presented on the Figure 2: Default LRUCache, L1 only block cache hbase.bucketcache.ioengine=offheap on page 26
image.

file:PATH

When hbase. bucket cache. i oengi ne issettofi | e: PATH, the BucketCache uses file caching.

mmap:PATH

26 | Apache HBase Guide

When hbase. bucket cache. i oengi ne is set to nmap: PATH, the content of the BucketCache is stored and accessed
through memory mapping to a file under the specified path.

pmem:PATH

When hbase. bucket cache. i oengi ne is set to pmem PATH, BucketCache uses direct memory access to and from
a file on the specified path. The specified path must be under a volume that is mounted on a persistent memory device
that supports direct access to its own address space. An example of such persistent memory device is the Intel® Optane™
DC Persistent Memory, when it is mounted in Direct Mode.

The advantage of the prremengine over the mrap engine is that it supports large cache size. That is because pnmemallows
for reads straight from the device address, which means in this mode no copy is created on DRAM. Therefore, swapping
due to DRAM free memory exhaustion is not an issue when large cache size is specified. With devices currently available,
the bucket cache size can be set to the order of hundreds of GBs or even a few TBs.

When bucket cache size is set to larger than 256GB, the OS limit must be increased, which can be configured by the
max_map_count property. Make sure you have an extra 10% for other processes on the host that require the use of
memory mapping. This additional overhead depends on the load of processes running on the RS hosts. To calculate
the OS limit divide the block cache size in GB by 4 MB and then multiply it by 1.1: (bl ock cache size in GB/ 4
MB) * 1.1.

Set the value of f heap and fi | e: PATHin the following way:

1. In Cloudera Manager select the HBase service and go to Configuration.
2. Search for BucketCache IOEngine and set it to the required value.

Set the value nmap: PATHand pnmem PATH in the following way:

o Important: These values can only be set using safety valves.

1. In Cloudera Manager select the HBase service and go to Configuration.

2. Search for RegionServer Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.
3. Click the plus icon.

4. Set the required value:

e Name: Add hbase. bucket cache. i oengi ne.
¢ Value: Add either mmap: PATH: or pmem PATH.

Configuring the Off-heap BucketCache Using Cloudera Manager

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select the RegionServer scope and do the following:

a. Set BucketCache IOEngine to of f heap.
b. Update the value of BucketCache Size according to the required BucketCache size.

4. In the RegionServer Environment Advanced Configuration Snippet (Safety Valve), edit the
HBASE REG ONSERVER OPTS parameter:

Add the JVM option $HBASE_REG ONSERVER_OPTS - XX: MaxDi r ect Menor ySi ze=<si ze>G replacing <si ze>
with a value not smaller than the aggregated heap size expressed as a number of gigabytes + the off-heap
BucketCache, expressed as a number of gigabytes + around 1GB used for HDFS short circuit read. For example, if
the off-heap BucketCache is 16GB and the heap size is 15GB, the total value of MaxDirectMemorySize could be
32: - XX: MaxDi r ect Manor ySi ze=32G

https://software.intel.com/en-us/blogs/2018/10/30/intel-optane-dc-persistent-memory-a-major-advance-in-memory-and-storage-architecture
https://software.intel.com/en-us/blogs/2018/10/30/intel-optane-dc-persistent-memory-a-major-advance-in-memory-and-storage-architecture

If J]DK11 is used, Cloudera recommends to replace <si ze> with a value not smaller than the aggregated heap size
expressed as a number of gigabytes + 3GB. For example, if the off-heap BucketCache is 16GB, the total value of
MaxDirectMemorySize could be 19: - XX: MaxDi r ect Manor ySi ze=19G

HBASE_REG ONSERVER_OPTS="$HBASE_REG ONSERVER _OPTS - XX: MaxDi r ect Menor ySi ze=<si ze>G'
5. Optionally, when combined BucketCache is in use, you can decrease the heap size ratio allocated to the L1
BlockCache, and increase the Memstore size.

The on-heap BlockCache only stores indexes and Bloom filters, the actual data resides in the off-heap BucketCache.
A larger Memstore is able to accommodate more write request before flushing them to disks.

e Decrease HFile Block Cache Size to 0. 3 or 0. 2.
¢ Increase Maximum Size of All Memstores in RegionServer to 0. 5 or 0. 6 respectively.

6. Enter a Reason for change, and then click Save Changes to commit the changes.
7. Restart or rolling restart your RegionServers for the changes to take effect.

Configuring the Off-heap BucketCache Using the Command Line

o Important:

¢ Follow these command-line instructions on systems that do not use Cloudera Manager.
¢ This information applies specifically to CDH 6.3.x. See Cloudera Documentation for information
specific to other releases.

1. Configure the MaxDirectMemorySize option for the RegionServers JVMS.

Add the JVM option $HBASE_REG ONSERVER_OPTS - XX: MaxDi r ect Menor ySi ze=<si ze>G replacing <si ze>
with a value not smaller than the aggregated heap size expressed as a number of gigabytes + the off-heap
BucketCache, expressed as a number of gigabytes + around 1GB used for HDFS short circuit read. For example, if
the off-heap BucketCache is 16GB and the heap size is 15GB, the total value of MaxDirectMemorySize could be
32: - XX: MaxDi rect ManorySi ze=32G

This can be done adding the following line in hbase- env. sh:

HBASE_REG ONSERVER_OPTS="$HBASE_REGQ ONSERVER _OPTS - XX: MaxDi r ect MenorySi ze=<si ze>G'

2. Next, in the hbase- si t e. xm files on the RegionServers, configure the properties in Table 1: BucketCache
Configuration Properties on page 24 as appropriate, using the example below as a model.

<property>
<nane>hbase. bucket cache. conbi nedcache. enabl ed</ nane>
<val ue>true</val ue>
</ property>
<property>
<nanme>hbase. bucket cache. i oengi ne</ nanme>
<val ue>of f heap</ val ue>
</ property>
<property>
<nane>hbase. bucket cache. si ze</ nane>
<val ue>8388608</ val ue>
</ property>
<property>
<nane>hfil e. bl ock. cache. si ze</ nane>
<val ue>0. 2</ val ue>
</ property>
<property>
<nanme>hbase. regi onserver. gl obal . menst or e. si ze</ nane>
<val ue>0. 6</ val ue>
</ property>

http://www.cloudera.com/content/support/en/documentation.html

Optionally, when combined BucketCache is in use, you can decrease the heap size ratio allocated to the L1
BlockCache, and increase the Memstore size as it is done in the above example. The on-heap BlockCache only
stores indexes and Bloom filters, the actual data resides in the off-heap BucketCache. A larger Memstore is able
to accommodate more write request before flushing them to disks.

e Decrease hfil e. bl ock. cache. sizeto0. 3 or0. 2.
¢ Increase hbase. r egi onserver. gl obal . mnenst ore. si ze to 0. 5 or 0. 6 respectively.

3. Restart each RegionServer for the changes to take effect.

Monitoring the BlockCache

Cloudera Manager provides metrics to monitor the performance of the Bl ockCache, to assist you in tuning your
configuration.

You can view further detail and graphs using the RegionServer Ul. To access the RegionServer Ul in Cloudera Manager,
go to the Cloudera Manager page for the host, click the RegionServer process, and click HBase RegionServer Web Ul.

If you do not use Cloudera Manager, access the Bl ockCache reports at
http://regi onServer_host: 22102/ r s- st at us#menor ySt at s, replacing r egi onSer ver _host with the
hostname or IP address of your RegionServer.

Configuring Quotas

Two types of HBase quotas are well established: throttle quota and number-of tables-quota. These two quotas can
regulate users and tables.

In a multitenant HBase environment, ensuring that each tenant can use only its allotted portion of the system is key
in meeting SLAs.

Table 2: Quota Support Matrix

Quota Type Resource Type Purpose Namespace Table applicable? | User applicable?
applicable?
Throttle Network Limit overall Yes Yes Yes
network

throughput and
number of RPC
requests

New space Storage Limit amount of | Yes Yes No
storage used for
table or
namespaces

Number of tables | Metadata Limit number of | Yes No Yes
tables for each
namespace or
user

Numbr of regions | Metadata Limit number of | Yes No No
regions for each
namespace

Setting up quotas

HBase quotas are disabled by default. To enable quotas, the relevant hbase- si t e. xml property must be settotrue
and the limit of each quota specified on the command line.

You need hbase superuser privileges

1. Set the hbase.quota.enabled property in the hbase-si t e. xnl file totr ue.

2. Enter the command to set the set the limit of the quota, type of quota, and to which entity to apply the quota.
The command and its syntax are:

$hbase_shel | > set _quota TYPE =>

quot a_t ype,
ar gument s

General Quota Syntax

The general quota syntax are THROTTLE_TYPE, Request si zes and space |imt,Nunber of requests,Tine
l'imtsandNunber of tables or regions.

THROTTLE_TYPE
Can be expressed as READ-only, WRITE-only, or the default type (both READ and WRITE permissions)
Timeframes
Can be expressed in the following units of time:
e sec (second)
nmi n (minute)
hour

day

Request sizes and space limit
Can be expressed in the following units:
e B: bytes
K: kilobytes
M megabytes
G: gigabytes
P: petabytes

When no size units is included, the default value is bytes.
Number of requests
Expressed as integer followed by the string request
Time limits
Expressed as requests per unit-of-time or size per unit-of-time
Examples: 10r eq/ day or 100P/ hour
Number of tables or regions

Expressed as integers

Throttle quotas

The throttle quota, also known as RPC limit quota, is commonly used to manage length of RPC queue as well as network
bandwidth utilization. It is best used to prioritize time-sensitive applications to ensure latency SLAs are met.

Throttle quota examples

Following examples details the usage of adding throttle quotas commands, listing throttle quotas commands, and
updating and deleting throttle quotas commands.

Examples of Adding Throttle Quotas Commands

Limit user ul to 10 requests per second globally:

hbase> set _quota => TYPE => THROTTLE, USER => 'ul', LIMT => '10req/ sec'

Limit user ul to up to 10MB of traffic per second globally:

hbase> set _quota => TYPE => THROTTLE, USER => 'ul', LIMT =>"'10M sec'

Limit user ul to 10 requests/second globally for read operations. User ul can still issue unlimited writes:

hbase> set _quota TYPE => THROTTLE, THROTTLE TYPE => READ, USER => 'ul', LIMT => ' 10reqg/ sec'
Limit user ul to 10 requests/second globally for read operations. User ul can still issue unlimited reads:

hbase> set _quota TYPE => THROTTLE, THROTTLE TYPE => WRITE, USER => '"ul', LIMT => "' 10M sec'

Limit user ul to 5 KB/second for all operations on table t2. User ul can still issue unlimited requests for other tables,
regardless of type of operation:

hbase> set _quota TYPE => THROTTLE, USER => 'ul', TABLE => 't2', LIMT => '5K/mn’

Limit request to namespaces:

hbase> set_quota TYPE => THROTTLE, NAMESPACE => 'nsl', LIMT => '10req/sec’

Limit request to tables:

hbase> set _quota TYPE => THROTTLE, TABLE => '"t1', LIMT => '10M sec'

Limit requests based on type, regardless of users, namespaces, or tables:

hbase> set _quota TYPE => THROTTLE, THROTTLE TYPE => WRI TE, TABLE => 't1', LIMT =>"'10M sec'
Examples of Listing Throttle Quotas Commands

Show all quotas:

hbase> |ist_quot as

Show all quotas applied to user bob:

hbase> |ist_quotas USER => ' bob. *'

Show all quotas applied to user bob and filter by table or namespace:

hbase> |ist_quotas USER => ' bob.*', TABLE => 't1'
hbase> |ist_quotas USER => 'bob.*', NAMESPACE => 'ns.*'

Show all quotas and filter by table or namespace:

hbase> | i st_quotas TABLE => 'nyTabl e’
hbase> |ist_quotas NAMESPACE => 'ns.*'

Examples of Updating and Deleting Throttle Quotas Commands

To update a quota, simply issue a new set _quot a command. To remove a quota, you can set LI M T to NONE. The
actual quota entry will not be removed, but the policy will be disabled.

hbase> set _quota TYPE => THROTTLE, USER => 'ul', LIMT => NONE

hbase> set_quota TYPE => THROTTLE, USER => 'ul', NAMESPACE => 'ns2', LIMT => NONE
hbase> set_quota TYPE => THROTTLE, THROTTLE_TYPE => WRITE, USER => 'ul', LIMT => NONE
hbase> set _quota USER => 'ul', GLOBAL_BYPASS => true

Space quotas

Space quotas, also known as filesystem space quotas, limit the amount of stored data. It can be applied at a table or
namespace level where table-level quotas take priority over namespace-level quotas.

Space quotas are special in that they can trigger different policies when storage goes above thresholds. The following
list describes the policies, and they are listed in order of least strict to most strict:

NO_INSERTS

Prohibits new data from being ingested (for example, data from Put , | ncr enent , and Append operations are not
ingested).

NO_WRITES

Performs the same function as NO_| NSERTS but Del et e operations are also prohibited.
NO_WRITES_COMPACTIONS

Performs the same function as NO_| NSERTS but compactions are also prohibited.
DISABLE

Diables tables.
Examples of Adding Space Quotas

Add quota with the condition that Insert operations are rejected when table t1 reaches 1 GB of data:

hbase> set _quota TYPE => SPACE, TABLE => 't1', LIMT => '1G, POLICY => NO_|I NSERTS
Add quota with the condition that table t2 is disabled when 50 GB of data is exceeded:

hbase> set _quota TYPE => SPACE, TABLE => 't2', LIMT => '50G, POLICY => DI SABLE

Add quota with the condition that Insert and Delete operations cannot be applied to namespace ns1 when it reaches
50 terabytes of data:

hbase> set _quota TYPE => SPACE, NAMESPACE => 'nsl1', LIMT => '50T", POLICY => NO WRI TES
Listing Space Quotas

See "Examples of Listing Throttle Quotas Commands" above for the supported syntax.

Examples of Updating and Deleting Space Quotas

A quota can be removed by setting LI M T to NONE.
hbase> set _quota TYPE => SPACE, TABLE => '"t1', LIMT => NONE

hbase> set _quota TYPE => SPACE, NAMESPACE => 'nsl', LIMT => NONE
Quota enforcement

When a quota limit is exceeded, the Master server instructs RegionServers to enable an enforcement policy for the
namespace or table that violated the quota.

It is important to note the storage quota is not reported in real-time. There is a window when threshold is reached on
RegionServers but the threshold accounted for on the Master server is not updated.

E,i Note:

Set a storage limit lower than the amount of available disk space to provide extra buffer.

Quota violation policies

If quotas are set for the amount of space each HBase tenant can fill on HDFS, then a coherent quota violation policy
should be planned and implemented on the system.

When a quota violation policy is enabled, the table owner should not be allowed to remove the policy. The expectation
is that the Master automatically removes the policy. However, the HBase superuser should still have permission.

Automatic removal of the quota violation policy after the violation is resolved can be accomplished via the same
mechanisms that it was originally enforced. But the system should not immediately disable the violation policy when
the violation is resolved.

The following describes quota violation policies that you might consider.
Disabling Tables

This is the “brute-force” policy, disabling any tables that violated the quota. This policy removes the risk that tables
over quota affect your system. For most users, this is likely not a good choice as most sites want READ operations to
still succeed.

One hypothetical situation when a disabling tables policy might be advisable is when there are multiple active clusters
hosting the same data and, because of a quota violation, it is discovered that one copy of the data does not have all
of the data it should have. By disabling tables, you can prevent further discrepancies until the administrator can correct
the problem.

Rejecting All WRITE Operations, Bulk Imports, and Compactions

This policy rejects all WRITEs and bulk imports to the region which the quota applies. Compactions for this region are
also disabled to prevent the system from using more space because of the temporary space demand of a compaction.
The only resolution in this case is administrator intervention to increase the quota that is being exceeded.

Rejecting All WRITE Operations and Bulk Imports

This is the same as the previous policy, except that compactions are still allowed. This allows users to set or altera TTL
on table and then perform a compaction to reduce the total used space. Inherently, using this violation policy means
that you let used space to slightly rise before it is ultimately reduced.

Allowing DELETE Operations But Rejecting WRITE Operations and Bulk Imports

This is another variation of the two previously listed policies. This policy allows users to run processes to delete data
in the system. Like the previous policy, using this violation policy means that you let used space slightly rises before it
is ultimately reduced. In this case, the deletions are propagated to disk and a compaction actually removes data
previously stored on disk. TTL configuration and compactions can also be used to remove data.

Impact of quota violation policy

Quota violation policies can impact live write access, bulk write access, and read access. You must understand what
the quota violation policies mean for your deployment before you plan and implement it on your system.

Live Write Access

As one would expect, every violation policy outlined disables the ability to write new data into the system. This means
that any Mutation implementation other than DELETE operations could be rejected by the system. Depending on the
violation policy, DELETE operations still might be accepted.

Bulk Write Access

Bulk loading HFiles can be an extremely effective way to increase the overall throughput of ingest into HBase. Quota
management is very relevant because large HFiles have the potential to quickly violate a quota.

Clients group HFiles by region boundaries and send the file for each column family to the RegionServer presently
hosting that region. The RegionServer ultimately inspects each file, ensuring that it should be loaded into this region,
and then, sequentially, load each file into the correct column family.

As a part of the precondition-check of the file's boundaries before loading it, the quota state should be inspected to
determine if loading the next file will violate the quota. If the RegionServer determines that it will violate the quota,
it should not load the file and inform the client that the file was not loaded because it would violate the quota.

Read Access

In most cases, quota violation policies can affect the ability to read the data stored in HBase. A goal of applying these
HBase quotas is to ensure that HDFS remains healthy and sustains a higher level of availability to HBase users.
Guaranteeing that there is always free space in HDFS can yield a higher level of health of the physical machines and
the DataNodes. This leaves the HDFS-reserved space percentage as a fail-safe mechanism.

Metrics and Insight

Quotas should ideally be listed on the HBase Master Ul. The list of defined quotas should be present as well as those
quotas whose violation policy is being enforced. The list of tables/namespaces with enforced violation policies should
also be presented via the JMX metrics exposed by the Master.

Examples of overlapping quota policies

With the ability to define a quota policy on namespaces and tables, you have to define how the policies are applied.
A table quota should take precedence over a namespace quota.

Scenario 1

For example, consider Scenario 1, which is outlined in the following table. Namespace n has the following collection
of tables: n1.t1, n1.t2, and n1.t3. The namespace quota is 100 GB. Because the total storage required for all tables is
less than 100 GB, each table can accept new WRITEs.

Table 3: Scenario 1: Overlapping Quota Policies

Object Quota Storage Utilization
Namespace n1 100 GB 80 GB

Table n1.t1 10 GB 5GB

Table n1.t2 (not set) 50 GB

Table n1.t3 (not set) 25 GB
Scenario 2

In Scenario 2, as shown in the following table, WRITEs to table n1.t1 are denied because the table quota is violated,
but WRITEs to tablen1.t2 and table n1.t3 are still allowed because they are within the namespace quota. The violation
policy for the table quota on table n1.t1 is enacted.

Table 4: Scenario 2: Overlapping Quota Policies

Object Quota Storage Utilization
Namespace nl 100 GB 60 GB

Table n1.t1 10 GB 15 GB

Table n1.t2 (not set) 30GB

Table n1.t3 (not set) 15 GB
Scenario 3

In the Scenario 3 table below, WRITEs to all tables are not allowed because the storage utilization of all tables exceeds
the namespace quota limit. The namespace quota violation policy is applied to all tables in the namespace.

Table 5: Scenario 3: Overlapping Quota Policies

Object Quota Storage Utilization
Namespace nl 100 GB 108 GB

Table ni.t1 10GB 8 GB

Table n1.t2 (not set) 50 GB

Table ni1.t3 (not set) 50 GB
Scenario 4

In the Scenario 4 table below, table n1.t1 violates the quota set at the table level. The table quota violation policy is
enforced. In addition, the disk utilization of table n1t1 plus the sum of disk utilization for table n1t2 and table n1t3exceeds
the 100 GB namespace quota. Therefore, the namespace quota violation policy is also applied.

Table 6: Scenario 4: Overlapping Quota Policies

Object Quota Storage Utilization
Namespace nl 100 GB 115GB

Table n1.t1 10 GB 15 GB

Table n1.t2 (not set) 50 GB

Table ni1.t3 (not set) 50 GB

Number-of-Tables Quotas

The number-of-tables quota is set as part of the namespace metadata and does not involve the set _quot a command.
Examples of Commands Relevant to Setting and Administering Number-of-Tables Quotas

Create namespace ns1 with a maximum of 5 tables

hbase> create_namespace 'nsl', {'hbase.nanmespace. quota. maxtabl es' =>'5"'}

Alter an existing namespace ns1 to set a maximum of 8 tables

hbase> al ter_nanespace 'nsl', {METHOD => 'set', 'hbase. nanespace. quota. naxtabl es' =>'8'}
Show quota information for namespace ns1

hbase> descri be_nanespace 'nsl'

Alter existing namespace ns1 to remove a quota

hbase> al t er _nanespace 'nsl', {METHOD => 'unset', NAME=>' hbase. nanespace. quot a. naxt abl es'}

Number-of-Regions Quotas

The number-of-regions quota is similar to the number-of-tables quota. The number-of-regions quota is set as part of
the namespace metadata and does not involve the set _quot a command.

Examples of Commands Relevant to Setting and Administering Number-of-Regions Quotas

Create namespace ns1 with a maximum of 5 tables

hbase> create_nanmespace 'nsl', {'hbase.nanmespace. quota. maxregi ons' =>'5'}

Alter an existing namespace ns1 to set a maximum of 8 regions

hbase> al ter _nanespace 'nsl', {METHOD => 'set', 'hbase. nanespace. quot a. maxregi ons' =>'8'}
Show quota information for namespace ns1

hbase> descri be_nanespace 'nsl’

Alter existing namespace ns1 to remove a quota

hbase> al t er_nanespace 'nsl', {METHCD => 'unset', NAME=>' hbase. namespace. quot a. maxregi ons'}

Configuring the HBase Scanner Heartbeat

A scanner heartbeat check enforces a time limit on the execution of scan RPC requests. This helps prevent scans from
taking too long and causing a timeout at the client.

When the server receives a scan RPC request, a time limit is calculated to be half of the smaller of two values:
hbase. cli ent. scanner. ti meout. peri od and hbase. rpc. ti meout (which both default to 60000 milliseconds,
or one minute). When the time limit is reached, the server returns the results it has accumulated up to that point. This
result set may be empty. If your usage pattern includes that scans will take longer than a minute, you can increase
these values.

To make sure the timeout period is not too short, you can configure hbase. cel | s. scanned. per. heart beat . check
to a minimum number of cells that must be scanned before a timeout check occurs. The default value is 10000. A
smaller value causes timeout checks to occur more often.

Configure the Scanner Heartbeat Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.

. Click the Configuration tab.

. Select HBase or HBase Service-Wide.

. Locate the RPC Timeout property by typing its name in the Search box, and edit the property.

. Locate the HBase RegionServer Lease Period property by typing its name in the Search box, and edit the property.
Enter a Reason for change, and then click Save Changes to commit the changes.

. Restart the role.

. Restart the service.

O NV AWN

Limiting the Speed of Compactions

You can limit the speed at which HBase compactions run, by configuring

hbase. r egi onser ver . t hr oughput . control | er and its related settings. The default controller is

or g. apache. hadoop. hbase. regi onserver.throttl e. Pressur eAwnar eConpacti onThr oughput Control | er,
which uses the following algorithm:

1. If compaction pressure is greater than 1.0, there is no speed limitation.

2. In off-peak hours, use a fixed throughput limitation, configured using
hbase. hst or e. conpacti on. t hr oughput . of f peak, hbase. of f peak. st art . hour, and
hbase. of f peak. end. hour.

3. In normal hours, the max throughput is tuned between
hbase. hst or e. conpact i on. t hr oughput . hi gher . bound and
hbase. hst or e. conpacti on. t hr oughput . | ower . bound (which default to 20 MB/sec and 10 MB/sec
respectively), using the following formula, where conpact i onPr essur e is between 0.0 and 1.0. The
conpact i onPressur e refers to the number of store files that require compaction.

Il ower + (higher - lower) * conpactionPressure

To disable compaction speed limits, set hbase. r egi onserver. t hr oughput . control | er to
or g. apache. hadoop. hbase. regi onserver.throttl e. NoLi m t Thr oughput Control | er.

Configure the Compaction Speed Using Cloudera Manager
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.

2. Click the Configuration tab.

3. Select HBase or HBase Service-Wide.

4. Search for HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml. Paste the relevant
properties from the following example into the field and modify the values as needed:

<property>
<nanme>hbase. hst ore. conpacti on. t hr oughput . hi gher. bound</ name>
<val ue>20971520</ val ue>
<description>The default is 20 MB/ sec</description>
</ property>
<property>
<nane>hbase. hst ore. conpacti on. t hr oughput . | ower . bound</ nane>
<val ue>10485760</ val ue>
<descri pti on>The default is 10 MB/ sec</description>
</ property>
<property>
<nane>hbase. hst ore. conpacti on. t hr oughput . of f peak</ nane>
<val ue>9223372036854775807</ val ue>
<description>The default is Long. MAX_VALUE, which effectively means no
linmtation</description>
</ property>
<property>
<name>hbase. of f peak. st art . hour </ nane>
<val ue>20</ val ue>
<descri pti on>When to begi n usi ng of f- peak conpaction settings, expressed as an integer
bet ween 0 and 23. </ description>
</ property>
<property>
<name>hbase. of f peak. end. hour </ nane>
<val ue>6</ val ue>
<descri pti on>Wen to stop using of f-peak conpaction settings, expressed as an integer
bet ween 0 and 23. </ description>
</ property>
<property>
<nanme>hbase. hst ore. conpacti on. t hr oughput . t une. peri od</ nane>
<val ue>60000</ val ue>
</ property>

5. Enter a Reason for change, and then click Save Changes to commit the changes.
6. Restart the service.

Configuring and Using the HBase REST API

You can use the HBase REST API to interact with HBase services, tables, and regions using HTTP endpoints.

Installing the REST Server

The HBase REST server is an optional component of HBase and is not installed by default.

Installing the REST Server Using Cloudera Manager
Minimum Required Role: Full Administrator

1. Click the Clusters tab.

. Select Clusters > HBase.

. Click the Instances tab.

. Click Add Role Instance.

. Under HBase REST Server, click Select Hosts.

. Select one or more hosts to serve the HBase Rest Server role. Click Continue.

A~ WN

7. Select the HBase Rest Server roles. Click Actions For Selected > Start.

Using the REST API

The HBase REST server exposes endpoints that provide CRUD (create, read, update, delete) operations for each HBase

process, as well as tables, regions, and namespaces. For a given endpoint, the HTTP verb controls the type of operation
(create, read, update, or delete).

’ Note: curl Command Examples

The examples in these tables use the cur| command, and follow these guidelines:

e The HTTP verb is specified using the - X parameter.

e For GET queries, the Accept header is settot ext/xm , which indicates that the client (curl)
expects to receive responses formatted in XML. You can set it to t ext/ j son to receive JSON
responses instead.

e For PUT, POST, and DELETE queries, the Cont ent - Type header should be set only if data is also

being sent with the - d parameter. If set, it should match the format of the data being sent, to
enable the REST server to deserialize the data correctly.

For more details about the cur| command, see the documentation for the cur | version that ships
with your operating system.

These examples use port 20050, which is the default port for the HBase REST server when you use Cloudera Manager.
If you use CDH without Cloudera Manager, the default port for the REST server is 8080.

Configuration Settings for HBase

Table 7: Cluster-Wide Endpoints

/version/cluster GET Ve.rsionofHBaserunningon Ccurl -vi -X GET
this cluster T\
: -H
- "Accept: text/
cxm A
] "htt p: /
o
. exanpl e. com 20550/
- version/cluster”
/status/cluster GET Cluster status Ccurl -vi -X GET
A
: -H
. "Accept: text/
Cxm oA
w "http:/
o
. exanpl e. com 20550/
| status/cluster”
/ GET List of all nonsystem tables Ccurl -vi -X GET
A\
: -H
. "Accept: text/
Cxm A
w "http:/
o
. exanpl e. com 20550/

Table 8: Namespace Endpoints

/namespaces GET List all namespaces. Ccurl -vi -X GET
A
} -H
. "Accept: text/
Cxm A
w "http:/
o
. exanpl e. com 20550/
| namespaces/"
/namespaces/namespace | GET Describe a specific Ccurl -vi -X GET
namespace. A\
: -H
. "Accept: text/
Cxm oA
| "http:/
o
. exanpl e. com 20550/
' namespaces/
' speci al _ns"
L e e e e e e e e e e e e —
/namespaces/namespace | POST Create a new namespace. icurl -vi -X POST
-H
- "Accept: text/
Cxm o

Apache HBase Guide | 39

Configuration Settings for HBase

"exanpl e. com 20550/
nanespaces/
speci al _ns"

,,,,,,,,,,,,,,,,,,,

/namespaces/namespace/tables | GET List all tables in a specific
namespace.

"http:/
/
exanpl e. com 20550/
' nanespaces/
' speci al _ns/

. "Accept: text/
; \

/namespaces/namespace | PUT Alter an existing namespace.
Currently not used.

"Accept: text/
xm "o\
"http:/

~

exanpl e. com 20550/
' nanespaces/

" speci al _ns"

/namespaces/namespace | DELETE Delete a namespace. The 'eurl -vi -X
namespace must be empty. " DELETE \

| -H
. "Accept: text/
Cxm oA
- "exanpl e. com 20550/
' namespaces/
. speci al _ns"

Table 9: Table Endpoints

/table/schema GET Describe the schema of the
specified table.

-H
"Accept: text/
\
"http:/

/
exanpl e. com 20550/
user s/ schema"

/table/schema POST Create a new table, or !
replace an existing table's ; -H "Accept:
|
|

40 | Apache HBase Guide

Configuration Settings for HBase

schema with the provided
schema

-H
"Content-Type: text/
xm "o\

-d ' <?xm
versi on="1. 0"
encod ng=' U 8" 2<Teld eShena

nane="user s" >l unmSchena
nane="cf" /></
Tabl eSchena>' \
“http://
exanpl e. com 20550/
user s/ schema"

/table/schema

UPDATE

Update an existing table
with the provided schema
fragment

I

|

1

I

[-H

| "Content-Type: text/

Coxm o\

! -d ' <?xm

| version="1.0"

; encod ng=' U 8" 2<Teld eShena
| nane="users" > unnSchena
. name="cf"

. KEEP DHETED (HLS="true"

' [/ ></Tabl eSchema>" \

} "http://

. exanpl e. com 20550/

| users/schema”

/table/schema

DELETE

Delete the table. You must
use the t abl e/ schema

endpoint, not justt abl e/ .

. "Accept: text/
Cxm A

| "http:/
o

. exanpl e. com 20550/
. users/schema”

/table/regions

GET

List the table regions.

\
-H
"Accept: text/
\
"http:/
/

exanpl e. com 20550/
user s/ regi ons"

ixmn

Table 10: Endpoints for Get Operations

/rmble/row/clumniquafier/timestomp

GET

Get the value of a single
row. Values are Base-64
encoded.

Latest version:

-H
"Accept: text/

"http:/
/

exanpl e. com 20550/
users/rowl"

Apache HBase Guide | 41

Configuration Settings for HBase

Specific timestamp:

curl -vi -X GET

\

-H
"Accept: text/
xm "o\
, "http:/

exanpl e. com 20550/
users/rowl/ cf:al/
1458586888395"

Get the value of a single
column. Values are Base-64
encoded.

Latest version:

curl -vi -X GET

\

-H
"Accept: text/
xm "o\

"http:/
/

exanpl e. com 20550/
users/rowl/ cf:a"

Specific version:

curl -vi -X GET

\

-H
"Accept: text/
xm "o\
"http://

exanpl e. com 20550/
users/rowl/ cf:al/

fetelonl g et o vasrs

Multi-Get a specified
number of versions of a
given cell. Values are
Base-64 encoded.

curl -vi -X GET

\

-H
"Accept: text/
xm "o\

"http:/
/

exanpl e. com 20550/
users/rowl/
cf:a?v=2"

Table 11: Endpoints for Scan Operations

/table/scanner/

42 | Apache HBase Guide

PUT

Get a Scanner object.
Required by all other Scan
operations. Adjust the batch
parameter to the number of
rows the scan should return
in a batch. See the next
example for adding filters to
your Scanner. The scanner
endpoint URL is returned as

curl -vi -X PUT

\

-H
"Accept: text/
xm "o\

-H
"Cont ent - Type:
text/xm " \

-d
' <Scanner

batch="1"/>" \

Configuration Settings for HBase

the Locat i on in the HTTP
response. The other
examples in this table
assume that the Scanner

"http:/
/
exanpl e. com 20550/
users/scanner/"

endpoint is
Hiy/oageanPH s <zm 1
/table/scanner/ PUT To supply filters to the curl -vi -X PUT
Scanner object or configure \
the Scanner in any other) o H
way, you can create a text X,:\ncge{)t - text/
file and add your filter to the -H
file. For example, to return " CDIT'[ent - Type: text /
only rows for which keys xm " A -d
start with u123 and use a @ilter.txt \
batch size of 100:) "http:/
exanpl e. com 20550/
Eastcgﬂg?rlow' . users/ scanner/"
<filter>
"type":
"PrefixFilter",
"val ue":
"ul23"
</filter>
</ Scanner >
Pass the file to the - d
argument of the cur |
request.
/table/scanner/scanner_id | GET Get the next batch from the

scanner. Cell values are
byte-encoded. If the scanner

curl -vi -X GET
\

-H
"Accept: text/

Apache HBase Guide | 43

Configuration Settings for HBase

is exhausted, HTTP status xmd "\

204 is returned. "http:/
/

exanpl e. com 20550/
user s/ scanner/
145869072824375622207"

/table/scanner/scanner_id | DELETE Deletes the scanner and curl -vi -X
frees the resources it was DELETE \

using. -H
"Accept: text/
xm "o\

/

exanpl e. com 20550/
user s/ scanner/
1458600728243756522207"

"http:/

Table 12: Endpoints for Put Operations

[table/row_key/ PUT Write a row to a table. The |XML:

row, column qualifier, and
value must each be Base-64 {3U" I -vi -X PUT
encoded. To encode a string, -H
you can use the base64 "Accept: text/
command-line utility. To xnd ™A
decode the string, use -H

& " Cont ent - Type:
base64 -d. The payloadis text/xm" \
in the --data argument, so ' < -d
the/ user s/ f aker owvalue < 72X

version="1.0"
is a placeholder. Insert encodi ng=" UTF- 8"

multiple rows by adding

them to the <Cel | Set > et oeyes>@| S

element. You can also save key="cn93ND="><C! |
the data to be inserted to a

file and pass it to the - d &%wd
parameter with the syntax Cel | Set > \

-d @il enane. txt. , "http:/

exanpl e. com 20550/
user s/ f aker ow'

JSON:
curl -vi -X PUT
\
-H
"Accept: text/
json" \
-H

" Cont ent - Type:
text/json" \

'{.'.'Fge’f’i [l{".'.“?":;"w"
[{"col ul": "Y2Y6Z =",
S ARG

44 | Apache HBase Guide

Endpoint HTTP Verb Description Example

" exanpl e. com 20550/
user s/ f aker ow"

Configuring HBase MultiWAL Support

CDH supports multiple write-ahead logs (MultiwAL) for HBase. (For more information, see HBASE-5699.)

Without MultiWAL support, each region on a RegionServer writes to the same WAL. A busy RegionServer might host
several regions, and each write to the WAL is serial because HDFS only supports sequentially written files. This causes
the WAL to negatively impact performance.

MultiWAL allows a RegionServer to write multiple WAL streams in parallel by using multiple pipelines in the underlying
HDFS instance, which increases total throughput during writes.

E,’ Note: Inthe currentimplementation of MultiWAL, incoming edits are partitioned by Region. Therefore,
throughput to a single Region is not increased.

To configure MultiWAL for a RegionServer, set the value of the property hbase. wal . provi der tomul ti wal and
restart the RegionServer. To disable MultiWAL for a RegionServer, unset the property and restart the RegionServer.

RegionServers using the original WAL implementation and those using the MultiWAL implementation can each handle
recovery of either set of WALs, so a zero-downtime configuration update is possible through a rolling restart.

Configuring MultiWAL Support Using Cloudera Manager

. Go to the HBase service.

. Click the Configuration tab.

. Select Scope > RegionServer.

. Select Category > Main.

Set WAL Provider to MultiwAL.

Set the Per-RegionServer Number of WAL Pipelines to a value greater than 1.

. Enter a Reason for change, and then click Save Changes to commit the changes.
. Restart the RegionServer roles.

0N UIAWNR

Storing Medium Objects (MOBs) in HBase

Data comes in many sizes, and saving all of your data in HBase, including binary data such as images and documents,
is convenient. HBase can technically handle binary objects with cells that are up to 10 MB in size. However, HBase
normal read and write paths are optimized for values smaller than 100 KB in size. When HBase handles large numbers
of values up to 10 MB (medium objects, or MOBs), performance is degraded because of write amplification caused by
splits and compactions.

One way to solve this problem is by storing objects larger than 100KB directly in HDFS, and storing references to their
locations in HBase. CDH includes optimizations for storing MOBs directly in HBase based on HBASE-11339.

To use MOB, you must use HFile version 3. Optionally, you can configure the MOB file reader's cache settings
Service-Wide and for each RegionServer, and then configure specific columns to hold MOB data. No change to client
code is required for HBase MOB support.

Enabling HFile Version 3 Using Cloudera Manager

Minimum Required Role: Full Administrator

https://issues.apache.org/jira/browse/HBASE-5699
https://issues.apache.org/jira/browse/HBASE-11339

To enable HFile version 3 using Cloudera Manager, edit the HBase Service Advanced Configuration Snippet for HBase
Service-Wide.

1. Go to the HBase service.
2. Click the Configuration tab.
3. Search for the property HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site. xn .

4. Paste the following XML into the Value field and save your changes.

<property>
<nanme>hfil e.formt. versi on</ nane>
<val ue>3</ val ue>

</ property>

Changes will take effect after the next major compaction.

Configuring Columns to Store MOBs
Use the following options to configure a column to store MOBs:

e | S MOBis a Boolean option, which specifies whether or not the column can store MOBs.

e MOB_THRESHOLD configures the number of bytes at which an object is considered to be a MOB. If you do not
specify a value for MOB_THRESHOLD, the default is 100 KB. If you write a value larger than this threshold, it is
treated as a MOB.

You can configure a column to store MOBs using the HBase Shell or the Java API.

Using HBase Shell:

hbase> create '"t1', {NAME => '"f1', IS MOB => true, MOB_THRESHOLD => 102400}
hbase> alter 't1', {NAME => 'f1', IS MOB => true, MOB_THRESHOLD =>
102400}

Using the Java API:

HCol umDescri ptor hcd = new HCol utmbDescriptor(“f”);
hcd. set MobEnabl ed(true);
hcd. set MobThr eshol d(102400L) ;

HBase MOB Cache Properties

Because there can be a large number of MOB files at any time, as compared to the number of HFiles, MOB files are
not always kept open. The MOB file reader cache is a LRU cache which keeps the most recently used MOB files open.

The following properties are available for tuning the HBase MOB cache.

Table 13: HBase MOB Cache Properties

Property Default Description

hbase. nob. fil e. cache. si ze 1000 The of opened file handlers to cache.
A larger value will benefit reads by
providing more file handlers per MOB
file cache and would reduce frequent
file opening and closing of files.
However, if the value is too high,
errors such as "Too many opened file
handlers" may be logged.

hbase. nob. cache. evi ct . peri od | 3600 The amount of time in seconds after
afile is opened before the MOB cache

Property Default Description

evicts cached files. The default value
is 3600 seconds.

hbase. nob. cache. evi ct. remai n.rati o | 0.5f The ratio, expressed as a float
between 0. 0 and 1. 0, that controls
how manyfiles remain cached after an
eviction is triggered due to the number
of cached files exceeding the

hbase. nob. fil e. cache. si ze.The
default value is 0. 5f .

Configuring the MOB Cache Using Cloudera Manager

To configure the MOB cache within Cloudera Manager, edit the HBase Service advanced configuration snippet for the
cluster. Cloudera recommends testing your configuration with the default settings first.

1. Go to the HBase service.

2. Click the Configuration tab.

3. Search for the property HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site. xmi .
4

. Paste your configuration into the Value field and save your changes. The following example sets the
hbase. nob. cache. evi ct . peri od property to 5000 seconds. See Table 13: HBase MOB Cache Properties on
page 46 for a full list of configurable properties for HBase MOB.

<property>
<nanme>hbase. mob. cache. evi ct. peri od</ nane>
<val ue>5000</ val ue>

</ property>

5. Restart your cluster for the changes to take effect.

Testing MOB Storage and Retrieval Performance

HBase provides the Java utility or g. apache. hadoop. hbase. | nt egr ati onTest | ngest MOB to assist with testing
the MOB feature and deciding on appropriate configuration values for your situation. The utility is run as follows:

$ sudo -u hbase hbase org. apache. hadoop. hbase. I nt egrati onTest | ngest MOB \
-threshol d 102400 \
- m nMbbDat aSi ze 512 \
- maxMobDat aSi ze 5120

e t hreshol dis the threshold at which cells are considered to be MOBs. The default is 1 kB, expressed in bytes.
e m nMobDat aSi ze is the minimum value for the size of MOB data. The default is 512 B, expressed in bytes.
e maxMobDat aSi ze is the maximum value for the size of MOB data. The default is 5 kB, expressed in bytes.

Compacting MOB Files Manually

You can trigger manual compaction of MOB files manually, rather than waiting for them to be triggered by your
configuration, using the conpact and naj or _conpact HBase Shell commands. For MOB, each of these commands
requires these parameters in the following order:

1. The table name.
2. An optional column family name or ni | .
3. The keyword MOB.

If the column family is provided, only that column family's files are compacted. Otherwise, all MOB-enabled column
families' files are compacted.

hbase> conpact 't1', nil, 'MOB
hbase> conpact 't1', 'cl', 'MB
hbase> maj or _conpact 't1', nil, 'MB

hbase> maj or _conpact 't1', 'cl1', 'M»B

This functionality is also available using the API, using the Admi n. conrpact and Admi n. maj or Conpact methods.

Configuring the Storage Policy for the Write-Ahead Log (WAL)

In CDH 5.7.0 and higher, you can configure the preferred HDFS storage policy for HBase's write-ahead log (WAL) replicas.
This feature allows you to tune HBase's use of SSDs to your available resources and the demands of your workload.

These instructions assume that you have followed the instructions in Configuring Storage Directories for DataNodes
and that your cluster has SSD storage available to HBase. If HDFS is not configured to use SSDs, these configuration
changes will have no effect on HBase. The following policies are available:

* NONE: no preference about where the replicas are written.

e ONE_SSD: place one replica on SSD storage and the remaining replicas in default storage. This allows you to derive
some benefit from SSD storage even if it is a scarce resource in your cluster.

n Warning: ONE_SSD mode has not been thoroughly tested with HBase and is not recommended.

e ALL_SSD: place all replicas on SSD storage.

Configuring the Storage Policy for WALs Using Cloudera Manager
Minimum Required Role: Full Administrator

1. Go to the HBase service.

2. Click the Configuration tab.

3. Search for the property WAL HSM Storage Policy.
4. Select your desired storage policy.

5. Save your changes. Restart all HBase roles.

Changes will take effect after the next major compaction.

Configuring the Storage Policy for WALs Using the Command Line

o Important:

¢ Follow these command-line instructions on systems that do not use Cloudera Manager.
¢ This information applies specifically to CDH 6.3.x. See Cloudera Documentation for information
specific to other releases.

Paste the following XML into hbase- si t e. xm . Uncomment the <value> line that corresponds to your desired storage
policy.

<property>
<name>hbase. wal . st or age. pol i cy</ nane>
<val ue>NONE</ val ue>
<I--<val ue>ONE_SSD</ val ue>- - >
<! --<val ue>ALL_SSD</ val ue>-->
</ property>

http://www.cloudera.com/content/support/en/documentation.html

Configuration Settings for HBase

n Warning: ONE_SSD mode has not been thoroughly tested with HBase and is not recommended.

Restart HBase. Changes will take effect for a given region during its next major compaction.

Apache HBase Guide | 49

Managing HBase

Cloudera Manager requires certain additional steps to set up and configure the HBase service.

Creating the HBase Root Directory

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

When adding the HBase service, the Add Service wizard automatically creates a root directory for HBase in HDFS. If
you quit the Add Service wizard or it does not finish, you can create the root directory outside the wizard by doing
these steps:

1. Choose Create Root Directory from the Actions menu in the HBase > Status tab.
2. Click Create Root Directory again to confirm.

Graceful Shutdown

Minimum Required Role: Operator (also provided by Configurator, Cluster Administrator, Full Administrator)

A graceful shutdown of an HBase RegionServer allows the regions hosted by that RegionServer to be moved to other
RegionServers before stopping the RegionServer. Cloudera Manager provides the following configuration options to
perform a graceful shutdown of either an HBase RegionServer or the entire service.

To increase the speed of a rolling restart of the HBase service, set the Region Mover Threads property to a higher
value. This increases the number of regions that can be moved in parallel, but places additional strain on the HMaster.
In most cases, Region Mover Threads should be set to 5 or lower.

Gracefully Shutting Down an HBase RegionServer

1. Go to the HBase service.

. Click the Instances tab.

. From the list of Role Instances, select the RegionServer you want to shut down gracefully.

. Select Actions for Selected > Decommission (Graceful Stop).

. Cloudera Manager attempts to gracefully shut down the RegionServer for the interval configured in the Graceful
Shutdown Timeout configuration option, which defaults to 3 minutes. If the graceful shutdown fails, Cloudera
Manager forcibly stops the process by sendinga SI GKI LL (ki | | - 9) signal. HBase will perform recovery actions
on regions that were on the forcibly stopped RegionServer.

6. If you cancel the graceful shutdown before the Graceful Shutdown Timeout expires, you can still manually stop

a RegionServer by selecting Actions for Selected > Stop, which sends a SI GTERM(ki | | - 5) signal.

v b WN

Gracefully Shutting Down the HBase Service

1. Go to the HBase service.

2. Select Actions > Stop. This tries to perform an HBase Master-driven graceful shutdown for the length of the
configured Graceful Shutdown Timeout (three minutes by default), after which it abruptly shuts down the whole
service.

Configuring the Graceful Shutdown Timeout Property
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

This timeout only affects a graceful shutdown of the entire HBase service, not individual RegionServers. Therefore, if
you have a large cluster with many RegionServers, you should strongly consider increasing the timeout from its default
of 180 seconds.

Ui B WIN =

. Go to the HBase service.

. Click the Configuration tab.

. Select Scope > HBASE-1 (Service Wide)

. Use the Search box to search for the Graceful Shutdown Timeout property and edit the value.
. Click Save Changes to save this setting.

Configuring the HBase Thrift Server Role

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

The Thrift Server role is not added by default when you install HBase, but it is required before you can use certain other
features such as the Hue HBase browser. To add the Thrift Server role:

1.

(92}

Go to the HBase service.

2. Click the Instances tab.
3.
4. Select the host(s) where you want to add the Thrift Server role (you only need one for Hue) and click Continue.

Click the Add Role Instances button.

The Thrift Server role should appear in the instances list for the HBase server.

. Select the Thrift Server role instance.
. Select Actions for Selected > Start.

Enabling HBase Indexing

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

HBase indexing is dependent on the Key-Value Store Indexer service. The Key-Value Store Indexer service uses the Lily
HBase Indexer Service to index the stream of records being added to HBase tables. Indexing allows you to query data

stored in HBase with the Solr service.

1.
. Click the Configuration tab.

. Select Scope > HBASE-1 (Service Wide)

. Select Category > Backup.

. Select the Enable Replication and Enable Indexing properties.
. Click Save Changes.

O b~ WN

Go to the HBase service.

Adding a Custom Coprocessor

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

The HBase coprocessor framework provides a way to extend HBase with custom functionality. To configure these
properties in Cloudera Manager:

1.
. Click the Configuration tab.

. Select Scope > All.

. Select Category > All.

. Type HBase Copr ocessor in the Search box.

. You can configure the values of the following properties:

U~ WN

Select the HBase service.

¢ HBase Coprocessor Abort on Error (Service-Wide)
e HBase Coprocessor Master Classes (Master Default Group)
e HBase Coprocessor Region Classes (RegionServer Default Group)

. Enter a Reason for change, and then click Save Changes to commit the changes.

Disabling Loading of Coprocessors
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

In CDH 5.7 and higher, you can disable loading of system (HBase-wide) or user (table-wide) coprocessors. Cloudera
recommends against disabling loading of system coprocessors, because HBase security functionality is implemented
using system coprocessors. However, disabling loading of user coprocessors may be appropriate.

1. Select the HBase service.

2. Click the Configuration tab.

3. Search for HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.
4

. To disable loading of all coprocessors, add a new property with the name hbase. copr ocessor . enabl ed and
set its value to f al se. Cloudera does not recommend this setting.

5. To disable loading of user coprocessors, add a new property with the name hbase. copr ocessor . user. enabl ed
and set its value to f al se.

6. Enter a Reason for change, and then click Save Changes to commit the changes.

Enabling Hedged Reads on HBase
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.

. Click the Configuration tab.

. Select Scope > HBASE-1 (Service-Wide).
. Select Category > Performance.

. Configure the HDFS Hedged Read Threadpool Size and HDFS Hedged Read Delay Threshold properties. The
descriptions for each of these properties on the configuration pages provide more information.

6. Enter a Reason for change, and then click Save Changes to commit the changes.

v A WN

Moving HBase Master Role to Another Host
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

1. Select the HBase service in Cloudera Manager.

. Click the Instances tab.

. Click Add Role Instances to add role instances to HBase.
. Choose the desired new host under Master.

. Click Continue.

. Start the newly added HBase Master role.

U~ WN

As a results the state of this role becomes St ar t ed.

~

. Wait until the type of the newly added HBase Master role becomes Mast er (Backup) .
8. Stop any other non-active HBase Master role instances.

E’; Note: This step does not impact HBase. It is required to ensure that the newly created HBase
Master role backup will be chosen to be the new active HBase Master role.

9. Stop the remaining active HBase Master role.

As a result, the type of the newly added HBase Master role automatically becomes Mast er (Acti ve).

10 Delete the old HBase Master role instances on hosts that are not wanted.

Advanced Configuration for Write-Heavy Workloads

HBase includes several advanced configuration parameters for adjusting the number of threads available to service
flushes and compactions in the presence of write-heavy workloads. Tuning these parameters incorrectly can severely
degrade performance and is not necessary for most HBase clusters. If you use Cloudera Manager, configure these
options using the HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.

hbase. hstore. fl usher. count

The number of threads available to flush writes from memory to disk. Never increase
hbase. hst ore. fl usher. count to more of 50% of the number of disks available to HBase. For example, if you
have 8 solid-state drives (SSDs), hbase. hst ore. f | usher. count should never exceed 4. This allows scanners
and compactions to proceed even in the presence of very high writes.

hbase. regi onserver. t hread. conpacti on. | argeandhbase. r egi onserver. t hr ead. conpacti on. snal |

The number of threads available to handle small and large compactions, respectively. Never increase either of these
options to more than 50% of the number of disks available to HBase.

Ideally, hbase. r egi onserver. t hread. conpacti on. smal | should be greater than or equal to
hbase. regi onserver. t hread. conpacti on. | ar ge, since the large compaction threads do more intense work
and will be in use longer for a given operation.

In addition to the above, if you use compression on some column families, more CPU will be used when flushing these
column families to disk during flushes or compaction. The impact on CPU usage depends on the size of the flush or the
amount of data to be decompressed and compressed during compactions.

Starting and Stopping HBase

Use these instructions to start, stop, restart, rolling restart, or decommission HBase clusters or individual hosts.

Starting or Restarting HBase
You can start HBase hosts individually or as an entire cluster.

1. Go to the HBase service.

2. Click the Actions button and select Start.

3. To restart a running cluster, click Actions and select Restart or Rolling Restart. A rolling restart, which restarts
each RegionServer, one at a time, after a grace period. To configure the grace period, see Configuring the Graceful
Shutdown Timeout Property on page 50.

4. The Thrift service has no dependencies and can be restarted at any time. To stop or restart the Thrift service:

¢ Go to the HBase service.

e Select Instances.

e Select the HBase Thrift Server instance.

e Select Actions for Selected and select either Stop or Restart.

Stopping HBase
You can stop a single HBase host, all hosts of a given type, or all hosts in the cluster.
1. To stop or decommission a single RegionServer:

a. Go to the HBase service.

b. Click the Instances tab.

c. From the list of Role Instances, select the RegionServer or RegionServers you want to stop or decommission.
d. Select Actions for Selected and select either Decommission (Graceful Stop) or Stop.

* Graceful Stop causes the regions to be redistributed to other RegionServers, increasing availability during
the RegionServer outage. Cloudera Manager waits for an interval determined by the Graceful Shutdown

timeout interval, which defaults to three minutes. If the graceful stop does not succeed within this

interval, the RegionServer is stopped with a SI GKI LL (ki | | - 9) signal. Recovery will be initiated on
affected regions.
¢ Stop happens immediately and does not redistribute the regions. It issues a SI GTERM(ki | | - 5) signal.

2. To stop or decommission a single HMaster, select the Master and go through the same steps as above.

3. To stop or decommission the entire cluster, select the Actions button at the top of the screen (not Actions for
selected) and select Decommission (Graceful Stop) or Stop.

Accessing HBase by using the HBase Shell

After you have started HBase, you can access the database in an interactive way by using the HBase Shell, which is a
command interpreter for HBase which is written in Ruby. Always run HBase administrative commands such as the
HBase Shell, hbck, or bulk-load commands as the HBase user (typically hbase).

hbase shel |

HBase Shell Overview

¢ To get help and to see all available commands, use the hel p command.
¢ To get help on a specific command, use hel p " command" . For example:

hbase> hel p "create"

¢ To remove an attribute from a table or column family or reset it to its default value, set its value to ni | . For
example, use the following command to remove the KEEP_DEL ETED CELLS attribute from the f 1 column of the
users table:

hbase> alter 'users', { NAME => 'f1', KEEP_DELETED CELLS => nil }
¢ To exit the HBase Shell, type qui t .

Setting Virtual Machine Options for HBase Shell

HBase in CDH 5.2 and higher allows you to set variables for the virtual machine running HBase Shell, by using the
HBASE_SHELL_OPTS environment variable. This example sets several options in the virtual machine.

$ HBASE_SHELL_OPTS="-verbose: gc - XX: +Pri nt GCAppl i cat i onSt oppedTi me - XX: +Pri nt GCDat eSt anps
- XX: +Print GCDet ai | s - Xl oggc: $HBASE_HOVE/ | ogs/ gc- hbase. | og" ./bi n/ hbase shel |

Scripting with HBase Shell

CDH 5.2 and higher include non-interactive mode. This mode allows you to use HBase Shell in scripts, and allow the
script to access the exit status of the HBase Shell commands. To invoke non-interactive mode, use the - n or
--non-i nteracti ve switch. This small example script shows how to use HBase Shell in a Bash script.

#!/ bi n/ bash
echo 'list' | hbase shell -n
st at us=%$?
if [$status -ne 0]; then
echo "The command nmay have failed. "
fi

Successful HBase Shell commands return an exit status of 0. However, an exit status other than 0 does not necessarily
indicate a failure, but should be interpreted as unknown. For example, a command may succeed, but while waiting for
the response, the client may lose connectivity. In that case, the client has no way to know the outcome of the command.

In the case of a non-zero exit status, your script should check to be sure the command actually failed before taking

further action.

CDH 5.7 and higher include the get _spl i t s command, which returns the split points for a given table:

hbase> get _splits 't2'

Tot al

= ["",

"10",

nunber of splits =5

"20", "30", "40"]

You can also write Ruby scripts for use with HBase Shell. Example Ruby scripts are included in the
hbase- exanpl es/ src/ mai n/ ruby/ directory.

Using HBase Command-Line Utilities

Besides the HBase Shell, HBase includes several other command-line utilities, which are available in the hbase/ bi n/
directory of each HBase host. This topic provides basic usage instructions for the most commonly used utilities.

Per f or manceEval uati on

The Per f or manceEval uat i on utility allows you to run several preconfigured tests on your cluster and reports its
performance. To run the Per f or manceEval uat i on tool in CDH 5.1 and higher, use the bi n/ hbase pe command.
In CDH 5.0 and lower, use the command bi n/ hbase or g. apache. hadoop. hbase. Per f or mranceEval uati on.

For usage instructions, run the command with no arguments. The following output shows the usage instructions for
the Per f or manceEval uat i on tool in CDH 5.7. Options and commands available depend on the CDH version.

$ hbase pe

Usage: java org. apache. hadoop. hbase. Perf or nanceEval uati on \
<OPTI ONS> [- D<property=val ue>]* <command> <ncl i ent s>

Opti ons:
nomapr ed
rows
si ze
sanpl eRat e
traceRate

table
mul ti Get

conpress

flushConmits

wr it eTOWAL
aut oFl ush
oneCon
presplit

i nmenory

uset ags
nunof t ags

filterAll

| at ency

bl oonFil ter
val ueSi ze
val ueRandom

val ueZi pf

peri od
mul ti Get

addCol umms
replicas
splitPolicy
randontl eep

Run multiple clients using threads (rather than use napreduce)

Rows each client runs. Default: One million

Total size in GB. Miutually exclusive with --rows. Default: 1.0.
Execute test on a sanple of total rows. Only supported by randonRead.
Default: 1.0

Enabl e HTrace spans. Initiate tracing every Nrows. Default: O
Alternate table nane. Default: 'TestTable'

If >0, when doi ng RandonRead, performnultiple gets instead of single
gets.

Default: O

Conpression type to use (&, LZO ... Def aul t:
Used to determne if the test should flush the table.
Set witeToWAL on puts. Default: True

Set aut oFl ush on htable. Default: False

all the threads share the sane connection. Default: Fal se

Create presplit table. Recommended for accurate perf analysis (see

gui de). Default: disabled

Tries to keep the HFiles of the CF inmenory as far as possible. Not
guaranteed that reads are always served fromnmenory. Default: false
Wites tags along with KVs. Use with HFile V3. Default: false

Specify the no of tags that would be needed. This works only if usetags

is true.

Hel ps to filter out all the rows on the server side there by not returning
anything back to the client. Helps to check the server side perfornance.
Uses FilterAllFilter internally.

" NONE'
Default: false

Set to report operation |latencies. Default: False
Bloomfilter type, one of [NONE, RON ROACOL]
Pass val ue size to use: Default: 1024

Set if we should vary value size between 0 and 'val ueSi ze'; set on read
for stats on size: Default: Not set.

Set if we should vary value size between 0 and 'val ueSi ze'
Defaul t: Not set.

Report every 'period rows: Default: opts.perdientRunRows / 10
Batch gets together into groups of N. Only supported by randonRead.
Def aul t: di sabl ed

Adds colums to scans/gets explicitly. Default: true

Enabl e region replica testing. Defaults: 1.

Specify a custom Regi onSplitPolicy for the table.

Do a random sl eep before each get between 0 and entered val ue.

in zipf form

Defaults: O

col umtms
cachi ng

Note: -D propert
For exanpl e:
- Dmapr educe. ou

Colums to wite per row Default: 1
Scan caching to use. Default: 30

ies will be applied to the conf used

tput.fileoutputformat.conpress=true

- Dmapr educe. t ask. ti meout =60000

Conmand
append

checkAndDel et e
checkAndMut at e
checkAndPut
filterScan

i ncrement

randonRead
randonfSeekScan
randoni¥ite
scan
scanRangel0
scanRangel00
scanRange1000
scanRange10000
sequenti al Read
sequential Wite

Args
nclients
Exanpl es

To run a single
$ bin/hbase org
To run 10 client
$ bin/hbase org

LoadTest Tool

The LoadTest Too

Append on each row, clients overlap on keyspace so sone concurrent
operations

CheckAndDel ete on each row, clients overlap on keyspace so sone concurrent
operations

CheckAndMiut ate on each row, clients overlap on keyspace so some concurrent
operations

CheckAndPut on each row, clients overlap on keyspace so sone concurrent
operations

Run scan test using a filter to find a specific row based on it's val ue
(make sure to use --rows=20)

I ncrement on each row;, clients overlap on keyspace so some concurrent
operations

Run random read test

Run random seek and scan 100 test

Run random wite test

Run scan test (read every row)

Run random seek scan with both start and stop row (nax 10 rows)

Run random seek scan with both start and stop row (max 100 rows)

Run random seek scan with both start and stop row (max 1000 rows)

Run random seek scan with both start and stop row (nax 10000 rows)

Run sequential read test

Run sequential wite test

Integer. Required. Total nunmber of clients (and HRegi onServers)
running: 1 <= value <= 500

client doing the default 1M sequential Wites:

apache. hadoop. hbase. Per f or manceEval uati on sequential Wite 1

s doing increments over ten rows:

apache. hadoop. hbase. Per f or manceEval uati on --rows=10 --nonmapred increnent 10

utility load-tests your cluster by performing writes, updates, or reads on it. To run the

LoadTest Tool in CDH 5.1 and higher, use the bi n/ hbase | tt command . In CDH 5.0 and lower, use the command
bi n/ hbase org. apache. hadoop. hbase. uti | . LoadTest Tool. To print general usage information, use the -h
option. Options and commands available depend on the CDH version.

$ bin/hbase Itt -h
Options:
- bat chupdat e Whet her to use batch as opposed to separate updates for every
col um
in arow
- bl oom <ar g> Bloomfilter type, one of [NONE, ROWN ROWCOL]
- conpressi on <arg> Conpression type, one of [LZO, GZ, NONE, SNAPPY, LZ4]
- dat a_bl ock_encodi ng <arg> Encoding al gorithm (e.g. prefix conpression) to use for data
bl ocks
in the test colum famly, one of
[NONE, PREFI X, DI FF, FAST_DI FF, PREFI X_TREE].
- def erredl ogfl ush Enabl e deferred log flush
-encryption <arg> Enabl es transparent encryption on the test table, one of [AES]
-famlies <arg> The name of the colum fanmilies to use separated by conma
-generator <arg> The cl ass which generates load for the tool. Any args for this
cl ass
can be passed as col on separated after class nane
-h,--help Show usage
-in_nenory Tries to keep the HFiles of the CF innenory as far as possible
Not
guaranteed that reads are always served frominmenory
-init_only Initialize the test table only, don't do any | oading
- key_w ndow <ar g> The ' key wi ndow to nmintain between reads and writes for concurrent
wite/read workl oad. The default is O
-max_read_errors <arg> The maxi mum nunber of read errors to tolerate before termnating
al
reader threads. The default is 10
-mob_t hreshol d <arg> Desired cell size to exceed in bytes that will use the MB wite

path

-mul tiget_batchsize <arg>
-mul ti put

-num keys <arg>
-num_regi ons_per _server <arg>
-num tabl es <arg>

test tool

name prefix.

-read <arg>

-reader <arg>

-region_replica_id <arg>

-region_replication <arg>

-regi ons_per_server <arg>
test tool

-skip_init
-start_key <arg>
is 0.

-tn <arg>
-updat e <arg>
col I'i si ons=0>]

- updat er <arg>
-wite <arg>
-witer <arg>
-zk <arg>
-zk_root <arg>

Whet her to use multi-gets as opposed to separate gets for every
colum in a row

Whether to use nulti-puts as opposed to separate puts for every
colum in a row

The nunber of keys to read/wite

Desired nunber of regions per region server. Defaults to 5.

A positive integer nunber. Wen a nunber n is specified, |oad
will load n table parallely. -tn paraneter val ue becones table
Each table nane is in fornmat <tn>_1...<tn>_n
<verify_percent>[: <#t hreads=20>]

The class for executing the read requests
Region replica id to do the reads from
Desired nunber of replicas per region

A positive integer nunber. Wen a nunber n is specified, |oad
will create the test table with n regions per server

Skip the initialization; assume test table already exists

The first key to read/wite (a 0-based index). The default val ue

The nanme of the table to read or wite
<updat e_per cent >[: <#t hr eads=20>] [: <#whet her to ignore nonce

The class for executing the update requests

<avg_col s_per_key>: <avg_dat a_si ze>[: <#t hr eads=20>]

The class for executing the wite requests

ZK quorum as conma- separ ated host names without port nunbers
nane of parent znode in zookeeper

The wal utility prints information about the contents of a specified WAL file. To get a list of all WAL files, use the HDFS
command hadoop fs -1s -R /hbase/ WALs. To run the wal utility, use the bi n/ hbase wal command. Run it

[-j]1 [-p] [-r <arg>] [-s <arg>] [-w <arg>]
Qut put hel p nmessage

by. Pass encoded regi on nane; e.g.

' 9192caead6ab5a20ach4454f f bc79f al4’

by. Pass sequence nunber.
by. Pass row nane.

wal
without options to get usage information.
hbase wal
usage: WAL <filenane...> [-h]
-h,--help
-j,--json Qut put JSON
-p,--printvals Print val ues
-r,--region <arg> Region to filter
-s,--sequence <arg> Sequence to filter
-W, --row <arg> Row to filter
hfile

The hf i | e utility prints diagnostic information about a specified hfi | e, such as block headers or statistics. To get a
list of all hf i | es, use the HDFS command hadoop fs -1s -R /hbase/ dat a. To run the hfi | e utility, use the
bi n/ hbase hfil e command. Run it without options to get usage information.

$ hbase hfile

usage:
[-s] [-Vv] [-w<arg>]
-a,--checkfamly
-b, --printbl ocks
-e,--printkey
-f,--file <arg>

-h, --printbl ockheaders
-i,--checkMoblntegrity
-k, - - checkrow

keys
-m--printneta
-p, --printkv
-r,--region <arg>

HFile [-a] [-b] [-e] [-f <arg> |

-r <arg>] [-h] [-i] [-K] [-m [-p]

Enabl e fam |y check

Print block index nmeta data
Print keys
File to scan. .
hdf s: // a: 9000/ hbase/ hbase: net a/ 12/ 34
Print block headers for
Print all
Enabl e row order

Pass full-path; e.g

each bl ock.

cells whose nob files are mssing
check; | ooks for out-of-order

Print neta data of file
Print key/value pairs
Regi on to scan.

Pass regi on name; e.g.

"hbase: neta,, 1'

-s,--stats
-v, --verbose

Print statistics
Ver bose out put;

emits file and neta data

delimters

-w, - - seekToRow <ar g>

Seek to this row and print all

the kvs for this

row only

hbck

The hbck utility checks and optionally repairs errors in HFiles.

Warning: Running hbck with any of the - fi x or - r epai r commands is dangerous and can lead to
data loss. Contact Cloudera support before running it.

To run hbck, use the bi n/ hbase hbck command. Run it with the - h option to get more usage information.

NOTE: As of HBase version 2.0, the hbck tool is significantly changed.
In general, all Read-Only options are supported and can be be used
safely. Mbst -fix/ -repair options are NOT supported. Please see usage
bel ow for details on which options are not supported.

Usage: fsck [opts] {only tables}
where [opts] are:

-help Display help options (this)

-details Display full report of all regions.

-tinelag <tinelnSeconds> Process only regions that have not experienced any mnetadata updates
in the last <tinmelnSeconds> seconds.

- sl eepBef oreRerun <tinel nSeconds> Sl eep this nany seconds before checking if the fix worked if
run with -fix

-summary Print only summary of the tables and status.

-metaonly Only check the state of the hbase:nmeta table.

-sidelineDir <hdfs://> HDFS path to backup existing meta.

-boundaries Verify that regions boundaries are the sane between META and store files.

-exclusive Abort i f another hbck is exclusive or fixing.

Datafil e Repair options: (expert features, use with caution!)
-checkCorrupt HFi | es Check all Hfiles by opening themto make sure they are valid
-sidelineCorruptHFiles Quarantine corrupted HFiles. inplies -checkCorruptHFiles

Repl i cation options
-fixReplication Del etes replication queues for renpved peers

Met adat a Repair options supported as of version 2.0: (expert features, use with caution!)
-fixVersionFile Try to fix mssing hbase.version file in hdfs.
-fixReferenceFiles Try to offline lingering reference store files
-fixHFileLinks Try to offline lingering HFileLinks
- noHdf sChecki ng Don't | oad/ check region info from HDFS. Assunes hbase:neta region info is
good. Won't check/fix any HDFS issue, e.g. hole, orphan, or overlap
-ignorePreCheckPerm ssion ignore fil esystem perm ssion pre-check

NOTE: Fol | owi ng options are NOT supported as of HBase version 2.0+.

UNSUPPORTED Met adata Repair options: (expert features, use with caution!)

-fix Try to fix region assignments. This is for backwards conpatiblity

-fi xAssi gnment s Try to fix region assignments. Replaces the old -fix

-fixMeta Try to fix meta problens. This assumes HDFS region info is good.

- fi xHdf sHol es Try to fix region holes in hdfs.

-fi xHdf sOr phans Try to fix region dirs with no .regioninfo file in hdfs

-fixTabl eOrphans Try to fix table dirs with no .tableinfo file in hdfs (online node only)

-fixHdf sOverlaps Try to fix region overlaps in hdfs.

- maxMer ge <n> When fixing region overlaps, allow at nbst <n> regions to nerge. (n=5 by
defaul t)

-sidelineBigOverl aps Wen fixing region overlaps, allow to sideline big overlaps

-maxOver | apsToSi del i ne <n> \When fixing region overlaps, allow at nmobst <n> regions to sideline
per group. (n=2 by default)

-fixSplitParents Try to force offline split parents to be online.

-renovePar ent s Try to offline and sideline lingering parents and keep daughter regions.

-fixEmptyMetaCells Try to fix hbase:meta entries not referencing any region (enpty
REG ONI NFO_QUALI FI ER r ows)

UNSUPPORTED Met adat a Repair shortcuts

-repair Shortcut for -fixAssignnments -fixMeta -fixHdfsHol es -fi xHdf sO phans
-fixHdf sOverl aps -fixVersionFile -sidelineBigOverlaps -fixReferenceFiles-fixHFileLinks
-repairHol es Shortcut for -fixAssignnments -fixMeta -fixHdf sHol es

cl ean

After you have finished using a test or proof-of-concept cluster, the hbase cl ean utility can remove all HBase-related
data from ZooKeeper and HDFS.

Warning: The hbase cl ean command destroys data. Do not run it on production clusters, or unless
A you are absolutely sure you want to destroy the data.

To run the hbase cl ean utility, use the bi n/ hbase cl ean command. Run it with no options for usage information.

$ bi n/ hbase cl ean

Usage: hbase clean (--cleanzk|--cleanHdfs|--cleanAll)

Opti ons:
- - cl eanzk cl eans hbase rel ated data from zookeeper.
--cl eanHdfs cl eans hbase rel ated data from hdfs.
--cleanAll cleans hbase related data from both zookeeper and hdfs.

Writing Data to HBase

To write data to HBase, you use methods of the Tabl e class. You can use the Java API directly, or use the HBase Shell,
the REST API, the Thrift API, , or another client which uses the Java APl indirectly. When you issue a Put, the coordinates
of the data are the row, the column, and the timestamp. The timestamp is unique per version of the cell, and can be
generated automatically or specified programmatically by your application, and must be a long integer.

Variations on Put
There are several different ways to write data into HBase. Some of them are listed below.

e A Put operation writes data into HBase.

e ADel et e operation deletes data from HBase. What actually happens during a Delete depends upon several
factors.

e A CheckAndPut operation performs a Scan before attempting the Put , and only does the Put if a value matches
what is expected, and provides row-level atomicity.

e A CheckAndDel et e operation performs a Scan before attempting the Del et e, and only does the Del et e if a
value matches what is expected.

e Anlncrenment operation increments values of one or more columns within a single row, and provides row-level
atomicity.

Refer to the APl documentation for a full list of methods provided for writing data to HBase.Different methods require
different access levels and have other differences.

Versions

When you put data into HBase, a timestamp is required. The timestamp can be generated automatically by the
RegionServer or can be supplied by you. The timestamp must be unique per version of a given cell, because the
timestamp identifies the version. To modify a previous version of a cell, for instance, you would issue a Put with a
different value for the data itself, but the same timestamp.

HBase's behavior regarding versions is highly configurable. The maximum number of versions defaults to 1. You can
change the default value for HBase by configuring hbase. col unm. max. ver si on in hbase- si t e. xnml , either using
an advanced configuration snippet if you use Cloudera Manager, or by editing the file directly otherwise.

You can also configure the maximum and minimum number of versions to keep for a given column, or specify a default
time-to-live (TTL), which is the number of seconds before a version is deleted. The following examples all use al t er
statements in HBase Shell to create new column families with the given characteristics, but you can use the same
syntax when creating a new table or to alter an existing column family. This is only a fraction of the options you can
specify for a given column family.

‘“f1, VERSIONS => 5
‘“f1, MN_VERSIONS => 2
“f1, TTL => 15

hbase> alter ‘t1 ,
hbase> alter ‘tl1 ,
hbase> alter ‘t1 ,

HBase sorts the versions of a cell from newest to oldest, by sorting the timestamps lexicographically. When a version
needs to be deleted because a threshold has been reached, HBase always chooses the "oldest" version, even if it is in
fact the most recent version to be inserted. Keep this in mind when designing your timestamps. Consider using the
default generated timestamps and storing other version-specific data elsewhere in the row, such as in the row key. If
M N_VERSI ONS and TTL conflict, M N_VERSI ONS takes precedence.

Deletion

When you request for HBase to delete data, either explicitly using a Delete method or implicitly using a threshold such
as the maximum number of versions or the TTL, HBase does not delete the data immediately. Instead, it writes a
deletion marker, called a tombstone, to the HFile, which is the physical file where a given RegionServer stores its region
of a column family. The tombstone markers are processed during major compaction operations, when HFiles are
rewritten without the deleted data included.

Even after major compactions, "deleted" data may not actually be deleted. You can specify the KEEP_DELETED CELLS
option for a given column family, and the tombstones will be preserved in the HFile even after major compaction. One
scenario where this approach might be useful is for data retention policies.

Another reason deleted data may not actually be deleted is if the data would be required to restore a table from a
snapshot which has not been deleted. In this case, the data is moved to an archive during a major compaction, and
only deleted when the snapshot is deleted. This is a good reason to monitor the number of snapshots saved in HBase.

Examples

This abbreviated example writes data to an HBase table using HBase Shell and then scans the table to show the result.

hbase> put 'test', 'rowl', 'cf:a', 'valuel
0 row(s) in 0.1770 seconds
hbase> put '"test', 'row2', 'cf:b', 'value2
0 row(s) in 0.0160 seconds
hbase> put 'test', 'rowd', 'cf:c', 'value3
0 row(s) in 0.0260 seconds
hbase> scan 'test’
ROW COLUMN+CELL
r owl col um=cf: a, nmest anp=1403759475114, val ue=val uel

ti
r ow2 col um=cf:b, tinmestanp=1403759492807, val ue=val ue2
r ows col um=cf:c, tinestanp=1403759503155, val ue=val ue3
3 row(s) in 0.0440 seconds

This abbreviated example uses the HBase API to write data to an HBase table, using the automatic timestamp created
by the Region Server.

publicstaticfinal byte[] CF = "cf".getBytes();
publicstaticfinal byte[] ATTR = "attr". getBytes();

Put put = new Put (Bytes.toBytes(row));
put.add(CF, ATTR, Bytes.toBytes(data));
ht abl e. put (put);

This example uses the HBase API to write data to an HBase table, specifying the timestamp.

publicstaticfinal byte[] CF = "cf".getBytes();
publicstaticfinal byte[] ATTR = "attr".getBytes();

Put put = new Put(Bytes.toBytes(row));

long explicitTinmelnMs = 555; // just an exanple
put.add(CF, ATTR, explicitTinmelnMs, Bytes.toBytes(data));
ht abl e. put (put);

Further Reading

e Refer to the Table and HColumnDescriptor APl documentation for more details about configuring tables and
columns, as well as reading and writing to HBase.

¢ Refer to the Apache HBase Reference Guide for more in-depth information about HBase, including details about
versions and deletions not covered here.

Importing Data Into HBase

E’; Note: This page contains references to CDH 5 components or features that have been removed from
CDH 6. These references are only applicable if you are managing a CDH 5 cluster with Cloudera Manager
6. For more information, see Deprecated Items.

The method you use for importing data into HBase depends on several factors:

e The location, size, and format of your existing data

e Whether you need to import data once or periodically over time

e Whether you want to import the data in bulk or stream it into HBase regularly
e How fresh the HBase data needs to be

This topic helps you choose the correct method or composite of methods and provides example workflows for each
method.

Always run HBase administrative commands as the HBase user (typically hbase).

Choosing the Right Import Method
If the data is already in an HBase table:

¢ To move the data from one HBase cluster to another, use snapshot and either the cl one_snapshot or
Expor t Snapshot utility; or, use the CopyTabl e utility.

¢ To move the data from one HBase cluster to another without downtime on either cluster, use replication.

If the data currently exists outside HBase:

e If possible, write the data to HFile format, and use a BulkLoad to import it into HBase. The data is immediately
available to HBase and you can bypass the normal write path, increasing efficiency.

e If you prefer not to use bulk loads, and you are using a tool such as Pig, you can use it to import your data.

If you need to stream live data to HBase instead of import in bulk:

e Write a Java client using the Java API, or use the Apache Thrift Proxy APl to write a client in a language supported
by Thrift.

e Stream data directly into HBase using the REST Proxy APl in conjunction with an HTTP client such aswget orcurl .

e Use Flume or Spark.

Most likely, at least one of these methods works in your situation. If not, you can use MapReduce directly. Test the
most feasible methods with a subset of your data to determine which one is optimal.

Using CopyTable

CopyTabl e uses HBase read and write paths to copy part or all of a table to a new table in either the same cluster or
a different cluster. CopyTabl e causes read load when reading from the source, and write load when writing to the
destination. Region splits occur on the destination table in real time as needed. To avoid these issues, use snapshot
and export commands instead of CopyTabl e. Alternatively, you can pre-split the destination table to avoid excessive

https://archive.cloudera.com/cdh6/6.0.0/docs/hbase-2.0.0-cdh6.0.0/apidocs/org/apache/hadoop/hbase/client/Table.html
https://archive.cloudera.com/cdh6/6.0.0/docs/hbase-2.0.0-cdh6.0.0/apidocs/org/apache/hadoop/hbase/HColumnDescriptor.html
https://archive.cloudera.com/cdh6/6.0.0/docs/hbase-2.0.0-cdh6.0.0/book.html

splits. The destination table can be partitioned differently from the source table. See this section of the Apache HBase
documentation for more information.

Edits to the source table after the CopyTabl e starts are not copied, so you may need to do an additional CopyTabl e
operation to copy new data into the destination table. Run CopyTabl e as follows, using - - hel p to see details about
possible parameters.

$./bin/hbase org. apache. hadoop. hbase. mapr educe. CopyTabl e --hel p
Usage: CopyTable [general options] [--starttime=X] [--endtinme=Y] [--new. name=NEW
[--peer.adr=ADR] <tabl enane>

Thestarttime/endti me and st art r ow/endr ow pairs function in a similar way: if you leave out the first of the pair,
the first timestamp or row in the table is the starting point. Similarly, if you leave out the second of the pair, the
operation continues until the end of the table. To copy the table to a new table in the same cluster, you must specify
- - new. nane, unless you want to write the copy back to the same table, which would add a new version of each cell
(with the same data), or just overwrite the cell with the same value if the maximum number of versions is set to 1 (the
default in CDH 5). To copy the table to a new table in a different cluster, specify - - peer . adr and optionally, specify
a new table name.

The following example creates a new table using HBase Shell in non-interactive mode, and then copies data in two
ColumnFamilies in rows starting with timestamp 1265875194289 and including the last row before the CopyTable
started, to the new table.

echo create 'NewTest Table', 'cfl', '"cf2', 'cf3" | bin/hbase shell --non-interactive
bi n/ hbase org. apache. hadoop. hbase. mapr educe. CopyTabl e --startti ne=1265875194289
--famlies=cfl,cf2 cf3 --new nane=NewTest Tabl e Test Tabl e

Snapshots are recommended instead of CopyTable for most situations.

Using Snapshots

Cloudera recommends snapshots instead of CopyTable where possible. A snapshot captures the state of a table at the
time the snapshot was taken. Because no data is copied when a snapshot is taken, the process is very quick. As long
as the snapshot exists, cells in the snapshot are never deleted from HBase, even if they are explicitly deleted by the
API. Instead, they are archived so that the snapshot can restore the table to its state at the time of the snapshot.

After taking a snapshot, use the cl one_snapshot command to copy the data to a new (immediately enabled) table
in the same cluster, or the Export utility to create a new table based on the snapshot, in the same cluster or a new
cluster. This is a copy-on-write operation. The new table shares HFiles with the original table until writes occur in the
new table but not the old table, or until a compaction or split occurs in either of the tables. This can improve performance
in the short term compared to CopyTable.

To export the snapshot to a new cluster, use the Expor t Snapshot utility, which uses MapReduce to copy the snapshot
to the new cluster. Run the Expor t Snapshot utility on the source cluster, as a user with HBase and HDFS write
permission on the destination cluster, and HDFS read permission on the source cluster. This creates the expected
amount of 10 load on the destination cluster. Optionally, you can limit bandwidth consumption, which affects 10 on
the destination cluster. After the ExportSnapshot operation completes, you can see the snapshot in the new cluster
using the | i st _snapshot command, and you can use the cl one_snapshot command to create the table in the
new cluster from the snapshot.

For full instructions for the snapshot and cl one_snapshot HBase Shell commands, run the HBase Shell and type
hel p snapshot . The following example takes a snapshot of a table, uses it to clone the table to a new table in the
same cluster, and then uses the Expor t Snapshot utility to copy the table to a different cluster, with 16 mappers and
limited to 200 Mb/sec bandwidth.

$ bin/ hbase shel |
hbase(mai n) : 005: 0> snapshot ' Test Table', ' Test Tabl eSnapshot"
0 row(s) in 2.3290 seconds

hbase(mai n): 006: 0> cl one_snapshot ' Test Tabl eSnapshot', ' NewTest Tabl e’
0 row(s) in 1.3270 seconds

http://hbase.apache.org/book/regions.arch.html#manual_region_splitting_decisions

hbase(mai n): 007: 0> descri be ' NewTest Tabl e’
DESCRI PTI ON
" NewTest Tabl e', {NAME => 'cf1l',
=> 'NONE', BLOOWFI LTER => ' ROW, REPLI CATI ON
=>"0", VERSIONS => '1',
N VERSIONS => '0', TTL => ' FOREVER ,
ELLS => 'fal se', BLOCKSIZE => ' 65536,
'false', BLOCKCACHE => "true'}, {NAME => 'cf2
TA BLOCK_ENCCDI NG => ' NONE' ,
REPLI CATI ON_SCOPE => '0', VERSIONS => "1",
ION => "NONE', MN VERSIONS => '0', TTL =>
', KEEP_DELETED CELLS => 'fal se',
36', N MEMORY => 'false', BLOCKCACHE => 'true
1 roms) in 0.1280 seconds
hbase(mai n): 008: 0> qui t

$ hbase org. apache. hadoop. hbase. snapshot . Export
-copy-to file:///tnp/hbase -mappers 16 -bandwi d
14/ 10/ 28 21:48:16 | NFO snapshot . Export Snapshot :
14/ 10/ 28 21:48:17 INFO client.RWMProxy: Connecti
al221. exanpl e. con? 192. 0. 2. 121: 8032

14/ 10/ 28 21:48:19 | NFO snapshot . Export Snapshot :
hfile list

14/ 10/ 28 21:48:19 I NFO Configuration. deprecatio
I nstead, use io.native.lib.avail able

14/ 10/ 28 21:48:19 INFO util.FSVisitor: No | ogs
directory: hdfs://al221. exanpl e. com 8020/ hbase/ .
14/ 10/ 28 21:48: 20 | NFO napr educe. JobSubnitter:
14/ 10/ 28 21:48: 20 | NFO mapr educe. JobSubnitter:

COVPRESSI ON => ' NONE'
KEEP_DELETED C
I N_MEMORY =>

ENABLED

DATA_BLOCK_ENCODI NG true

SCOPE
M

DA

1
1

BLOOVFI LTER => ' ROW,

COVPRESS
' FOREVER
BLOCKSI ZE => ' 655

"}

Snapshot
th 200

Copy Snhapshot Mani f est
ng to ResourceManager at

- snapshot Test Tabl eSnapshot

Loadi ng Snapshot ' Test Tabl eSnapshot"

n: hadoop.native.lib is deprecated.
under

hbase- snapshot / Test Tabl eSnapshot / WALs
nunber of splits:0

Submi tting tokens for job:

job_1414556809048_0001
14/ 10/ 28 21:48:20 INFO inpl.YarnCientlnpl: Subnmitted application
application_1414556809048_0001
14/ 10/ 28 21:48: 20 | NFO mapr educe. Job: The url to track the job:
http://al221. exanpl e. com 8088/ proxy/ appl i cati on_1414556809048_0001/
14/ 10/ 28 21:48: 20 | NFO mapr educe. Job: Running job: job_1414556809048_0001
14/ 10/ 28 21:48:36 | NFO nmapr educe. Job: Job job_1414556809048_0001 runni ng i n uber
. fal se
14/ 10/ 28 21:48:36 | NFO nmapr educe. Job:
14/ 10/ 28 21:48: 37 | NFO napr educe. Job:
14/ 10/ 28 21:48: 37 | NFO nmapr educe. Job:
Job Counters
Total tine spent by all maps in occupied slots (ns)=0
Total tine spent by all reduces in occupied slots (ns)=0
14/ 10/ 28 21:48: 37 | NFO snapshot . Export Snapshot: Finalize the Snapshot Export
14/ 10/ 28 21:48: 37 | NFO snapshot . Export Snapshot: Verify snapshot integrity
14/ 10/ 28 21:48: 37 | NFO Confi guration. deprecation: fs.default.nane i s deprecated.
use fs.defaul tFS
14/ 10/ 28 21:48: 37 | NFO snapshot . Export Snapshot :

node

map 0% reduce 0%
Job job_1414556809048_0001 conpl et ed successful ly
Counters: 2

I nst ead,

Export Conpl et ed: Test Tabl eSnapshot

The bold italic line contains the URL from which you can track the Expor t Snapshot job. When it finishes, a new set
of HFiles, comprising all of the HFiles that were part of the table when the snapshot was taken, is created at the HDFS
location you specified.

You can use the Snapshot | nf o command-line utility included with HBase to verify or debug snapshots.

Using BulkLoad

HBase uses the well-known HFile format to store its data on disk. In many situations, writing HFiles programmatically
with your data, and bulk-loading that data into HBase on the RegionServer, has advantages over other data ingest
mechanisms. BulkLoad operations bypass the write path completely, providing the following benefits:

e The datais available to HBase immediately but does cause additional load or latency on the cluster when it appears.
e BulkLoad operations do not use the write-ahead log (WAL) and do not cause flushes or split storms.
e BulkLoad operations do not cause excessive garbage collection.

4

Note: Because they bypass the WAL, BulkLoad operations are not propagated between clusters
using replication. If you need the data on all replicated clusters, you must perform the BulkLoad
on each cluster.

If you use BulkLoads with HBase, your workflow is similar to the following:

1. Extract your data from its existing source. For instance, if your data is in a MySQL database, you might run the
nysql dunp command. The process you use depends on your data. If your data is already in TSV or CSV format,
skip this step and use the included | nport Tsv utility to process your data into HFiles. See the ImportTsv
documentation for details.

2. Process your data into HFile format. See http://hbase.apache.org/book.html#_hfile_format 2 for details about
HFile format. Usually you use a MapReduce job for the conversion, and you often need to write the Mapper
yourself because your data is unique. The job must to emit the row key as the Key, and either a KeyVal ue, a Put ,
or a Del et e as the Val ue. The Reducer is handled by HBase; configure it using
HFileOQutputFormat.configurelncrementallLoad() and it does the following:

¢ Inspects the table to configure a total order partitioner

e Uploads the partitions file to the cluster and adds it to the Di st ri but edCache

e Sets the number of r educe tasks to match the current number of regions

¢ Sets the output key/value class to match HFi | eQut put For mat requirements

e Sets the Reducer to perform the appropriate sorting (either KeyVal ueSor t Reducer or Put Sort Reducer)

3. One HFile is created per region in the output folder. Input data is almost completely re-written, so you need
available disk space at least twice the size of the original data set. For example, for a 100 GB output from
nysql dunp, you should have at least 200 GB of available disk space in HDFS. You can delete the original input
file at the end of the process.

4. Load the files into HBase. Use the Load! ncr enent al HFi | es command (more commonly known as the
completebulkload tool), passing it a URL that locates the files in HDFS. Each file is loaded into the relevant region
on the RegionServer for the region. You can limit the number of versions that are loaded by passing the
--versions= N option, where N isthe maximum number of versions to include, from newest to oldest
(largest timestamp to smallest timestamp).

If a region was split after the files were created, the tool automatically splits the HFile according to the new
boundaries. This process is inefficient, so if your table is being written to by other processes, you should load as
soon as the transform step is done.

The following illustration shows the full BulkLoad process.

Extract Transform Load

Mapper1 Reducer1

Move files

Reducer2

Load 3 files

Upload

Mapper2 Reducer3

Reducers.

Load 2 files Region&
RS2
Region5

Mapper3

Extra Steps for BulkLoad With Encryption Zones

When using BulkLoad to import data into HBase in the a cluster using encryption zones, the following information is
important.

e Both the staging directory and the directory into which you place your generated HFiles need to be within HBase's
encryption zone (generally under the / hbase directory). Before you can do this, you need to change the permissions
of / hbase to be world-executable but not world-readable (r wx- - x- - X, or numeric mode 711).

http://hbase.apache.org/book/ops_mgt.html#importtsv
http://hbase.apache.org/book/ops_mgt.html#importtsv
http://hbase.apache.org/book/hfile_format.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/HFileOutputFormat2.html
http://hbase.apache.org/book.html#completebulkload

¢ You also need to configure the HMaster to set the permissions of the HBase root directory correctly. If you use
Cloudera Manager, edit the Master Advanced Configuration Snippet (Safety Valve) for hbase-site.xml. Otherwise,
edit hbase-site.xml on the HMaster. Add the following:

<property>
<name>hbase. root di r. per ns</ nane>
<val ue>711</ val ue>

</ property>

If you skip this step, a previously-working BulkLoad setup will start to fail with permission errors when you restart
the HMaster.

Use Cases for BulkLoad

* Loading your original dataset into HBase for the first time - Your initial dataset might be quite large, and bypassing
the HBase write path can speed up the process considerably.

¢ Incremental Load - To load new data periodically, use BulkLoad to import it in batches at your preferred intervals.
This alleviates latency problems and helps you to achieve service-level agreements (SLAs). However, one trigger
for compaction is the number of HFiles on a RegionServer. Therefore, importing a large number of HFiles at
frequent intervals can cause major compactions to happen more often than they otherwise would, negatively
impacting performance. You can mitigate this by tuning the compaction settings such that the maximum number
of HFiles that can be present without triggering a compaction is very high, and relying on other factors, such as
the size of the Memstore, to trigger compactions.

¢ Data needs to originate elsewhere - If an existing system is capturing the data you want to have in HBase and
needs to remain active for business reasons, you can periodically BulkLoad data from the system into HBase so
that you can perform operations on it without impacting the system.

Using BulkLoad On A Secure Cluster

If you use security, HBase allows you to securely BulkLoad data into HBase. For a full explanation of how secure BulkLoad
works, see HBase Transparent Encryption at Rest.

First, configure a hbase. bul kl oad. st agi ng. di r which will be managed by HBase and whose subdirectories will
be writable (but not readable) by HBase users. Next, add the

or g. apache. hadoop. hbase. security. access. Secur eBul kLoadEndpoi nt coprocessor to your configuration,
so that users besides the hbase user can BulkLoad files into HBase.

<property>
<nanme>hbase. bul kl oad. st agi ng. di r </ nane>
<val ue>/t np/ hbase- st agi ng</ val ue>
</ property>
<property>
<name>hbase. coprocessor. r egi on. cl asses</ nane>
<val ue>or g. apache. hadoop. hbase. security. access. Secur eBul kLoadEndpoi nt </ val ue>

</ property>

More Information about BulkLoad

For more information and examples, as well as an explanation of the ImportTsv utility, which can be used to import
data in text-delimited formats such as CSV, see this post on the Cloudera Blog.

Using Cluster Replication

If your data is already in an HBase cluster, replication is useful for getting the data into additional HBase clusters. In
HBase, cluster replication refers to keeping one cluster state synchronized with that of another cluster, using the
write-ahead log (WAL) of the source cluster to propagate the changes. Replication is enabled at column family granularity.
Before enabling replication for a column family, create the table and all column families to be replicated, on the
destination cluster. Replication is supported both from CDH 5 to CDH 6 and from CDH 6 to CDH 5, the source and
destination cluster do not have to run the same major version of CDH.

http://hbase.apache.org/book.html#hbase.encryption.server
http://blog.cloudera.com/blog/2013/09/how-to-use-hbase-bulk-loading-and-why/

Managing HBase

Cluster replication uses an active-push methodology. An HBase cluster can be a source (also called active, meaning
that it writes new data), a destination (also called passive, meaning that it receives data using replication), or can fulfill
both roles at once. Replication is asynchronous, and the goal of replication is consistency.

When data is replicated from one cluster to another, the original source of the data is tracked with a cluster ID, which
is part of the metadata. All clusters that have already consumed the data are also tracked. This prevents replication
loops.

Common Replication Topologies

e Acentral source cluster might propagate changes to multiple destination clusters, for failover or due to geographic
distribution.

e A source cluster might push changes to a destination cluster, which might also push its own changes back to the
original cluster.

¢ Many different low-latency clusters might push changes to one centralized cluster for backup or resource-intensive
data-analytics jobs. The processed data might then be replicated back to the low-latency clusters.

e Multiple levels of replication can be chained together to suit your needs. The following diagram shows a hypothetical
scenario. Use the arrows to follow the data paths.

Payment Payment

User Data User Data

Data Data

All Data Data
Backup 1 Analysis

All Data
Backup 2

At the top of the diagram, the San Jose and Tokyo clusters, shown in red, replicate changes to each other, and each
also replicates changes to a User Dat a and a Paynent Dat a cluster.

Each cluster in the second row, shown in blue, replicates its changes to the Al | Dat a Backup 1 cluster, shown in
grey. The Al | Dat a Backup 1 cluster replicates changes tothe Al | Data Backup 2 cluster (also shown in grey),
aswellasthe Dat a Anal ysi s cluster (shownin green). Al | Data Backup 2 also propagates any of its own changes
backto Al l Data Backup 1.

The Dat a Anal ysi s cluster runs MapReduce jobs on its data, and then pushes the processed data back to the San
Jose and Tokyo clusters.

Configuring Clusters for Replication

To configure your clusters for replication, see HBase Replication and Configuring Secure HBase Replication. The following
is a high-level overview of the steps to enable replication.

66 | Apache HBase Guide

Important: You cannot run replication-related HBase commands as an HBase administrator. To run

o replication-related HBase commands, you must have HBase user permissions. If ZooKeeper uses
Kerberos, configure HBase Shell to authenticate to ZooKeeper using Kerberos before attempting to
run replication-related commands. No replication-related ACLs are available at this time.

1. Configure and start the source and destination clusters.

2. Create tables with the same names and column families on both the source and destination clusters, so that the
destination cluster knows where to store data it receives. All hosts in the source and destination clusters should
be reachable to each other. See Creating the Empty Table On the Destination Cluster.

3. On the source cluster, enable replication in Cloudera Manager, or by setting hbase. replicati ontotruein
hbase-site. xm .

4. Obtain Kerberos credentials as the HBase principal. Substitute yourf ul | y. qual i f i ed. domai n. name and realm
in the following command:

kinit -k -t /etc/hbase/ conf/hbase. keytab hbase/ful ly. qualified. domai n. name @OUR- REALM COM

5. On the source cluster, in HBase Shell, add the destination cluster as a peer, using the add_peer command. The
syntax is as follows:

add_peer 'ID, 'CLUSTER KEY'
The ID must be a short integer. To compose the CLUSTER_KEY, use the following template:
hbase. zookeeper. quor um hbase. zookeeper. property. cli ent Port: zookeeper. znode. par ent

If both clusters use the same ZooKeeper cluster, you must use a different zookeeper.znode.parent, because they
cannot write in the same folder.

6. On the source cluster, configure each column family to be replicated by setting its REPLI CATI ON_SCOPE to 1,
using commands such as the following in HBase Shell.

hbase> di sabl e ' exanpl e_t abl e’
hbase> alter 'exanple_table', {NAME => 'exanple_fam|ly', REPLICATION_SCOPE => '1'}
hbase> enabl e ' exanpl e_t abl e’

7. Verify that replication is occurring by examining the logs on the source cluster for messages such as the following.

Considering 1 rs, with ratio 0.1
Getting 1 rs frompeer cluster # 0
Choosi ng peer 192.0. 2. 49: 62020

8. To verify the validity of replicated data, use the included Veri f yRepl i cat i on MapReduce job on the source
cluster, providing it with the ID of the replication peer and table name to verify. Other options are available, such
as a time range or specific families to verify.

The command has the following form:

hbase org. apache. hadoop. hbase. mapreduce. replication. VerifyReplication
[--starttine=timestanpl] [--stoptinme=tinestanp] [--fam |ies=comma separated |ist of
fam lies] <peerld> <tabl ename>

The Veri f yRepl i cat i on command prints GOODROWS and BADROWS counters to indicate rows that did and did
not replicate correctly.

E,i Note:

Some changes are not replicated and must be propagated by other means, such as Snapshots or
CopyTable. See Initiating Replication When Data Already Exists for more details.

e Data that existed in the master before replication was enabled.

e QOperations that bypass the WAL, such as when using BulkLoad or API calls such as
writeTowal (fal se).

¢ Table schema modifications.

Using Pig and HCatalog

Apache Pig is a platform for analyzing large data sets using a high-level language. Apache HCatalog is a sub-project of
Apache Hive, which enables reading and writing of data from one Hadoop utility to another. You can use a combination
of Pig and HCatalog to import data into HBase. The initial format of your data and other details about your infrastructure
determine the steps you follow to accomplish this task. The following simple example assumes that you can get your
data into a TSV (text-separated value) format, such as a tab-delimited or comma-delimited text file.

1. Format the data as a TSV file. You can work with other file formats; see the Pig and HCatalog project documentation
for more details.

The following example shows a subset of data from Google's NGram Dataset, which shows the frequency of specific
phrases or letter-groupings found in publications indexed by Google. Here, the first column has been added to
this dataset as the row ID. The first column is formulated by combining the n-gram itself (in this case, Zones) with
the line number of the file in which it occurs (z_LI NE_NUM. This creates a format such as "Zones_z_ 6230867."
The second column is the n-gram itself, the third column is the year of occurrence, the fourth column is the
frequency of occurrence of that Ngram in that year, and the fifth column is the number of distinct publications.
This extract is from the z file of the 1-gram dataset from version 20120701. The data is truncated at the . . . mark,
for the sake of readability of this document. In most real-world scenarios, you will not work with tables that have
five columns. Most HBase tables have one or two columns.

Zones_z_6230867 Zones 1507
Zones_z_6230868 Zones 1638
Zones_z_6230869 Zones 1656
Zones_z_6230870 Zones 1681 8 2

N
A

Zones_z_6231150 Zones 1996 17868 4356
Zones_z_6231151 Zones 1997 21296 4675
Zones_z_ 6231152 Zones 1998 20365 4972
Zones_z_6231153 Zones 1999 20288 5021
Zones_z_6231154 Zones 2000 22996 5714
Zones_z_6231155 Zones 2001 20469 5470
Zones_z_ 6231156 Zones 2002 21338 5946
Zones_z_6231157 Zones 2003 29724 6446
Zones_z_6231158 Zones 2004 23334 6524
Zones_z_6231159 Zones 2005 24300 6580
Zones_z_ 6231160 Zones 2006 22362 6707
Zones_z_6231161 Zones 2007 22101 6798
Zones_z_ 6231162 Zones 2008 21037 6328

2. Using the hadoop fs command, put the data into HDFS. This example places the file intoan/ i nport ed_dat a/
directory.

hadoop fs -put zones_frequency.tsv /inported_data/

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

3. Create and register a new HBase table in HCatalog, using the hcat command, passing it a DDL file to represent
your table. You could also register an existing HBase table, using the same command. The DDL file format is
specified as part of the Hive REST API. The following example illustrates the basic mechanism.

CREATE TABLE

zones_frequency_table (id STRING ngram STRING year STRING freq STRING sources STRI NG
STORED BY ' org. apache. hcat al og. hbase. HBaseHCat St or ageHandl er"

TBLPROPERTI ES (

' hbase.tabl e. nane' = 'zones_frequency_table',
' hbase. col utms. mappi ng' = 'd:ngramd: year, d: freq, d: sources’',
" hcat . hbase. out put . bul kMbde' = 'true'

)
hcat -f zones_frequency_tabl e. ddl

4. Create a Pig file to process the TSV file created in step 1, using the DDL file created in step 3. Modify the file names
and other parameters in this command to match your values if you use data different from this working example.
USI NG Pi gStorage('\t") indicates that the input file is tab-delimited. For more details about Pig syntax, see
the Pig Latin reference documentation.

A = LOAD 'hdfs:///inported_datal/zones_frequency.tsv' USING PigStorage('\t') AS
(id:chararray, ngramchararray, year:chararray, freq:chararray, sources:chararray);
w .

STORE A I NTO zones_frequency_tabl e’ USING org. apache. hcat al og. pi g. HCat Storer () ;

Save the file as zones. bul kl oad. pi g.
5. Use the pi g command to bulk-load the data into HBase.

pi g -useHCat al og zones. bul kl oad. pi g

The data is now in HBase and is available to use.

Using the Java API

The Java APl is the most common mechanism for getting data into HBase, through Put operations. The Thrift and REST
APIs, as well as the HBase Shell, use the Java API. The following simple example ouses the Java API to put data into an
HBase table. The Java API traverses the entire write path and can cause compactions and region splits, which can
adversely affect performance.

“i-rl'abletable: nul | ;

try {
tabl e = nyCode. creat eTabl e(t abl eNane, fan);
int i = 1;

Li st <Put> puts = new Arrayli st <Put>();
for (String | abel Exp : | abel Exps)
Put put = new Put (Bytes.toBytes("row' + i));
put . add(fam qual, HConstants.LATEST_TI MESTAMP, val ue);
puts. add(put);
| ++;

}
t abl e. put (puts);

} finally {
if (table !'= null)
table.flushCommts();

Using the Apache Thrift Proxy API

The Apache Thrift library provides cross-language client-server remote procedure calls (RPCs), using Thrift bindings. A
Thrift binding is client code generated by the Apache Thrift Compiler for a target language (such as Python) that allows

https://cwiki.apache.org/confluence/display/Hive/WebHCat
http://pig.apache.org/docs/r0.14.0/basic.html

communication between the Thrift server and clients using that client code. HBase includes an Apache Thrift Proxy
API, which allows you to write HBase applications in Python, C, C++, or another language that Thrift supports. The Thrift
Proxy APl is slower than the Java APl and may have fewer features. T use the Thrift Proxy API, you need to configure
and run the HBase Thrift server on your cluster. You also need to install the Apache Thrift compiler on your development
system.

After the Thrift server is configured and running, generate Thrift bindings for the language of your choice, using an IDL
file. AHBase IDL file named HBase. t hri f t isincluded as part of HBase. After generating the bindings, copy the Thrift
libraries for your language into the same directory as the generated bindings. In the following Python example, these
libraries providethet hrift.transport andthrift. protocol libraries. These commands show how you might
generate the Thrift bindings for Python and copy the libraries on a Linux system.

nkdi r HBaseThri ft

cd HBaseThrift/

thrift -gen py /path/to/Hbase.thrift

m/ gen-py/* .

rm-rf gen-py/

mkdir thrift

cp -rp ~/Downl oads/thrift-0.9.0/1ib/py/src/* ./thrift/

The following example shows a simple Python application using the Thrift Proxy API.

fromthrift.transport inport TSocket
fromthrift.protocol inport TBi naryProtocol
fromthrift.transport inport TTransport
from hbase inmport Hbase

Connect to HBase Thrift server
transport = TTransport. TBufferedTransport (TSocket. TSocket (host, port))
protocol = TBi naryProtocol . TBi naryProt ocol Accel erat ed(transport)

Create and open the client connection
client = Hbase. d i ent(protocol)
transport. open()

Modify a single row
mut ati ons = [Hbase. Mut ati on(

col um=' col umfanily: col umdescriptor', val ue='col umval ue')]
client.mutateRow('tablenane', 'rowkey', nutations)

Modify a batch of rows
Create a list of mutations per work of Shakespeare
mut ati onsbatch = []

for line in nyDataFile:
rowkey = usernanme + "-" + filename + "-" + str(linenunber).zfill (6)

mutations = [

Hbase. Mut ati on(col utm=nessagecol uimcf, value=line.strip()),
Hbase. Mut at i on(col umm=l i nenunber col ummcf, val ue=encode(li nenunber)),
Hbase. Mut ati on(col utm=user nanecol utmcf, val ue=user nane)

]
nmut at i onsbat ch. append(Hbase. Bat chMut ati on(r ow=r owkey, nut at i ons=nut ati ons))

Run the mutations for all the lines in nyDataFile
client. nmutat eRows(tabl enane, nutationsbatch)

transport. cl ose()

The Thrift Proxy API does not support writing to HBase clusters that are secured using Kerberos.

This example was modified from the following two blog posts on http://www.cloudera.com. See them for more details.

e Using the HBase Thrift Interface, Part 1
e Using the HBase Thrift Interface, Part 2

http://thrift.apache.org/docs/install/
http://www.cloudera.com
http://blog.cloudera.com/blog/2013/09/how-to-use-the-hbase-thrift-interface-part-1/
http://blog.cloudera.com/blog/2013/12/how-to-use-the-hbase-thrift-interface-part-2-insertinggetting-rows/

Using the REST Proxy API

After configuring and starting HBase on your cluster, you can use the HBase REST Proxy API to stream data into HBase,
from within another application or shell script, or by using an HTTP client such as wget or cur | . The REST Proxy API
is slower than the Java APl and may have fewer features. This approach is simple and does not require advanced
development experience to implement. However, like the Java and Thrift Proxy APls, it uses the full write path and
can cause compactions and region splits.

Specified addresses without existing data create new values. Specified addresses with existing data create new versions,
overwriting an existing version if the row, column:qualifier, and timestamp all match that of the existing value.

curl -H "Content-Type: text/xm" http://local host: 8000/test/testrow test:testcol um

The REST Proxy API does not support writing to HBase clusters that are secured using Kerberos.

For full documentation and more examples, see the REST Proxy APl documentation.

Using Flume

Apache Flume is a fault-tolerant system designed for ingesting data into HDFS, for use with Hadoop. You can configure
Flume to write data directly into HBase. Flume includes a sink designed to work with HBase: HBase2Sink
(org.apache.flume.sink.hbase2.HBase2Sink). HBase2Sink supports HBase 2 IPC calls, and allows you to write data to
an HBase cluster that is secured by Kerberos.

The following code is an example configuration for HBase2Sink. For more information about configuring HBase2Sink,
see the Flume documentation. The t abl e, col utmFami | y, and col umm parameters correlate to the HBase table,
column family, and column where the data is to be imported. The serializer is the class that converts the data at the
source into something HBase can use. Configure your sinks in the Flume configuration file.

In practice, you usually need to write your own serializer, which implements HBase2EventSerializer. The
HBase2EventSerializer converts Flume Events into one or more HBase Puts, sends them to the HBase cluster, and is
closed when the HBase2Sink stops.

HBase2Sink:

#Use t he HBase2Si nk

host 1. si nks. sinkl.type = org.apache. fl une. si nk. hbase2. HBase2Si nk
host 1. si nks. si nk1. channel = chl

host 1. si nks. si nkl.table = transactions

host 1. si nks. si nk1. columFanily = clients

host 1. si nks. si nk1. col uitmm = charges

host 1. si nks. si nkl. bat chSi ze = 5000

#Use the Sinpl eHBase2Event Seri alizer that cones with Flunme

host 1. si nks. si nkl. serializer = org. apache. fl une. si nk. hbase2. Si npl eHBase2Event Seri al i zer
host 1. si nks. si nkl. serializer.increnentColum = icol

host 1. channel s. chl. t ype=nenory

The following serializer, based on an Apache Flume blog post by Dan Sandler, splits the event body based on a delimiter
and inserts each split into a different column. The column names are defined in the serializer.columns sink parameter.
The row key is defined in the event header. When each event is received, a counter is incremented to track the number
of events received.

. Cont ext ;
. Event;

i mport org. apache.
i mport org. apache.
i mport org. apache. . Fl uneExcepti on;

i mport org. apache. . conf. Conponent Confi gurati on;

i mport org.apache. fl une. si nk. hbase2. HBase2Event Seri al i zer;
i mport org. apache. hadoop. hbase. client.|ncrenent;

i mport org. apache. hadoop. hbase. client. Put;

i mport org. apache. hadoop. hbase. cli ent. Row,

import java.util.ArraylList;
import java.util.List;

/**

http://hbase.apache.org/book.html#_rest
http://flume.apache.org/FlumeUserGuide.html
https://blogs.apache.org/flume/entry/streaming_data_into_apache_hbase

* A serializer for the HBase2Si nk, which splits the event body into
* nmultiple colums and inserts theminto a row whose key is available in
* the headers
*/
public class SplittingSerializer inplenents HBase2Event Seri ali zer {
private byte[] col Fam
private Event currentEvent;
private byte[][] col unmmNanes;
private final List<Row> puts = new ArraylList<>();
private final List<Increment> incs = new ArraylList<>();
private byte[] current RowKey;
private final byte[] eventCountCol = "eventCount".getBytes();

@verride
public void initialize(Event event, byte[] cf) {
this.current Event = event;
String rowKeyStr = current Event. get Headers(). get ("rowKey");
if (rowkKeyStr == null)
t hrow new Fl umeException("No row key found in headers!");

}
current RowkKey = rowKeyStr. getBytes();

this. col Fam = cf;

}

@verride
public List<Row> getActions() {
/1 Split the event body and get the values for the col ums
String eventStr = new String(current Event. get Body());
String[] cols = eventStr.split(",");
puts.clear();
for (int i =0; i <cols.length; i++) {
/Il Generate a Put for each colum.
Put put = new Put (current RowKey);
put . addCol utm(col Fam col utmNanes[i], cols[i].getBytes());
puts. add(put);

return puts;

}

@verride

public List<lncrenent> getlncrenents() {
incs.clear();
/l'lncrement the number of events received
Increment inc = new | ncrenent("total Events
i nc. addCol unm(col Fam event Count Col , 1);
incs. add(inc);
return incs;

.getBytes());

}

@verride

public void close() {
col Fam = nul | ;
current Event = null;
col umNanes = nul | ;
current Rowkey = nul | ;

}

@verride

public void configure(Context context) ({
/1 Get the colum names fromthe configuration
String cols = context.getString("colums");
String[] names = cols.split(",");
byte[][] columNanes = new byte[nanes.length][];

int i = 0;
for (String nane : nanes)
col umNanes[i ++] = nane. get Bytes();
t hi s. col uiTmNanes = col umNanes;
}
@verride

public void configure(Conponent Configuration conf) {

Using Sqoop
Sqoop can import records into a table in HBase. It has an out-of-the-box support for HBase.
There are two mandatory options you must specify when using the sqoop i nport command to import data into
HBase using Sqoop:
e --hbase-t abl e: Specifies the name of the table in HBase to which you want to import your data.

e --colum-fam | y: Specifies into which column family Sqoop imports the data of your tables.

For example, you can import the table cities into an already existing HBase table with the same name and use the
column family name world:

sqoop i mport --connect jdbc:mysql://nysgl.exanpl e.conf sqoop --username sqoop --password
sqoop --table cities --hbase-table cities --colum-famly world

If the target table and column family do not exist, the Sqoop job will exit with an error. You must create the target
table and column family before running an import. If you specify - - hbase- cr eat e-t abl e, Sqoop creates the target
table and column family if they do not exist, using the default parameters from your HBase configuration.

Sqoop needs to identify which RDBMS column is used as row key column in the HBase table. There are three ways to
do this:

¢ By default, with the column name specified in the - - spl i t - by option
e With the primary key of the table, if it is available

e With the - - hbase- r ow key parameter, which overrides both the - - spl i t - by option and the primary key of
the table

For more information on data insertion into HBase, see Sgoop User Guide.

Import NULL Column Updates into HBase
You can specify how Sqoop handles RDBMS table column updated to NULL during incremental import.

There are two modes for this, ignore and delete. You can specify the mode using the
--hbase-nul | -i ncrenent el - node option:

e -ignore:Thisis the default value. If the source table's column is updated to NULL, the target HBase table will
still show the previous value for that column.

e -del et e: If the source table's column is updated to NULL, all previous versions of the column will be deleted
from HBase. When checking the column in HBase using the Java API, a null value will be displayed.

Examples:

Execute an incremental import to an HBase table and ignore the columns which were updated to NULL in the relational
database:

sqoop inport --connect $CONN - -user name $USER --password $PASS --table "hbase_test”

--hbase-tabl e hbase_test --colum-famly data -m1 --increnmental |astnodified
--check-colum date_nodified --last-value "2017-12-15 10:58:44.0" --nerge-key id
--hbase-nul | -i ncrenent al - nrode i gnore

Execute an incremental import to an HBase table and delete all the versions of the columns which were updated to
NULL in the relational database:

sqoop inport --connect $CONN --usernane $USER --password $PASS --table "hbase_test”
--hbase-tabl e hbase test --colum-famly data -m1 --increnental |astnodified

http://sqoop.apache.org/docs/1.4.7/SqoopUserGuide.html#_importing_data_into_hbase

--check-colum date_nodified --last-value "2017-12-15 10: 58:44.0" --merge-key id
--hbase-nul | -i ncrement al - rode del ete

Using Spark

For instructions on configuring an HBase service as a Spark service dependency, see Accessing HBase from Spark.

You can write data to HBase from Apache Spark by using def saveAsHadoopDat aset (conf: JobConf): Unit.
This example is adapted from a post on the spark-users mailing list.

/'l Note: mapred package is used, instead of the
/1 mapreduce package whi ch contai ns new hadoop APIs.

i mport org. apache. hadoop. hbase. mapr ed. Tabl eCut put For nat
i mport org. apache. hadoop. hbase. cl | ent
/1 ... some other settings

val conf = HBaseConfiguration.create()

/1 general hbase settings
conf.set("hbase.rootdir",

"hdfs://" + nameNodeURL + ":" + hdfsPort + "/hbase")
conf . set Bool ean("hbase. cl uster. distributed", true)
conf. set (" hbase. zookeeper. quorunt, host nane)
conf.setlnt("hbase.client.scanner.caching", 10000)
/1 ... some other settings

val jobConfig: JobConf = new JobConf(conf, this.getC ass)

/1 Note: TableQutputFormat is used as deprecated code

/| because JobConf is an ol d hadoop API

j obConfi g. set Qut put For mat (cl assOf [Tabl eQut put For mat])

j obConfi g. set (Tabl eQut put For mat . OUTPUT_TABLE, out put Tabl e)

Next, provide the mapping between how the data looks in Spark and how it should look in HBase. The following example
assumes that your HBase table has two column families, col_1 and col_2, and that your data is formatted in sets of
three in Spark, like (row_key, col_1, col_2).

def convert(triple: (Int, Int, Int)) = {

val p = new Put(Bytes.toBytes(triple._1))

p. add(Bytes.toBytes("cf"),
Byt es.toBytes("col _1"),
Bytes.toBytes(triple._2))

p. add(Bytes.toBytes("cf"),
Byt es.toBytes("col _2"),
Bytes.toBytes(triple._3))

(new | nrut abl eBytesWitable, p)

To write the data from Spark to HBase, you might use:

new Pai r RDDFuncti ons(| ocal Dat a. map(convert)). saveAsHadoopDat aset (j obConfi g)

Using Spark and Kafka

For instructions on configuring an HBase service as a Spark service dependency, see Accessing HBase from Spark.

This example, written in Scala, uses Apache Spark in conjunction with the Apache Kafka message bus to stream data
from Spark to HBase. The example was provided in SPARK-944. It produces some random words and then stores them

in an HBase table, creating the table if necessary.
package org. apache. spark. stream ng. exanpl es
inmport java.util.Properties

i mport kaf ka. producer. _

http://mail-archives.apache.org/mod_mbox/spark-user/201311.mbox/%3CCACyZca3ASKwD-tuJHQi1805BN7ScTguAoRuHd5xTxCSUL1aNvQ@mail.gmail.com%3E
https://issues.apache.org/jira/browse/SPARK-944

i mport org. apache. hadoop. hbase. { HBaseConfi guration, HCol umbDescri ptor, HTabl eDescri ptor

}
i mport org. apache. hadoop. hbase. client.{ HBaseAdmi n, Put }
i mport org. apache. hadoop. hbase. i o. | nut abl eByt esWit abl e
i mport org. apache. hadoop. hbase. mapr ed. Tabl eCut put For mat
i mport org. apache. hadoop. hbase. mapr educe. Tabl el nput For mat
i mport org.apache. hadoop. hbase. uti|.Bytes
i mport org. apache. hadoop. mapr ed. JobConf
i mport org. apache. spar k. Spar kCont ext
i mport org.apache. spark.rdd. { Pai r RDDFuncti ons, RDD }
i mport org. apache. spark. stream ng. _
i mport org. apache. spar k. streani ng. St r eam ngCont ext . _
i mport org.apache. spark. streani ng. kaf ka. _

obj ect Metri cAggregat or HBase {
def main(args : Array[String]) {
if (args.length < 6)
Systemerr.println("Usage: MetricAggregatorTest <master> <zkQuorun® <group> <t opi cs>
<dest HBaseTabl eName> <nunilhr eads>")
System exit (1)

val Array(master, zkQuorum group, topics, hbaseTabl eNanme, nuniThreads) = args

val conf = HBaseConfiguration.create()
conf. set (" hbase. zookeeper. quorunt, zkQuorum

/1 Initialize hBase table if necessary

val admin = new HBaseAdm n(conf)

if (!adm n.isTabl eAvai | abl e(hbaseTabl eNane)) {
val tabl eDesc = new HTabl eDescri pt or (hbaseTabl eNane)
t abl eDesc. addFami | y(new HCol umbDescriptor("netric"))
admi n. creat eTabl e(t abl eDesc)

}

/1 setup stream ng context

val ssc = new Strean ngContext(nmaster, "MtricAggregatorTest", Seconds(2),
Syst em get env(" SPARK_HOVE"), Stream ngContext.jarOf Cl ass(this.getC ass))

ssc. checkpoi nt ("checkpoint")

val topicpMap = topics.split(",").map((_, nunThreads.tolnt)).toMap
val lines = KafkaUtils.createStream ssc, zkQuorum group, topicpMap)
.map { case (key, value) => ((key, Math.floor(SystemcurrentTimeMIlis() /
60000) .toLong * 60), value.tolnt) }

val aggr = lines.reduceByKeyAndW ndow(add _, M nutes(1l), Mnutes(l), 2)
aggr.foreach(line => saveToHBase(line, zkQuorum hbaseTabl eNane))
ssc.start

ssc. awai t Term nati on

def add(a : Int, b: Int) ={ (a + b) }

def saveToHBase(rdd : RDD[((String, Long), Int)], zkQuorum: String, tableNanme :
String) = {
val conf = HBaseConfiguration.create()
conf. set (" hbase. zookeeper. quorunt, zkQuorum

val jobConfig = new JobConf (conf)
j obConfi g. set (Tabl eQut put For mat . OUTPUT_TABLE, t abl eNan®)
j obConfi g. set Qut put For mat (cl assCf [Tabl eQut put For mat])

new Pai r RDDFuncti ons(rdd. map { case ((netricld, timestanp), value) =>
creat eHBaseRow(netricld, timestanp, value) }).saveAsHadoopDat aset (j obConfi g)

}

def createHBaseRow(netricld : String, tinmestanp : Long, value : Int) = {
val record = new Put (Bytes.toBytes(nmetricld + "~" + tinestanp))

record. add(Bytes.toBytes("metric"), Bytes.toBytes("col"),

Byt es. t oByt es(val ue. toString))

}

(new | mmut abl eByt esWitabl e, record)

/1 Produces sone random words between 1 and 100.
obj ect MetricDat aProducer {

def main(args : Array[String]) {

if (args.length < 2) {
Systemerr.println("Usage: MetricDataProducer <netadataBrokerlList> <topic>

<messagesPer Sec>")

System exit(1)

val Array(brokers, topic, nmessagesPerSec) = args

/'l ZooKeeper connection properties

val props = new Properties()

props. put (" met adat a. broker.list", brokers)

props. put("serializer.class", "kafka.serializer.StringEncoder")

val config = new Producer Confi g(props)
val producer = new Producer[String, String](config)

/1 Send some nmessages
while (true) {
val nessages = (1 to nessagesPerSec.tolnt).map { nmessageNum =>

val netricld = scal a.util.Random nextlInt(10)
val value = scala.util.Random next| nt(1000)
new KeyedMessage[String, String](topic, nmetricld.toString, value.toString)
}
}.toArray

producer. send(messages : _*)
Thr ead. sl eep(100)

Using a Custom MapReduce Job

Many of the methods to import data into HBase use MapReduce implicitly. If none of those approaches fit your needs,
you can use MapReduce directly to convert data to a series of HFiles or API calls for import into HBase. In this way,
you can import data from Avro, Parquet, or another format into HBase, or export data from HBase into another format,
using API calls such as Tabl eQut put For mat , HFi | eQut put For mat , and Tabl el nput For mat .

Reading Data from HBase

Cet and Scan are the two ways to read data from HBase, aside from manually parsing HFiles. A Get is simply a Scan
limited by the API to one row. A Scan fetches zero or more rows of a table. By default, a Scan reads the entire table
from start to end. You can limit your Scan results in several different ways, which affect the Scan's load in terms of
10, network, or both, as well as processing load on the client side. This topic is provided as a quick reference. Refer to
the APl documentation for Scan for more in-depth information. You can also perform Gets and Scan using the HBase
Shell, the REST API, or the Thrift API.

Specify a st artr owor st opr owor both. Neither st art r ownor st opr owneed to exist. Because HBase sorts
rows lexicographically, it will return the first row after st ar t r owwould have occurred, and will stop returning
rows after st opr owwould have occurred.The goal is to reduce 10 and network.

— Thest artrowisinclusive and the st opr owis exclusive. Given a table withrows a, b, c,d,e,f,andst artr ow
of c and st opr owof f , rows c- e are returned.

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/TableOutputFormat.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/HFileOutputFormat2.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/TableInputFormat.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Get.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html

— If you omit st ar t r ow, the first row of the table is the st art r ow.
— If you omit the st opr ow, all results after st ar t r ow (including st ar t r ow) are returned.

— Ifstartrowislexicographically after st opr ow, and you set Scan set Rever sed(bool ean reversed) to
t r ue, the results are returned in reverse order. Given the same table above, with rows a- f , if you specify c
as the stoprow and f as the startrow, rows f , e, and d are returned.

Scan()
Scan(byte[] startRow)
Scan(byte[] startRow, byte[] stopRow)

¢ Specify a scanner cache that will be filled before the Scan result is returned, setting set Cachi ng to the number
of rows to cache before returning the result. By default, the caching setting on the table is used. The goal is to
balance |0 and network load.

public Scan set Cachi ng(int caching)

¢ To limit the number of columns if your table has very wide rows (rows with a large number of columns), use
setBatch(int batch) and set it to the number of columns you want to return in one batch. A large number of columns
is not a recommended design pattern.

public Scan setBatch(int batch)

¢ To specify a maximum result size, use set MaxResul t Si ze(| ong), with the number of bytes. The goal is to
reduce |0 and network.

public Scan set MaxResultSi ze(l ong naxResul t Si ze)

e Whenyou use set Cachi ngand set MaxResul t Si ze together, single server requests are limited by either number
of rows or maximum result size, whichever limit comes first.

¢ You can limit the scan to specific column families or columns by using addFani | y or addCol umrm. The goal is to
reduce 10 and network. 10 is reduced because each column family is represented by a Store on each RegionServer,
and only the Stores representing the specific column families in question need to be accessed.

public Scan addCol um(byte[] famly,
byte[] qualifier)

public Scan addFam | y(byte[] famly)

* You can specify a range of timestamps or a single timestamp by specifying setTimeRange or setTimestamp.

public Scan set Ti neRange(l ong m nStanp,
| ong nmaxsSt anp)
throws | OException

public Scan set Ti neStanp(l ong ti nmestanp)
throws | OException

¢ You can retrieve a maximum number of versions by using setMaxVersions.

public Scan set MaxVersions(int maxVersions)

* You can use afilter by using set Fi | t er . Filters are discussed in detail in HBase Filtering on page 79 and the Filter
API.

public Scan setFilter(Filter filter)

* You can disable the server-side block cache for a specific scan using the APl set CacheBl ocks(bool ean) . This
is an expert setting and should only be used if you know what you are doing.

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/Filter.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/Filter.html

Perform Scans Using HBase Shell

You can perform scans using HBase Shell, for testing or quick queries. Use the following guidelines or issue the scan
command in HBase Shell with no parameters for more usage information. This represents only a subset of possibilities.

Di splay usage information
hbase> scan

Scan all rows of table '"t1'
hbase> scan 't1'

Specify a startrow, limt the result to 10 rows, and only return sel ected col ums
hbase> scan 't1', {COLUMNS => ['c1', 'c2'], LIMT => 10, STARTROW => 'xyz'}

Specify a timerange
hbase> scan 't1', {TIMERANGE => [1303668804, 1303668904]}

Specify a customfilter
hbase> scan 't1', {FILTER => org. apache. hadoop. hbase. filter. Col umPagi nati onFilter.new 1,

0)}

Specify a row prefix filter and another customfilter
hbase> scan 't1', {ROAPREFI XFI LTER => 'row2',

FILTER => (QualifierFilter (>=, 'binary:xyz')) AND
(TimestanpsFilter (123, 456))}

Di sable the block cache for a specific scan (experts only)
hbase> scan 't1', {COLUWNS => ['c1l', 'c2'], CACHE_ BLOCKS => fal se}

Hedged Reads

Hadoop 2.4 introduced a new feature called hedged reads. If a read from a block is slow, the HDFS client starts up
another parallel, 'hedged' read against a different block replica. The result of whichever read returns first is used, and
the outstanding read is cancelled. This feature helps in situations where a read occasionally takes a long time rather
than when there is a systemic problem. Hedged reads can be enabled for HBase when the HFiles are stored in HDFS.
This feature is disabled by default.

Enabling Hedged Reads for HBase
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.

. Click the Configuration tab.

. Select Scope > HBASE-1 (Service-Wide).
. Select Category > Performance.

. Configure the HDFS Hedged Read Threadpool Size and HDFS Hedged Read Delay Threshold properties. The
descriptions for each of these properties on the configuration pages provide more information.

6. Enter a Reason for change, and then click Save Changes to commit the changes.

i b WN

Hedged Reads

Hadoop 2.4 introduced a new feature called hedged reads. If a read from a block is slow, the HDFS client starts up
another parallel, 'hedged' read against a different block replica. The result of whichever read returns first is used, and
the outstanding read is cancelled. This feature helps in situations where a read occasionally takes a long time rather
than when there is a systemic problem. Hedged reads can be enabled for HBase when the HFiles are stored in HDFS.
This feature is disabled by default.

Enabling Hedged Reads for HBase
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.

. Click the Configuration tab.
. Select Scope > HBASE-1 (Service-Wide).
. Select Category > Performance.

. Configure the HDFS Hedged Read Threadpool Size and HDFS Hedged Read Delay Threshold properties. The
descriptions for each of these properties on the configuration pages provide more information.

6. Enter a Reason for change, and then click Save Changes to commit the changes.

v b WN

Monitoring the Performance of Hedged Reads

You can monitor the performance of hedged reads using the following metrics emitted by Hadoop when hedged reads
are enabled.

¢ hedgedReadOps - the number of hedged reads that have occurred
¢ hedgeReadOpsWin - the number of times the hedged read returned faster than the original read

HBase Filtering

When reading data from HBase using Get or Scan operations, you can use custom filters to return a subset of results
to the client. While this does not reduce server-side 10, it does reduce network bandwidth and reduces the amount
of data the client needs to process. Filters are generally used using the Java API, but can be used from HBase Shell for
testing and debugging purposes.

For more information on Gets and Scans in HBase, see Reading Data from HBase on page 76.

Dynamically Loading a Custom Filter

CDH, by default, has the ability to dynamically load a custom filter by adding a JAR with your filter to the directory
specified by the hbase. dynami c. j ars. di r property (which defaults to the | i b/ directory under the HBase root
directory).

To disable automatic loading of dynamic JARs, set hbase. use. dynani c. j ar s tof al se inthe advanced configuration
snippet for hbase- si t e. xni if you use Cloudera Manager, or to hbase- si t e. xnl otherwise.

Filter Syntax Guidelines

HBase filters take zero or more arguments, in parentheses. Where the argument is a string, it is surrounded by single
quotes ('string').

Logical Operators, Comparison Operators and Comparators

Filters can be combined together with logical operators. Some filters take a combination of comparison operators and
comparators. Following is the list of each.

Logical Operators

e AND - the key-value must pass both the filters to be included in the results.

¢ OR - the key-value must pass at least one of the filters to be included in the results.

e SKIP - for a particular row, if any of the key-values do not pass the filter condition, the entire row is skipped.

e WHILE - For a particular row, it continues to emit key-values until a key-value is reached that fails the filter condition.
e Compound Filters - Using these operators, a hierarchy of filters can be created. For example:

(Filterl AND Filter2)OR(Filter3 AND Filter4)

Comparison Operators

e LESS (<)

e LESS_OR_EQUAL (<=)
e EQUAL (=)

NOT_EQUAL (!=)
GREATER_OR_EQUAL (>=)
GREATER (>)

¢ NO_OP (no operation)

Comparators

e BinaryComparator - lexicographically compares against the specified byte array using the
Byt es. conpareTo(byte[], byte[]) method.

¢ BinaryPrefixComparator - lexicographically compares against a specified byte array. It only compares up to the
length of this byte array.

e RegexStringComparator - compares against the specified byte array using the given regular expression. Only EQUAL
and NOT_EQUAL comparisons are valid with this comparator.

e SubStringComparator - tests whether or not the given substring appears in a specified byte array. The comparison
is case insensitive. Only EQUAL and NOT_EQUAL comparisons are valid with this comparator.

Examples

Exanpl el: >, 'binary:abc' will match everything that is |exicographically greater than
"abc"

Exanpl e2: =, 'binaryprefix:abc' will match everything whose first 3 characters are

| exi cographically equal to "abc"

Exanmpl e3: !=, 'regexstring:ab*yz' will match everything that doesn't begin with "ab"
and ends with "yz"

Exgrrpl ed4: =, 'substring:abcl123" will match everything that begins with the substring
"abc123"

Compound Operators

Within an expression, parentheses can be used to group clauses together, and parentheses have the highest order of
precedence.

SKI P and WHI LE operators are next, and have the same precedence.
The AND operator is next.
The OR operator is next.

Examples

Afilter string of the form “Filterl AND Filter2 OR Filter3” will be eval uated as:
“(Filterl AND Filter2) OR Filter3”

Afilter string of the form “Filterl AND SKIP Filter2 OR Filter3” will be eval uated
as: “(Filterl AND (SKIP Filter2)) ORFilter3”

Filter Types
HBase includes several filter types, as well as the ability to group filters together and create your own custom filters.

e KeyOnlyFilter - takes no arguments. Returns the key portion of each key-value pair.
Syntax: KeyOnlyFilter ()
¢ FirstKeyOnlyFilter - takes no arguments. Returns the key portion of the first key-value pair.

Syntax: FirstKeyOnlyFilter ()

o PrefixFilter - takes a single argument, a prefix of a row key. It returns only those key-values present in a row that
start with the specified row prefix

Syntax: PrefixFilter (‘<row_ prefix>")

Exampl e: PrefixFilter (‘Row)

¢ ColumnPrefixFilter - takes a single argument, a column prefix. It returns only those key-values present in a column
that starts with the specified column prefix.

Syntax: ColumPrefixFilter (‘<colum_prefix>")

Exanmpl e: Col umPrefixFilter (‘Col’)

¢ MultipleColumnPrefixFilter - takes a list of column prefixes. It returns key-values that are present in a column
that starts with any of the specified column prefixes.

Syntax: MiltipleColumPrefixFilter (‘<colum_prefix>, ‘<colum_prefix>, .,
* <col um_prefix>")

Exanpl e: Multipl eCol umPrefixFilter (‘Coll1, *Col2)
¢ ColumnCountGetFilter - takes one argument, a limit. It returns the first | i i t number of columns in the table.

Syntax: ColumCountCetFilter (‘<linmt>")
Exanpl e: Col umCount Get Fi l ter (4)

e PageFilter - takes one argument, a page size. It returns page si ze number of rows from the table.
Syntax: PageFilter (‘<page_size>")

Exanpl e: PageFilter (2)

¢ ColumnPaginationFilter - takes two arguments, a limit and offset. It returns limit number of columns after offset
number of columns. It does this for all the rows.

Syntax: ColummPagi nationFilter (‘<limt>, ‘<offset>")

Exanpl e: Col umPagi nationFilter (3, 5)

¢ InclusiveStopFilter - takes one argument, a row key on which to stop scanning. It returns all key-values present
in rows up to and including the specified row.

Syntax: InclusiveStopFilter (‘<stop_row key>")

Exanpl e: InclusiveStopFilter (‘Row2’)

¢ TimeStampsFilter - takes a list of timestamps. It returns those key-values whose timestamps matches any of the
specified timestamps.

Syntax: TinmeStanpsFilter (<tinestanp>, <tinmestanp> ... ,<tinestanp>)

Exanpl e: TinmeStanpsFilter (5985489, 48895495, 58489845945)

¢ RowfFilter - takes a compare operator and a comparator. It compares each row key with the comparator using
the compare operator and if the comparison returns t r ue, it returns all the key-values in that row.

Syntax: RowFilter (<conpareQOp>, ‘<row_conparator>")

Exanpl e: RowFilter (<=, ‘binary:xyz)

¢ FamilyFilter - takes a compare operator and a comparator. It compares each family name with the comparator
using the compare operator and if the comparison returnst r ue, it returns all the key-values in that family.

Syntax: FanmilyFilter (<conpareQp>, ‘<famly_conparator>")
Exanpl e: FamilyFilter (>=, ‘binaryprefix:Fanm|yB)

¢ QualifierFilter - takes a compare operator and a comparator. It compares each qualifier name with the comparator
using the compare operator and if the comparison returnst r ue, it returns all the key-values in that column.

Syntax: QualifierFilter (<conpareQp>, ‘<qualifier_conparator>")
Exanple: QualifierFilter (= ‘substring: Columl’)

e ValueFilter - takes a compare operator and a comparator. It compares each value with the comparator using the
compare operator and if the comparison returns t r ue, it returns that key-value.

Syntax: Val ueFilter (<conpareQp>, °‘<value_conparator>")

Exanpl e: ValueFilter (!=, ‘binary:Value')

e DependentColumnFilter - takes two arguments required arguments, a family and a qualifier. It tries to locate this
column in each row and returns all key-values in that row that have the same timestamp. If the row does not
contain the specified column, none of the key-values in that row will be returned.

The filter can also take an optional boolean argument, dr opDependent Col umm. If set to t r ue, the column used
for the filter does not get returned.

The filter can also take two more additional optional arguments, a compare operator and a value comparator,
which are further checks in addition to the family and qualifier. If the dependent column is found, its value should
also pass the value check. If it does pass the value check, only then is its timestamp taken into consideration.

Synt ax: Dependent Col umFilter (‘<fanmily>, ‘<qualifier>, <bool ean> <conpare operator>,
‘ <val ue conparator’)

Dependent Col umFilter (‘<famly>", ‘<qualifier>, <bool ean>)
Dependent Col umFilter (‘<famly>, ‘<qualifier>")

Exanpl e: Dependent ColumFilter (‘conf’, ‘blacklist’, false, >= ‘zebra')
Dependent Col umFilter (‘conf’, ‘blacklist’, true)
Dependent Col umFilter (‘conf’, ‘blacklist’)

¢ SingleColumnValueFilter - takes a column family, a qualifier, a compare operator and a comparator. If the specified
column is not found, all the columns of that row will be emitted. If the column is found and the comparison with
the comparator returns t r ue, all the columns of the row will be emitted. If the condition fails, the row will not
be emitted.

This filter also takes two additional optional boolean arguments, fi |l t er I f Col unmM ssi ng and
set Lat est Versi onOnl y.

IfthefilterlfCol ummM ssi ng flagis set totr ue, the columns of the row will not be emitted if the specified
column to check is not found in the row. The default value is f al se.

If the set Lat est Ver si onOnl y flagis set to f al se, it will test previous versions (timestamps) in addition to the
most recent. The default value ist r ue.

These flags are optional and dependent on each other. You must set neither or both of them together.

Syntax: SingleColumVal ueFilter (‘<famly>, ‘<qualifier>, <compare operator>,
‘<conparator>', <filterlfColumM ssing_bool ean>, <l atest_versi on_bool ean>)
Syntax: SingleColumVal ueFilter (‘<famly>, ‘<qualifier>, <comnpare operator>,

‘ <conpar at or>")

Exanpl e: Singl eCol umVal ueFilter (‘Fam|yA , ‘Columl’, <=, ‘abc’, true, false)
Exanpl e: Si ngl eCol umVal ueFilter ('Fam|lyA , ‘Columl’, <=, ‘abc’)

¢ SingleColumnValueExcludeFilter - takes the same arguments and behaves same as Si ngl eCol unmVal ueFi | ter.
However, if the column is found and the condition passes, all the columns of the row will be emitted except for
the tested column value.

Syntax: Singl eCol umVal ueExcl udeFilter (<family>, <qualifier> <conpare operators>,
<conparator>, <l atest_version_bool ean>, <filterlfColumM ssing_bool ean>)

Syntax: Singl eCol umVal ueExcl udeFilter (<famly> <qualifier> <conpare operator>
<conpar at or >)

Exanpl e: Si ngl eCol umVal ueExcl udeFilter (‘Fam|lyA , ‘Columl’, ‘<=, ‘abc’, ‘false’,
‘true’)
Exanpl e: Si ngl eCol uimVal ueExcl udeFilter (‘Fam|lyA , ‘Columl’, ‘<=, ‘abc’)

¢ ColumnRangeFilter - takes either mi nCol urm, maxCol umm, or both. Returns only those keys with columns that
are between m nCol unm and maxCol um. It also takes two boolean variables to indicate whether to include the
m nCol um and maxCol umm or not. If you don’t want to set the mi nCol umm or the naxCol umm, you can pass in
an empty argument.

Syntax: Col umRangeFilter (‘<mi nColum >', <m nCol uml ncl usive_bool >, ‘<maxCol um>’,
<maxCol uml ncl usi ve_bool >)

Exanpl e: Col umRangeFilter (‘abc’, true, ‘xyz', false)

e Custom Filter - You can create a custom filter by implementing the Filter class. The JAR must be available on all
RegionServers.

HBase Shell Example

This example scans the 'users' table for rows where the contents of the cf : nane column equals the string 'abc'.

hbase> scan 'users', { FILTER => Si ngl eCol umVal ueFilter.new(Bytes.toBytes('cf'),
Byt es.toBytes(' nane'), ConpareFilter:: ConpareQp.val ueO (' EQUAL'),
Bi nar yConpar at or . newm Byt es. t oBytes('abc')))}

Java APl Example

This example, taken from the HBase unit test found in
hbase- server/src/test/javal or g/ apache/ hadoop/ hbase/filter/ Test Si ngl eCol umVal ueFil ter.java
, shows how to use the Java API to implement several different filters..

*

/

Li censed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regardi ng copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in conpliance
with the License. You nay obtain a copy of the License at

http://ww. apache. org/licenses/ LI CENSE-2. 0

Unl ess required by applicable law or agreed to in witing, software

di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governi ng perm ssions and
limtations under the License.

L S T R R I . I I

*/
package org. apache. hadoop. hbase.filter;

import static org.junit.Assert.assertFal se;
import static org.junit.Assert.assertTrue;

import java.util.regex. Pattern;

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/Filter.html

i mport org. apache. hadoop. hbase. KeyVal ue;

i mport org. apache. hadoop. hbase. Smal | Test s;

i mport org. apache. hadoop. hbase. fil ter. Conpar eFi | t er. Conpar eOp;
i mport org. apache. hadoop. hbase. util . Byt es;

i mport org.junit.Before;

import org.junit. Test;

i mport org.junit.experimental.categories. Category;

/**

* Tests the value filter

*/

@at egor y(Snal | Test s. cl ass)
public class TestSingl eCol umVal ueFilter {
private static final byte[] ROW= Bytes.toBytes("test");
private static final byte[] COLUMN FAMLY = Bytes.toBytes("test");

private stati
private stati
private stati
private stati
private stati

final byte [] COLUW_QUALIFIER = Bytes.toBytes("foo0");
final byte[] VAL_1 Byt es.toBytes("a");

final byte[] VAL_2 Byt es. t oByt es(" ab")

final byte[] VAL_3 Byt es. t oByt es("abc"),

final byte[] VAL _4 Byt es. t oByt es("abcd");

O0O0O00

private static final byte[] FULLSTRING 1 =

Byt es.t oByt es("The quick brown fox junps over the lazy dog.");

private static final byte[] FULLSTRING 2 =

Byt es.toBytes("The slow grey fox trips over the lazy dog.");

private static final String QU CK _SUBSTR = "qui ck";

private static final String QU CK_ REGEX = ".+qui ck. +";

private static final Pattern QU CK_PATTERN = Pattern. conpile("QlcK",
Patt ern. CASE_| NSENSI TI VE | Pattern. DOTALL);

Filter basicFilter;

Filter nullFilter;

Filter substrFilter;
Filter regexFilter;

Filter regexPatternFilter;

@Bef ore
public void setUp() throws Exception {

}

basi cFilter = basicFilterNew();

null Filter = null FilterNew();

substrFilter = substrFilterNew);

regexFilter = regexFilterNew();

regexPatternFilter = regexFilterNew(QU CK_PATTERN);

private Filter basicFilterNew)

{
return new Singl eCol umVal ueFi | ter (COLUMN_FAM LY, COLUWN_QUALI FI ER,
Conpar eOp. GREATER OR_EQUAL, VAL_2):

private Filter nullFilterNew()

return new Si ngl eCol umVal ueFi | t er (COLUMWN_FAM LY, COLUMN_QUALI FI ER,

Compar eOp. NOT_EQUAL,

}

new Nul | Oon'par ator());

private Filter substrFilterNew)

}

return new Si ngl eCol umVal ueFi | t er (COLUMN_FAM LY, COLUMN_QUALI FI ER,

Conpar eOp. EQUAL,
new Substri ngConpar at or (QUI CK_SUBSTR)) ;

private Filter regexFilterNew)

return new Si ngl eCol umVal ueFi | t er (COLUMN_FAM LY, COLUMN_QUALI FI ER,

Conpar eOp. EQUAL,
new RegexSt ri ngConpar at or (QUI CK_REGEX)) ;

private Filter regexFilterNew(Pattern pattern) {

return new Si ngl eCol umVal ueFi |l ter (COLUMWN_FAM LY, COLUMN_QUALI FI ER,

Conpar eOp. EQUAL,
new RegexStringConparator(pattern.pattern(), pattern.flags()));

private void basicFilterTests(SingleColumValueFilter filter)
throws Exception {
KeyVal ue kv = new KeyVal ue(RON COLUWN _FAM LY, COLUWN _QUALIFIER, VAL_2);
assert True("basicFilter1", filter.filterKeyVal ue(kv) == Filter. ReturnCode. | NCLUDE);

kv = new KeyVal ue(ROW COLUWN FAM LY, COLUWN QUALIFI ER, VAL_3);
assert True("basicFilter2", filter.filterKeyVal ue(kv) == Filter.ReturnCode. | NCLUDE) ;

kv = new KeyVal ue(RON COLUWN_FAM LY, COLUWN QUALI FIER, VAL_4);
assert True("basicFilter3", filter.filterKeyValue(kv) == Filter. ReturnCode. | NCLUDE);

assertFal se("basicFilterNotNull", filter.filterRow));

filter.reset();

kv = new KeyVal ue(ROW COLUWN FAM LY, COLUWN QUALI FI ER, VAL 1);

assert True("basicFilter4", filter.filterKeyVal ue(kv) == Filter.ReturnCode. NEXT_ROW ;

kv = new KeyVal ue(RON COLUWN_FAM LY, COLUWN QUALI FI ER, VAL_2);
assertTrue("basicFilter4", filter.filterKeyValue(kv) == Filter.ReturnCode. NEXT_ROW;

assert Fal se("basicFilterAll Remai ning", filter.filterA | Remaining());

assert True("basicFilterNotNull", filter.filterRow());

filter.reset();

filter.setLatestVersionOnly(false);

kv = new KeyVal ue(ROW COLUWN FAM LY, COLUWN QUALI FI ER, VAL 1);

assert True("basicFilter5", filter.filterKeyVal ue(kv) == Filter.ReturnCode. | NCLUDE) ;

kv = new KeyVal ue(RON COLUWN_FAM LY, COLUWN QUALI FI ER, VAL_2);
assert True("basicFilter5", filter.filterKeyVal ue(kv) == Filter. ReturnCode. | NCLUDE);

assertFal se("basicFilterNotNull", filter.filterRow));
}

private void nullFilterTests(Filter filter) throws Exception {
((SingleColumVal ueFilter) filter).setFilterlfM ssing(true);
KeyVal ue kv = new KeyVal ue(RON COLUWN_FAM LY, COLUWMN_QUALIFI ER, FULLSTRI NG 1);
assert True("nul 11", filter.filterKeyValue(kv) == Filter.ReturnCode. | NCLUDE);
assertFal se("null 1FilterRow', filter.filterRow());
filter.reset();
kv = new KeyVal ue(RON COLUWN_FAM LY, Bytes.toBytes("qual2"), FULLSTRI NG 2);
assert True("nul 12", filter.filterKeyVal ue(kv) == Filter.ReturnCode. | NCLUDE);
assert True("null 2FilterRow', filter.filterRow());

}

private void substrFilterTests(Filter filter)

throws Exception {

KeyVal ue kv = new KeyVal ue(RON COLUMN_FAM LY, COLUWMN_QUALI FI ER,
FULLSTRI NG 1) ;

assert True("substrTrue",
filter.filterKeyVal ue(kv) == Filter.ReturnCode. | NCLUDE);

kv = new KeyVal ue(ROW COLUWN_FAM LY, COLUWN QUALI FI ER,
FULLSTRI NG _2) ;

assert True("substrFal se", filter.filterKeyValue(kv) == Filter.ReturnCode.| NCLUDE);
assert Fal se("substrFilter All Remaining", filter.filterA | Remaining());
assertFal se("substrFilterNotNull", filter.filterRow));

}

private void regexFilterTests(Filter filter)

throws Exception {

KeyVal ue kv = new KeyVal ue(RON COLUWN_FAM LY, COLUWN_QUALI FI ER,
FULLSTRI NG 1) ;

assert True("regexTrue",
filter.filterKeyVal ue(kv) == Filter.ReturnCode. | NCLUDE);

kv = new KeyVal ue(ROWN COLUVN_FAM LY, COLUWN_QUALI FI ER,
FULLSTRI NG_2) ;

assert True("regexFal se", filter.filterKeyVal ue(kv) == Filter.ReturnCode.|NCLUDE);
assert Fal se("regexFilter Al Remai ning", filter.filter Al Remaining());
assert Fal se("regexFilterNotNulI", filter.filterRow));

}

private void regexPatternFilterTests(Filter filter)
throws Exception {
KeyVal ue kv = new KeyVal ue(RON COLUMN_FAM LY, COLUWMN_QUALI FI ER,
FULLSTRI NG _1) ;

assert True("regexTrue",

filter.filterKeyValue(kv) == Filter.ReturnCode. | NCLUDE);
assert Fal se("regexFilterA | Remai ning", filter.filterAllRemaining());
assert Fal se("regexFilterNotNulI", filter.filterRow));

}

private Filter serializationTest(Filter filter)
throws Exception {
/| Deconpose filter to bytes.
byte[] buffer = filter.toByteArray();

/'l Reconpose filter.
Filter newFilter = SingleColumVal ueFilter.parseFron(buffer);
return newFilter;

}

/**

* Tests identification of the stop row

* @hrows Exception

*/

@rest

public void testStop() throws Exception {
basi cFil ter Test s((Si ngl eCol umVal ueFilter) basicFilter);
null FilterTests(nullFilter);
substrFilterTests(substrFilter);
regexFilterTests(regexFilter);
regexPatternFilterTests(regexPatternFilter);

}
/**

* Tests serialization
* @hrows Exception
*/
@est
public void testSerialization() throws Exception {
Filter newFilter = serializationTest(basicFilter);
basi cFil ter Test s((Si ngl eCol umVal ueFi | ter)newFilter);
newFilter = serializationTest(nullFilter);
null FilterTests(newFilter);
newFilter = serializationTest(substrFilter);
substrFilterTests(newFilter);
newFilter = serializationTest(regexFilter);
regexFil terTests(newFilter);
newFilter = serializationTest(regexPatternFilter);
regexPatternFilterTests(newFilter);

Using the HBCK2 Tool to Remediate HBase Clusters

The HBCK2 tool is a repair tool to remediate Apache HBase clusters in CDH. The HBCK2 tool is the next version of the
Apache HBase hbck tool.

To identify a list of inconsistencies or blockages in a running HBase cluster, you can view or search the logs using the
log search feature in Cloudera Manager. Once you have identified the issue, you can then use the HBCK2 tool to fix
the defect or to skip-over a bad state. The HBCK2 tool uses an interactive fix-it process by asking the Master to make
the fixes rather than carry out the repair locally.

The HBCK2 performs a single, discrete task each time it is run. The HBCK2 tool does not analyze everything in a running
cluster and repair all the problems. Instead, you can use the HBCK2 tool to iteratively find and fix issues in your cluster.
The HBCK2 tool lets you use interactive commands to fix one issue at a time.

Important: The HBCK2 tool is specific to internals of Apache HBase. Using this tool requires binaries

o that are specific to your version of CDH, and you must always use it with the assistance of Cloudera
Support and/or Cloudera Professional Services. Please contact Cloudera Support if you believe you
have an issue that requires using the HBCK2 tool.

Supported Versions
You can use the HBCK2 tool with these versions of CDH:

e CDH6.1.x
e CDH6.2.x

e CDH 6.3.x and later

E,i Note: The HBCK2 tool is not supported on CDH 6.0.x. You must upgrade to CDH 6.1.x if you want to
use the tool. For information about the supported commands in specific versions of CDH, see HBCK2
Tool Command Reference.

Running the HBCK2 Tool

The HBCK2 tool is a part of the hbase-operator-tools binary. Once you get the hbase-operator-tools binary from
Cloudera, upload the binary tarball to the target cluster and extract the tarball. The HBCK2 JAR file is contained in the
operator tools tarball provided by Cloudera Support at

hbase- oper at or -t ool s- <ver si on>/ hbase- hbck2/ hbase- hbck2- <versi on>.j ar.

You can run the HBCK2 tool by specifying the JAR path with the “-j” option as shown here:
$ hbase hbck -j $HOVE/ hbase- oper at or -t ool s- <ver si on>/ hbase- hbck2/ hbase- hbck2- <versi on>. j ar

When you run the command, the HBCK2 tool command-line menu appears.

As a Cloudera Support or Professional Services personnel using this tool to remediate an HBase cluster, gather useful
information using these commands as an HBase super user (typically, hbase), or an HBase principal if Kerberos is
enabled:

$ hdfs dfs -1s -R /hbase/ 2>&1 | tee /tnp/hdfs-Is.txt
$ hbase hbck -details 2>&1 | tee /tnp/hbase-hbck. t xt
$ echo "scan 'hbase:nmeta'" | hbase shell 2>&1 | tee /tnp/hbase-neta.txt

Finding Issues

The HBCK2 tool enables you to use interactive commands to fix one issue at a time. If you have multiple issues, you
may have to run the tool iteratively to find and resolve all the issues. Use the following utilities and commands to find
the issues.

Find issues using diagnostic tools
Master logs

The Apache HBase Master runs all the cluster start and stop operations, RegionServer assignment, and server crash
handling. Everything that the Master does is a procedure on a state machine engine and each procedure has an unique
procedure ID (PID). You can trace the lifecycle of a procedure by tracking its PID through the entries in the Master log.
Some procedures may spawn sub-procedures and wait for the sub-procedure to complete.

You can trace the sub-procedure by tracking its PID and the parent PID (PPID).

If there is a problem with RegionServer assignment, the Master prints a STUCK log entry similar to the following:

2018-09-12 15: 29: 06, 558 WARN

or g. apache. hadoop. hbase. mast er. assi gnnent . Assi gnnent Manager: STUCK

Regi on-In-Transition rit=0PENI NG | ocation=val001. exanpl e. org, 00001, 1000173230599,
tabl e=l nt egrati onTest Bi gLi nkedLi st _20180626110336,

regi on=dbdb56242f 17610c46ea044f 7a42895b

Master user interface
Status tables

You can find issues in your HBase tables by looking at the status tables section in the Master user interface home page.
Look through the list of tables to identify if a table is ENABLED, ENABLING, DISABLED, or DISABLING. You can also take
a look at the regions in transition states: OPEN, CLOSED. For example, there may be an issue if a table is ENABLED,
some regions are not in the OPEN state, and the Master log entries do not have any ongoing assignments.

Procedures and locks

When an Apache HBase cluster is started, the Procedures & Locks page in the Master user interface is populated with
information about the procedures, locks, and the count of WAL files. After the cluster settles, if the WAL file count
does not reduce, it leads to procedure blocks. You can identify those procedures and locks on this page.

You can also get a list of locks and procedures using this command in the HBase shell:

$ echo "list_locks"| hbase shell &> /tnp/locks.txt
$ echo "list_procedures”| hbase shell &> /tnp/procedures.txt

Apache HBase canary tool
Use the HBase canary tool to verify the state of the assigns in your cluster. You can run this tool to focus on just one
table or the entire cluster. You can check the cluster assign using this command:

$ hbase canary -f false -t 6000000 &/tnp/canary.| og

Use the -f parameter to look for failed region fetches, and set the -t parameter to run for a specified time.

Fixing Issues
You must keep these in mind when fixing issues using HBCK2. Ensure that:

e Aregionis not in the CLOSING state during “assign”, and in the OPENING state during “unassign”. You can change
the state using the setRegionState command. See the HBCK2 tool Command Reference section for more information.

¢ You fix only one table at a time.

o Important: Contact Cloudera Support before using any of the HBCK2 tool commands.

Fix assign and unassign issues

You can fix assign and unassign issues by monitoring the current list of outstanding locks. An assign against a locked
region will wait till the lock is released. An assignment gets an exclusive lock on the region.

Fix master startup cannot progress error

Ifyouseeamaster startup cannot progress hol ding-pattern until region onlineerrorinthe Master
log, it means that the Master is unable to start because there is no procedure to assign hbase:meta. You will see an
error message similar to this:

2020- 04-01 22:07: 42,792 WARN or g. apache. hadoop. hbase. mast er. HVast er :
hbase: neta,, 1. 1588230740 is NOT online; state={1588230740 st ate=CLOSI NG

t s=1538456302300, server=vel0l7. exanpl e.org, 22101, 1234567891012} ;
Server CrashProcedures=true. Master startup cannot progress in holding-pattern until
regi on onlined.

To fix this issue, run the following command:

$ hbase hbck -j $HOWVE hbase- oper at or - t ool s- <ver si on>/ hbase- hbck2/ hbase- hbck2- <versi on>. j ar

assi gns 1588230740
The same issue can occur with a hbase:namespace system table. To fix this issue, run the following command:

$ hbase hbck -j $HOWE hbase- oper at or -t ool s- <ver si on>/ hbase- hbck2/ hbase- hbck2- <versi on>. j ar

assi gns <hbase: nanespace encoded region id>
You can find the namespace encoded region id using this command:

$ echo "scan 'hbase: neta', { COLUMNS=>'i nfo: regi oninfo',
FI LTER=>\"Prefi xFil ter (' hbase: nanespace')\"}" | hbase shell

The namespace encoded region id is the value under the "ENCODED" field in the results.

Fix missing regions in hbase:meta region/table

If you encounter an issue where table regions have been removed from the hbase:meta table, you can use the
addFsRegionsMissinglnMeta to resolve this issue. Ensure that the Master is online. This command is not as disruptive
as the hbase:meta rebuild command.

To fix this issue, run this command:

$ hbase hbck -j $HOVE/ hbase- oper at or -t ool s- <ver si on>/ hbase- hbck2/ hbase- hbck2- <versi on>. j ar
addFsRegi onsM ssi ngl nMet a <NAMESPACE| NAMESPACE: TABLENAME>
The command returns an HBCK2 “assigns” command with all the listed re-inserted regions.You must restart the Master,

and then run the HBCK2 'assigns' command returned by the addFsRegionsMissinglnMeta command to complete your
fix.

Example output:

Regi ons re-added into Meta: 2

WARNI NG

2 regions were added to META, but these are not yet on Masters cache.

You need to restart Masters, then run hbck2 'assigns' conmand bel ow

assi gns 7be03127c5e0e2acf c7cae7ddf a9e29e e50b8cladc38c942e226a8b2976f Oc8c

Fix extra regions in hbase:meta region/table

If there are extra regions in hbase:meta, it may be because of problems in splitting, deleting/moving the region directory
manually, or in rare cases because of the loss of metadata.

To fix this issue, run this command:

$ hbase hbck -j $HOWE hbase- oper at or - t ool s- <ver si on>/ hbase- hbck2/ hbase- hbck2- <versi on>. j ar

extraRegi onslnMeta --fix <NAMESPACE| NAMESPACE: TABLENAME>. . .

Important: Use the --fix option only when the extra regions are overlapping the existing valid regions.
Otherwise, use the assigns command to recreate the regions.

Rebuild hbase:meta

If hbase:meta is offline because it is corrupted, you can bring it back online if the corruption is not too critical. If the
namespace region is among the mission regions, scan hbase:meta during initialization to check if hbase:meta is online.

To check if hbase:meta is online, run this command in the Apache HBase shell:

$ echo "scan 'hbase:nmeta', {COLUMN=>'info:regioninfo'}" | hbase shell

If this scan does not throw any errors, then you can run the following command to validate that the tables are present:

$ hbase hbck -j $HOVE/ hbase- oper at or -t ool s- <ver si on>/ hbase- hbck2/ hbase- hbck2- <versi on>. j ar

addFsRegi onsM ssi ngl nMet a <NAMESPACE| NAMESPACE: TABLENAME>

The addFsRegi onsM ssi ngl nMet a command adds regions back to the hbase:meta table if the regioninfo file is
present in the storage but the regions were deleted because of an issue.

Fix dropped references and corrupted HFiles
To fix hanging references and corrupt HFiles, run the following command:

$ hbase hbck -j $HOVE/ hbase- oper at or - t ool s- <ver si on>/ hbase- hbck2/ hbase- hbck2- <versi on>. j ar

filesystem--fix [<TABLENAME>.. .|

HBCK2 Tool Command Reference
addFsRegi onsM ssi ngl nMet a <NAMESPACE| NAMESPACE: TABLENAME>. . .

Options: -d,--force_disable Use this option to abort fix for table if disable fails.

Supported from CDH 6.1.0 and later.
assi gns [OPTI ONS] <ENCODED_REG ONNAME>. . .

Options:-o,--override Use this option to override ownership by another procedure.

Supported in CDH 6.1.0 and later.
bypass [OPTIONS] <PID>. ..

Options: -o,--override Use this option to override if procedure is running/stuck -r,--recursive Use this option to
bypass parent and its children.

-w,--lockWait Use this option to wait (in milliseconds) before giving up; default=1.

Supported in CDH 6.1.0 and later.
extraRegi onsl nMet a <NAMESPACE| NAMESPACE: TABLENAME>. . .

Options:-f, --fix Use this option to fix meta by removing all extra regions found.

Supported from CDH 6.1.0 and later.
filesystem [OPTI ONS] [<TABLENAME>. . .|

Options:-f, --fix Use this option to sideline corrupt HFiles, bad links, and references.

Supported in CDH 6.1.0 and later.
replication [OPTI ONS] [<TABLENAME>. . .]

Options:-f, --fix Use this option to fix replication issues.

Supported in CDH 6.1.0 and later.
report M ssi ngRegi onsl nMet a <NAMESPACE| NAMESPACE: TABLENAME>. . .

Use this command when regions missing from hbase:meta but directories are still present in HDFS.

Supported in CDH 6.1.0 and later.
set Regi onSt at e <ENCODED_REQ ONNAME> <STATE>

Possible region states: OFFLINE, OPENING, OPEN, CLOSING, CLOSED, SPLITTING, SPLIT, FAILED_OPEN, FAILED_CLOSE,
MERGING, MERGED, SPLITTING_NEW, MERGING_NEW, ABNORMALLY_CLOSED.

Supported in CDH 6.1.0 and later.
set Tabl eSt at e <TABLENAME> <STATE>

Possible table states and representations in hbase:meta table: ENABLED (\x08\x00), DISABLED (\x08\x01), DISABLING
(\x08\x02), ENABLING (\x08\x03).

Supported in CDH 6.1.0 and later.

schedul eRecoveri es <SERVERNAME>. . .
Schedule ServerCrashProcedure(SCP) for list of RegionServers. Format server name as
'<HOSTNAME>,<PORT>,<STARTCODE>' .
Supported in CDH 6.2.0 and later.

unassi gns <ENCODED_ REG ONNAME>. . .

Options:-o,--override Use this option to override ownership by another procedure.

Supported in CDH 6.1.0 and later.

Exposing HBase Metrics to a Ganglia Server

Ganglia is a popular open-source monitoring framework. You can expose HBase metrics to a Ganglia instance so that
Ganglia can detect potential problems with your HBase cluster.

Expose HBase Metrics to Ganglia Using Cloudera Manager
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

1. Go to the HBase service.
2. Click the Configuration tab.

3. Select the HBase Master or RegionServer role. To monitor both, configure each role as described in the rest of
the procedure.

4. Select Category > Metrics.

5. Locate the Hadoop Metrics2 Advanced Configuration Snippet (Safety Valve) property or search for it by typing
its name in the Search box.

6. Edit the property. Add the following, substituting the server information with your own.

hbase. si nk. gangl i a. cl ass=or g. apache. hadoop. metri cs2. si nk. gangl i a. Gangl i aSi nk31
hbase. si nk. gangli a. servers=<Gangl i a server>: <port>
hbase. si nk. gangl i a. peri od=10

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.
See Modifying Configuration Properties Using Cloudera Manager.

7. Enter a Reason for change, and then click Save Changes to commit the changes.
. Restart the role.
9. Restart the service.

(o]

http://ganglia.info/

Managing HBase Security

This topic pulls together content also found elsewhere which relates to configuring and using HBase in a secure
environment. For the most part, securing an HBase cluster is a one-way operation, and moving from a secure to an
unsecure configuration should not be attempted without contacting Cloudera support for guidance.

HBase Authentication

To configure HBase security, complete the following tasks:

1. Configure HBase Authentication: You must establish a mechanism for HBase servers and clients to securely identify
themselves with HDFS, ZooKeeper, and each other. This ensures that hosts are who they claim to be.

E,i Note:

¢ To enable HBase to work with Kerberos security, you must perform the installation and
configuration steps in Enabling Kerberos Authentication for CDH and ZooKeeper Security

Configuration.

e Although an HBase Thrift server can connect to a secured Hadoop cluster, access is not
secured from clients to the HBase Thrift server. To encrypt communication between clients
and the HBase Thrift Server, see Configuring TLS/SSL for HBase Thrift Server.

The following sections describe how to use Apache HBase and CDH 6 with Kerberos security:

e Configuring Kerberos Authentication for HBase

e Configuring Secure HBase Replication
e Configuring the HBase Client TGT Renewal Period

2. Configure HBase Authorization: You must establish rules for the resources that clients are allowed to access. For
more information, see Configuring HBase Authorization.

Using the Hue HBase App

Hue includes an HBase App that allows you to interact with HBase through a Thrift proxy server. Because Hue sits
between the Thrift server and the client, the Thrift server assumes that all HBase operations come from the hue user
and not the client. To ensure that users in Hue are only allowed to perform HBase operations assigned to their own
credentials, and not those of the hue user, you must enable HBase impersonation. For more information about the
how to enable doAs Impersonation for the HBase Browser Application, see Enabling the HBase Browser Application
with doAs Impersonation.

Configuring HBase Authorization

After configuring HBase authentication (as detailed in HBase Configuration), you must define rules on resources that
is allowed to access. HBase rules can be defined for individual tables, columns, and cells within a table. Cell-level
authorization is fully supported since CDH 5.2.

Important: In a cluster managed by Cloudera Manager, HBase authorization is disabled by default.
You have to enable HBase authorization (as detailed in Enable HBase Authorization) to use any kind
of authorization method.

http://gethue.com/the-web-ui-for-hbase-hbase-browser/
http://gethue.com/hbase-browsing-with-doas-impersonation-and-kerberos/

Understanding HBase Access Levels

HBase access levels are granted independently of each other and allow for different types of operations at a given
scope.

Read (R) - can read data at the given scope

Write (W) - can write data at the given scope

Execute (X) - can execute coprocessor endpoints at the given scope

Create (C) - can create tables or drop tables (even those they did not create) at the given scope

Admin (A) - can perform cluster operations such as balancing the cluster or assigning regions at the given scope

The possible scopes are:

Superuser - superusers can perform any operation available in HBase, to any resource. The user who runs HBase
on your cluster is a superuser, as are any principals assigned to the configuration property hbase. super user in
hbase-si te. xm onthe HMaster.

Global - permissions granted at gl obal scope allow the admin to operate on all tables of the cluster.
Namespace - permissions granted at nanmespace scope apply to all tables within a given namespace.

Table - permissions granted at t abl e scope apply to data or metadata within a given table.

ColumnFamily - permissions granted at Col uimFanmi | y scope apply to cells within that ColumnFamily.

Cell - permissions granted at Cell scope apply to that exact cell coordinate. This allows for policy evolution along
with data. To change an ACL on a specific cell, write an updated cell with new ACL to the precise coordinates of
the original. If you have a multi-versioned schema and want to update ACLs on all visible versions, you'll need to
write new cells for all visible versions. The application has complete control over policy evolution. The exception
isappend andi ncrenent processing. Appends and i ncr enent s can carry an ACL in the operation. If one is
included in the operation, then it will be applied to the result of the append or i ncr ement . Otherwise, the ACL
of the existing cell being appended to or incremented is preserved.

The combination of access levels and scopes creates a matrix of possible access levels that can be granted to a user.

In a production environment, it is useful to think of access levels in terms of what is needed to do a specific job. The
following list describes appropriate access levels for some common types of HBase users. It is important not to grant
more access than is required for a given user to perform their required tasks.

Superusers - In a production system, only the HBase user should have superuser access. In a development
environment, an administrator might need superuser access to quickly control and manage the cluster. However,
this type of administrator should usually be a @ obal Admi n rather than a superuser.

Global Admins - A gl obal adni n can perform tasks and access every table in HBase. In a typical production
environment, an admin should not have Read or Wi t e permissions to data within tables.

— Aglobal admin with Adm n permissions can perform cluster-wide operations on the cluster, such as balancing,
assigning or unassigning regions, or calling an explicit major compaction. This is an operations role.

— Aglobal admin with Cr eat e permissions can create or drop any table within HBase. This is more of a DBA-type
role.

In a production environment, it is likely that different users will have only one of Adni n and Cr eat e permissions.

n Warning:

In the current implementation, a d obal Admi n with Adni n permission can grant himself Read
and W i t e permissions on a table and gain access to that table's data. For this reason, only grant
d obal Adni n permissions to trusted user who actually need them.

Also be aware that a A obal Adni n with Cr eat e permission can perform a Put operation on
the ACL table, simulating a gr ant or r evoke and circumventing the authorization check for

d obal Adni n permissions. This issue (but not the first one) is fixed in CDH 5.3 and higher, as
well as CDH 5.2.1.

Due to these issues, be cautious with granting Global Admin privileges.

¢ Namespace Admin - a namespace admin with Create permissions can create or drop tables within that namespace,
and take and restore snapshots. A namespace admin with Admin permissions can perform operations such as
splits or major compactions on tables within that namespace. Prior to CDH 5.4, only global admins could create
namespaces. In CDH 5.4, any user with Namespace Create privileges can create namespaces.

¢ Table Admins - A table admin can perform administrative operations only on that table. A table admin with Cr eat e
permissions can create snapshots from that table or restore that table from a snapshot. A table admin with Admi n
permissions can perform operations such as splits or major compactions on that table.

e Users - Users can read or write data, or both. Users can also execute coprocessor endpoints, if given Execut abl e
permissions.

o Important:

If you are using Kerberos principal names when setting ACLs for users, Hadoop uses only the first part
(short) of the Kerberos principal when converting it to the username. Hence, for the principal
ann/fully.qualified.domai n. name@OUR- REALM COM HBase ACLs should only be set for user
ann.

The following table shows some typical job descriptions at a hypothetical company and the permissions they might
require to get their jobs done using HBase.

Table 14: Real-World Example of Access Levels

Job Title Scope Permissions Description

Senior Administrator Global Admin, Create Manages the cluster and
gives access to Junior
Administrators.

Junior Administrator Global Create Creates tables and gives
access to Table
Administrators.

Table Administrator Table Admin Maintains a table from an
operations point of view.

Data Analyst Table Read Creates reports from HBase
data.

Web Application Table Read, Write Puts data into HBase and
uses HBase data to perform
operations.

Further Reading

e Access Control Matrix
e Security - Apache HBase Reference Guide

Enable HBase Authorization
HBase authorization is built on top of the Coprocessors framework, specifically AccessCont rol | er Coprocessor.
E,’ Note: Once the Access Controller coprocessor is enabled, any user who uses the HBase shell will be

subject to access control. Access control will also be in effect for native (Java API) client access to
HBase.

1. Go to Clusters and select the HBase cluster.
2. Select Configuration.

http://hbase.apache.org/book/appendix_acl_matrix.html
http://hbase.apache.org/book/security.html

3. Search for HBase Secure Authorization and select it.

4. Search for HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml and enter the following
into it to enable hbase. security. exec. per m ssi on. checks. Without this option, all users will continue to
have access to execute endpoint coprocessors. This option is not enabled when you enable HBase Secure
Authorization for backward compatibility.

<property>
<name>hbase. security. exec. perni ssi on. checks</ name>
<val ue>t rue</ val ue>

</ property>

5. Optionally, search for and configure HBase Coprocessor Master Classes and HBase Coprocessor Region Classes.

Configure Access Control Lists for Authorization

Now that HBase has the security coprocessor enabled, you can set ACLs using the HBase shell. Start the HBase shell
as usual.

o Important:

The host running the shell must be configured with a keytab file as described in Configuring Kerberos
Authentication for HBase.

The commands that control ACLs take the following form. Group names are prefixed with the @symbol.

hbase> grant <user> <permni ssions> [@nanmespace> [<table>[<columm famly>[<col um
qualifier>] 11 1] # grants perm ssions

hbase> revoke <user> [@nanespace> [<table> [<colum famly> [<columm qualifier>]
] 1 # revokes perm ssions

hbase> user_perm ssion <tabl e>
di spl ays existing perm ssions

In the above commands, fields encased in <> are variables, and fields in [] are optional. The per mi ssi ons variable
must consist of zero or more character from the set "RWCA".

e Rdenotes read permissions, which is required to perform Get, Scan, or Exi st s calls in a given scope.
e \Wdenotes write permissions, which is required to perform Put , Del et e, LockRow, Unl ockRow,
I ncr ement Col utmVal ue, CheckAndDel et e, CheckAndPut , Fl ush, or Conpact in a given scope.
e Xdenotes execute permissions, which is required to execute coprocessor endpoints.
e Cdenotes create permissions, which is required to perform Cr eat e, Al t er, or Dr op in a given scope.

¢ Adenotes admin permissions, which is required to perform Enabl e, Di sabl e, Snapshot, Rest or e, Cl one,
Spli t, Maj or Conpact, Gr ant, Revoke, and Shut down in a given scope.

Access Control List Example Commands

grant 'userl' , 'RWC
grant 'user2', 'RW, 'tableA
grant 'user3', 'C, '@uy_nanmespace'

Be sure to review the information in Understanding HBase Access Levels to understand the implications of the different
access levels.

Configure Cell_Level Access Control Lists

If you wish to enable cell-level ACLs for HBase, then you must modify the default values for the following properties:

hbase. securi ty. exec. perm ssion. checks => true (the default value is fal se)
hbase. security.access.early_out => false (the default value is true)
hfile.format.version => 3 (the default value is 2)

Unless you modify the default properties as specified (or via the service-wide HBase Service Advanced Configuration
Snippet (Safety Valve) for hbase-site.xml, which requires a service restart), then cell level ACLs will not work.

The following example shows how to grant (or revoke) HBase permissions (in this case, r ead permission) at the cell-level
via an ACL:

grant ' Enpl oyee', { 'enploye.name’ =>"'R }, { COLUMNS => ['pd'"], FILTER =>
"(PrefixFilter ("T"))" }

Auditing HBase Authorization Grants

When Cloudera Navigator collects HBase audits (enabled by default in Cloudera Manager), each time a grant occurs,
Navigator collects an audit event for the grant. The audit includes the information in the following table:

Field Description

ID Automatically generated and incremented ID.

SERVICE_NAME HBase service name as shown in Cloudera Manager.

ALLOWED Whether the request to perform an operation failed or succeeded. A failure occurs if

the user is not authorized to perform the action.

USERNAME Username for the account that performed the operation. Depending on how HBase is
configured, this can be the service user.

IMPERSONATOR If HBase is configured for the service user to impersonate the user performing an
operation, the impersonated user appears in USERNAME and the service name appears
in this field.

IP_ADDR IP address of the HBase service.

EVENT_TIME Event occurrence in milliseconds in epoch time format.

TABLE_NAME The object that is the target of the operation, if appropriate.

FAMILY The column family that is the object of the operation, if appropriate.

QUALIFIER The column that is the object of the operation, if appropriate.

OPERATION The operation command.

For information on other HBase commands audited through Cloudera Navigator, see Cloudera Navigator Service Audit
Events.

Configuring the HBase Thrift Server Role
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

The Thrift Server role is not added by default when you install HBase, but it is required before you can use certain other
features such as the Hue HBase browser. To add the Thrift Server role:

1. Go to the HBase service.
2. Click the Instances tab.
3. Click the Add Role Instances button.

4. Select the host(s) where you want to add the Thrift Server role (you only need one for Hue) and click Continue.
The Thrift Server role should appear in the instances list for the HBase server.

5. Select the Thrift Server role instance.

6. Select Actions for Selected > Start.

Other HBase Security Topics

e Using BulklLoad On A Secure Cluster on page 65
e Configuring Secure HBase Replication

Troubleshooting HBase

The Cloudera HBase packages have been configured to place logsin/ var/ | og/ hbase. Cloudera recommends tailing
the . | og files in this directory when you start HBase to check for any error messages or failures.

Table Creation Fails after Installing LZO

If you install LZO after starting the RegionServer, you will not be able to create a table with LZO compression until you
re-start the RegionServer.

Why this happens

When the RegionServer starts, it runs CompressionTest and caches the results. When you try to create a table with a
given form of compression, it refers to those results. You have installed LZO since starting the RegionServer, so the
cached results, which pre-date LZO, cause the create to fail.

What to do

Restart the RegionServer. Now table creation with LZO will succeed.

Thrift Server Crashes after Receiving Invalid Data
The Thrift server may crash if it receives a large amount of invalid data, due to a buffer overrun.
Why this happens

The Thrift server allocates memory to check the validity of data it receives. If it receives a large amount of invalid data,
it may need to allocate more memory than is available. This is due to a limitation in the Thrift library itself.

What to do

To prevent the possibility of crashes due to buffer overruns, use the framed and compact transport protocols. These
protocols are disabled by default, because they may require changes to your client code. The two options to add to
your hbase-site.xml are hbase. regi onserver.thrift.franmedandhbase. regi onserver.thrift.conpact.
Set each of these to t r ue, as in the XML below. You can also specify the maximum frame size, using the

hbase. regi onserver.thrift.framed. max_frame_si ze_i n_nb option.

<property>
<nanme>hbase. regi onserver.thrift.framed</ name>
<val ue>t rue</ val ue>

</ property>

<property>
<nanme>hbase. regi onserver.thrift.framed. max_frame_si ze_i n_nb</ nane>
<val ue>2</val ue>

</ property>

<property>
<nanme>hbase. regi onserver.thrift.conpact </ name>
<val ue>t rue</ val ue>

</ property>

HBase is using more disk space than expected.

HBase StoreFiles (also called HFiles) store HBase row data on disk. HBase stores other information on disk, such as
write-ahead logs (WALs), snapshots, data that would otherwise be deleted but would be needed to restore from a
stored snapshot.

Warning: The following information is provided to help you troubleshoot high disk usage only. Do
A not edit or remove any of this data outside the scope of the HBase APIs or HBase Shell, or your data
is very likely to become corrupted.

Table 15: HBase Disk Usage

Location

Purpose

Troubleshooting Notes

/ hbase/ . snapshot s

Contains one subdirectory per
snapshot.

To list snapshots, use the HBase Shell
command | i st _snapshot s. To
remove a snapshot, use

del et e_snapshot.

/ hbase/ . archi ve

Contains data that would otherwise
have been deleted (either because it
was explicitly deleted or expired due
to TTL or version limits on the table)
but that is required to restore from an
existing snapshot.

To free up space being taken up by
excessive archives, delete the
snapshots that refer to them.
Snapshots never expire so data
referred to by them is kept until the
snapshot is removed. Do not remove
anything from / hbase/ . ar chi ve
manually, or you will corrupt your
snapshots.

/ hbase/ . | ogs

Contains HBase WAL files that are
required to recover regions in the
event of a RegionServer failure.

WALs are removed when their
contents are verified to have been
written to StoreFiles. Do not remove
them manually. If the size of any
subdirectory of / hbase/ . | ogs/ is
growing, examine the HBase server
logs to find the root cause for why
WALs are not being processed
correctly.

/ hbase/ | ogs/ . ol dWALs

Contains HBase WAL files that have
already been written to disk. A HBase
maintenance thread removes them
periodically based on a TTL.

To tune the length of time a WAL stays
inthe . ol dWALs before itis removed,
configure the

hbase. master. | ogcl eaner. ttl
property, which defaults to 60000
milliseconds, or 1 hour.

/ hbase/ . | ogs/ . corrupt

Contains corrupted HBase WAL files.

Do not remove corrupt WALs
manually. If the size of any
subdirectory of / hbase/ . | ogs/ is
growing, examine the HBase server
logs to find the root cause for why
WALs are not being processed
correctly.

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and

2. You must cause any modified files to carry prominent notices stating that You changed the files; and

3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,
and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[1" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [nane of copyright owner]

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/licenses/ LI CENSE-2.0

Unl ess required by applicable |aw or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.
See the License for the specific |anguage governi ng permn ssions and
limtations under the License.

	Table of Contents
	Apache HBase Guide
	Configuration Settings
	Managing HBase
	HBase Security
	HBase Replication
	HBase High Availability
	Troubleshooting HBase
	Upstream Information for HBase

	Configuration Settings for HBase
	Using DNS with HBase
	Using the Network Time Protocol (NTP) with HBase
	Setting User Limits for HBase
	Using dfs.datanode.max.transfer.threads with HBase
	Configuring BucketCache in HBase
	Configuring Encryption in HBase
	Enabling Hedged Reads for HBase
	Accessing HBase by using the HBase Shell
	HBase Shell Overview
	Setting Virtual Machine Options for HBase Shell
	Scripting with HBase Shell

	HBase Online Merge
	Configuring RegionServer Grouping
	Troubleshooting HBase
	Configuring the BlockCache
	Configuring the Scanner Heartbeat
	Accessing HBase by using the HBase Shell
	HBase Shell Overview
	Setting Virtual Machine Options for HBase Shell
	Scripting with HBase Shell

	HBase Online Merge
	Using MapReduce with HBase
	Configuring HBase Garbage Collection
	Configure HBase Garbage Collection Using Cloudera Manager
	Using the HBase Garbage Collector with JDK11
	Disabling the BoundedByteBufferPool
	Disable the BoundedByteBufferPool Using Cloudera Manager

	Configuring the HBase Canary
	Configure the HBase Canary Using Cloudera Manager

	Configuring the Blocksize for HBase
	Configuring the Blocksize for a Column Family
	Monitoring Blocksize Metrics

	Configuring the HBase BlockCache
	Contents of the BlockCache
	Deciding Whether To Use the BucketCache
	Bypassing the BlockCache
	Cache Eviction Priorities
	Sizing the BlockCache
	About the Off-heap BucketCache
	Configuring the Off-heap BucketCache
	Monitoring the BlockCache

	Configuring Quotas
	Setting up quotas
	General Quota Syntax
	Throttle quotas
	Throttle quota examples
	Space quotas
	Quota enforcement
	Quota violation policies
	Impact of quota violation policy
	Live Write Access
	Bulk Write Access
	Read Access
	Metrics and Insight
	Examples of overlapping quota policies

	Number-of-Tables Quotas
	Number-of-Regions Quotas

	Configuring the HBase Scanner Heartbeat
	Configure the Scanner Heartbeat Using Cloudera Manager

	Limiting the Speed of Compactions
	Configure the Compaction Speed Using Cloudera Manager

	Configuring and Using the HBase REST API
	Installing the REST Server
	Installing the REST Server Using Cloudera Manager

	Using the REST API

	Configuring HBase MultiWAL Support
	Configuring MultiWAL Support Using Cloudera Manager

	Storing Medium Objects (MOBs) in HBase
	Configuring Columns to Store MOBs
	HBase MOB Cache Properties
	Configuring the MOB Cache Using Cloudera Manager
	Testing MOB Storage and Retrieval Performance
	Compacting MOB Files Manually

	Configuring the Storage Policy for the Write-Ahead Log (WAL)

	Managing HBase
	Creating the HBase Root Directory
	Graceful Shutdown
	Configuring the HBase Thrift Server Role
	Enabling HBase Indexing
	Adding a Custom Coprocessor
	Disabling Loading of Coprocessors
	Enabling Hedged Reads on HBase
	Moving HBase Master Role to Another Host
	Advanced Configuration for Write-Heavy Workloads
	Starting and Stopping HBase
	Starting or Restarting HBase
	Stopping HBase

	Accessing HBase by using the HBase Shell
	HBase Shell Overview
	Setting Virtual Machine Options for HBase Shell
	Scripting with HBase Shell

	Using HBase Command-Line Utilities
	PerformanceEvaluation
	LoadTestTool
	wal
	hfile
	hbck
	clean

	Writing Data to HBase
	Importing Data Into HBase
	Choosing the Right Import Method
	Using CopyTable
	Using Snapshots
	Using BulkLoad
	Using Cluster Replication
	Using Pig and HCatalog
	Using the Java API
	Using the Apache Thrift Proxy API
	Using the REST Proxy API
	Using Flume
	Using Sqoop
	Using Spark
	Using Spark and Kafka
	Using a Custom MapReduce Job

	Reading Data from HBase
	Hedged Reads
	Enabling Hedged Reads for HBase

	Hedged Reads
	Enabling Hedged Reads for HBase
	Monitoring the Performance of Hedged Reads

	HBase Filtering
	Using the HBCK2 Tool to Remediate HBase Clusters
	Supported Versions
	Running the HBCK2 Tool
	Finding Issues
	Fixing Issues
	HBCK2 Tool Command Reference

	Exposing HBase Metrics to a Ganglia Server
	Expose HBase Metrics to Ganglia Using Cloudera Manager

	Managing HBase Security
	HBase Authentication
	Configuring HBase Authorization
	Understanding HBase Access Levels
	Enable HBase Authorization
	Configure Access Control Lists for Authorization
	Auditing HBase Authorization Grants

	Configuring the HBase Thrift Server Role
	Other HBase Security Topics

	Troubleshooting HBase
	Table Creation Fails after Installing LZO
	Thrift Server Crashes after Receiving Invalid Data
	HBase is using more disk space than expected.

	Appendix: Apache License, Version 2.0

