
Apache Hive Guide

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or
service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logosmentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this documentmay be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subjectmatter in this document. Except as expressly
provided in anywritten license agreement fromCloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.
395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Cloudera Enterprise 6.3.x
Date: September 30, 2021

Table of Contents

Best Practices for Using Apache Hive in CDH..8

Overview of Apache Hive Installation and Upgrade in CDH.......................................9

Configuring Apache Hive in CDH...10
Configuring the Hive Metastore for CDH..10
Metastore Deployment Modes..10

Supported Metastore Databases...11

Metastore Memory and Hardware Requirements...12

General Metastore Tuning Recommendations..13

Configuring the Metastore Database..13

Configuring HiveServer2 for CDH...23
HiveServer2 Memory and Hardware Requirements..23

hive.zookeeper.client.port...24

JDBC driver...24

Authentication...24

Running HiveServer2..24

Starting the Hive Metastore in CDH...25

Apache Hive File System Permissions in CDH...25

Starting, Stopping, and Using HiveServer2 in CDH...26
Using the Beeline CLI..26

Using Apache Hive with HBase in CDH...27

Using the Metastore Schema Tool in CDH..28
Schema Version Verification and Validation..28

Using schematool..28

Installing Cloudera JDBC and ODBC Drivers on Clients in CDH...31
Cloudera Hive JDBC Driver Download..31

Cloudera Hive ODBC Driver Download...32

Setting HADOOP_MAPRED_HOME..32

Configuring the Hive Metastore to Use HDFS High Availability in CDH..32

Using & Managing Apache Hive in CDH..34
Hive Roles...34

Hive Execution Engines..34

Use Cases for Hive..35

Managing Hive Using Cloudera Manager...35

Overview of Ingesting and Querying Data with Apache Hive in CDH...36
Ingesting Data with Hive..36

Column and Table Statistics for Query Optimization...36

Transaction (ACID) Support in Hive..36

Upstream Information for Hive..36

Apache Parquet Tables with Hive in CDH...37
Using Parquet Tables in Hive..37

Running Apache Hive on Spark in CDH..38
Configuring Hive on Spark...38

Dynamic Partition Pruning for Hive Map Joins..39

Using Hive UDFs with Hive on Spark..44

Troubleshooting Hive on Spark..44

Using HiveServer2 Web UI in CDH..46
Accessing the HiveServer2 Web UI...46

HiveServer2 Web UI Configuration..46

Accessing Apache Hive Table Statistics in CDH...47

Managing Apache Hive User-Defined Functions..47
Registering a UDF in Hive...47

Direct JAR Reference Configuration...49

Hive Aux JARs Directory Configuration..49

Reloadable Aux JAR Configuration...49

Creating Temporary Functions...50

Updating a User-Defined Function..50

Calling a Hive UDF from Impala...50

Adding Built-in UDFs to the HiveServer2 Blacklist..51

Configuring Transient Apache Hive ETL Jobs to Use the Amazon S3 Filesystem in CDH....................................51
About Transient Jobs..52

Configuring and Running Jobs on Transient Clusters...52

Configuring a Shared Amazon RDS as an HMS for CDH...54
Advantages of This Approach..55

How To Configure Amazon RDS as the Backend Database for a Shared Hive Metastore..55

Supported Scenarios..55

Configuring ADLS Gen1 Connectivity...56
Setting up ADLS to Use with CDH...56

Testing and Using ADLS Access..57

User-Supplied Key for Each Job..57

Single Master Key for Cluster-Wide Access..58

User-Supplied Key stored in a Hadoop Credential Provider...58

Create a Hadoop Credential Provider and reference it in a customized copy of the core-site.xml file for the

service..59

Creating a Credential Provider for ADLS..60

ADLS Configuration Notes..60

Importing Data into Hive with Sqoop Through HiverServer2...61

Importing Data Through Hiveserver2..61

Importing Data..61

Steps..61

Tuning Apache Hive in CDH..63
Heap Size and Garbage Collection for Hive Components...63
Memory and Hardware Requirements Recommendations..63

Configuring Heap Size and Garbage Collection...64

HiveServer2 Performance Tuning...66
Symptoms Displayed When HiveServer2 Heap Memory is Full..66

HiveServer2 Performance Best Practices...67

Tuning Apache Hive on Spark in CDH...70
YARN Configuration...71

Spark Configuration...71

Hive Configuration...73

Tuning Apache Hive Performance on the Amazon S3 Filesystem in CDH...74
Tuning Hive Write Performance on S3...74

Tuning Hive Table Partition Read Performance on S3..78

Tuning Hive MSCK (Metastore Check) Performance on S3...80

Configuring HMS High Availability in CDH..81
Enabling HMS High Availability Using Cloudera Manager...81

Configuring HiveServer2 High Availability in CDH..82
Enabling HiveServer2 High Availability Using Cloudera Manager...82

Configuring HiveServer2 to Load Balance Behind a Proxy on Unmanaged Clusters..83

Query Vectorization for Apache Hive in CDH...87
Enabling Hive Query Vectorization...87

Tuning Hive Query Vectorization..90

Supported/Unsupported Data Types and Functions..92

Verifying a Query is Vectorized..92

Hive/Impala Replication...95
Network Latency and Replication...95

Host Selection for Hive/Impala Replication..95

Hive Tables and DDL Commands..96

Replication of Parameters..96

Hive Replication in Dynamic Environments..96

Guidelines for Snapshot Diff-based Replication...97

Replicating from Insecure to Secure Clusters...97

Configuring Replication of Hive/Impala Data...98
Replication of Impala and Hive User Defined Functions (UDFs)...102

Viewing Replication Schedules...102
Enabling, Disabling, or Deleting A Replication Schedule..105

Viewing Replication History...105

Hive/Impala Replication To and From Cloud Storage...106

Monitoring the Performance of Hive/Impala Replications....................................109

Overview of Apache Hive Security in CDH..113

Configuring Encrypted Communication Between HiveServer2 and Client Drivers...114
Configuring TLS/SSL Encryption for HiveServer2..114
Requirements and Assumptions...114

Using Cloudera Manager to Enable TLS/SSL..114

Client Connections to HiveServer2 Over TLS/SSL..115

Configuring SASL Encryption for HiveServer2..116
Client Connections to HiveServer2 Using SASL...116

Hive SQL Syntax for Use with Sentry...117
ALTER DATABASE Statement...117

ALTER TABLE Statement...117

ALTER VIEW Statement..118

CREATE ROLE Statement...118

DROP ROLE Statement...118

GRANT ROLE Statement...118

REVOKE ROLE Statement..119

GRANT <Privilege> Statement..119

GRANT <Privilege> ON URIs (HDFS and S3A)...119

REVOKE <Privilege> Statement..120

GRANT <Privilege> ... WITH GRANT OPTION..120
WITH GRANT OPTION Example..121

SET ROLE Statement...121

SHOW Statement...122

Privileges..122
CREATE...123

OWNER..123

REFRESH (Impala Only)..124

SELECT..124

Troubleshooting Apache Hive in CDH...126
Troubleshooting...126
HiveServer2 Service Crashes..126

Best Practices for Using MSCK REPAIR TABLE...127
Example: How MSCK REPAIR TABLE Works..128

Guidelines for Using the MSCK REPAIR TABLE Command..129

Appendix: Apache License, Version 2.0...130

Best Practices for Using Apache Hive in CDH

Hive data warehouse software enables reading, writing, and managing large datasets in distributed storage. Using the
Hive query language (HiveQL), which is very similar to SQL, queries are converted into a series of jobs that execute on
a Hadoop cluster through MapReduce or Apache Spark.

Users can run batch processing workloads with Hive while also analyzing the same data for interactive SQL or
machine-learning workloads using tools like Apache Impala or Apache Spark—all within a single platform.

As part of CDH, Hive also benefits from:

• Unified resource management provided by YARN
• Simplified deployment and administration provided by Cloudera Manager
• Shared security and governance to meet compliance requirements provided by Apache Sentry and Cloudera

Navigator

Continue reading:

• Installation and Upgrade
• Configuration
• Using & Managing
• Tuning
• Data Replication
• Security
• Troubleshooting

8 | Apache Hive Guide

Best Practices for Using Apache Hive in CDH

Overview of Apache Hive Installation and Upgrade in CDH

Installing:

Hive comes along with the base CDH installation and does not need to be installed manually. Use Cloudera Manager
to enable or disable the Hive service. If you disable the Hive service, the component always remains present on the
cluster. For details on installing CDH with Cloudera Manager, which installs Hive, see Installation Using Cloudera
Manager Parcels or Packages.

Upgrading:

Use Cloudera Manager to upgrade CDH and all of its components, including Hive. For details, see Upgrading the CDH
Cluster.

Apache Hive Guide | 9

Overview of Apache Hive Installation and Upgrade in CDH

Configuring Apache Hive in CDH

Hive offers a number of configuration settings related to performance, file layout and handling, and options to control
SQL semantics. Depending on your cluster size and workloads, configure HiveServer2 memory, table locking behavior,
and authentication for connections. See Configuring HiveServer2 for CDH on page 23 for details about required
configuration changes that you must perform.

The Hive metastore service, which stores the metadata for Hive tables and partitions, must also be configured. See
Configuring the HiveMetastore for CDH on page 10 for details about deploymentmodes, information about supported
metastore databases, and specific configurations for MySQL, PostgreSQL, and Oracle.

To configure Hive to use the Amazon S3 filesystem for transient ETL jobs, see Configuring Transient Apache Hive ETL
Jobs to Use the Amazon S3 Filesystem in CDH on page 51

Configuring the Hive Metastore for CDH
The HMS service stores the metadata for Hive tables and partitions in a relational database, and provides clients
(including Hive) access to this information using the metastore service API. This page explains deployment options and
provides instructions for setting up a database in a recommended configuration.

Metastore Deployment Modes

Embedded Mode

Cloudera recommends using this mode for experimental purposes only.

Embedded mode is the default metastore deployment mode for CDH. In this mode, the metastore uses a Derby
database, and both the database and the metastore service are embedded in the main HiveServer2 process. Both are
started for you when you start the HiveServer2 process. This mode requires the least amount of effort to configure,
but it can support only one active user at a time and is not certified for production use.

Local Mode

10 | Apache Hive Guide

Configuring Apache Hive in CDH

In Localmode, the Hivemetastore service runs in the same process as themain HiveServer2 process, but themetastore
database runs in a separate process, and can be on a separate host. The embedded metastore service communicates
with the metastore database over JDBC.

Remote Mode

Cloudera recommends that you use this mode.

In Remote mode, the Hive metastore service runs in its own JVM process. HiveServer2, HCatalog, Impala, and other
processes communicate with it using the Thrift network API (configured using the hive.metastore.uris property).
The metastore service communicates with the metastore database over JDBC (configured using the
javax.jdo.option.ConnectionURL property). The database, the HiveServer2 process, and the metastore service
can all be on the same host, but running the HiveServer2 process on a separate host provides better availability and
scalability.

The main advantage of Remote mode over Local mode is that Remote mode does not require the administrator to
share JDBC login information for the metastore database with each Hive user. HCatalog requires this mode.

Supported Metastore Databases

For up-to-date information, see Database Requirements. Cloudera strongly encourages you to use MySQL because it
is themost popular with the rest of the Hive user community, and, hence, receivesmore testing than the other options.
For installation information, see:

• Install and Configure MariaDB for Cloudera Software

Apache Hive Guide | 11

Configuring Apache Hive in CDH

• Install and Configure MySQL for Cloudera Software
• Install and Configure PostgreSQL for Cloudera Software
• Install and Configure Oracle Database for Cloudera Software

Metastore Memory and Hardware Requirements

DiskCPUJava HeapComponent

Minimum 1 diskMinimum 4 dedicated cores4 GBSingle ConnectionHiveServer 2

4-6 GB2-10 connections This disk is required
for the following:

6-12 GB11-20 connections
• HiveServer2 log

files12-16
GB

21-40 connections

• stdout and
stderr output
files

16-24
GB

41 to 80 connections

• Configuration
files

Cloudera recommends splitting
HiveServer2 into multiple

• Operation logs
stored in the

instances and load balancing
them once you start allocating

operation_logs_dirmore than 16 GB to
directory, which
is configurable

HiveServer2. The objective is to
adjust the size to reduce the

• Any temporary
files that might

impact of Java garbage
collection on active processing
by the service. be created by

local map tasks
Set this value using the Java
Heap Size of HiveServer2 in

under the /tmp
directory

Bytes Hive configuration
property.

Minimum 1 diskMinimum 4 dedicated cores4 GBSingle ConnectionHive Metastore

4-10 GB2-10 connections This disk is required so
that the Hive

10-12
GB

11-20 connections metastore can store
the following artifacts:

12-16
GB

21-40 connections • Logs
• Configuration

files16-24
GB

41 to 80 connections
• Backend

database that isSet this value using the Java
Heap Size of Hive Metastore used to store

metadata if theServer in Bytes Hive
configuration property. database server

is also hosted on
the same node

N/AN/AMinimum: 2 GBBeeline CLI

Important: These numbers are general guidance only, and can be affected by factors such as number
of columns, partitions, complex joins, and client activity. Based on your anticipated deployment, refine
through testing to arrive at the best values for your environment.

12 | Apache Hive Guide

Configuring Apache Hive in CDH

For information on configuring heap for the Hivemetastore, as well as HiveServer2 and Hive clients, see Tuning Apache
Hive in CDH on page 63.

General Metastore Tuning Recommendations

Generally, you need to limit concurrent connections to Hive metastore. A large number of open connections affects
performance as does issues with the backend database, improper Hive use, such as extremely complex queries, a
connection leak, and other issues. Try making the following changes:

• Buy an SSD for one or more Hive metastores.
• Cloudera recommends that a single query access no more than 10,000 table partitions. If the query joins tables,

calculate the combined partition count accessed across all tables.
• Tune the backend (the RDBMS). HiveServer connects to HMS, and only HMS connects to the RDBMS. The longer

the backend takes, the more memory the HMS needs to respond to the same requests. Limit the number of
connections in the backend database.

MySQL: For example, in /etc/my.cnf:

[mysqld]
datadir=/var/lib/mysql
max_connections=8192
. . .

MariaDB: For example, in /etc/systemd/system/mariadb.service.d/limits.conf:

[Service]
LimitNOFILE=24000
. . .

• Use default thrift properties (8K):

hive.server2.async.exec.threads 8192
hive.server2.async.exec.wait.queue.size 8192
hive.server2.thrift.max.worker.threads 8192

• Set datanucleus.connectionPool.maxPoolSize for your applications. For example, if poolSize = 100, with
3 HMS instances (one dedicated to compaction), and with 4 pools per server, you can accommodate 1200
connections.

Configuring the Metastore Database

This section describes how to configure Hive to use a remote database, with examples for MySQL, PostgreSQL, and
Oracle.

The configuration properties for the Hive metastore are documented in the Hive Metastore Administration
documentation on the Apache wiki.

Note: For information about additional configuration that may be needed in a secure cluster, see
Hive Authentication.

Configuring a Remote MySQL Database for the Hive Metastore

Cloudera recommends you configure a database for the metastore on one or more remote servers that reside on a
host or hosts separate from the HiveServer2 process. MySQL is the most popular database to use. Use the following
steps to configure a remote metastore. If you are planning to use a cloud service database, such as Amazon Relational
Database Service (RDS), see Configuring a Shared Amazon RDS as an HMS for CDH on page 54 for information about
how to set up a shared Amazon RDS as your Hive metastore.

1. Install and start MySQL if you have not already done so

Apache Hive Guide | 13

Configuring Apache Hive in CDH

https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration

To install MySQL on a RHEL system:

sudo yum install mysql-server

To install MySQL on a SLES system:

sudo zypper install mysql
sudo zypper install libmysqlclient_r17

To install MySQL on a Debian/Ubuntu system:

sudo apt-get install mysql-server

After using the command to install MySQL, you may need to respond to prompts to confirm that you do want to
complete the installation. After installation completes, start the mysql daemon.

On RHEL systems

sudo service mysqld start

On SLES and Debian/Ubuntu systems

sudo service mysql start

2. Configure the MySQL service and JDBC driver

Before you can run the Hive metastore with a remote MySQL database, you must install the MySQL JDBC driver,
set up the initial database schema, and configure the MySQL user account for the Hive user.

For instructions on installing the MySQL JDBC driver, see Installing the MySQL JDBC Driver.

ConfigureMySQL to use a strong password and to start at boot. Note that in the following procedure, your current
root password is blank. Press the Enter key when you're prompted for the root password.

To set the MySQL root password:

$ sudo /usr/bin/mysql_secure_installation
[...]
Enter current password for root (enter for none):
OK, successfully used password, moving on...
[...]
Set root password? [Y/n] y
New password:
Re-enter new password:
Remove anonymous users? [Y/n] Y
[...]
Disallow root login remotely? [Y/n] N
[...]
Remove test database and access to it [Y/n] Y
[...]
Reload privilege tables now? [Y/n] Y
All done!

To make sure the MySQL server starts at boot:

• On RHEL systems:

$ sudo /sbin/chkconfig mysqld on
sudo /sbin/chkconfig --list mysqld
mysqld 0:off 1:off 2:on 3:on 4:on 5:on 6:off

• On SLES systems:

sudo chkconfig --add mysql

14 | Apache Hive Guide

Configuring Apache Hive in CDH

• On Debian/Ubuntu systems:

sudo chkconfig mysql on

3. Create the database and user

The instructions in this section assume you are using Remote mode, and that the MySQL database is installed on
a separate host from the metastore service, which is running on a host named metastorehost in the example.

Note: If the metastore service will run on the host where the database is installed, replace
'metastorehost' in the CREATE USER example with 'localhost'. Similarly, the value of
javax.jdo.option.ConnectionURL in /etc/hive/conf/hive-site.xml (discussed in
the next step) must be jdbc:mysql://localhost/metastore. For more information on
adding MySQL users, see http://dev.mysql.com/doc/refman/5.5/en/adding-users.html.

Create the initial database schema. Cloudera recommends using the Metastore Schema Tool to do this.

If for some reason you decide not to use the schema tool, you can use the hive-schema-n.n.n.mysql.sql
file instead; that file is located in the /usr/lib/hive/scripts/metastore/upgrade/mysql/ directory. (n.n.n
is the current Hive version, for example 1.1.0.) Proceed as follows if you decide to use
hive-schema-n.n.n.mysql.sql.

Example using hive-schema-n.n.nmysql.sql

Note: Do this only if you are not using the Hive schema tool.

$ mysql -u root -p
Enter password:
mysql> CREATE DATABASE metastore;
mysql> USE metastore;
mysql> SOURCE /usr/lib/hive/scripts/metastore/upgrade/mysql/hive-schema-n.n.n.mysql.sql;

You also need a MySQL user account for Hive to use to access the metastore. It is very important to prevent this
user account from creating or altering tables in the metastore database schema.

Important: To prevent users from inadvertently corrupting the metastore schema when they
use lower or higher versions ofHive, set thehive.metastore.schema.verificationproperty
to true in /usr/lib/hive/conf/hive-site.xml on the metastore host.

Example

mysql> CREATE USER 'hive'@'metastorehost' IDENTIFIED BY 'mypassword';
...
mysql> REVOKE ALL PRIVILEGES, GRANT OPTION FROM 'hive'@'metastorehost';
mysql> GRANT ALL PRIVILEGES ON metastore.* TO 'hive'@'metastorehost';
mysql> FLUSH PRIVILEGES;
mysql> quit;

4. Configure the metastore service to communicate with the MySQL database

This step shows the configuration properties you need to set in hive-site.xml
(/usr/lib/hive/conf/hive-site.xml) to configure the metastore service to communicate with the MySQL
database, and provides sample settings. Though you can use the same hive-site.xml on all hosts (client,
metastore, HiveServer2), hive.metastore.uris is the only property thatmust be configured on all of them;
the others are used only on the metastore host.

Given aMySQL database running on myhost and the user account hivewith the password mypassword, set the
configuration as follows (overwriting any existing values).

Apache Hive Guide | 15

Configuring Apache Hive in CDH

http://dev.mysql.com/doc/refman/5.5/en/adding-users.html

Note: The hive.metastore.local property is no longer supported (as of Hive 0.10); setting
hive.metastore.uris is sufficient to indicate that you are using a remote metastore.

<property>
 <name>javax.jdo.option.ConnectionURL</name>
 <value>jdbc:mysql://myhost/metastore</value>
 <description>the URL of the MySQL database</description>
</property>

<property>
 <name>javax.jdo.option.ConnectionDriverName</name>
 <value>com.mysql.jdbc.Driver</value>
</property>

<property>
 <name>javax.jdo.option.ConnectionUserName</name>
 <value>hive</value>
</property>

<property>
 <name>javax.jdo.option.ConnectionPassword</name>
 <value>mypassword</value>
</property>

<property>
 <name>datanucleus.autoCreateSchema</name>
 <value>false</value>
</property>

<property>
 <name>datanucleus.fixedDatastore</name>
 <value>true</value>
</property>

<property>
 <name>datanucleus.autoStartMechanism</name>
 <value>SchemaTable</value>
</property>

<property>
 <name>hive.metastore.uris</name>
 <value>thrift://<n.n.n.n>:9083</value>
 <description>IP address (or fully-qualified domain name) and port of the metastore
host</description>
</property>

<property>
<name>hive.metastore.schema.verification</name>
<value>true</value>
</property>

Configuring a Remote PostgreSQL Database for the Hive Metastore

Before you can run the Hive metastore with a remote PostgreSQL database, you must configure a connector to the
remote PostgreSQL database, set up the initial database schema, and configure the PostgreSQL user account for the
Hive user.

1. Install and start PostgreSQL if you have not already done so

To install PostgreSQL on a RHEL system:

sudo yum install postgresql-server

To install PostgreSQL on a SLES system:

sudo zypper install postgresql-server

16 | Apache Hive Guide

Configuring Apache Hive in CDH

To install PostgreSQL on a Debian/Ubuntu system:

sudo apt-get install postgresql

After using the command to install PostgreSQL, you may need to respond to prompts to confirm that you do want
to complete the installation. In order to finish installation on RHEL compatible systems, you need to initialize the
database. Please note that this operation is not needed on Ubuntu and SLES systems as it's done automatically
on first start:

To initialize database files on RHEL compatible systems

sudo service postgresql initdb

To ensure that your PostgreSQL server will be accessible over the network, you need to do some additional
configuration.

First you need to edit the postgresql.conf file. Set the listen_addresses property to *, to make sure that
the PostgreSQL server starts listening on all your network interfaces. Also make sure that the
standard_conforming_strings property is set to off.

You can check that you have the correct values as follows:

On Red-Hat-compatible systems:

$ sudo cat /var/lib/pgsql/data/postgresql.conf | grep -e listen -e
standard_conforming_strings
listen_addresses = '*'
standard_conforming_strings = off

On SLES systems:

$ sudo cat /var/lib/pgsql/data/postgresql.conf | grep -e listen -e
standard_conforming_strings
listen_addresses = '*'
standard_conforming_strings = off

On Ubuntu and Debian systems:

$ cat /etc/postgresql/9.1/main/postgresql.conf | grep -e listen -e
standard_conforming_strings
listen_addresses = '*'
standard_conforming_strings = off

You also need to configure authentication for your network in pg_hba.conf. You need to make sure that the
PostgreSQL user that you will create later in this procedure will have access to the server from a remote host. To
do this, add a new line into pg_hba.con that has the following information:

host <database> <user> <network address> <mask>
 md5

The following example allows all users to connect from all hosts to all your databases:

host all all 0.0.0.0 0.0.0.0 md5

Note: This configuration is applicable only for a network listener. Using this configuration does
not open all your databases to the entire world; the user must still supply a password to
authenticate himself, and privilege restrictions configured in PostgreSQL will still be applied.

After completing the installation and configuration, you can start the database server:

Apache Hive Guide | 17

Configuring Apache Hive in CDH

Start PostgreSQL Server

sudo service postgresql start

Use chkconfig utility to ensure that your PostgreSQL server will start at a boot time. For example:

chkconfig postgresql on

You can use the chkconfig utility to verify that PostgreSQL server will be started at boot time, for example:

chkconfig --list postgresql

2. Install the PostgreSQL JDBC driver

Before you can run the Hive metastore with a remote PostgreSQL database, you must configure a JDBC driver to
the remote PostgreSQL database, set up the initial database schema, and configure the PostgreSQL user account
for the Hive user.

To install the PostgreSQL JDBC Driver on a RHEL 6 system:

On the Hive metastore server host, install postgresql-jdbc package and create symbolic link to the
/usr/lib/hive/lib/ directory. For example:

sudo yum install postgresql-jdbc
ln -s /usr/share/java/postgresql-jdbc.jar /usr/lib/hive/lib/postgresql-jdbc.jar

To install the PostgreSQL JDBC Driver on a SLES system:

On the Hive metastore server host, install postgresql-jdbc and symbolically link the file into the
/usr/lib/hive/lib/ directory.

$ sudo zypper install postgresql-jdbc
$ ln -s /usr/share/java/postgresql-jdbc.jar
/usr/lib/hive/lib/postgresql-jdbc.jar

To install the PostgreSQL JDBC Driver on a Debian/Ubuntu system:

On the Hive metastore server host, install libpostgresql-jdbc-java and symbolically link the file into the
/usr/lib/hive/lib/ directory.

sudo apt-get install libpostgresql-jdbc-java
ln -s /usr/share/java/postgresql-jdbc4.jar /usr/lib/hive/lib/postgresql-jdbc4.jar

3. Create the metastore database and user account

Proceed as in the following example, using the appropriate script in
/usr/lib/hive/scripts/metastore/upgrade/postgres/ n.n.n is the current Hive version, for example
1.1.0:

$ sudo -u postgres psql
postgres=# CREATE USER hiveuser WITH PASSWORD 'mypassword';
postgres=# CREATE DATABASE metastore;
postgres=# \c metastore;
You are now connected to database 'metastore'.
postgres=# \i
/usr/lib/hive/scripts/metastore/upgrade/postgres/hive-schema-n.n.n.postgres.sql
SET
SET
...

Nowyou need to grant permission for all metastore tables to userhiveuser. PostgreSQL does not have statements
to grant the permissions for all tables at once; you'll need to grant the permissions one table at a time. You could
automate the task with the following SQL script:

18 | Apache Hive Guide

Configuring Apache Hive in CDH

Note: If you are running these commands interactively and are still in the Postgres session
initiated at the beginning of this step, you do not need to repeat sudo -u postgres psql.

bash# sudo -u postgres psql
metastore=# \c metastore
metastore=# \pset tuples_only on
metastore=# \o /tmp/grant-privs
metastore=# SELECT 'GRANT SELECT,INSERT,UPDATE,DELETE ON "' || schemaname || '". "'
 ||tablename ||'" TO hiveuser ;'
metastore-# FROM pg_tables
metastore-# WHERE tableowner = CURRENT_USER and schemaname = 'public';
metastore=# \o
metastore=# \pset tuples_only off
metastore=# \i /tmp/grant-privs

You can verify the connection from the machine where you'll be running the metastore service as follows:

psql -h myhost -U hiveuser -d metastore
metastore=#

4. Configure the metastore service to communicate with the PostgreSQL database

This step shows the configuration properties you need to set in hive-site.xml
(/usr/lib/hive/conf/hive-site.xml) to configure themetastore service to communicatewith thePostgreSQL
database. Though you can use the same hive-site.xml on all hosts (client, metastore, HiveServer2),
hive.metastore.uris is the only property thatmust be configured on all of them; the others are used only
on the metastore host.

Given a PostgreSQLdatabase runningonhostmyhostunder theuser accounthivewith thepasswordmypassword,
you would set configuration properties as follows.

Note:

• The instructions in this section assume you are using Remotemode, and that the PostgreSQL
database is installed on a separate host from the metastore server.

• The hive.metastore.local property is no longer supported as of Hive 0.10; setting
hive.metastore.uris is sufficient to indicate that you are using a remote metastore.

<property>
 <name>javax.jdo.option.ConnectionURL</name>
 <value>jdbc:postgresql://myhost/metastore</value>
</property>

<property>
 <name>javax.jdo.option.ConnectionDriverName</name>
 <value>org.postgresql.Driver</value>
</property>

<property>
 <name>javax.jdo.option.ConnectionUserName</name>
 <value>hiveuser</value>
</property>

<property>
 <name>javax.jdo.option.ConnectionPassword</name>
 <value>mypassword</value>
</property>

<property>
 <name>datanucleus.autoCreateSchema</name>
 <value>false</value>
</property>

Apache Hive Guide | 19

Configuring Apache Hive in CDH

<property>
 <name>hive.metastore.uris</name>
 <value>thrift://<n.n.n.n>:9083</value>
 <description>IP address (or fully-qualified domain name) and port of the metastore
host</description>
</property>

<property>
<name>hive.metastore.schema.verification</name>
<value>true</value>
</property>

5. Test connectivity to the metastore

hive –e “show tables;”

Note: This will take a while the first time.

Configuring a Remote Oracle Database for the Hive Metastore

Before you can run the Hive metastore with a remote Oracle database, you must configure a connector to the remote
Oracle database, set up the initial database schema, and configure the Oracle user account for the Hive user.

1. Install and start Oracle

The Oracle database is not part of any Linux distribution and must be purchased, downloaded and installed
separately. You can use the Express edition, which can be downloaded free from the Oracle website.

2. Install the Oracle JDBC Driver

You must download the Oracle JDBC Driver from the Oracle website and put the JDBC JAR file into the
/usr/lib/hive/lib/ directory. For example, the version 6 JAR file is named ojdbc6.jar. To download the
JDBC driver, visit the Oracle JDBC and UCP Downloads page, and click on the link for your Oracle Database version.
Download the ojdbc6.jar file (or ojdbc8.jar, for Oracle Database 12.2).

Note: This URLs was correct at the time of publication, but can change.

sudo mv ojdbc<version_number>.jar /usr/lib/hive/lib/

3. Create the metastore database and user account

Connect to your Oracle database as an administrator and create the user that will use the Hive metastore.

$ sqlplus "sys as sysdba"
SQL> create user hiveuser identified by mypassword;
SQL> grant connect to hiveuser;
SQL> grant all privileges to hiveuser;

Connect as the newly created hiveuser user and load the initial schema, as in the following example. Use the
appropriate script for the current release (for example hive-schema-1.1.0.oracle.sql) in
/usr/lib/hive/scripts/metastore/upgrade/oracle/ :

$ sqlplus hiveuser
SQL> @/usr/lib/hive/scripts/metastore/upgrade/oracle/hive-schema-n.n.n.oracle.sql

20 | Apache Hive Guide

Configuring Apache Hive in CDH

http://www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html
http://www.oracle.com/technetwork/database/application-development/jdbc/downloads/index.html

Connect back as an administrator and remove the power privileges fromuserhiveuser. Then grant limited access
to all the tables:

$ sqlplus "sys as sysdba"
SQL> revoke all privileges from hiveuser;
SQL> BEGIN
 2 FOR R IN (SELECT owner, table_name FROM all_tables WHERE owner='HIVEUSER') LOOP

 3 EXECUTE IMMEDIATE 'grant SELECT,INSERT,UPDATE,DELETE on
'||R.owner||'.'||R.table_name||' to hiveuser';
 4 END LOOP;
 5 END;
 6
 7 /

4. Configure the metastore service to Communicate with the Oracle Database

This step shows the configuration properties you need to set in hive-site.xml
(/usr/lib/hive/conf/hive-site.xml) to configure the metastore service to communicate with the Oracle
database, and provides sample settings. Though you can use the same hive-site.xml on all hosts (client,
metastore, HiveServer2), hive.metastore.uris is the only property that must be configured on all of them;
the others are used only on the metastore host.

Example

Given an Oracle database running on myhost and the user account hiveuser with the password mypassword,
set the configuration as follows (overwriting any existing values):

<property>
 <name>javax.jdo.option.ConnectionURL</name>
 <value>jdbc:oracle:thin:@//myhost/xe</value>
</property>

<property>
 <name>javax.jdo.option.ConnectionDriverName</name>
 <value>oracle.jdbc.OracleDriver</value>
</property>

<property>
 <name>javax.jdo.option.ConnectionUserName</name>
 <value>hiveuser</value>
</property>

<property>
 <name>javax.jdo.option.ConnectionPassword</name>
 <value>mypassword</value>
</property>

<property>
 <name>datanucleus.autoCreateSchema</name>
 <value>false</value>
</property>

<property>
 <name>datanucleus.fixedDatastore</name>
 <value>true</value>
</property>

<property>
 <name>hive.metastore.uris</name>
 <value>thrift://<n.n.n.n>:9083</value>
 <description>IP address (or fully-qualified domain name) and port of the metastore
host</description>
</property>

<property>
<name>hive.metastore.schema.verification</name>
<value>true</value>
</property>

Apache Hive Guide | 21

Configuring Apache Hive in CDH

Specifying a JDBC URL Override for Database Connections

In instances where you wish to configure fine-grained tuning of the HMS database connection, you can specify a JDBC
URL override to be used when establishing a connection to the HMS database.

Warning:

This configuration setting is intended for advanced database users only. Be aware that when using
this override, the following properties are overwritten (in other words, their values will not be used):

• Hive Metastore Database Name
• Hive Metastore Database Host
• Hive Metastore Database Port
• Enable TLS/SSL to the Hive Metastore Database

Prerequisites

• The required default user role is Configurator.
• When using the Hive Metastore Database JBC URL Override, youmust still provide the following properties to

connect to the database:

– Hive Metastore Database Type
– Hive Metastore Database User
– Hive Metastore Database Password

To specify a Hive Metastore JDBC URL Override for database connections:

1. Open the Cloudera Manager Admin Console and go to the Hive-1 service.
2. Click the Configuration tab.
3. Select Category > Hive Metastore Database.
4. Edit theHiveMetastoreDatabase JDBCURLOverrideproperty according to your cluster configuration (the default

value is Empty ""):

Hive Metastore Database JDBC URL Override FormatDatabase Type

jdbc:mysql://<host>:<port>/
<metastore_db>?key=value

MySQL

jdbc:postgresql://<host>:<port>/
<metastore_db>?key=value

PostgreSQL

jdbc:oracle:thin:@//<host>:<port>/
<service_name>

Oracle JDBC Thin using a Service Name

jdbc:oracle:thin:@<host>:<port>:<SID>Oracle JDBC Thin using SID

jdbc:oracle:thin:@<TNSName>Oracle JDBC Thin using TNSName

Important: Formats are dependent on the JDBC driver version that you are using and subject to
change between releases. Refer to your database product documentation to confirm JDBC formats
for the specific database version you are using.

22 | Apache Hive Guide

Configuring Apache Hive in CDH

Configuring HiveServer2 for CDH
Youmustmake the following configuration changes before usingHiveServer2. Failure to do somay result in unpredictable
behavior.

Important: Because of concurrency and security issues, HiveServer1 was deprecated in CDH 5.3 and
has been removed from CDH 6.

HiveServer2 Memory and Hardware Requirements

DiskCPUJava HeapComponent

Minimum 1 diskMinimum 4 dedicated cores4 GBSingle ConnectionHiveServer 2

4-6 GB2-10 connections This disk is required
for the following:

6-12 GB11-20 connections
• HiveServer2 log

files12-16
GB

21-40 connections

• stdout and
stderr output
files

16-24
GB

41 to 80 connections

• Configuration
files

Cloudera recommends splitting
HiveServer2 into multiple

• Operation logs
stored in the

instances and load balancing
them once you start allocating

operation_logs_dirmore than 16 GB to
directory, which
is configurable

HiveServer2. The objective is to
adjust the size to reduce the

• Any temporary
files that might

impact of Java garbage
collection on active processing
by the service. be created by

local map tasks
Set this value using the Java
Heap Size of HiveServer2 in

under the /tmp
directory

Bytes Hive configuration
property.

Minimum 1 diskMinimum 4 dedicated cores4 GBSingle ConnectionHive Metastore

4-10 GB2-10 connections This disk is required so
that the Hive

10-12
GB

11-20 connections metastore can store
the following artifacts:

12-16
GB

21-40 connections • Logs
• Configuration

files16-24
GB

41 to 80 connections
• Backend

database that isSet this value using the Java
Heap Size of Hive Metastore used to store

metadata if theServer in Bytes Hive
configuration property. database server

is also hosted on
the same node

Apache Hive Guide | 23

Configuring Apache Hive in CDH

DiskCPUJava HeapComponent

N/AN/AMinimum: 2 GBBeeline CLI

Important: These numbers are general guidance only, and can be affected by factors such as number
of columns, partitions, complex joins, and client activity. Based on your anticipated deployment, refine
through testing to arrive at the best values for your environment.

For information on configuring heap for HiveServer2, as well as Hive metastore and Hive clients, see Tuning Apache
Hive in CDH on page 63 and the following video:

After you start the video, click YouTube in the lower right corner of the player window to watch it on YouTube where
you can resize it for clearer viewing.

Figure 1: Troubleshooting HiveServer2 Service Crashes

hive.zookeeper.client.port

If ZooKeeper is not using the default value for ClientPort, you need to set hive.zookeeper.client.port in
/etc/hive/conf/hive-site.xml to the same value that ZooKeeper is using. Check
/etc/zookeeper/conf/zoo.cfg to find the value for ClientPort. If ClientPort is set to any value other than
2181 (the default), sethive.zookeeper.client.port to the same value. For example, if ClientPort is set to
2222, set hive.zookeeper.client.port to 2222 as well:

<property>
 <name>hive.zookeeper.client.port</name>
 <value>2222</value>
 <description>
 The port at which the clients will connect.
 </description>
</property>

JDBC driver

The connection URL format and the driver class for HiveServer2:

Driver ClassConnection URL

org.apache.hive.jdbc.HiveDriverjdbc:hive2://<host>:<port>

Authentication

HiveServer2 can be configured to authenticate all connections; by default, it allows any client to connect. HiveServer2
supports either Kerberos or LDAP authentication; configure this in the hive.server2.authentication property
in the hive-site.xml file. You can also configure Pluggable Authentication, which allows you to use a custom
authentication provider for HiveServer2; and HiveServer2 Impersonation, which allows users to execute queries and
access HDFS files as the connected user rather than the super user who started the HiveServer2 daemon. For more
information, see Hive Security Configuration.

Running HiveServer2

Important: Because of concurrency and security issues, HiveServer1 was deprecated in CDH 5.3 and
has been removed from CDH 6. The Hive CLI is deprecated and will be removed in a future release.
Cloudera recommends you migrate to Beeline and HiveServer2 as soon as possible. The Hive CLI is
not needed if you are using Beeline with HiveServer2.

24 | Apache Hive Guide

Configuring Apache Hive in CDH

HiveServer2 binds to port 10000 by default. Set the port for HiveServer2 in thehive.server2.thrift.port property
in the hive-site.xml file. For example:

<property>
 <name>hive.server2.thrift.port</name>
 <value>10001</value>
 <description>TCP port number to listen on, default 10000</description>
</property>

You can also specify the port and the host IP address for HiveServer2 by setting these environment variables:

Host AddressPort

HIVE_SERVER2_THRIFT_BIND_HOSTHIVE_SERVER2_THRIFT_PORT

Starting the Hive Metastore in CDH
Cloudera recommends that you deploy the Hive metastore, which stores the metadata for Hive tables and partitions,
in “remote mode.” In this mode the metastore service runs in its own JVM process and other services, such as
HiveServer2, HCatalog, and Apache Impala communicate with the metastore using the Thrift network API.

Important:

If you are running the metastore in Remote mode, youmust start the metastore before starting
HiveServer2.

After installing and configuring the Hive metastore, you can start the service.

To run the metastore as a daemon, the command is:

sudo service hive-metastore start

Apache Hive File System Permissions in CDH
Your Hive data is stored in HDFS, normally under /user/hive/warehouse. The /user/hive and
/user/hive/warehouse directories need to be created if they do not already exist. Make sure this location (or any
path you specify as hive.metastore.warehouse.dir in your hive-site.xml) exists and is writable by the users
whom you expect to be creating tables.

Important: If you are using Sentry, do not follow the instructions on this page. See Before Enabling
the Sentry Service for information on how to set up the Hive warehouse directory permissions for use
with Sentry.

In addition, each user submitting queries must have an HDFS home directory. /tmp (on the local file system) must be
world-writable, as Hive makes extensive use of it.

HiveServer2 Impersonation allows users to execute queries and access HDFS files as the connected user.

If you do not enable impersonation, HiveServer2 by default executes all Hive tasks as the user ID that starts the Hive
server; for clusters that use Kerberos authentication, this is the ID that maps to the Kerberos principal used with
HiveServer2. Setting permissions to 1777, as recommended above, allows this user access to the Hive warehouse
directory.

You can change this default behavior by setting hive.metastore.execute.setugi to true on both the server and
client. This setting causes the metastore server to use the client's user and group permissions.

Apache Hive Guide | 25

Configuring Apache Hive in CDH

Starting, Stopping, and Using HiveServer2 in CDH
HiveServer2 is an improved version of HiveServer that supports Kerberos authentication and multi-client concurrency.
You can access HiveServer2 by using the Beeline client.

Warning:

If you are running the metastore in Remote mode, you must start the Hive metastore before you start
HiveServer2. HiveServer2 tries to communicatewith themetastore as part of its initialization bootstrap.
If it is unable to do this, it fails with an error.

Note that because of concurrency and security issues, HiveServer1 was deprecated in CDH 5.3 and
has been removed from CDH 6.

To start HiveServer2:

sudo service hive-server2 start

To stop HiveServer2:

sudo service hive-server2 stop

To confirm that HiveServer2 is working, start the beeline CLI and use it to execute a SHOW TABLES query on the
HiveServer2 process:

$ /usr/lib/hive/bin/beeline
beeline> !connect jdbc:hive2://localhost:10000 username password
org.apache.hive.jdbc.HiveDriver
0: jdbc:hive2://localhost:10000> SHOW TABLES;
show tables;
+-----------+
| tab_name |
+-----------+
+-----------+
No rows selected (0.238 seconds)
0: jdbc:hive2://localhost:10000>

Using the Beeline CLI

Beeline is the CLI (command-line interface) developed specifically to interact with HiveServer2. It is based on the
SQLLine CLI written by Marc Prud'hommeaux.

Note:

Cloudera does not currently support using the Thrift HTTP protocol to connect Beeline to HiveServer2
(meaning that you cannot set hive.server2.transport.mode=http). Use the Thrift TCP protocol.

Use the following commands to start beeline and connect to a running HiveServer2 process. In this example the
HiveServer2 process is running on localhost at port 10000:

$ beeline
beeline> !connect jdbc:hive2://localhost:10000 username password
org.apache.hive.jdbc.HiveDriver
0: jdbc:hive2://localhost:10000>

26 | Apache Hive Guide

Configuring Apache Hive in CDH

http://sqlline.sourceforge.net/

Note:

If you are using HiveServer2 on a cluster that does not have Kerberos security enabled, then the
password is arbitrary in the command for starting Beeline.

If you are using HiveServer2 on a cluster that does have Kerberos security enabled, see HiveServer2
Security Configuration.

If you use TLS/SSL encryption, discussed later, the JDBC URL must include specifying
ssl=true;sslTrustStore=<path_to_truststore>. Truststore password requirements depend on the version of Java running
in the cluster

• Java 11: the truststore format has changed to PKCS and the truststore password is required; otherwise, the
connection fails.

• Java 8: The trust store password does not need to be specified.

The syntax for the JDBC URL is:

jdbc:hive2://#<host>:#<port>/#<dbName>;ssl=true;sslTrustStore=#<ssl_truststore_path>;trustStorePassword=#<truststore_password>;#<otherSessionConfs>?#<hiveConfs>#<hiveVars>

For example:

 $ beeline
 beeline> !connect
jdbc:hive2://<host>:8443/;ssl=true;transportMode=http;httpPath=gateway/cdp-proxy-api/hive;sslTrustStore=/<path>/bin/certs/gateway-client-trust.jks;trustStorePassword=changeit

The password changeit is the Java default trust store password.

There are some Hive CLI features that are not available with Beeline. For example:

• Beeline does not show query logs like the Hive CLI
• When adding JARs to HiveServer2 with Beeline, the JARs must be on the HiveServer2 host.

At present the best source for documentation on Beeline is the original SQLLine documentation.

Using Apache Hive with HBase in CDH
You need to associate the HBase service with the Hive service, so Hive scripts can use HBase as described in the
procedure below.

Prerequisites for Using Hive with HBase

• Using Cloudera Manager, install CDH with HBase using Cloudera Manager. Add the Hive service, and set up the
cluster.

• If Kerberos is enabled, assign the following roles to the gateway node:

– Hive Gateway Role
– HDFS Gateway Role
– HBase Gateway Role

• If Kerberos is not enabled, assign the following roles to the gateway node:

– Hive Gateway Role
– HDFS Gateway Role

Apache Hive Guide | 27

Configuring Apache Hive in CDH

http://sqlline.sourceforge.net/

Associate HBase with Hive

1. In a Sentry-controlled environment, grant the hive user most privileges in HBase.

grant 'hive', 'RWXC'

2. From the Cloudera Manager home page, click the Hive service.
3. On the Hive service page, select the Configuration tab.
4. On the Hive service Configuration page, type hbase into the search text box.
5. Locate theHBase Service configuration property on the page, select the HBase instance that youwant to associate

with Hive, and click Save Changes.
6. Redeploy the client configuration for the Hive service and restart all stale services.

The HBase service is now associated with the Hive service, and your Hive scripts can use HBase.

Using the Metastore Schema Tool in CDH
Use theMetastore command-line schematool to upgrade or validate themetastore database schema for unmanaged
clusters.

Note:

If you are using Cloudera Manager to manage your clusters, the Metastore schematool is also
available in the Hive service page to validate or upgrade the metastore:

1. From the Cloudera Manager Admin console, select the Hive service.
2. • To validate the schema, on the Hive service page, click Actions, and select Validate Hive

Metastore Schema.
• To upgrade the schema:

1. On the Hive service page, click Actions, and select Stop to stop the service.
2. Still on theHive service page, clickActions, and selectUpgradeHiveDatabaseMetastore

Schema.
3. After the upgrade completes, restart the service.

Schema Version Verification and Validation

Hive records the schema version in themetastore database and verifies that themetastore schema version is compatible
with the Hive binaries that are going to access the metastore. The Hive configuration properties that implicitly create
or alter the existing schema are disabled by default. Consequently, Hive does not attempt to change the metastore
schema implicitly. When you execute a Hive query against a metastore where the schema is not initialized or the
schema is old, it fails to access the metastore and an entry similar to the following example appears in the error log:

...
Caused by: MetaException(message:Version information not found in metastore.)
 at org.apache.hadoop.hive.metastore.ObjectStore.checkSchema(ObjectStore.java:5638)
...

Use Hive schematool to repair the condition that causes this error by either initializing the schema or upgrading it.

Using schematool

Use the Metastore schematool to initialize the metastore schema for the current Hive version or to upgrade the
schema from an older version. The tool tries to find the current schema from the metastore if it is available there.

28 | Apache Hive Guide

Configuring Apache Hive in CDH

The schematool determines the SQL scripts that are required to initialize or upgrade the schema and then executes
those scripts against themetastore database. Themetastore database connection information such as JDBC URL, JDBC
driver, and database credentials are extracted from the Hive configuration. You can provide alternate database
credentials if needed.

The following options are available as part of the schematool package:

$ schematool -help
usage: schemaTool
 -dbType <databaseType> Metastore database type
 -dryRun List SQL scripts (no execute)

 -help Print this message
 -info Show config and schema details
 -initSchema Schema initialization
 -initSchemaTo <initTo> Schema initialization to a version
 -passWord <password> Override config file password
 -upgradeSchema Schema upgrade
 -upgradeSchemaFrom <upgradeFrom> Schema upgrade from a version
 -userName <user> Override config file user name
 -validate Validate the database
 -verbose Only print SQL statements

The dbType option must always be specified and can be one of the following:

derby|mysql|postgres|oracle

Prerequisite Configuration

Before you can use theschematool, youmust add the following properties to the/etc/hive/conf/hive-site.xml
file:

• javax.jdo.option.ConnectionURL
• javax.jdo.option.ConnectionDriverName

For example, the following hive-site.xml entries aremade if you are using aMySQL database as your Hivemetastore
and hive1 is the database user name:

<property>
 <name>javax.jdo.option.ConnectionURL</name>

<value>jdbc:mysql://my_cluster.com:3306/hive1?useUnicode=true&characterEncoding=UTF-8</value>
</property>
<property>
 <name>javax.jdo.option.ConnectionDriverName</name>
 <value>com.mysql.jdbc.Driver</value>
</property>

Note: The Hive Schema tool does not support using TLS/SSL encryption to HMS database.

Usage Examples

To use the schematool command-line tool, navigate to the directory where it is located:

• If you installed CDH using parcels, schematool is usually located at:

/opt/cloudera/parcels/CDH/lib/hive/bin/schematool

• If you installed CDH using packages, schematool is usually located at:

/usr/lib/hive/bin/schematool

Apache Hive Guide | 29

Configuring Apache Hive in CDH

After you locate the executable, you can use schematool to perform the following actions:

• Initialize your metastore to the current schema for a new Hive setup using the initSchema option.

$ schematool -dbType mysql -initSchema -passWord <db_user_pswd> -userName
<db_user_name>

Metastore connection URL:
jdbc:mysql://<cluster_address>:3306/<user_name>?useUnicode=true&characterEncoding=UTF-8
Metastore Connection Driver : com.mysql.jdbc.Driver
Metastore connection User: <user_name>
Starting metastore schema initialization to <new_version>
Initialization script hive-schema-<new_version_number>.mysql.sql
Initialization script completed
schemaTool completed

• Get schema information using the info option.

$ schematool -dbType mysql -info -passWord <db_user_pswd> -userName
<db_user_name>

Metastore connection URL:
jdbc:mysql://<cluster_address>:3306/<user_name>?useUnicode=true&characterEncoding=UTF-8
Metastore Connection Driver : com.mysql.jdbc.Driver
Metastore connection User: <user_name>
Hive distribution version: <new_version>
Required schema version: <new_version>
Metastore schema version: <new_version>
schemaTool completed

• If you attempt to get schema information from older metastores that did not store version information or if the
schema is not initialized, the tool reports an error as follows.

$ schematool -dbType mysql -info -passWord <db_user_pswd> -userName
<db_user_name>

Metastore connection URL:
jdbc:mysql://<cluster_address>:3306/<user_name>?useUnicode=true&characterEncoding=UTF-8
Metastore Connection Driver : com.mysql.jdbc.Driver
Metastore connection User: <user_name>
Hive distribution version: <new_version>
Required schema version: <new_version>
org.apache.hadoop.hive.metastore.HiveMetaException: Failed to get schema version,
Cause:<cause_description>
*** schemaTool failed ***

• You can upgrade the schema from a specific release by specifying the -upgradeSchemaFrom option. The
-upgradeSchemaFrom option requires theHive version and not the CDH version. See CDH6Packaging Information
for information about which Hive version ships with each CDH release. The following example shows how to
upgrade from CDH 5.2/Hive 0.13.1:

$ schematool -dbType mysql -passWord <db_user_pswd> -upgradeSchemaFrom
 0.13.1 -userName <db_user_name>
Metastore connection URL:
jdbc:mysql://<cluster_address>:3306/<user_name>?useUnicode=true&characterEncoding=UTF-8
Metastore Connection Driver : com.mysql.jdbc.Driver
Metastore connection User: <user_name>
Starting upgrade metastore schema from version 0.13.1 to <new_version>
Upgrade script upgrade-0.13.1-to-<new_version>.mysql.sql
Completed pre-0-upgrade-0.13.1-to-<new_version>.mysql.sql
Completed upgrade-0.13.1-to-<new_version>.mysql.sql
schemaTool completed

30 | Apache Hive Guide

Configuring Apache Hive in CDH

• Use the -validate option to verify themetastore schema. The following example shows the types of validations
that are performed against the metastore schema when you use this option with schematool:

$ schematool -dbType mysql -passWord <db_user_pswd> -userName
<db_user_name> -validate

Starting metastore validation

Validating schema version
Succeeded in schema version validation.
[SUCCESS]

Validating sequence number for SEQUENCE_TABLE
Succeeded in sequence number validation for SEQUENCE_TABLE
[SUCCESS]

Validating metastore schema tables
Succeeded in schema table validation.
[SUCCESS]

Validating database/table/partition locations
Succeeded in database/table/partition location validation
[SUCCESS]

Validating columns for incorrect NULL values
Succeeded in column validation for incorrect NULL values
[SUCCESS]

Done with metastore validation: [SUCCESS]
schemaTool completed

• If you want to find out all the required scripts for a schema upgrade, use the dryRun option.

$ schematool -dbType mysql -upgradeSchemaFrom 0.10.0 -dryRun -passWord
<db_user_pswd> -userName <db_user_name>

Metastore connection URL:
jdbc:mysql://<cluster_address>:3306/<user_name>?useUnicode=true&characterEncoding=UTF-8
Metastore Connection Driver : com.mysql.jdbc.Driver
Metastore connection User: <user_name>
Starting upgrade metastore schema from version 0.10.0 to <new_version>
Upgrade script upgrade-0.10.0-to-0.11.0.mysql.sql
Upgrade script upgrade-0.11.0-to-0.12.0.mysql.sql
Upgrade script upgrade-0.12.0-to-0.13.0.mysql.sql
Upgrade script upgrade-0.13.0-to-0.14.0.mysql.sql
Upgrade script upgrade-0.14.0-to-1.1.0.mysql.sql
Upgrade script upgrade-1.1.0-to-<new_version>.mysql.sql
schemaTool completed

Installing Cloudera JDBC and ODBC Drivers on Clients in CDH
To install Cloudera Hive JDBC drivers or ODBC drivers, go to the following download pages on Cloudera's web site.

Cloudera Hive JDBC Driver Download

The Cloudera Hive JDBC Driver versions 2.5.20, 2.6.1, and later have been tested with CDH 6.0. Cloudera recommends
that you use these versions with Hive when you upgrade to CDH 6.0.

To download the Cloudera Hive JDBC Driver, go to:

www.cloudera.com/downloads/connectors/hive/jdbc/2-5-20.html.

Choose version 2.5.20 or later from the Version drop-down list on the page.

For documentation about installing and using the driver, see the guide for the appropriate driver type and version at
the Cloudera Enterprise Connector Documentation page.

Apache Hive Guide | 31

Configuring Apache Hive in CDH

https://www.cloudera.com/downloads/connectors/hive/jdbc/2-5-20.html
https://www.cloudera.com/documentation/other/connectors.html

Cloudera Hive ODBC Driver Download

The Cloudera Hive ODBC driver version 2.5.25 and later has been tested with CDH 6.0. Cloudera recommends that you
use these versions when you upgrade to CDH 6.0.

To download the Cloudera Hive ODBC driver, go to:

www.cloudera.com/downloads/connectors/hive/odbc/2-5-25.html.

Choose version 2.5.25 or later from the Version drop-down list on the page.

For documentation about installing and using the driver, see the guide for the appropriate driver type and version at
the Cloudera Enterprise Connector Documentation page.

Setting HADOOP_MAPRED_HOME
• For each user who will be submittingMapReduce jobs usingMapReduce v2 (YARN), or running Pig, Hive, or Sqoop

in a YARN installation,make sure that the HADOOP_MAPRED_HOME environment variable is set correctly, as follows:

export HADOOP_MAPRED_HOME=/usr/lib/hadoop-mapreduce

• For each user whowill be submittingMapReduce jobs usingMapReduce v1 (MRv1), or running Pig, Hive, or Sqoop
in an MRv1 installation, set the HADOOP_MAPRED_HOME environment variable as follows:

export HADOOP_MAPRED_HOME=/usr/lib/hadoop-0.20-mapreduce

Configuring the Hive Metastore to Use HDFS High Availability in CDH
In this task, you configure a host for connecting to the backend database. You can either configure environment
variables or add configuration properties to hive-site.xml. Configure a limited number of hosts to limit exposing
the backend Hive database username, password, and connection string. To configure environment variables and run
the metatool, follow this procedure:

1. Connect to any Hive Gateway host, Hive Metastore (HMS), or HiveServer (HS2) host.
2. Set HIVE_CONF_DIR to the Hive MetaStore process directory.
3. Set HADOOP_CREDSTORE_PASSWORD to the same value defined in the supervisor.conf file (which is located in

the Hive MetaStore process directory)
4. Set AUX_CLASSPATH to the value of your your HiveMetaStore process directory, which is defined in logs/stderr.log.

For example:

export HIVE_CONF_DIR=/var/run/cloudera-scm-agent/process/4595-hive-HIVEMETASTORE
export HADOOP_CREDSTORE_PASSWORD=abcdefg1234...
export AUX_CLASSPATH=/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2....

5. Run the following command to connect to the database and list FS roots:

hive --service metatool -listFSRoot

The output is:

Listing FS Roots..
hdfs://[hostname]:8020/user/hive/warehouse

32 | Apache Hive Guide

Configuring Apache Hive in CDH

https://www.cloudera.com/downloads/connectors/hive/odbc/2-5-25.html
https://www.cloudera.com/documentation/other/connectors.html

Alternatively, instead of setting and exporting environment variables, open the hive-site.xml file in /etc/hive/conf/.
Add the following properties to the hive-site.xml:

<property>
 <name>javax.jdo.option.ConnectionURL</name>
 <value>jdbc:mysql://[ENTER BACKEND DATABASE HOSTNAME]:[ENTER PORT]/[ENTER HIVE BACKEND
 DATABASE USERNAME]?useUnicode=true&characterEncoding=UTF-8</value>
</property>
<property>
 <name>javax.jdo.option.ConnectionUserName</name>
 <value>[ENTER BACKEND DATABASE USERNAME]</value>
</property>
<property>
 <name>javax.jdo.option.ConnectionPassword</name>
 <value>[ENTER BACKEND DATABASE PASSWORD]</value>
</property>

To determine what the backend database host, port, username, or password is, in Cloudera Manager, go to Hive >
Configurations. Set Category Filter to Hive Metastore Database. The password is not exposed in plaintext.

To configure other CDH components to use HDFS high availability, see Configuring Other CDH Components to Use
HDFS HA.

Apache Hive Guide | 33

Configuring Apache Hive in CDH

Using & Managing Apache Hive in CDH

Apache Hive is a powerful data warehousing application for Hadoop. It enables you to access your data using HiveQL,
a language similar to SQL.

Hive Roles
Hive is implemented in three roles:

• Hive metastore - Provides metastore services when Hive is configured with a remote metastore.

Cloudera recommends using a remote Hivemetastore. Because the remotemetastore is recommended, Cloudera
Manager treats the Hive Metastore Server as a required role for all Hive services. A remote metastore provides
the following benefits:

– The Hive metastore database password and JDBC drivers do not need to be shared with every Hive client;
only the Hive Metastore Server does. Sharing passwords with many hosts is a security issue.

– You can control activity on the Hive metastore database. To stop all activity on the database, stop the Hive
Metastore Server. This makes it easy to back up and upgrade, which require all Hive activity to stop.

See Configuring the Hive Metastore.

For information about configuring a remote Hive metastore database with Cloudera Manager, see Step 4: Install
and Configure Databases. To configure high availability for theHivemetastore, see ConfiguringHMSHigh Availability
in CDH on page 81.

• HiveServer2 - Enables remote clients to run Hive queries, and supports a Thrift API tailored for JDBC and ODBC
clients, Kerberos authentication, andmulti-client concurrency. A CLI namedBeeline is also included. SeeHiveServer2
documentation for more information.

• WebHCat - HCatalog is a table and storage management layer for Hadoop that makes the same table information
available to Hive, Pig, MapReduce, and Sqoop. Table definitions are maintained in the Hive metastore, which
HCatalog requires. WebHCat allows you to access HCatalog using an HTTP (REST style) interface.

Hive Execution Engines
Hive in CDH supports two execution engines: MapReduce and Spark. To configure an execution engine perform one
of following steps:

• Beeline - (Can be set per query) Run the set hive.execution.engine=engine command, where engine is
either mr or spark. The default is mr. For example:

set hive.execution.engine=spark;

To determine the current setting, run

set hive.execution.engine;

• Cloudera Manager (Affects all queries, not recommended).

1. Go to the Hive service.
2. Click the Configuration tab.
3. Search for "execution".
4. Set the Default Execution Engine property to MapReduce or Spark. The default is MapReduce.
5. Enter a Reason for change, and then click Save Changes to commit the changes.
6. Return to the Home page by clicking the Cloudera Manager logo.

34 | Apache Hive Guide

Using & Managing Apache Hive in CDH

7. Click the icon that is next to any stale services to invoke the cluster restart wizard.
8. Click Restart Stale Services.
9. Click Restart Now.
10. Click Finish.

Use Cases for Hive
Because Hive is a petabyte-scale data warehouse system built on the Hadoop platform, it is a good choice for
environments experiencing phenomenal growth in data volume. The underlying MapReduce interface with HDFS is
hard to program directly, but Hive provides an SQL interface, making it possible to use existing programming skills to
perform data preparation.

Hive on MapReduce or Spark is best-suited for batch data preparation or ETL:

• You must run scheduled batch jobs with very large ETL sorts with joins to prepare data for Hadoop. Most data
served to BI users in Impala is prepared by ETL developers using Hive.

• You run data transfer or conversion jobs that take many hours. With Hive, if a problem occurs partway through
such a job, it recovers and continues.

• You receive or provide data in diverse formats, where the Hive SerDes and variety of UDFs make it convenient to
ingest and convert the data. Typically, the final stage of the ETL process with Hive might be to a high-performance,
widely supported format such as Parquet.

Managing Hive Using Cloudera Manager
Cloudera Manager uses the Hive metastore, HiveServer2, and the WebHCat roles to manage the Hive service across
your cluster. Using Cloudera Manager, you can configure the Hive metastore, the execution engine (either MapReduce
or Spark), and manage HiveServer2.

How Hive Configurations are Propagated to Hive Clients

Because the Hive service does not haveworker roles, anothermechanism is needed to enable the propagation of client
configurations to the other hosts in your cluster. In Cloudera Manager gateway roles fulfill this function. Whether you
add a Hive service at installation time or at a later time, ensure that you assign the gateway roles to hosts in the cluster.
If you do not have gateway roles, client configurations are not deployed.

Disabling Bypass Mode

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

In bypass mode Hive clients directly access the metastore database instead of using the Hive Metastore Server for
metastore information.

1. Go to the Hive service.
2. Click the Configuration tab.
3. Select Scope > HIVE service_name (Service-Wide)
4. Select Category > Advanced.
5. Clear the Bypass Hive Metastore Server property.
6. Enter a Reason for change, and then click Save Changes to commit the changes.
7. Re-deploy Hive client configurations.
8. Restart Hive and any Hue or Impala services configured to use that Hive service.

Apache Hive Guide | 35

Using & Managing Apache Hive in CDH

Overview of Ingesting and Querying Data with Apache Hive in CDH
Data ingestion begins your data pipeline or "write path." Classic data pipelines bring in data and then apply ETL
operations on it, which clean and transform data for consumption. Apache Hive in CDH is the preferred tool for ETL
workloads. Hive queries transform data, using functions such as CAST or TRIM, or by joining data sets, to ensure the
data conforms to target data models for your data warehouse. Then the data can be consumed. For example, by
business intelligence (BI) tools or users' ad-hoc queries.

Ingesting Data with Hive

Hive can ingest data in several different file formats, such as Parquet, Avro, TEXTFILE, or RCFile. If you are setting up
a data pipeline where Apache Impala is involved on the query side, use Parquet. See Using Apache Parquet Data Files
with CDH for general information about the Parquet file format and for information about using Parquet tables in Hive.
If a custom file format is required, you can extend the Hive SerDes. See the Apache Hive wiki for information about
the Hive SerDes and how to write your own for Hive.

Important:

The configuration property serialization.null.format is set in Hive and Impala engines as
SerDes or table properties to specify how to serialize/deserialize NULL values into a storage format.

This configuration option is suitable for text file formats only. If used with binary storage formats such
as RCFile or Parquet, the option causes compatibility, complexity and efficiency issues.

See Using Avro Data Files in Hive for details about using Avro to ingest data into Hive tables and about using Snappy
compression on the output files.

Column and Table Statistics for Query Optimization

Statistics for Hive can be numbers of rows of tables or partitions and the histograms of interesting columns. Statistics
are used by the cost functions of the query optimizer to generate query plans for the purpose of query optimization.

See Accessing Apache Hive Table Statistics in CDH on page 47 for details about collecting statistics for Hive.

Transaction (ACID) Support in Hive

The CDH distribution of Hive does not support transactions (HIVE-5317). Currently, transaction support in Hive is an
experimental feature that only works with the ORC file format. Cloudera recommends using the Parquet file format,
which works across many tools. Merge updates in Hive tables using existing functionality, including statements such
as INSERT, INSERT OVERWRITE, and CREATE TABLE AS SELECT.

Upstream Information for Hive

Detailed Hive documentation is available on the Apache Software Foundation site on the Hive project page. For specific
areas of the Apache Hive documentation, see:

• Hive Query Language (HiveQL) Manual (for SQL syntax)
• Apache Hive wiki
• User Documentation
• Administrator Documentation

Because Cloudera does not support all Hive features, for example ACID (transactions), always check external Hive
documentation against the current version and supported features of Hive included in CDH distribution.

Hive has its own JIRA issue tracker.

36 | Apache Hive Guide

Using & Managing Apache Hive in CDH

https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HiveSerDe
https://issues.apache.org/jira/browse/HIVE-5317
http://blog.cloudera.com/blog/2014/02/native-parquet-support-comes-to-apache-hive/
http://hive.apache.org/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://cwiki.apache.org/confluence/display/Hive/Home
https://cwiki.apache.org/confluence/display/Hive/Home#Home-UserDocumentation
https://cwiki.apache.org/confluence/display/Hive/Home#Home-AdministratorDocumentation
https://issues.apache.org/jira/browse/hive/?selectedTab=com.atlassian.jira.jira-projects-plugin:summary-panel

Apache Parquet Tables with Hive in CDH
Apache Parquet is a columnar storage format available to any component in the Hadoop ecosystem, regardless of the
data processing framework, data model, or programming language. The Parquet file format incorporates several
features that support data warehouse-style operations:

• Columnar storage layout - A query can examine and perform calculations on all values for a column while reading
only a small fraction of the data from a data file or table.

• Flexible compression options - Data can be compressed with any of several codecs. Different data files can be
compressed differently.

• Innovative encoding schemes - Sequences of identical, similar, or related data values can be represented in ways
that save disk space and memory. The encoding schemes provide an extra level of space savings beyond overall
compression for each data file.

• Large file size - The layout of Parquet data files is optimized for queries that process large volumes of data, with
individual files in the multi-megabyte or even gigabyte range.

Parquet is automatically installed when you install CDH, and the required libraries are automatically placed in the
classpath for all CDH components. Copies of the libraries are in /usr/lib/parquet or
/opt/cloudera/parcels/CDH/lib/parquet.

CDH lets you use the component of your choice with the Parquet file format for each phase of data processing. For
example, you can read and write Parquet files using Pig and MapReduce jobs. You can convert, transform, and query
Parquet tables through Hive, Impala, and Spark. And you can interchange data files between all of these components.

Using Parquet Tables in Hive

To create a table named PARQUET_TABLE that uses the Parquet format, use a command like the following, substituting
your own table name, column names, and data types:

CREATE TABLE parquet_table_name (x INT, y STRING) STORED AS PARQUET;

Note:

• Once you create a Parquet table, you can query it or insert into it through other components
such as Impala and Spark.

• Set dfs.block.size to 256 MB in hdfs-site.xml.
• To enhance performance on Parquet tables in Hive, see Enabling Query Vectorization.

If the table will be populated with data files generated outside of Impala and Hive, you can create the table as an
external table pointing to the location where the files will be created:

CREATE EXTERNAL TABLE parquet_table_name (x INT, y STRING)
LOCATION '/test-warehouse/tinytable'
STORED AS PARQUET;

To populate the table with an INSERT statement, and to read the table with a SELECT statement, see Loading Data
into Parquet Tables.

To set the compression type to use when writing data, configure the parquet.compression property:

SET parquet.compression=GZIP;
INSERT OVERWRITE TABLE tinytable SELECT * FROM texttable;

The supported compression types are UNCOMPRESSED, GZIP, and SNAPPY.

Apache Hive Guide | 37

Using & Managing Apache Hive in CDH

https://parquet.apache.org/
http://en.wikipedia.org/wiki/Column-oriented_DBMS

Running Apache Hive on Spark in CDH
This section explains how to run Hive using the Spark execution engine. It assumes that the cluster is managed by
Cloudera Manager.

Configuring Hive on Spark

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

To configure Hive to run on Spark do both of the following steps:

• Configure the Hive client to use the Spark execution engine as described in Hive Execution Engines on page 34.
• Identify the Spark service that Hive uses. Cloudera Manager automatically sets this to the configured MapReduce

or YARN service and the configured Spark service. See Configuring the Hive Dependency on a Spark Service on
page 38.

Hive on Spark Memory and Hardware Requirements

DiskCPUMemoryComponent

Disk space
requirements are

Hive-on-Spark •• Minimum: 4 coresMinimum: 16 GB
• •Recommended: 32 GB for

larger data sizes
Recommended: 8 cores for
larger data sizes driven by scratch

space requirements
for Spark spill.Individual executor heaps

should be no larger than 16 GB
somachineswithmoreRAMcan
use multiple executors.

For more information on how to reserve YARN cores and memory that will be used by Spark
executors, refer to Tuning Apache Hive on Spark in CDH on page 70.

Configuring the Hive Dependency on a Spark Service

By default, if a Spark service is available, the Hive dependency on the Spark service is configured. To change this
configuration, do the following:

1. In the Cloudera Manager Admin Console, go to the Hive service.
2. Click the Configuration tab.
3. Search for the Spark On YARN Service. To configure the Spark service, select the Spark service name. To remove

the dependency, select none.
4. Click Save Changes.
5. Go to the Spark service.
6. Add a Spark gateway role to the host running HiveServer2.
7. Return to the Home page by clicking the Cloudera Manager logo.
8. Click the icon that is next to any stale services to invoke the cluster restart wizard.
9. Click Restart Stale Services.
10. Click Restart Now.
11. Click Finish.
12. In the Hive client, configure the Spark execution engine.

Configuring Hive on Spark for Performance

For the configuration automatically applied by Cloudera Manager when the Hive on Spark service is added to a cluster,
see Hive on Spark Autoconfiguration.

For information on configuring Hive on Spark for performance, see Tuning Apache Hive on Spark in CDH on page 70.

38 | Apache Hive Guide

Using & Managing Apache Hive in CDH

Dynamic Partition Pruning for Hive Map Joins

You can enable dynamic partition pruning for map joins when you are running Hive on Spark (HoS), it is not available
for Hive on MapReduce. Dynamic partition pruning (DPP) is a database optimization that can significantly decrease
the amount of data that a query scans, thereby executing your workloads faster. DPP achieves this by dynamically
determining and eliminating the number of partitions that a query must read from a partitioned table.

Map joins also optimize how Hive executes queries. They cause a small table to be scanned and loaded in memory as
a hash table so that a fast join can be performed entirely within a mapper without having to use another reduce step.
If you have queries that join small tables, map joins can make them execute much faster. Map joins are enabled by
default in CDHwith the EnableMapJoin Optimization setting for HiveServer2 in ClouderaManager. Hive automatically
uses map joins for join queries that involve a set of tables where:

• There is one large table and there is no limit on the size of that large table.
• All other tables involved in the join must have an aggregate size under the value set for Hive Auto Convert Join

Noconditional Size for HiveServer2, which is set to 20MB by default in Cloudera Manager.

For more information about map joins, see the Apache wiki.

To enable or disable map joins on a per-query basis, use the Hive SET command:

SET hive.auto.convert.join=true;
SET hive.auto.convert.join.noconditionaltask.size=<number_in_megabytes>;

When you are using HoS and the tables involved in a join query trigger a map join, two Spark jobs are launched and
perform the following actions:

• the first job scans the smaller table, creates a hash table, and writes it to HDFS,
• the second job runs the join and the rest of the query, scanning the larger table.

If DPP is enabled and is also triggered, the two Spark jobs perform the following actions:

• the first Spark job creates the hash table from the small table and identifies the partitions that should be scanned
from the large table,

• the second Spark job then scans the relevant partitions from the large table that are to be used in the join.

After these actions are performed, the query proceeds normally with the map join.

Enabling Dynamic Partition Pruning for Map Joins in Hive on Spark

Dynamic partition pruning (DPP) is disabled by default. Use Cloudera Manager to set the following properties.

Important: Cloudera does not support nor recommend setting the property
hive.spark.dynamic.partition.pruning to true in production environments. This property
enables DPP for all joins, both map joins and common joins. The property
hive.spark.dynamic.partition.pruning.map.only, which enables DPP for map joins only in
Hive on Spark is the only supported implementation of DPP for Hive on Spark in CDH.

Default SettingDescriptionProperty Name

false (turned off)Enables dynamic partition pruning for queries where the join on the
partitioned column is a map join. This property only applies to the
Spark execution engine.

hive.spark.dynamic.partition.pruning.map.join.only

Set this property to true to use dynamic partition pruning for queries
where the join on the partitioned column is a map join.

false (turned off)Enables dynamic partition pruning for all joins, including shuffle joins
and map joins.

hive.spark.dynamic.partition.pruning

Apache Hive Guide | 39

Using & Managing Apache Hive in CDH

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization

Default SettingDescriptionProperty Name

Important:
Setting
this
property
to true
is not
supported
in CDH.

Enabling DPP on a Per-Query Basis with the Hive SET Command

To enable DPP at the session level, use the Hive SET command:

SET hive.spark.dynamic.partition.pruning.map.join.only=true;

Enabling DPP as a Service-Wide Default with Cloudera Manager

Use Cloudera Manager to enable DPP as a service-wide default:

1. In the Cloudera Manager Admin Console, go to the Hive service.
2. In the Hive service page, click the Configuration tab.
3. On the Configuration page, click the HiveServer2 scope and click the Performance category.
4. Search for Hive on Spark Dynamic Partition Pruning for MapJoins, and select the check box.
5. Click Save Changes.

Verifying Your Query Uses Dynamic Partition Pruning in Hive on Spark

Use EXPLAIN to generate a query plan, which you can use to verify that DPP is being triggered for your query.

Example of Verifying that Dynamic Partition Pruning Is Triggered For Your Query

In this example, TPC-DS benchmark data is used with the query generated from query3.tpl in their downloadable
package. It demonstrates how you can use the EXPLAIN command to verify that DPP is being triggered. For more
information about the TPC-DS benchmark data and queries, see www.tpc.org/tpcds/.

First, set the following properties which instruct Hive to use Spark as its execution engine and turns on DPP for map
joins:

SET hive.execution.engine=spark;
SET hive.spark.dynamic.partition.pruning.map.join.only=true;

Then run the following commands, which tell Hive to use the testing_example_db database and to show (EXPLAIN)
the query plan for the query that follows:

USE testing_example_db;

EXPLAIN
SELECT dt.d_year
 ,item.i_brand_id brand_id
 ,item.i_brand brand
 ,sum(ss_ext_sales_price) sum_agg
FROM date_dim dt
 ,store_sales
 ,item
WHERE dt.d_date_sk = store_sales.ss_sold_date_sk

40 | Apache Hive Guide

Using & Managing Apache Hive in CDH

http://www.tpc.org/tpcds/

 AND store_sales.ss_item_sk = item.i_item_sk
 AND item.i_manufact_id = 436
 AND dt.d_moy=12
GROUP BY dt.d_year
 ,item.i_brand
 ,item.i_brand_id
ORDER BY dt.d_year
 ,sum_agg desc
 ,brand_id
LIMIT 100;

The EXPLAIN command returns the query plan for the TPC-DS query. An excerpt from that query plan is included
below. Look for the Spark HashTable Sink Operator and the Spark Partition Pruning Sink Operator,
which are in bold font in the following output. Presence of these sink operators in the query plan indicate that DPP is
being triggered for the query.

+--+--+
| Explain |
+--+--+
| STAGE DEPENDENCIES: |
| Stage-2 is a root stage |
| Stage-1 depends on stages: Stage-2 |
| Stage-0 depends on stages: Stage-1 |
| |
| STAGE PLANS: |
| Stage: Stage-2 |
| Spark |
| DagName: hive_20170908151313_f478b7d3-89b8-4c6d-b98c-4ef3b8e25bf7:964 |
| Vertices: |
| Map 1 |
| Map Operator Tree: |
| TableScan |
| alias: dt |
| filterExpr: (d_date_sk is not null and (d_moy = 12)) (type: boolean)
 |
| Statistics: Num rows: 73049 Data size: 2045372 Basic stats: COMPLETE
 Column stats: NONE |
| Filter Operator |
| predicate: (d_date_sk is not null and (d_moy = 12)) (type: boolean)
 |
| Statistics: Num rows: 18262 Data size: 511336 Basic stats: COMPLETE
 Column stats: NONE |
| Spark HashTable Sink Operator |
| keys: |
| 0 d_date_sk (type: bigint) |
| 1 ss_sold_date_sk (type: bigint) |
| Select Operator |
| expressions: d_date_sk (type: bigint) |
| outputColumnNames: _col0 |
| Statistics: Num rows: 18262 Data size: 511336 Basic stats:
COMPLETE Column stats: NONE |
| Group By Operator |
| keys: _col0 (type: bigint) |
| mode: hash |
| outputColumnNames: _col0 |
| Statistics: Num rows: 18262 Data size: 511336 Basic stats:
COMPLETE Column stats: NONE |
| Spark Partition Pruning Sink Operator |
| partition key expr: ss_sold_date_sk |
| tmp Path:
hdfs://<server_name>.<domain>.com:8020/tmp/hive/hive/a8939414-8311-4b06-bbd6-5afc9c3b2d3d/hive_2017-09-08_15-13-54_861_527211251736847122-4/-mr-10003/2/1
 |
| Statistics: Num rows: 18262 Data size: 511336 Basic stats:
 COMPLETE Column stats: NONE |
| target column name: ss_sold_date_sk |
| target work: Map 2 |
| Local Work: |
| Map Reduce Local Work |
| Map 5 |

Apache Hive Guide | 41

Using & Managing Apache Hive in CDH

| Map Operator Tree: |
| TableScan |
| alias: item |
| filterExpr: (i_item_sk is not null and (i_manufact_id = 436)) (type:
 boolean) |
| Statistics: Num rows: 102000 Data size: 2244000 Basic stats: COMPLETE
 Column stats: NONE |
| Filter Operator |
| predicate: (i_item_sk is not null and (i_manufact_id = 436)) (type:
 boolean) |
| Statistics: Num rows: 25500 Data size: 561000 Basic stats: COMPLETE
 Column stats: NONE |
| Spark HashTable Sink Operator |
| keys: |
| 0 _col32 (type: bigint) |
| 1 i_item_sk (type: bigint) |
| Local Work: |
| Map Reduce Local Work |
|
...

Note: There are a few map join patterns that are not supported by DPP. For DPP to be triggered, the
Spark Partition Pruning Sink Operatormust have a target Map Work in a child stage. For
example, in the above query plan, the Spark Partition Pruning Sink Operator resides in
Stage-2 and has a target work: Map 2. So for DPP to be triggered, Map 2must reside in either
Stage 1 or Stage 0 because both are dependent on Stage 2, thus they are both children of Stage
2. See the STAGE DEPENDENCIES at the top of the query plan to see the stage hierarchy. If Map 2
resides in Stage 2, DPP is not triggered because Stage 2 is the root stage and therefore cannot be
a child stage.

Queries That Trigger and Benefit from Dynamic Partition Pruning in Hive on Spark

When tables are created in Hive, it is commonpractice to partition them. Partitioning breaks large tables into horizontal
slices of data. Each partition typically corresponds to a separate folder on HDFS. Tables can be partitioned when the
data has a "natural" partitioning column, such as a date column. Hive queries that read frompartitioned tables typically
filter on the partition column in order to avoid reading all partitions from the table. For example, if you have a partitioned
table called date_partitioned_table that is partitioned on the datetime column, the following query only reads
partitions that are created after January 1, 2017:

SELECT *
FROM date_partitioned_table
WHERE datetime > '2017-01-01';

If the date_partitioned_table table has partitions for dates that extend to 2010, this WHERE clause filter can
significantly decrease the amount of data that needs to be read by the query. This query is easy for Hive to optimize.
When it is compiled, only partitions where datetime is greater than 2017-01-01 need to be read. This form of
partition pruning is known as static partition pruning.

However, when queries become more complex, the filter on the partitioned column cannot be evaluated at runtime.
For example, this query:

SELECT *
FROM date_partitioned_table
WHERE datetime IN (SELECT * FROM non_partitioned_table);

With this type of query, it is difficult for the Hive compiler to optimize its execution because the rows that are returned
by the sub query SELECT * FROM non_partitioned_table are unknown. In this situation, dynamic partition
pruning (DPP) optimizes the query. Hive can dynamically prune partitions from the scan of non_partitioned_table

42 | Apache Hive Guide

Using & Managing Apache Hive in CDH

by eliminating partitions while the query is running. Queries that use this pattern can see performance improvements
when DPP is enabled. Note that this query contains an IN clause which triggers a join between the
date_partitioned_table and the non_partitioned_table. DPP is only triggered when there is a join on a
partitioned column.

DPPmight provide performance benefits for Hive datawarehouses that use the star or snowflake schema. Performance
improvements are possible for Hive queries that join a partitioned fact table on the partitioned column of a dimension
table if DPP is enabled. The TPC-DS benchmark is a good example where many of its queries benefit from DPP. The
query example from the TPC-DS benchmark listed in the above section with EXPLAIN, triggers DPP:

SELECT dt.d_year
 ,item.i_brand_id brand_id
 ,item.i_brand brand
 ,sum(ss_ext_sales_price) sum_agg
FROM date_dim dt
 ,store_sales
 ,item
WHERE dt.d_date_sk = store_sales.ss_sold_date_sk
 AND store_sales.ss_item_sk = item.i_item_sk
 AND item.i_manufact_id = 436
 AND dt.d_moy=12
GROUP BY dt.d_year
 ,item.i_brand
 ,item.i_brand_id
ORDER BY dt.d_year
 ,sum_agg desc
 ,brand_id
LIMIT 100;

This query performs a join between the partitioned store_sales table and the non-partitioned date_dim table. The
join is performed against the partition column for store_sales, which is what triggers DPP. The join must be against
a partitioned column for DPP to be triggered.

DPP is only supported for map joins. It is not supported for common joins, those that require a shuffle phase. A single
query may have multiple joins, some of which are map joins and some of which are common joins. Only the join on
the partitioned column must be a map join for DPP to be triggered.

Debugging Dynamic Partition Pruning in Hive on Spark

Debug DPP for Hive on Spark by viewing the query plan producedwith the EXPLAIN command or by viewing two types
of log files. Both options are discussed in the following sections.

Debugging with Query Plans Produced with EXPLAIN

A simpleway to checkwhether DPP is triggered for a query is to use theEXPLAIN command as shown above in Verifying
Your DPP Configuration in Hive on Spark. If the query plan contains a Spark Partition Pruning Sink Operator,
DPP will be triggered for the query. If it does not contain this operator, DPP will not be triggered for the query.

Debugging with Logs

Use the HiveServer2 logs to debug the compile time phase of DPP and use the Hive on Spark Remote Driver logs to
debug the runtime phase of DPP:

• HiveServer2 Logs

TheHiveServer2 logs print debugging information from the Java classDynamicPartitionPruningOptimization.
This class looks at the query and checks if it can benefit from DPP. If the query can benefit from DPP, the class
modifies the query plan to include DPP-specific operators, such as the Spark Partition Pruning Sink
Operator.When the class runs, it prints out information related towhether or not it is enabling DPP for a particular
clause in the query.

Apache Hive Guide | 43

Using & Managing Apache Hive in CDH

For example, if the following message appears in the HiveServer2 log, it means that DPP will be triggered and that
partitions will be dynamically pruned from the partitioned_table table, which is in bold text in the following
example:

INFO org.apache.hadoop.hive.ql.optimizer.DynamicPartitionPruningOptimization:
 [HiveServer2-Handler-Pool: Thread-xx]: Dynamic partitioning:
default@partitioned_table.partition_column

To access these log files in Cloudera Manager, select Hive > HiveServer2 > Log Files > Role Log File.

• Hive on Spark Remote Driver Logs

The Hive on Spark (HoS) Remote Driver logs print debugging information from the Java class
SparkDynamicPartitionPruner. This class does the actual pruning of the partitioned table. Because pruning
happens at runtime, the logs for this class are located in the HoS Remote Driver logs instead of the HiveServer2
logs. These logs print which partitions are pruned from the partitioned table, which can be very useful for
troubleshooting.

For example, if the following message appears in the HoS Remote Driver log, it means that the partition
partition_column=1 is being pruned from the table partitioned_table, both of which are in bold text in
the following example:

INFO spark.SparkDynamicPartitionPruner:Pruning path:
hdfs://<namenode_uri>/user/hive/warehouse/partitioned_table/partition_column=1

To access these log files in Cloudera Manager, select SPARK_ON_YARN > History Server Web UI >
<select_an_application> > Executors > executor id = driver > stderr.

Using Hive UDFs with Hive on Spark

When the execution engine is set to Spark, use Hive UDFs the same way that you use themwhen the execution engine
is set to MapReduce. To apply a custom UDF on the column of a Hive table, use the following syntax:

SELECT <custom_UDF_name>(<column_name>) FROM <table_name>;

For example, to apply the custom UDF addfunc10 to the salary column of the sample_07 table in the default
database that ships with CDH, use the following syntax:

SELECT addfunc10(salary) FROM sample_07 LIMIT 10;

The above HiveQL statement returns only 10 rows from the sample_07 table.

To use Hive built-in UDFs, see the LanguageManual UDF on the Apache wiki. To create custom UDFs in Hive, see
Managing Apache Hive User-Defined Functions on page 47.

Troubleshooting Hive on Spark

Delayed result from the first query after starting a new Hive on Spark session

Symptom
The first query after starting a new Hive on Spark session might be delayed due to the start-up time for the Spark on
YARN cluster.

44 | Apache Hive Guide

Using & Managing Apache Hive in CDH

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF

Cause
The query waits for YARN containers to initialize.

Solution
No action required. Subsequent queries will be faster.

Exception in HiveServer2 log and HiveServer2 is down

Symptom
In the HiveServer2 log you see the following exception: Error:
org.apache.thrift.transport.TTransportException (state=08S01,code=0)

Cause
HiveServer2 memory is set too small. For more information, see stdout for HiveServer2.

Solution

1. Go to the Hive service.
2. Click the Configuration tab.
3. Search for Java Heap Size of HiveServer2 in Bytes, and increase the value. Cloudera recommends aminimum value

of 2 GB.
4. Enter a Reason for change, and then click Save Changes to commit the changes.
5. Restart HiveServer2.

Out-of-memory error

Symptom
In the log you see an out-of-memory error similar to the following:

15/03/19 03:43:17 WARN channel.DefaultChannelPipeline:
An exception was thrown by a user handler while handling an exception event ([id:
0x9e79a9b1, /10.20.118.103:45603 => /10.20.120.116:39110]
 EXCEPTION: java.lang.OutOfMemoryError: Java heap space)
 java.lang.OutOfMemoryError: Java heap space

Cause
The Spark driver does not have enough off-heap memory.

Solution

Increase the driver memory spark.driver.memory and ensure that spark.yarn.driver.memoryOverhead is
at least 20% that of the driver memory.

Spark applications stay alive forever

Symptom
Cluster resources are consumed by Spark applications.

Cause
This can occur if you run multiple Hive on Spark sessions concurrently.

Solution
Manually terminate the Hive on Spark applications:

1. Go to the YARN service.
2. Click the Applications tab.

Apache Hive Guide | 45

Using & Managing Apache Hive in CDH

3. In the row containing the Hive on Spark application, select > Kill.

Using HiveServer2 Web UI in CDH
TheHiveServer2webUI provides access to Hive configuration settings, local logs,metrics, and information about active
sessions and queries. The HiveServer2 web UI is enabled in newly created clusters running CDH 5.7 and higher, and
those using Kerberos are configured for SPNEGO. Clusters upgraded from a previous CDH version must be configured
to enable the web UI; see HiveServer2 Web UI Configuration on page 46.

Accessing the HiveServer2 Web UI

Access theHiveServer2webUI by clicking theHiveServer2WebUI link in ClouderaManager or by pointing your browser
to http://<host>:<port>/hiveserver2.jsp.

The following information is displayed:

• Home (/hiveserver2.jsp): Active sessions, the latest Hive queries, and attributes of the Hive software.
• Local Logs (/logs): The latest HiverServer2 logs.
• Metrics Dump (/jmx): Real-time Java Management Extensions (JMX) metrics in JSON format.
• Hive Configuration (/conf): The current HiveServer2 configuration in XML format.
• Stack Trace (/stacks): A stack trace of all active threads.

HiveServer2 Web UI Configuration

For managed deployments, configure the HiveServer2 web UI in Cloudera Manager. See Configuring the HiverServer2
Web UI in Cloudera Manager on page 46.

For deployments not managed by Cloudera Manager, edit the configuration file /etc/hive/conf/hive-site.xml.
To view the HiveServer2 web UI, go to http://<host>:<port>/hiveserver2.jsp.

Configurable Properties

HiveServer2 web UI properties, with their default values in Cloudera Hadoop, are:

hive.server2.webui.max.threads=50
hive.server2.webui.host=0.0.0.0
hive.server2.webui.port=10002
hive.server2.webui.use.ssl=false
hive.server2.webui.keystore.path=""
hive.server2.webui.keystore.password=""
hive.server2.webui.max.historic.queries=25
hive.server2.webui.use.spnego=false
hive.server2.webui.spnego.keytab=""
hive.server2.webui.spnego.principal=<dynamically sets special string, _HOST, as
hive.server2.webui.host or host name>

Tip: To disable the HiveServer2 web UI, set the port to 0 or a negative number

Configuring the HiverServer2 Web UI in Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Note: By default, newly created CDH 5.7 (and higher) clusters have the HiveServer2 web UI enabled,
and if using Kerberos, are configured for SPNEGO. Clusters upgraded from an earlier CDH versionmust
have the UI enabled with the port property; other default values can be preserved in most cases.

Configure the HiveServer2 web UI properties in Cloudera Manager on the Configuration tab.

1. Go to the Hive service.
2. Click the Configuration tab.
3. Select Scope > HiveServer2.

46 | Apache Hive Guide

Using & Managing Apache Hive in CDH

https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-HiveServer2WebUI

4. Search for "webui".
5. Locate the properties you want to set and enter your preferred values.
6. Click Save Changes to commit the changes.
7. Select Actions > Restart and when done, click Close.
8. Click HiveServer2 Web UI to view your changes.

You can use anAdvance Configuration Snippet to set properties that have no dedicated configuration field:

1. On the Hive Configuration tab, search for "HiveServer2 Advanced Configuration Snippet (Safety Valve) for
hive-site.xml".

2. Click the plus icon to expand configurable attributes for each property.
3. Enter values for Name, Value, and Description.
4. Click the Final check box to ensure the value cannot be overwritten.
5. Click Save Changes and select Actions > Restart > Close.
6. Click HiveServer2 Web UI to view your changes.

Accessing Apache Hive Table Statistics in CDH
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Statistics for Hive can be numbers of rows of tables or partitions and the histograms of interesting columns. Statistics
are used by the cost functions of the query optimizer to generate query plans for the purpose of query optimization.

If your cluster has Impala then you can use the Impala implementation to compute statistics. The Impala implementation
to compute table statistics is available in CDH 5.0.0 or higher and in Impala version 1.2.2 or higher. The Impala
implementation of COMPUTE STATS requires no setup steps and is preferred over the Hive implementation. See
Overview of Table Statistics. If you are running an older version of Impala, you can collect statistics on a Hive table by
running the following command from a Beeline client connected to HiveServer2:

analyze table <table name> compute statistics;
analyze table <table name> compute statistics for columns <all columns of a table>;

Managing Apache Hive User-Defined Functions
You can extend Hive SQL using Java-based user-defined functions (UDFs) and call the UDF from a Hive query.

Prerequisite: In a Hadoop- and Hive-compatible Java project, you write and compile user-defined functionality code
into a JAR, and then export the UDF to a JAR. Cloudera recommends that you use the
org.apache.hadoop.hive.ql.udf.generic.GenericUDF API instead when you are creating custom UDFs for
Hive. The org.apache.hadoop.hive.ql.exec.UDF API, which is used for building custom UDFs, is deprecated in CDH 6.0.0
and will be removed in a future release.

In the Registering a UDF procedure below, you store the JAR on your cluster. Using Hive commands, you register the
UDF. There are several configuration and registration methods that support ease of use, frequently modified UDFs,
and Sentry security. For example, if you use the Hive aux JARs directory method, you need to restart HiveServer2 after
registration. If you use another method, you do not need to restart HiveServer2.

Important: This UDF procedure supports the Serializer/Deserializer interface. For example, you can
reference SerDes JAR files in table properties by registering the SerDes JAR in the same way as UDF
JAR files.

Registering a UDF in Hive

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Apache Hive Guide | 47

Using & Managing Apache Hive in CDH

You configure the cluster in one of several ways to find the JAR containing your UDF code, and then you register the
UDF in Hive.

1. Assuming you just built your Java project in IntelliJ, navigate to the JAR in the /target directory of the project.
2. Choose one of the following methods for configuring the cluster to find the JAR, and then follow the respective

step-by-step procedure in sections below:

• Direct JAR reference configuration

Straight-forward, but recommended for development only. Does not support Sentry.

• Hive aux JARs directory configuration

Prevents accidental overwriting of files or functions. Recommended for tested, stable UDFs to prevent
accidental overwriting of files or functions. Does not support Sentry.

• Reloadable aux JAR configuration

Avoids HiveServer restarts. Recommended if you anticipate making frequent changes to the UDF logic.
Supports Sentry.

If you connect to HiveServer through the load balancer, issuing the RELOAD command loads the JAR file only
to the connected HiveServer. Consequently, if you havemultiple HiveServer instances behind a load balancer,
youmust install the JAR file on each node. You also need to connect to each HS2 instance to issue the RELOAD
command.

3. After configuring the cluster to find the JAR, use Beeline to start Hive.

• On the command line of a node that runs the HiveServer2 role, type Beeline.
• Use the FQDN of the HiveServer in your cluster to replace myhiveserver.com and enter the database user

name and database password, or use the default hive user. For example: beeline -u
jdbc:hive2://myhiveserver.com:10000 -n hive -p

4. Run one of the following CREATE FUNCTION commands that corresponds to your configuration:

• Direct JAR reference

hive> CREATE FUNCTION <function_name> AS '<fully_qualified_class_name>' USING JAR
'hdfs:///<path/to/jar/in/hdfs>';

Where the <fully_qualified_class_name> is the full path to the Java class in your JAR file. For example,

hive> CREATE FUNCTION udftypeof AS 'com.mycompany.hiveudf.TypeOf01' USING JAR
'hdfs:///user/max/udf/hiveudf-1.0-SNAPSHOT.jar';

• Hive Aux JARs directory

hive> CREATE FUNCTION <function_name> AS '<fully_qualified_class_name>'

Restart HiveServer2.

• Reloadable Aux JAR

If you use the Reloadable Aux JAR method, RELOAD uploads the JAR to the cluster.

hive> RELOAD;
Hive> CREATE FUNCTION <function_name> AS '<fully_qualified_class_name>'

For example,

hive> RELOAD;
hive> CREATE FUNCTION udftypeof AS 'com.mycompany.hiveudf.Typeof01';

48 | Apache Hive Guide

Using & Managing Apache Hive in CDH

The UDF is registered.

Direct JAR Reference Configuration

You can configure the cluster to find the JAR using the ADD JAR command on the Hive command line.

1. Upload the JAR from your Java project to your CDH cluster. For example, navigate to the JAR in the /target directory
of an IntelliJ project, and upload a JAR named TypeOf-1.0-SNAPSHOT.jar.

2. Move the JAR to HDFS.

$ sudo su - hdfs
$ hdfs dfs -put TypeOf-1.0-SNAPSHOT.jar /user/max/udf/hiveudf-1.0-SNAPSHOT.jar

3. Start Hive from Beeline, and enter the following command:

hive> ADD JAR /user/max/udf/hiveudf-1.0-SNAPSHOT.jar

The JAR named hiveudf-1.0-SNAPSHOT.jar is added to the Hive classpath.

4. After configuring the cluster, register the UDF as described above.

This configuration method does not work when Beeline runs on a different host from HiveServer2. After using this
command, replicate the JAR file to other data nodes in the cluster. You should replicate the JAR to the number of data
nodes equal to the square root of the number of cluster nodes.

Hive Aux JARs Directory Configuration

You can configure the cluster to find a UDF JAR by setting hive.aux.jars.path to a directory, not a classpath, where
you uploaded your JAR. Do not use the /opt/cloudera/parcels/CDH directory because that directory changes
with every release. You must create and manage the directory on hosts that run Hive metastore, HiveServer2, or the
Hive CLI. The directory location is set in the environment as HIVE_AUX_JARS_PATH and will generally override the
hive.aux.jars.path property set in XML files, even if hive.aux.jars.path is set in an advanced configuration
snippet.

After navigating to the JAR in the /target directory of an IntelliJ project, perform these steps:

1. Upload the JAR file to the host or hosts that run HiveServer2.
2. Give the hive user read, write, and execute access to the directory where the JAR resides, for example

/opt/local/hive/lib/.
3. If the HiveMetastore runs on a different host or hosts, create the same directory as you created on the HiveServer2

on every Hive Metastore host. For example, create /opt/local/hive/lib/ on the Hive Metastore host. You
do not need to copy the JAR file to the Hive Metastore host directory. Hive takes care of that when you register
the UDF. If the directory is not present on the Hive Metastore host, Hive Metastore service does not start.

4. In the Cloudera Manager Admin Console >Hive service > Configuration tab.
5. Expand the Hive (Service-Wide) scope.
6. In Advanced, configure the Hive Auxiliary JARs Directory property with the path to the JAR, for example

/opt/local/hive/lib/.
7. Save changes.
8. In Cloudera Manager Admin Console > Hive service > Actions, redeploy the Hive client configuration.
9. Restart the Hive service.
10. After configuring the cluster, register the UDF as described above.

Reloadable Aux JAR Configuration

You can configure the cluster to find a UDF JAR by adding the hive.reloadable.aux.jars.path property using
the Hive Service Advanced Configuration Snippet (Safety Value). For example, after navigating to the JAR in the /target
directory of an IntelliJ project, perform these steps:

1. Upload the JAR file to a directory on the a host the runs HiveServer2.

Apache Hive Guide | 49

Using & Managing Apache Hive in CDH

2. Give the hive user read, write, and execute access to the directory.
3. If the HiveMetastore runs on a different host or hosts, create the same directory as you created on the HiveServer2

on every Hive Metastore host. For example, create /opt/local/hive/lib/ on the Hive Metastore host. You do not
need to copy the JAR file to the Hive Metastore host directory. Hive takes care of that when you register the UDF.
If the directory is not present on the Hive Metastore host, Hive Metastore service does not start.

4. In ClouderaManager Admin Console > Hive service > Configuration > Filters > Advanced, click Hive (Service-Wide)
scope.

5. In Hive Service Advanced Configuration Snippet (Safety Value) for hive-site.xml, add the following property:

• name = hive.reloadable.aux.jars.path
• value = the path to the JAR file

6. Save changes.
7. In Cloudera Manager Admin Console > Hive service > Actions, redeploy the Hive client configuration.
8. Restart the Hive service.

This step is only necessary initiallly. Subsequently, you can add or remove JARs using RELOAD.

9. If you use Sentry, on the Hive command line grant privileges on the JAR files to the roles that require access.

GRANT ALL ON URI 'file:///opt/local/hive/lib/<my.jar>' TO ROLE <example_role>;

10. After configuring the cluster, register the UDF as described above.

Creating Temporary Functions

Use the TEMPORARY keyword in the CREATE FUNCTION command to register a temporary instead of a permanent
UDF. For example:

hive> CREATE TEMPORARY FUNCTION <your_function_name> AS '<fully_qualified_class_name>'

hive> CREATE TEMPORARY FUNCTION <function_name> AS
 '<fully_qualified_class_name>' USING JAR
 'hdfs:///<path/to/jar/in/hdfs>';

Updating a User-Defined Function

When you change the UDF, you need to re-register it. If you use the ADD JAR method described above, simply drop
the function, add the new one, and restart HiveServer2; otherwise, follow these steps to update a UDF:

1. Update your Java code in your Java project.
2. On the Hive command line, drop the UDF that has been updated.

hive> DROP FUNCTION hiveudf-1.0-SNAPSHOT.jar;

3. Delete the old JAR file from the cluster.
4. Upload the updated JAR to the cluster to the location that corresponds to either your Hive Aux Jars Directory or

Reloadable Aux Jars configuration.
5. If Sentry is enabled on your cluster, grant privileges on the JAR files to the roles that require access.
6. If you use Reloadable Aux JARs, start Hive from Beeline, and run the RELOAD command.
7. Run the CREATE FUNCTION command that corresponds to either your Hive Aux Jars Directory or Reloadable Aux

Jars configuration as described above.
8. If you use Hive Aux Jars, redeploy the client configurations and restart HiveServer2.

Calling a Hive UDF from Impala

You can call a UDF that you register in Hive from an Impala query under the following conditions:

• Sentry is not enabled.

50 | Apache Hive Guide

Using & Managing Apache Hive in CDH

• When you register the UDF, you use the CREATE FUNCTION that includes the USING CLAUSE (either Direct JAR
reference or Hive Aux JARs directory methods).

• Other requirements described in Impala documentation.

The CREATE FUNCTION includes the JAR location; otherwise, Impala does not load the function. Impala relies on the
location you provide during function creation. The JAR, which contains the UDF code, must reside on HDFS, making
the JAR automatically available to all the Impala nodes. You do not need tomanually copy any UDF-related files between
servers.

If you cannot register the UDF, which you want to call from Impala, in Hive because, for example, you use Sentry, then
register the UDF in Impala. Do not name an Impala-registered UDF the same as any Hive-registered UDF.

Adding Built-in UDFs to the HiveServer2 Blacklist

Built-in UDFs, such as the year function, are available in Hive natively. HiveServer2 maintains a blacklist for built-in
UDFs to prevent attacks that use the hive user credentials to execute Java code. You set the
hive.server2.builtin.udf.blacklist property to a comma separated list of built-in UDFs that Hive does not
execute. A UDF that is included in the blacklist returns an error if invoked from a query. By default this property is
empty.

To check whether hive.server2.builtin.udf.blacklist contains any UDFs, run the following statement on
the Hive command line:

hive> SET hive.server2.builtin.udf.blacklist;

Any blacklisted UDFs are returned.

To add built-in UDF names to the hive.server2.builtin.udf.blacklist property with Cloudera Manager:

1. In the Cloudera Manager Admin Console, go to the Hive service.
2. On the Hive service page, click the Configuration tab.
3. On the Configuration page, click HiveServer2 under Scope and click Advanced under Category.
4. Search for HiveServer2 Advanced Configuration Snippet (Safety Valve) for hive-site.xml and add the following

information:

• Name: hive.server2.builtin.udf.blacklist
• Value: <builtin_udf_name1>,<builtin_udf_name2>...
• Description: Blacklisted built-in UDFs.

5. Click Save Changes and restart the HiveServer2 service for the changes to take effect.

If you are not using Cloudera Manager to manage your cluster, set the hive.server2.builtin.udf.blacklist
property in the hive-site.xml file.

Configuring Transient Apache Hive ETL Jobs to Use the Amazon S3 Filesystem in CDH
Apache Hive is a popular choice for batch extract-transform-load (ETL) jobs such as cleaning, serializing, deserializing,
and transforming data. In on-premise deployments, ETL jobs operate on data stored in a permanent Hadoop cluster
that runs HDFS on local disks. However, ETL jobs are frequently transient and can benefit from cloud deployments
where cluster nodes can be quickly created and torn down as needed. This approach can translate to significant cost
savings.

Important:

• Cloudera components writing data to S3 are constrained by the inherent limitation of Amazon
S3 known as "eventual consistency." For more information, see Data Storage Considerations.

• Hive on MapReduce1 is not supported on Amazon S3 in the CDH distribution. Only Hive on
MapReduce2/YARN is supported on S3.

Apache Hive Guide | 51

Using & Managing Apache Hive in CDH

https://www.cloudera.com/documentation/director/cloud/topics/cloud_de_best_practices.html#concept_ffj_zb4_sy

For information about how to set up a shared Amazon Relational Database Service (RDS) as your Hive metastore, see
Configuring a Shared Amazon RDS as an HMS for CDH on page 54. For information about tuning Hive read and write
performance to the Amazon S3 file system, see Tuning Apache Hive Performance on the Amazon S3 Filesystem in CDH
on page 74.

About Transient Jobs

Most ETL jobs on transient clusters run from scripts that make API calls to a provisioning service such as Altus Director.
They can be triggered by external events, such as IoT (internet of things) events like reaching a temperature threshold,
or they can be run on a regular schedule, such as every day at midnight.

Transient Jobs Hosted on Amazon S3

Data residing on Amazon S3 and the node running Altus Director are the only persistent components. The computing
nodes and local storage come and go with each transient workload.

Configuring and Running Jobs on Transient Clusters

Using AWS to run transient jobs involves the following steps, which are documented in an end-to-end example you
can download from this Cloudera GitHub repository. Use this example to test transient clusters with Altus Director.

1. Configure AWS settings.
2. Install Cloudera Director server and client.
3. Design and test a cluster configuration file for the job.
4. Prepare Amazon Machine Images (AMIs) with preloaded and pre-extracted CDH parcels.
5. Package the job into a shell script with the necessary bootstrap steps.
6. Prepare a job submission script.
7. Schedule the recurring job.

See Tuning Hive Write Performance on the Amazon S3 Filesystem for information about tuning Hive to write data to
S3 tables or partitions more efficiently.

Configuring AWS Settings

Use the AWS web console to configure Virtual Private Clouds (VPCs), Security Groups, and Identity and Access
Management (IAM) roles on AWS before you install Altus Director.

Best Practices
Networking

Cloudera recommends deploying clusters within a VPC, using Security Groups to control network traffic. Each cluster
should have outbound internet connectivity through a NAT (network address translation) server when you deploy in

52 | Apache Hive Guide

Using & Managing Apache Hive in CDH

http://www.cloudera.com/documentation/director/latest/topics/director_get_started_aws.html
https://github.com/cloudera/director-scripts/tree/master/transient-aws

a private subnet. If you deploy in a public subnet, each cluster needs direct connectivity. Inbound connections should
be limited to traffic fromprivate IPs within the VPC and SSH access through port 22 to the gateway nodes from approved
IP addresses. For details about using Altus Director to perform these steps, see Setting up the AWS Environment.

Data Access

Create an IAM role that gives the cluster access to S3 buckets. Using IAM roles is a more secure way to provide access
to S3 than adding the S3 keys to Cloudera Manager by configuring core-site.xml safety valves.

AWS Placement Groups

To improve performance, place worker nodes in an AWS placement group. See Placement Groups in the AWS
documentation set.

Install Altus Director

See Launching an EC2 Instance for Altus Director. Install Altus Director server and client in a virtual machine that can
reach the VPC you set up in the Configuring AWS section.

Create the Cluster Configuration File

The cluster configuration file contains the information that Director needs to bootstrap and properly configure a cluster:

• Deployment environment configuration.
• Instance groups configuration.
• List of services.
• Pre- and post-creation scripts.
• Custom service and role configurations.
• Billing ID and license for hourly billing for Director use from Cloudera. See Usage-Based Billing.

Creating the cluster configuration file represents the bulk of the work of configuring Hive to use the S3 filesystem. This
GitHub repository contains sample configurations for different cloud providers.

Testing the Cluster Configuration File

After defining the cluster configuration file, test it to make sure it runs without errors:

1. Use secure shell (SSH) to log in to the server running Altus Director.
2. Run the validate command by passing the configuration file to it:

cloudera-director validate <cluster_configuration_file_name.conf>

If Altus Director server is running in a separate instance from the Altus Director client, you must run:

cloudera-director bootstrap-remote <admin_username> --lp.remote.password=<admin_password>
 --lp.remote.hostAndPort=<host_name>:<port_number>

Prepare the CDH AMIs

It is not a requirement to have preloaded AMIs containing CDH parcels that are already extracted. However, preloaded
AMIs significantly speed up the cluster provisioning process. See this repo in GitHub for instructions and scripts that
create preloaded AMIs.

After you have created preloaded AMIs, replace the AMI IDs in the cluster configuration file with the new preloaded
AMI IDs to ensure that all cluster instances use the preloaded AMIs.

Run the Altus Director validate command again to test bringing up the cluster. See Testing the Cluster Configuration
File. The cluster should come up significantly faster than it did when you tested it before.

Apache Hive Guide | 53

Using & Managing Apache Hive in CDH

http://www.cloudera.com/documentation/director/latest/topics/director_aws_setup_client.html#aws-setup-client
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
http://www.cloudera.com/documentation/director/latest/topics/director_deployment_start_launcher.html#concept_jbc_zhk_wr
http://www.cloudera.com/documentation/director/latest/topics/director_usage-based_billing.html#untitled1
https://github.com/cloudera/director-scripts/tree/master/configs
https://github.com/cloudera/director-scripts/tree/master/faster-bootstrap

Prepare the Job Wrapper Script

Define the Hive query or job that you want to execute and a wrapper shell script that runs required prerequisite
commands before it executes the query or job on the transient cluster. The Director public GitHub repository contains
simple examples of a MapReduce job wrapper script and an Oozie job wrapper script.

For example, the following is a Bash shell wrapper script for a Hive query:

set -x -e
sudo -u hdfs hadoop fs -mkdir /user/ec2-user
sudo -u hdfs hadoop fs -chown ec2-user:ec2-user /user/ec2-user
hive -f query.q
exit 0

Where query.q contains the Hive query. After you create the job wrapper script, test it to make sure it runs without
errors.

Log Collection

Save all relevant log files in S3 because they disappear when you terminate the transient cluster. Use these log files to
debug any failed jobs after the cluster is terminated. To save the log files, add an additional step to your job wrapper
shell script.

Example for copying Hive logs from a transient cluster node to S3:

Install AWS CLI
curl "https://s3.amazonaws.com/aws-cli/awscli-bundleszip" -o "awscli-bundle.zip"
sudo yum install -y unzip
unzip awscli-bundle.zip
sudo ./awscli-bundle/install -i /usr/local/aws -b /usr/local/bin/aws

Set Credentials
export AWS_ACCESS_KEY_ID=[]
export AWS_SECRET_ACCESS_KEY=[]

Copy Log Files
aws s3 cp /tmp/ec2-user/hive.log s3://bucket-name/output/hive/logs/

Prepare the End-to-End Job Submission Script

This script automates the end-to-end workflow, including the following steps:

1. Submit the transient cluster configuration file to Altus Director.
2. Wait for the cluster to be provisioned and ready to use.
3. Copy all job-related files to the cluster.
4. Submit the job script to the cluster.
5. Wait for the job to complete.
6. Shutdown the cluster.

See the Cloudera Engineering Blog post How-to: Integrate Cloudera Director with a Data Pipeline in the Cloud for
information about creating an end-to-end job submission script. A sample script can be downloaded fromGitHub here.

Schedule the Recurring Job

To schedule the recurring job, wrap the end-to-end job submission script in a Cron job or by triggering the script to
run when a particular event occurs.

Configuring a Shared Amazon RDS as an HMS for CDH
Before CDH 5.10, each CDH cluster had to have its own Apache Hive metastore (HMS) backend database. This model
is ideal for clusters where each cluster contains the data locally along with the metadata. In the cloud, however, many

54 | Apache Hive Guide

Using & Managing Apache Hive in CDH

https://github.com/cloudera/director-scripts/blob/master/dispatch/job-example-script.sh
https://github.com/cloudera/director-scripts/blob/master/dispatch/oozie-fs-job/job-example-script.sh
https://blog.cloudera.com/blog/2016/02/how-to-integrate-cloudera-director-with-a-data-pipeline/
https://github.com/cloudera/director-scripts/blob/master/dispatch/dispatch.sh

CDH clusters run directly on a shared object store, such as Amazon S3, making it possible for the data to live across
multiple clusters and beyond the lifespan of any cluster. In this scenario, clusters need to regenerate and coordinate
metadata for the underlying shared data individually.

From CDH 5.10 and later, clusters running in the AWS cloud can share a single persistent instance of the Amazon
Relational Database Service (RDS) as the HMS backend database. This enables persistent sharing of metadata beyond
a cluster's life cycle so that subsequent clusters need not regenerate metadata as they had to before.

Advantages of This Approach

Using a shared Amazon RDS server as your HMS backend enables you to deploy and share data and metadata across
multiple transient as well as persistent clusters if they adhere to restrictions that are outlined in the "Supported
Scenarios" section below. For example, you can have multiple transient Hive or Apache Spark clusters writing table
data and metadata which can be subsequently queried by a persistent Apache Impala cluster. Or you might have 2-3
different transient clusters, each dealing with different types of jobs on different data sets that spin up, read raw data
from S3, do the ETL (Extract, Transform, Load) work, write data out to S3, and then spin down. In this scenario, you
want each cluster to be able to simply point to a permanent HMS and do the ETL. Using RDS as a shared HMS backend
database greatly reduces your overhead because you no longer need to recreate the HMS again and again for each
cluster, every day, for each transient ETL job that you run.

How To Configure Amazon RDS as the Backend Database for a Shared Hive Metastore

The following instructions assumes that you have an Amazon AWS account and that you are familiar with AWS services.

1. Create a MySQL instance with Amazon RDS. See Creating a MySQL DB Instance... and Creating an RDS Database
Tutorial in Amazon documentation. This step is performed only once. Subsequent clusters that use an existing
RDS instance do not need this step because the RDS is already set up.

2. Configure a remote MySQL Hive metastore database as part of the Cloudera Manager installation procedure,
using the hostname, username, and password configured during your RDS setup. See Configuring a RemoteMySQL
Database for the Hive Metastore.

3. Configure Hive, Impala, and Spark to use Amazon S3:

• For Hive, see Tuning Hive on S3.
• For Impala, see Using Impala with the Amazon S3 Filesystem.
• For Spark, see Accessing Data Stored in Amazon S3 through Spark.

Supported Scenarios

The following limitations apply to the jobs you run when you use an RDS server as a remote backend database for Hive
metastore.

• No overlapping data or metadata changes to the same data sets across clusters.
• No reads during data or metadata changes to the same data sets across clusters.
• Overlapping data or metadata changes are defined as when multiple clusters concurrently:

– Make updates to the same table or partitions within the table located on S3.
– Add or change the same parent schema or database.

Important: If you are running a shared RDS, Cloudera Support will help licensed customers repair
any unexpected metadata issues, but will not do "root-cause" analysis.

Apache Hive Guide | 55

Using & Managing Apache Hive in CDH

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.MySQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Tutorials.WebServerDB.CreateDBInstance.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Tutorials.WebServerDB.CreateDBInstance.html

Configuring ADLS Gen1 Connectivity

Note: This topic discussesMicrosoft Azure Data Lake Store (ADLS) Gen 1. For information about ADLS
Gen 2, see Configuring ADLS Gen2 Connectivity

Microsoft Azure Data Lake Store (ADLS) is a massively scalable distributed file system that can be accessed through an
HDFS-compatible API. ADLS acts as a persistent storage layer for CDH clusters running on Azure. In contrast to Amazon
S3, ADLS more closely resembles native HDFS behavior, providing consistency, file directory structure, and
POSIX-compliant ACLs. See the ADLS documentation for conceptual details.

CDH supports using ADLS as a storage layer forMapReduce2 (MRv2 or YARN), Hive, Hive on Spark, Spark 2.1 and higher,
and Spark 1.6. Other applications are not supported and may not work, even if they use MapReduce or Spark as their
execution engine. Use the steps in this topic to set up a data store to use with these CDH components.

Note the following limitations:

• ADLS is not supported as the default filesystem. Do not set the default file system property (fs.defaultFS) to
an adl:// URI. You can still use ADLS as secondary filesystem while HDFS remains the primary filesystem.

• Hadoop Kerberos authentication is supported, but it is separate from the Azure user used for ADLS authentication.

Setting up ADLS to Use with CDH

1. To create your ADLS account, see the Microsoft documentation.
2. Create the service principal in the Azure portal. See the Microsoft documentation on creating a service principal.

Important:

While you are creating the service principal, write down the following values, which youwill need
in step 4:

• The client id.
• The client secret.
• The refresh URL. To get this value, in the Azure portal, go to Azure Active Directory > App

registrations > Endpoints. In the Endpoints region, copy the OAUTH 2.0 TOKEN ENDPOINT.
This is the value you need for the refresh_URL in step 4.

3. Grant the service principal permission to access the ADLS account. See the Microsoft documentation on
Authorization and access control. Review the section, "Using ACLs for operations on file systems" for information
about granting the service principal permission to access the account.

You can skip the section on RBAC (role-based access control) because RBAC is used for management and you only
need data access.

4. Configure your CDH cluster to access your ADLS account. To access ADLS storage from a CDH cluster, you provide
values for the following properties when submitting jobs:

Table 1: ADLS Access Properties

Property NameProperty Description

dfs.adls.oauth2.access.token.provider.type

The value of this property should be ClientCredential

Provider Type

dfs.adls.oauth2.client.idClient ID

dfs.adls.oauth2.credentialClient Secret

56 | Apache Hive Guide

Using & Managing Apache Hive in CDH

https://docs.microsoft.com/en-in/azure/data-lake-store/
https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-get-started-portal
https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-authenticate-using-active-directory#create-an-active-directory-application
https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-security-overview#authorization-and-access-control

Property NameProperty Description

dfs.adls.oauth2.refresh.urlRefresh URL

There are several methods you can use to provide these properties to your jobs. There are security and other
considerations for each method. Select one of the following methods to access data in ADLS:

• User-Supplied Key for Each Job on page 57
• Single Master Key for Cluster-Wide Access on page 58
• User-Supplied Key stored in a Hadoop Credential Provider on page 58
• Create a Hadoop Credential Provider and reference it in a customized copy of the core-site.xml file for the

service on page 59

Testing and Using ADLS Access

1. After configuring access, test your configuration by running the following command that lists files in your ADLS
account:

hadoop fs -ls adl://your_account.azuredatalakestore.net/

If your configuration is correct, this command lists the files in your account.

2. After successfully testing your configuration, you can access the ADLS account from MRv2, Hive, Hive on Spark ,
Spark 1.6, Spark 2.1 and higher, or HBase by using the following URI:

adl://your_account.azuredatalakestore.net

For additional information and examples of using ADLS access with Hadoop components:

• Spark: See Accessing Data Stored in Azure Data Lake Store (ADLS) through Spark
• distcp: See Using DistCp with Microsoft Azure (ADLS).
• TeraGen:

export HADOOP_CONF_DIR=path_to_working_directory
export HADOOP_CREDSTORE_PASSWORD=hadoop_credstore_password
hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar
 teragen 1000 adl://jzhugeadls.azuredatalakestore.net/tg

User-Supplied Key for Each Job

You can pass the ADLS properties on the command line when submitting jobs.

• Advantages: No additional configuration is required.
• Disadvantages: Credentials will appear in log files, command history and other artifacts, which can be a serious

security issue in some deployments.

Important: Cloudera recommends that you only use this method for access to ADLS in development
environments or other environments where security is not a concern.

Use the following syntax to run your jobs:

hadoop command
 -Ddfs.adls.oauth2.access.token.provider.type=ClientCredential \
 -Ddfs.adls.oauth2.client.id=CLIENT ID \
 -Ddfs.adls.oauth2.credential='CLIENT SECRET' \
 -Ddfs.adls.oauth2.refresh.url=REFRESH URL \

Apache Hive Guide | 57

Using & Managing Apache Hive in CDH

 adl://<store>.azuredatalakestore.net/src hdfs://nn/tgt

Single Master Key for Cluster-Wide Access

Use Cloudera Manager to save the values in the Cluster-wide Advanced Configuration Snippet (Safety Valve) for
core-site.xml.

• Advantages: All users can access the ADLS storage
• Disadvantages: This is a highly insecure means of providing access to ADLS for the following reasons:

– The credentials will appear in all ClouderaManager-managed configuration files for all services in the cluster.
– The credentials will appear in the Job History server.

Important: Cloudera recommends that you only use this method for access to ADLS in development
environments or other environments where security is not a concern.

1. Open the Cloudera Manager Admin Console and go to Cluster Name > Configuration > Advanced Configuration
Snippets.

2. Enter the following in the Cluster-wide Advanced Configuration Snippet (Safety Valve) for core-site.xml:

<property>
 <name>dfs.adls.oauth2.access.token.provider.type</name>
 <value>ClientCredential</value>
</property>
<property>
 <name>dfs.adls.oauth2.client.id</name>
 <value>CLIENT ID</value>
</property>
<property>
 <name>dfs.adls.oauth2.credential</name>
 <value>CLIENT SECRET</value>
</property>
<property>
 <name>dfs.adls.oauth2.refresh.url</name>
 <value>REFRESH URL</value>
</property>

3. Click Save Changes.
4. Click Restart Stale Services so the cluster can read the new configuration information.

User-Supplied Key stored in a Hadoop Credential Provider

• Advantages: Credentials are securely stored in the credential provider.
• Disadvantages:Works with MapReduce2 and Spark only (Hive, Impala, and HBase are not supported).

1. Create a Credential Provider.

a. Create a password for the Hadoop Credential Provider and export it to the environment:

export HADOOP_CREDSTORE_PASSWORD=password

b. Provision the credentials by running the following commands:

hadoop credential create dfs.adls.oauth2.client.id -provider
jceks://hdfs/user/USER_NAME/adls-cred.jceks -value client ID
hadoop credential create dfs.adls.oauth2.credential -provider
jceks://hdfs/user/USER_NAME/adls-cred.jceks -value client secret
hadoop credential create dfs.adls.oauth2.refresh.url -provider
jceks://hdfs/user/USER_NAME/adls-cred.jceks -value refresh URL

58 | Apache Hive Guide

Using & Managing Apache Hive in CDH

You can omit the -value option and its value and the command will prompt the user to enter the value.

For more details on the hadoop credential command, see Credential Management (Apache Software
Foundation).

2. Reference the Credential Provider on the command line when submitting jobs:

hadoop command
 -Ddfs.adls.oauth2.access.token.provider.type=ClientCredential \

-Dhadoop.security.credential.provider.path=jceks://hdfs/user/USER_NAME/adls-cred.jceks
 \
 adl://<store>.azuredatalakestore.net/

Create a Hadoop Credential Provider and reference it in a customized copy of the core-site.xml file for
the service

• Advantages: all users can access the ADLS storage
• Disadvantages: you must pass the path to the credential store on the command line.

1. Create a Credential Provider:

a. Create a password for the Hadoop Credential Provider and export it to the environment:

export HADOOP_CREDSTORE_PASSWORD=password

b. Provision the credentials by running the following commands:

hadoop credential create dfs.adls.oauth2.client.id -provider
jceks://hdfs/user/USER_NAME/adlskeyfile.jceks -value client ID
hadoop credential create dfs.adls.oauth2.credential -provider
jceks://hdfs/user/USER_NAME/adlskeyfile.jceks -value client secret
hadoop credential create dfs.adls.oauth2.refresh.url -provider
jceks://hdfs/user/USER_NAME/adlskeyfile.jceks -value refresh URL

You can omit the -value option and its value and the command will prompt the user to enter the value.

For more details on the hadoop credential command, see Credential Management (Apache Software
Foundation).

2. Copy the contents of the /etc/service/conf directory to a working directory. The service can be one of the
following verify list:

• yarn

• spark

• spark2

Use the --dereference option when copying the file so that symlinks are correctly resolved. For example:

cp -r --dereference /etc/spark/conf ~/my_custom_config_directory

Change the ownership so that you can edit the files:

sudo chown --recursive $USER ~/custom-conf-file/*

3. Add the following to the core-site.xml file in the working directory:

<property>
 <name>hadoop.security.credential.provider.path</name>
 <value>jceks://hdfs/path_to_credential_store_file</value>

Apache Hive Guide | 59

Using & Managing Apache Hive in CDH

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CredentialProviderAPI.html#Credential_Management
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CredentialProviderAPI.html#Credential_Management
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CredentialProviderAPI.html#Credential_Management
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CredentialProviderAPI.html#Credential_Management

</property>
<property>
 <name>dfs.adls.oauth2.access.token.provider.type</name>
 <value>ClientCredential</value>
</property>

The value of the path_to_credential_store_file should be the same as the value for the --provider option in
the hadoop credential create command described in step 1.

4. Set the HADOOP_CONF_DIR environment variable to the location of the working directory:

export HADOOP_CONF_DIR=path_to_working_directory

Creating a Credential Provider for ADLS

You can use a Hadoop Credential Provider to specify ADLS credentials, which allows you to run jobs without having to
enter the access key and secret key on the command line. This prevents these credentials frombeing exposed in console
output, log files, configuration files, and other artifacts. Running the command in this way requires that you provision
a credential store to securely store the access key and secret key. The credential store file is saved in HDFS.

To create a credential provider, run the following commands:

1. Create a password for the Hadoop Credential Provider and export it to the environment:

export HADOOP_CREDSTORE_PASSWORD=password

2. Provision the credentials by running the following commands:

hadoop credential create dfs.adls.oauth2.client.id -provider
jceks://hdfs/user/USER_NAME/adlskeyfile.jceks -value client ID
hadoop credential create dfs.adls.oauth2.credential -provider
jceks://hdfs/user/USER_NAME/adlskeyfile.jceks -value client secret
hadoop credential create dfs.adls.oauth2.refresh.url -provider
jceks://hdfs/user/USER_NAME/adlskeyfile.jceks -value refresh URL

You can omit the -value option and its value and the command will prompt the user to enter the value.

For more details on the hadoop credential command, see Credential Management (Apache Software
Foundation).

ADLS Configuration Notes

ADLS Trash Folder Behavior

If the fs.trash.interval property is set to a value other than zero on your cluster and you do not specify the
-skipTrash flag with your rm command when you remove files, the deleted files are moved to the trash folder in
your ADLS account. The trash folder in your ADLS account is located at
adl://your_account.azuredatalakestore.net/user/user_name/.Trash/current/. Formore information
about HDFS trash, see Configuring HDFS Trash.

User and Group Names Displayed as GUIDs

By default ADLS user and group names are displayed as GUIDs. For example, you receive the following output for these
Hadoop commands:

$hadoop fs -put /etc/hosts adl://your_account.azuredatalakestore.net/one_file
$hadoop fs -ls adl://your_account.azuredatalakestore.net/one_file
-rw-r--r-- 1 94c1b91f-56e8-4527-b107-b52b6352320e cdd5b9e6-b49e-4956-be4b-7bd3ca314b18
 273
2017-04-11 16:38 adl://your_account.azuredatalakestore.net/one_file

60 | Apache Hive Guide

Using & Managing Apache Hive in CDH

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CredentialProviderAPI.html#Credential_Management
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CredentialProviderAPI.html#Credential_Management

To display user-friendly names, set the property adl.feature.ownerandgroup.enableupn to true in the
core-site.xml file or at the command line.When this property is set to true the -ls command returns the following
output:

$hadoop fs -ls adl://your_account.azuredatalakestore.net/one_file
-rw-r--r-- 1 YourADLSApp your_login_app 273 2017-04-11 16:38
adl://your_account.azuredatalakestore.net/one_file

Importing Data into Hive with Sqoop Through HiverServer2

Importing Data Through Hiveserver2

In addition to importing with the Hive CLI, Sqoop supports import into Hive through HiveServer2 as well.

There are three HiveServer2 specific command options that the user can define for the sqoop import tool when
importing data:

• --hs2-url: The JDBC connection string to HiveServer2 as one would specify it for Beeline.
• --hs2-user: Specifies the user for creating the JDBC connection to HiveServer2. If a user is not specified, the

current OS user is used by default.
• --hs2-keytab: The path to the keytab file of the user connecting to HiveServer2. If the --hs2-user option is

specified then --hs2-keytab option has to specified as well otherwise it can be omitted. The keytab has to be
available on the machine the Sqoop command is executed on.

HiveServer2 imports can be initiatedwith the --hs2-url. When the user specifies the --hs2-url option, commands
are sent to HiveServer2 through a JDBC connection. The data itself is not transferred via the JDBC connection. It is
written directly to HDFS and moved to the Hive warehouse using the LOAD DATA INPATH command just like in the
case of the default Hive import. When the --hs2-url option is not specified, Sqoop imports the data into Hive using
the Hive CLI, which is the default method. For more information regarding the default import method, see upstream
documents.

HiveServer2 provides proper Sentry authorization. As a result, Cloudera recommends importing data into Hive through
HiveServer2 instead of the default method. Currently, Sqoop can authenticate to HiveServer2 using Kerberos only.

Importing Data

Prerequisites

Before importing data make sure that the following prerequisites are satisfied:

• A properly configured user with permissions to execute CREATE TABLE and LOAD DATA INPATH statements in
Hive.

• Default ACLs defined for the temporary import folder so that the new folder, when created, inherits the ACLs of
the parent.

Steps

1. Create a temporary import folder with read, write, and execute permissions for the Hive user. For example:

hdfs dfs -mkdir /user/username/importdir
hdfs dfs -setfacl -m default:user:hive:rwx /user/username/importdir

The LOAD DATA INPATH statement is executed by the Hive superuser, therefore, the temporary HDFS folder
that Sqoop imports into has to have read, write, and execute permission for the Hive user as well.

Important: Make sure that effective ACLs are not constrained for the Hive user by the
fs.permissions.umask-mode setting.

Apache Hive Guide | 61

Using & Managing Apache Hive in CDH

2. Execute a Hive import. Use either of the following methods:

a. Execute a Hive import with the current OS user:

sqoop import --connect $MYCONN --username $MYUSER --password $MYPSWD --table
"employees_test" --target-dir "/user/username/importdir/employees_test" --hive-import
--hs2-url
"jdbc:hive2://hs2host:10000/default;principal=hive/hs2host@DOMAIN.COM;ssl=true;sslTrustStore=/etc/cdep-ssl-conf/CA_STANDARD/truststore.jks;trustStorePassword=password"

b. Execute a Hive import with the username and keytab specified:

sqoop import --connect $MYCONN --username $MYUSER --password $MYPSWD --table
"employees_test" --target-dir "/user/username/importdir/employees_test"
--delete-target-dir --hive-import --hs2-url
"jdbc:hive2://hs2host:10000/default;principal=hive/hs2host@DOMAIN.COM;ssl=true;sslTrustStore=/etc/cdep-ssl-conf/CA_STANDARD/truststore.jks;trustStorePassword=password"
 --hs2-user username --hs2-keytab "/path/to/sqooptestkeytab"

62 | Apache Hive Guide

Using & Managing Apache Hive in CDH

Tuning Apache Hive in CDH

To maximize performance of your Apache Hive query workloads, you need to optimize cluster configurations, queries,
and underlying Hive table design. This includes the following:

• Configure CDH clusters for the maximum allowed heap memory size, load-balance concurrent connections across
your CDHHive components, and allocate adequatememory to support HiveServer2 andHivemetastore operations.

• Review your Hive query workloads to make sure queries are not overly complex, that they do not access large
numbers of Hive table partitions, or that they force the system to materialize all columns of accessed Hive tables
when only a subset is necessary.

• Review the underlying Hive table design, which is crucial to maximizing the throughput of Hive query workloads.
Do not create thousands of table partitions that might cause queries containing JOINs to overtax HiveServer2 and
the Hive metastore. Limit column width, and keep the number of columns under 1,000.

The following sections provide details on implementing these best practices tomaximize performance for deployments
of HiveServer2 and the Hive metastore.

Formore information about tuningHive onAmazon, see Tuning ApacheHive Performance on theAmazon S3 Filesystem
in CDH on page 74. For information about tuning Hive for OpenJDK, see Tuning JVM Garbage Collection.

Heap Size and Garbage Collection for Hive Components
This section provides guidelines for setting HiveServer2 and Hivemetastorememory and garbage-collection properties.

Memory and Hardware Requirements Recommendations

HiveServer2 and the Hive metastore require sufficient memory to run correctly. The default heap size of 256 MB for
each component is inadequate for production workloads. The table below contains guidelines for sizing the heap for
each component, based on your cluster size. The table refers to connections, the number of open connections to
HiveServer (Cloudera Manager hive_open_connections metric). In Cloudera Manager, HiveServer2, Status, the visual
representation of this metric appears. For example:

DiskCPUJava HeapComponent

Minimum 1 diskMinimum 4 dedicated cores4 GBSingle ConnectionHiveServer 2

4-6 GB2-10 connections This disk is required
for the following:

6-12 GB11-20 connections
• HiveServer2 log

files12-16
GB

21-40 connections

• stdout and
stderr output
files

16-24
GB

41 to 80 connections

• Configuration
files

Apache Hive Guide | 63

Tuning Apache Hive in CDH

DiskCPUJava HeapComponent

Cloudera recommends splitting
HiveServer2 into multiple

• Operation logs
stored in the
operation_logs_dirinstances and load balancing
directory, which
is configurable

them once you start allocating
more than 16 GB to

• Any temporary
files that might

HiveServer2. The objective is to
adjust the size to reduce the

be created byimpact of Java garbage
local map taskscollection on active processing

by the service. under the /tmp
directory

Set this value using the Java
Heap Size of HiveServer2 in
Bytes Hive configuration
property.

Minimum 1 diskMinimum 4 dedicated cores4 GBSingle ConnectionHive Metastore

4-10 GB2-10 connections This disk is required so
that the Hive

10-12
GB

11-20 connections metastore can store
the following artifacts:

12-16
GB

21-40 connections • Logs
• Configuration

files16-24
GB

41 to 80 connections
• Backend

database that isSet this value using the Java
Heap Size of Hive Metastore used to store

metadata if theServer in Bytes Hive
configuration property. database server

is also hosted on
the same node

N/AN/AMinimum: 2 GBBeeline CLI

Important: These numbers are general guidance only, and can be affected by factors such as number
of columns, partitions, complex joins, and client activity. Based on your anticipated deployment, refine
through testing to arrive at the best values for your environment.

In addition, set option MaxMetaspaceSize to put an upper limit on the amount of native memory used for class
metadata.

Configuring Heap Size and Garbage Collection

Using Cloudera Manager

To configure heap size and garbage collection for HiveServer2:

1. To set heap size, go to Home > Hive > Configuration > HiveServer2 > Resource Management.
2. Set Java Heap Size of HiveServer2 in Bytes to the desired value, and click Save Changes.
3. To set garbage collection, go to Home > Hive > Configuration > HiveServer2 > Advanced.
4. Set the PermGen space for Java garbage collection to 512M, the type of garbage collector used (ConcMarkSweepGC

or ParNewGC), and enable or disable the garbage collection overhead limit in Java Configuration Options for
HiveServer2.

64 | Apache Hive Guide

Tuning Apache Hive in CDH

The following example sets the PermGen space to 512M, uses the new Parallel Collector, and disables the garbage
collection overhead limit:

-XX:MaxPermSize=512M -XX:+UseParNewGC -XX:-UseGCOverheadLimit

5. From the Actions drop-down menu, select Restart to restart the HiveServer2 service.

To configure heap size and garbage collection for the Hive metastore:

1. To set heap size, go to Home > Hive > Configuration > Hive Metastore > Resource Management.
2. Set Java Heap Size of Hive Metastore Server in Bytes to the desired value, and click Save Changes.
3. To set garbage collection, go to Home > Hive > Configuration > Hive Metastore Server > Advanced.
4. Set the PermGen space for Java garbage collection to 512M, the type of garbage collector used (ConcMarkSweepGC

or ParNewGC), and enable or disable the garbage collection overhead limit in Java Configuration Options for Hive
Metastore Server. For an example of this setting, see step 4 above for configuring garbage collection for HiveServer2.

5. From the Actions drop-down menu, select Restart to restart the Hive Metastore service.

To configure heap size and garbage collection for the Beeline CLI:

1. To set heap size, go to Home > Hive > Configuration > Gateway > Resource Management.
2. Set Client Java Heap Size in Bytes to at least 2 GiB and click Save Changes.
3. To set garbage collection, go to Home > Hive > Configuration > Gateway > Advanced.
4. Set the PermGen space for Java garbage collection to 512M in Client Java Configuration Options.

The following example sets the PermGen space to 512M and specifies IPv4:

-XX:MaxPermSize=512M -Djava.net.preferIPv4Stack=true

5. From the Actions drop-down menu, select Restart to restart the client service.

Using the Command Line

To configure the heap size for HiveServer2 and Hivemetastore, set the -Xmx parameter in the HADOOP_OPTS variable
to the desired maximum heap size in /etc/hive/hive-env.sh.

To configure the heap size for the Beeline CLI, set the HADOOP_HEAPSIZE environment variable in
/etc/hive/hive-env.sh before starting the Beeline CLI.

The following example shows a configuration with the following settings:

• HiveServer2 uses 12 GB heap.
• Hive metastore uses 12 GB heap.
• Hive clients use 2 GB heap.

The settings to change are in bold. All of these lines are commented out (prefixed with a # character) by default.

if ["$SERVICE" = "cli"]; then
 if [-z "$DEBUG"]; then
 export HADOOP_OPTS="$HADOOP_OPTS -XX:NewRatio=12 -Xmx12288m -Xms12288m
-XX:MaxHeapFreeRatio=40 -XX:MinHeapFreeRatio=15 -XX:+UseParNewGC -XX:-UseGCOverheadLimit"

 else
 export HADOOP_OPTS="$HADOOP_OPTS -XX:NewRatio=12 -Xmx12288m -Xms12288m
-XX:MaxHeapFreeRatio=40 -XX:MinHeapFreeRatio=15 -XX:-UseGCOverheadLimit"
 fi
fi

export HADOOP_HEAPSIZE=2048

You can use either the Concurrent Collector or the new Parallel Collector for garbage collection by passing
-XX:+UseConcMarkSweepGC or -XX:+UseParNewGC in the HADOOP_OPTS lines above. To enable the garbage

Apache Hive Guide | 65

Tuning Apache Hive in CDH

collection overhead limit, remove the -XX:-UseGCOverheadLimit setting or change it to
-XX:+UseGCOverheadLimit.

Set the PermGen space for Java garbage collection to 512M for all in the JAVA-OPTS environment variable. For example:

set JAVA_OPTS="-Xms256m -Xmx1024m -XX:PermSize=512m -XX:MaxPermSize=512m"

HiveServer2 Performance Tuning
HiveServer2 (HS2) services might require more memory if there are:

• Many Hive table partitions.
• Many concurrent connections to HS2.
• Complex Hive queries that access significant numbers of table partitions.

If any of these conditions exist, Hive can run slowly or possibly crash because the entire HS2 heap memory is full. This
section describes the symptoms that occur when HS2 needs additional memory, how you can troubleshoot issues to
identify their causes, and then address them.

Symptoms Displayed When HiveServer2 Heap Memory is Full

When HS2 heap memory is full, you might experience the following issues:

• HS2 service goes down and new sessions fail to start.
• HS2 service seems to be running fine, but client connections are refused.
• Query submission fails repeatedly.
• HS2 performance degrades and displays the following behavior:

– Query submission delays
– Long query execution times

HiveServer2 General Performance Problems or Connections Refused

For general HS2 performance problems or if the service refuses connections, but does not completely hang, inspect
the Cloudera Manager process charts:

1. In Cloudera Manager, navigate to Home > Hive > Instances > HiveServer2 > Charts Library.
2. In the Process Resources section of the Charts Library page, view the JVMPause Time and the JVMPauses Longer

Than Warning Threshold charts for signs that JVM has paused to manage resources. For example:

66 | Apache Hive Guide

Tuning Apache Hive in CDH

Figure 2: Cloudera Manager Chart Library Page for Process Resources

HiveServer2 Performance Best Practices

High heap usage by the HS2 process can be caused by Hive queries accessing high numbers of table partitions (greater
than several thousand), high levels of concurrency, or other Hiveworkload characteristics described in IdentifyWorkload
Characteristics That Increase Memory Pressure on page 68.

HiveServer2 Heap Size Configuration Best Practices

Optimal HS2 heap size configuration depends on several factors, includingworkload characteristics, number of concurrent
clients, and the partitioning of underlying Hive tables. To resolve HS2 memory-related issues, confirm that the HS2
heap size is set properly for your environment.

1. In CDH 5.7 and later, Cloudera Manager starts the HS2 service with 4 GB heap size by default unless hosts have
insufficient memory. However, the heap size on lower versions of CDH or upgraded clusters might not be set to
this recommended value. To raise the heap size to at least 4 GB:

a. In Cloudera Manager, go to Home > Hive > Configuration > HiveServer2 > Resource Management.
b. Set Java Heap Size of HiveServer2 in Bytes to 4 GiB and click Save Changes.
c. From the Actions drop-down menu, select Restart to restart the HS2 service.

If HS2 is already configured to run with 4 GB or greater heap size and there are still performance issues, workload
characteristics may be causingmemory pressure. Increase heap size to reducememory pressure on HS2. Cloudera
does not recommend exceeding 16 GB per instance because of long garbage collection pause times. See Identify
Workload Characteristics That Increase Memory Pressure on page 68 for tips to optimize query workloads to
reduce the memory requirements on HS2. Cloudera recommends splitting HS2 into multiple instances and
load-balancing once you start allocating over 16 GB to HS2.

2. If workload analysis does not reveal anymajor issues, or you can only address workload issues over time, consider
the following options:

• Increase the heap size on HS2 in incremental steps. Cloudera recommends increasing the heap size by 50%
from the current value with each step. If you have increased the heap size to 16 GB and issues persist, contact
Cloudera Support.

Apache Hive Guide | 67

Tuning Apache Hive in CDH

• Reduce the number of services running on the HS2 host.
• Load-balance workloads across multiple HS2 instances as described in How the Number of Concurrent

Connections Affect HiveServer2 Performance on page 68.
• Add more physical memory to the host or upgrade to a larger server.

How the Number of Concurrent Connections Affect HiveServer2 Performance

The number of concurrent connections can impact HS2 in the following ways:

• High number of concurrent queries

High numbers of concurrent queries increases the connection count. Each query connection consumes resources
for the query plan, number of table partitions accessed, and partial result sets. Limiting the number of concurrent
users can help reduce overall HS2 resource consumption, especially limiting scenarioswhere one ormore "in-flight"
queries returns large result sets.

How to resolve:

– Load-balance workloads across multiple HS2 instances by using HS2 load balancing, which is available in CDH
5.7 and later. Cloudera recommends that you determine the total number of HS2 servers on a cluster by
dividing the expectedmaximumnumber of concurrent users on a cluster by 40. For example, if 400 concurrent
users are expected, 10 HS2 instances should be available to support them. See Configuring HiveServer2 High
Availability in CDH on page 82 for setup instructions.

– Review usage patterns, such as batch jobs timing or Oozie workflows, to identify spikes in the number of
connections that can be spread over time.

• Many abandoned Hue sessions

Users opening numerous browser tabs in Hue causes multiple sessions and connections. In turn, all of these open
connections lead tomultiple operations andmultiple result sets held inmemory for queries that finish processing.
Eventually, this situation leads to a resource crisis.

How to resolve:

– Reduce the session timeout duration for HS2, which minimizes the impact of abandoned Hue sessions. To
reduce session timeout duration, modify these configuration parameters as follows:

– hive.server2.idle.operation.timeout=7200000

The default setting for this parameter is 21600000 or 6 hours.

– hive.server2.idle.session.timeout=21600000

The default setting for this parameter is 43200000 or 12 hours.

To set these parameters in Cloudera Manager, go to Home > Hive > Configuration > HiveServer2 >
Advanced , and then search for each parameter.

– Reduce the size of the result set returned by adding filters to queries. Thisminimizesmemory pressure caused
by "dangling" sessions.

Identify Workload Characteristics That Increase Memory Pressure

If increasing the heap size based on configuration guidelines does not improve performance, analyze your query
workloads to identify characteristics that increasememory pressure onHS2.Workloadswith the following characteristics
increase memory requirements for HS2:

• Queries that access a large number of table partitions:

– Cloudera recommends that a single query access no more than 10,000 table partitions. If joins are also used
in the query, calculate the combined partition count accessed across all tables.

68 | Apache Hive Guide

Tuning Apache Hive in CDH

– Look for queries that load all table partitions in memory to execute. This can substantially add to memory
pressure. For example, a query that accesses a partitioned table with the following SELECT statement loads
all partitions of the target table to execute:

SELECT * FROM <table_name> LIMIT 10;

How to resolve:

– Add partition filters to queries to reduce the total number of partitions that are accessed. To view all of
the partitions processed by a query, run the EXPLAIN DEPENDENCY clause, which is explained in the
Apache Hive Language Manual.

– In the Metastore Server Advanced Configuration Snippet (Safety Valve) for hive-site.xml, set the
hive.metastore.limit.partition.request parameter to 1000 to limit the maximum number of
partitions accessed from a single table in a query. See the Apache wiki for information about setting this
parameter. If this parameter is set, queries that access more than 1000 partitions fail with the following
error:

MetaException: Number of partitions scanned (=%d) on table '%s' exceeds limit (=%d)

Setting this parameter protects against bad workloads and identifies queries that need to be optimized.
To resolve the failed queries:

– Apply the appropriate partition filters.
– Increase the cluster-wide limit beyond 1000, if needed. This action adds memory pressure to

HiveServer2 and the Hive metastore.

– If the accessed table is not partitioned, see this Cloudera Engineering Blog post, which explains how to
partition Hive tables to improve query performance. Choose columns or dimensions for partitioning
based upon usage patterns. Partitioning tables too much causes data fragmentation, but partitioning
too little causes queries to read too much data. Either extreme makes querying inefficient. Typically, a
few thousand table partitions is fine.

• Wide tables or columns:

– Memory requirements are directly proportional to the number of columns and the size of the individual
columns. Typically, a wide table contains over 1,000 columns. Wide tables or columns can cause memory
pressure if the number of columns is large. This is especially true for Parquet files because all data for a
row-group must be in memory before it can be written to disk. Avoid wide tables when possible.

– Large individual columns also cause the memory requirements to increase. Typically, this happens when a
column contains free-form text or complex types.

How to resolve:

– Reduce the total number of columns that are materialized. If only a subset of columns are required,
avoid SELECT * because it materializes all columns.

– Instead, use a specific set of columns. This is particularly efficient for wide tables that are stored in
column formats. Specify columns explicitly insteadof usingSELECT *, especially for productionworkloads.

• High query complexity

Complex queries usually have large numbers of joins, often over 10 joins per query. HS2 heap size requirements
increase significantly as the number of joins in a query increases.

How to resolve:

– Make sure that partition filters are specified on all partitioned tables that are involved in JOINs.
– Whenever possible, break queries into multiple smaller queries with intermediate temporary tables.

• Improperly written user-defined functions (UDFs)

Apache Hive Guide | 69

Tuning Apache Hive in CDH

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Explain#LanguageManualExplain-TheDEPENDENCYClause
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
http://blog.cloudera.com/blog/2014/08/improving-query-performance-using-partitioning-in-apache-hive/

Improperly written UDFs can exert significant memory pressure on HS2.

How to resolve:

– Understand the memory implications of the UDF and test it before using it in production environments.

• Queries fail with "Too many counters" error

Hive operations use various counters while executing MapReduce jobs. These per-operator counters are enabled
by the configuration setting hive.task.progress. This is disabled by default. If it is enabled, Hive might create
a large number of counters (4 counters per operator, plus another 20).

Note: If dynamic partitioning is enabled, Hive implicitly enables the counters during data load.

By default, CDH restricts the number of MapReduce counters to 120. Hive queries that require more counters fail
with the "Too many counters" error.

How to resolve:

– For managed clusters:

1. In Cloudera Manager Admin Console, go to the MapReduce service.
2. Select the Configuration tab.
3. Type counters in the search box in the right panel.
4. Scroll down the right panel to locate themapreduce.job.counters.max property and increase the Value.
5. Click Save Changes.

– For unmanaged clusters:

Set the mapreduce.job.counters.max property to a higher value in mapred-site.xml.

General Best Practices

The following general best practices help maintain a healthy Hive cluster:

• Review and test queries in a development or test cluster before running them in a production environment.
Monitor heap memory usage while testing.

• Redirect and isolate any untested, unreviewed, ad-hoc, or "dangerous" queries to a separate HS2 instance that
is not critical to batch operation.

Tuning Apache Hive on Spark in CDH

Note: This page contains references to CDH 5 components or features that have been removed from
CDH6. These references are only applicable if you aremanaging a CDH5 clusterwith ClouderaManager
6. For more information, see Deprecated Items.

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Hive on Spark provides better performance than Hive on MapReduce while offering the same features. Running Hive
on Spark requires no changes to user queries. Specifically, user-defined functions (UDFs) are fully supported, and most
performance-related configurations work with the same semantics.

This topic describes how to configure and tune Hive on Spark for optimal performance. This topic assumes that your
cluster is managed by Cloudera Manager and that you use YARN as the Spark cluster manager.

The example described in the following sections assumes a 40-host YARN cluster, and each host has 32 cores and 120
GB memory.

70 | Apache Hive Guide

Tuning Apache Hive in CDH

YARN Configuration

TheYARNpropertiesyarn.nodemanager.resource.cpu-vcoresandyarn.nodemanager.resource.memory-mb
determine how cluster resources can be used by Hive on Spark (and other YARN applications). The values for the two
properties are determined by the capacity of your host and the number of other non-YARN applications that coexist
on the same host. Most commonly, only YARN NodeManager and HDFS DataNode services are running on worker
hosts.

Configuring Cores

Allocate 1 core for each of the services and 2 additional cores for OS usage, leaving 28 cores available for YARN.

Configuring Memory

Allocate 20 GB memory for these services and processes. To do so, set
yarn.nodemanager.resource.memory-mb=100 GB and yarn.nodemanager.resource.cpu-vcores=28.

For more information on tuning YARN, see Tuning YARN.

Spark Configuration

After allocating resources to YARN, you define how Spark uses the resources: executor and driver memory, executor
allocation, and parallelism.

Configuring Executor Memory

Spark executor configurations are described in Configuring Spark on YARN Applications.

When setting executor memory size, consider the following factors:

• More executor memory enables map join optimization for more queries, but can result in increased overhead
due to garbage collection.

• In some cases the HDFS client does not handle concurrent writers well, so a race condition can occur if an executor
has too many cores.

To minimize the number of unused cores, Cloudera recommends setting spark.executor.cores to 4, 5, or 6,
depending on the number of cores allocated for YARN.

Because 28 cores is divisible by 4, set spark.executor.cores to 4. Setting it to 6 would leave 4 cores unused ;
setting it to 5 leaves 3 cores unused. With spark.executor.cores set to 4, the maximum number of executors that
can run concurrently on a host is seven (28 / 4). Divide the total memory among these executors, with each getting
approximately 14 GB (100 / 7).

The total memory allocated to an executor includes spark.executor.memory and
spark.yarn.executor.memoryOverhead. The default for spark.yarn.executor.memoryOverhead is
executorMemory * 0.10, with minimum of 384. This property represents the off-heap memory to be allocated per
executor (units = MB). The off-heap memory is used for VM overheads, interned strings, and other overhead, and
increases proportionately with the executor size between 5-10%.

If you need to set a value different from the default value, the following example shows how to dynamically set
properties in the Hive session:

set spark.executor.memory=12g;

set spark.yarn.executor.memoryOverhead=2g;

With these configurations, each host can run up to 7 executors at a time. Each executor can run up to 4 tasks (one per
core). So, each task has on average 3.5 GB (14 / 4) memory. All tasks running in an executor share the same heap space.

Make sure the sum of spark.yarn.executor.memoryOverhead and spark.executor.memory is less than
yarn.scheduler.maximum-allocation-mb.

Apache Hive Guide | 71

Tuning Apache Hive in CDH

Configuring Driver Memory

You must also configure Spark driver memory:

• spark.driver.memory—Maximumsize of each Spark driver's Java heapmemorywhenHive is running on Spark.
• spark.yarn.driver.memoryOverhead—Amount of extra off-heapmemory that can be requested fromYARN,

per driver. This, together with spark.driver.memory, is the total memory that YARN can use to create a JVM
for a driver process.

Spark driver memory does not impact performance directly, but it ensures that the Spark jobs run without memory
constraints at the driver. Adjust the total amount of memory allocated to a Spark driver by using the following formula,
assuming the value of yarn.nodemanager.resource.memory-mb is:

• 12 GB when X is greater than 50 GB
• 4 GB when X is between 12 GB and 50 GB
• 1 GB when X is between 1GB and 12 GB
• 256 MB when X is less than 1 GB

These numbers are for the sumof spark.driver.memory and spark.yarn.driver.memoryOverhead. Overhead
should be 10-15% of the total. In this example, yarn.nodemanager.resource.memory-mb=100 GB, so the total
memory for the Spark driver can be set to 12 GB. As a result, memory settings are spark.driver.memory=10.5gb
and spark.yarn.driver.memoryOverhead=1.5gb.

Choosing the Number of Executors

The number of executors for a cluster is determined by the number of executors on each host and the number of
worker hosts in the cluster. If you have 40 worker hosts in your cluster, the maximum number of executors that Hive
can use to run Hive on Spark jobs is 160 (40 x 4). The maximum is slightly smaller than this because the driver uses one
core and 12 GB total driver memory. This assumes that no other YARN applications are running.

Hive performance is directly related to the number of executors used to run a query. However, the characteristics vary
from query to query. In general, performance is proportional to the number of executors. For example, using four
executors for a query takes approximately half of the time of using two executors. However, performance peaks at a
certain number of executors, above which increasing the number does not improve performance and can have an
adverse impact.

In most cases, using half of the cluster capacity (half the number of executors) provides good performance. To achieve
maximum performance, it is a good idea to use all available executors. For example, set
spark.executor.instances=160. For benchmarking andperformancemeasurement, this is strongly recommended.

Dynamic Executor Allocation

Although setting spark.executor.instances to the maximum value usually maximizes performance, doing so is
not recommended for a production environment in which multiple users are running Hive queries. Avoid allocating a
fixed number of executors for a user session, because the executors cannot be used by other user queries if they are
idle. In a production environment, plan for executor allocation that allows greater resource sharing.

Spark allows you to dynamically scale the set of cluster resources allocated to a Spark application based on theworkload.
To enable dynamic allocation, follow the procedure in Dynamic Allocation. Except in certain circumstances, Cloudera
strongly recommends enabling dynamic allocation.

Parallelism

For available executors to be fully utilized you must run enough tasks concurrently (in parallel). In most cases, Hive
determines parallelism automatically for you, but youmay have some control in tuning concurrency. On the input side,
the number of map tasks is equal to the number of splits generated by the input format. For Hive on Spark, the input
format is CombineHiveInputFormat, which can group the splits generated by the underlying input formats as
required. You have more control over parallelism at the stage boundary. Adjust
hive.exec.reducers.bytes.per.reducer to control howmuchdata each reducer processes, andHive determines
an optimal number of partitions, based on the available executors, executor memory settings, the value you set for

72 | Apache Hive Guide

Tuning Apache Hive in CDH

the property, and other factors. Experiments show that Spark is less sensitive thanMapReduce to the value you specify
forhive.exec.reducers.bytes.per.reducer, as long as enough tasks are generated to keep all available executors
busy. For optimal performance, pick a value for the property so that Hive generates enough tasks to fully use all available
executors.

For more information on tuning Spark applications, see Tuning Apache Spark Applications.

Hive Configuration

Hive on Spark shares most if not all Hive performance-related configurations. You can tune those parameters much
as you would for MapReduce. However, hive.auto.convert.join.noconditionaltask.size, which is the
threshold for converting common join to map join based on statistics, can have a significant performance impact.
Although this configuration is used for both Hive onMapReduce and Hive on Spark, it is interpreted differently by each.

The size of data is described by two statistics:

• totalSize—Approximate size of data on disk
• rawDataSize—Approximate size of data in memory

Hive on MapReduce uses totalSize. When both are available, Hive on Spark uses rawDataSize. Because of
compression and serialization, a large difference between totalSize and rawDataSize can occur for the same
dataset. For Hive on Spark, you might need to specify a larger value for
hive.auto.convert.join.noconditionaltask.size to convert the same join to a map join. You can increase
the value for this parameter to make map join conversion more aggressive. Converting common joins to map joins can
improve performance. Alternatively, if this value is set too high, too much memory is used by data from small tables,
and tasks may fail because they run out of memory. Adjust this value according to your cluster environment.

You can control whether rawDataSize statistics should be collected, using the property
hive.stats.collect.rawdatasize. Cloudera recommends setting this to true in Hive (the default).

Cloudera also recommends setting two additional configuration properties, using a Cloudera Manager advanced
configuration snippet for HiveServer2:

• hive.stats.fetch.column.stats=true

• hive.optimize.index.filter=true

The following properties are generally recommended for Hive performance tuning, although they are not specific to
Hive on Spark:

hive.optimize.reducededuplication.min.reducer=4
hive.optimize.reducededuplication=true
hive.merge.mapfiles=true
hive.merge.mapredfiles=false
hive.merge.smallfiles.avgsize=16000000
hive.merge.size.per.task=256000000
hive.merge.sparkfiles=true
hive.auto.convert.join=true
hive.auto.convert.join.noconditionaltask=true
hive.auto.convert.join.noconditionaltask.size=20M(might need to increase for Spark,
200M)
hive.optimize.bucketmapjoin.sortedmerge=false
hive.map.aggr.hash.percentmemory=0.5
hive.map.aggr=true
hive.optimize.sort.dynamic.partition=false
hive.stats.autogather=true
hive.stats.fetch.column.stats=true
hive.compute.query.using.stats=true
hive.limit.pushdown.memory.usage=0.4 (MR and Spark)
hive.optimize.index.filter=true
hive.exec.reducers.bytes.per.reducer=67108864
hive.smbjoin.cache.rows=10000
hive.fetch.task.conversion=more
hive.fetch.task.conversion.threshold=1073741824
hive.optimize.ppd=true

Apache Hive Guide | 73

Tuning Apache Hive in CDH

Pre-warming YARN Containers

When you submit your first query after starting a new session, you may experience a slightly longer delay before you
see the query start. You may also notice that if you run the same query again, it finishes much faster than the first one.

Spark executors need extra time to start and initialize for the Spark on YARN cluster, which causes longer latency. In
addition, Spark does notwait for all executors to be ready before starting the job so some executorsmay be still starting
up after the job is submitted to the cluster. However, for jobs running on Spark, the number of available executors at
the time of job submission partly determines the number of reducers. When the number of ready executors has not
reached the maximum, the job may not have maximal parallelism. This can further impact performance for the first
job.

In long-lived user sessions, this extra time causes no problems because it only happens on the first query execution.
However short-lived sessions, such as Hive jobs launched by Oozie, may not achieve optimal performance.

To reduce startup time, you can enable container pre-warming before a job starts. The job starts running only when
the requested executors are ready. This way, a short-lived session parallelism is not decreased on the reduce side.

To enable pre-warming, set hive.prewarm.enabled to true before the query is issued. You can also set the umber
of containers by setting hive.prewarm.numcontainers. The default is 10.

The actual number of executors to pre-warm is capped by the value of either spark.executor.instances (static
allocation) or spark.dynamicAllocation.maxExecutors (dynamic allocation). The value for
hive.prewarm.numcontainers should not exceed that allocated to a user session.

Note: Pre-warming takes a few seconds and is a good practice for short-lived sessions, especially if
the query involves reduce stages. However, if the value of hive.prewarm.numcontainers is higher
than what is available in the cluster, the process can take a maximum of 30 seconds. Use pre-warming
with caution.

Tuning Apache Hive Performance on the Amazon S3 Filesystem in CDH
Some of the default behaviors of Apache Hive might degrade performance when reading and writing data to tables
stored onAmazon S3. Cloudera has introduced the following enhancements thatmake using Hivewith S3more efficient.

Tuning Hive Write Performance on S3

Hive can write the final job in the query plan in parallel to the S3 file system. HiveServer2 uses a thread pool of workers
to transfer the data to the final table location on S3. The default values of tuning parameters generally yield good
performance for a wide range of workloads. However, if necessary, you can further tune the parameters to optimize
for specific workloads.

Hive S3 Write Performance Tuning Parameters

To improve write performance for Hive tables stored on S3, use Cloudera Manager to set the parameters listed below.
See Setting Parameters as Service-Wide Defaults with Cloudera Manager on page 75.

DefaultSettingsDescriptionParameter Name

15Range
between:0 and
40

Important: Only tune this
parameter when you have
confirmed that thread pool
parallelism is impacting
performance. Before making any
changes, contact Cloudera Support
for guidance.

hive.mv.files.thread

74 | Apache Hive Guide

Tuning Apache Hive in CDH

DefaultSettingsDescriptionParameter Name

Sets the number of threads used to move files in
a move task. Increasing the value of this
parameter increases the number of parallel copies
that can run on S3.

A separate thread pool is used for each Hive
query. When running only a few queries in
parallel, you can increase this parameter for
greater per-query write throughput. However,
when you run a large number of queries in
parallel, decrease this parameter to avoid thread
exhaustion.

To disable multi-threaded file moves, set this
parameter to 0. This can prevent thread
contention on HiveServer2.

This parameter also controls renames on HDFS,
so increasing this value increases the number of
threads responsible for renaming files on HDFS.

falsetrue | falseWhen set to true, this parameter enables the
use of scratch directories directly on S3.

hive.blobstore.use.blobstore.

as.scratchdir

Important: Enabling this
parameter might degrade
performance slightly, but is useful
if the HDFS cluster is not large
enough to hold the intermediate
data from a Hive query.

Setting Parameters on a Per-Query Basis with the Hive SET Command

Optimize on a per-query basis by setting these parameters in the query code with the Hive SET command.

For example, to set the thread pool to 20 threads and enable scratch directories on S3:

set hive.mv.files.thread=20
set hive.blobstore.use.blobstore.as.scratchdir=true

Setting Parameters as Service-Wide Defaults with Cloudera Manager

Use Cloudera Manager to set hive.mv.files.thread and hive.blobstore.use.blobstore.as.scratchdir
as service-wide defaults:

1. In the Cloudera Manager Admin Console, go to the Hive service.
2. In the Hive service page, click the Configuration tab.
3. On the Configuration page, click the HiveServer2 scope.
4. Click the Performance category.
5. Search for each parameter to set them.
6. Click Save Changes.

Tuning the S3A Connector to Improve Hive Write Performance on S3

The fs.s3a parameters are used to tune the S3A Connector inside the Hadoop code base. The S3A Connector
configurations control the number of threads used to issue concurrent upload and copy requests. A single instance of

Apache Hive Guide | 75

Tuning Apache Hive in CDH

the S3A Connector is usedwith a HiveServer2 instance, so different Hive queries can share the same connector instance.
The same thread pool is used to issue upload and copy requests. This means that the fs.s3a parameters cannot be
set on a per-query basis. Instead, set them for each HiveServer2 instance. In contrast, the thread pool controlled by
hive.mv.files.thread is created for each query separately.

How To TuneParameter Name

Increase the value to increase the number of core threads in the thread pool used to
run any data uploads or copies.

fs.s3a.threads.core

Increase the value to increase the maximum number of concurrent active partition
uploads and copies, which each use a thread from the thread pool.

fs.s3a.threads.max

Increase the value to increase the number of partition uploads and copies allowed to
the queue before rejecting additional uploads.

fs.s3a.max.total.tasks

Increase the value to increase the maximum number of simultaneous connections to
S3. Cloudera recommends setting this value to 1500.

fs.s3a.connection.maximum

Setting S3A Connector Parameters as Service-Wide Defaults

Use Cloudera Manager to set the S3A Connector parameters as service-wide defaults for Hive:

1. In the Cloudera Manager Admin Console, go to the Hive service.
2. In the Hive service page, click the Configuration tab.
3. On the Configuration page, click the HiveServer2 scope.
4. Click the Advanced category.
5. Search for theHiveServer2 Advanced Configuration Snippet (Safety Valve) for hive-site.xml configuration setting

and click the plus sign to add parameters.
6. For each fs.s3a parameter, type the parameter name into the Name field and the value in the Value field.
7. Click Save Changes.

Known Limitations

1. If you have a large number of concurrent Hive query operations running, a deadlock might occur in the
S3AFileSystem class of the Hadoop platform. This is caused by thread pool limits and causes HiveServer2 to
freeze. If this occurs, you must restart HiveServer2. To work around the issue, increase the values of
fs.s3a.threads.core and fs.s3a.threads.max. See HADOOP-13826.

This behavior might occur more frequently if fs.s3a.blocking.executor.enabled is set to true. This
parameter is turned off by default in CDH.

2. S3 is an eventually consistent storage system. See the S3 documentation. This eventual consistency affects Hive
behavior on S3 and, in rare cases, can cause intermittent failures. Retrying the failed query usually works around
the issue.

Tuning Hive Dynamic Partitioning Performance on S3

Dynamic partitioning is a Hive feature that enables dynamic insertions of data into partitions based on the value of a
column in a record. It is useful for bulk creating or updating partitions. Prior to CDH 5.11, performance of Hive queries
that performed dynamic partitioning on S3 was diminished because partitions were loaded into the target table one
at a time. In CDH 5.11 and later, optimizations change the underlying logic so that partitions are loaded in parallel.

Use the following parameter to tune performance on a wide range of workloads that use dynamic partitioning. This
parameter can be set with ClouderaManager at the service level or on a per-query basis using the Hive SET command.
See Setting the Hive Dynamic Partition Loading Parameter as a Service-Wide Default with Cloudera Manager on page
77.

76 | Apache Hive Guide

Tuning Apache Hive in CDH

https://issues.apache.org/jira/browse/HADOOP-13826
http://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html#ConsistencyModel
https://cwiki.apache.org/confluence/display/Hive/DynamicPartitions

DefaultSettingsDescriptionParameter Name

15Range
between:0 and
25

Sets the number of threads used to load
dynamically generated partitions.

Loading dynamically generated partitions requires
renaming the files to their destination location
and updating the new partition metadata.

hive.load.dynamic.partitions.thread

Increasing the value set for this parameter can
improve performance when you have several
hundred dynamically generated partitions.

Tuning Tips

Increase the value set for hive.load.dynamic.partitions.thread to improve dynamic partitioning query
performance on S3. However, do not set this parameter to values exceeding 25 to avoid placing an excessive load on
S3, which can lead to throttling issues.

Setting the Hive Dynamic Partition Loading Parameter on a Per-Query Basis

Optimize dynamic partitioning at the session level by using the Hive SET command in the query code.

For example, to set the thread pool to 25 threads:

set hive.load.dynamic.partitions.thread=25

Setting the Hive Dynamic Partition Loading Parameter as a Service-Wide Default with Cloudera Manager

Use Cloudera Manager to set hive.load.dynamic.partitions.thread as a service-wide default:

1. In the Cloudera Manager Admin Console, go to the Hive service.
2. In the Hive service page, click the Configuration tab.
3. On the Configuration page, click the HiveServer2 scope.
4. Click the Performance category.
5. Search for Load Dynamic Partitions Thread Count and enter the value you want to set as a service-wide default.
6. Click Save Changes.

Tuning Hive INSERT OVERWRITE Performance on S3

INSERT OVERWRITE querieswrite data to a specific table or partition, overwriting any existing data.WhenHive detects
existing data in the target directory, it moves the existing data to the HDFS trash directory. Moving data to the trash
directory can significantly degrade performance when it is run on S3. In CDH 5.11 and later, an optimization is added
to move data to the trash directory in parallel by using the following parameter. Use Cloudera Manager to set this
parameter as a service-wide default or use the Hive SET command to set the parameter on a per-query basis. See
Setting the Hive INSERT OVERWRITE Performance Tuning Parameter as a Service-Wide Default with ClouderaManager
on page 78.

Important: This optimization only applies to INSERT OVERWRITE queries that insert data into tables
or partitions where already there is existing data.

DefaultSettingsDescriptionParameter Name

15Range
between:0 and
40

Set this parameter to control the number of
threads used to delete existing data in the HDFS
trash directory for INSERT OVERWRITE queries.

hive.mv.files.thread

Apache Hive Guide | 77

Tuning Apache Hive in CDH

DefaultSettingsDescriptionParameter Name

Important: Originally, this
parameter only controlled the
number of threads used by
HiveServer2 tomove data from the
staging directory to another
location. This parameter can also
be used to tune Hive write
performance on S3 tables. SeeHive
S3 Write Performance Tuning
Parameters on page 74.

Tuning Tips

The hive.mv.files.thread parameter can be tuned for INSERT OVERWRITE performance in the same way it is
tuned for write performance. See Hive S3 Write Performance Tuning Parameters on page 74.

If setting the above parameter does not produce acceptable results, you can disable the HDFS trash feature by setting
the fs.trash.interval to 0 on the HDFS service. In Cloudera Manager, choose HDFS > Configuration > NameNode
> Main and set Filesystem Trash Interval to 0.

Warning: Disabling the trash feature of HDFS causes permanent data deletions, making the deleted
data unrecoverable.

Setting the Hive INSERT OVERWRITE Performance Tuning Parameter on a Per-Query Basis

Configure Hive to move data to the HDFS trash directory in parallel for INSERT OVERWRITE queries using the Hive
SET command.

For example, to set the thread pool to use 30 threads at a maximum:

set hive.mv.files.thread=30

Setting the Hive INSERT OVERWRITE Performance Tuning Parameter as a Service-Wide Default with ClouderaManager

Use Cloudera Manager to set hive.mv.files.thread as a service-wide default:

1. In the Cloudera Manager Admin Console, go to the Hive service.
2. In the Hive service page, click the Configuration tab.
3. On the Configuration page, click the HiveServer2 scope.
4. Click the Performance category.
5. Search forMove Files Thread Count and enter the value you want to set as a service-wide default.
6. Click Save Changes.

Tuning Hive Table Partition Read Performance on S3

Prior to CDH 5.11, Hive queries that read over 1,000 partitions stored on S3 experienced performance degradation
because metadata operations against S3 are much slower than metadata operations performed against HDFS. When
Hive runs a query, it needs to collect metadata about the files and about the directory it is reading from. This metadata
includes information such as number of files or file sizes. To collect this metadata, Hive must make calls to S3. Before
CDH 5.11, these metadata calls were issued serially (one at a time). In CDH 5.11 and later, the metadata operations
have been optimized so that the calls are now issued in parallel. This optimization delivers the most benefit for queries
that read from multiple partitions. Benefits for queries that read from non-partitioned tables are less significant.

Use the following parameters to tune Hive table partition read performance on S3. The default values yield good
performance gains for a wide range of workloads, but you can further tune them to optimize for specific workloads.

78 | Apache Hive Guide

Tuning Apache Hive in CDH

These parameters can be set with Cloudera Manager at the service level or on a per-query basis using the Hive SET
command. See Setting Hive Table Partition Read Performance Tuning Parameters as Service-WideDefaultswith Cloudera
Manager on page 79.

DefaultSettingsDescriptionParameter Name

15Range
between:0 and
50

Sets the maximum number of threads that Hive
uses to list input files. Increasing this value can
improve performance when there are many
partitions being read.

hive.exec.input.listing.max.threads

1Range
between:0 and
50

Sets the number of threads used by the
FileInputFormat classwhen listing and fetching
block locations for the specified input paths.

mapreduce.input.fileinputformat.list-status.num-threads

Tuning Tips

If listing input files becomes a bottleneck for the Hive query, increase the values for
hive.exec.input.listing.max.threads and
mapreduce.input.fileinputformat.list-status.num-threads. This bottleneck might occur if the query
takes a long time to list input directories or to run split calculationswhen reading several thousand partitions. However,
do not set these parameters to values over 50 to avoid putting excessive load on S3, which might lead to throttling
issues.

Setting the Hive Table Partition Read Performance Tuning Parameters on a Per-Query Basis

Configure Hive to perform metadata collection in parallel when reading table partitions on S3 using the Hive SET
command.

For example, to set the maximum number of threads that Hive uses to list input files to 20 and the number of threads
used by the FileInputFormat class when listing and fetching block locations for input to 5:

set hive.exec.input.listing.max.threads=20
set mapreduce.input.fileinputformat.list-status.num-threads=5

Setting Hive Table Partition Read Performance Tuning Parameters as Service-Wide Defaults with Cloudera Manager

Use Cloudera Manager to set hive.exec.input.listing.max.threads and
mapreduce.input.fileinputformat.list-status.num-threads as service-wide defaults.

To set hive.exec.input.listing.max.threads:

1. In the Cloudera Manager Admin Console, go to the Hive service.
2. In the Hive service page, click the Configuration tab.
3. On the Configuration page, click the HiveServer2 scope.
4. Click the Performance category.
5. Search for Input Listing Max Threads and enter the value you want to set as a service-wide default.
6. Click Save Changes.

To set mapreduce.input.fileinputformat.list-status.num-threads:

1. In the Cloudera Manager Admin Console, go to the MapReduce service.
2. In the MapReduce service page, click the Configuration tab.
3. Search forMapReduce Service Advanced Configuration Snippet (Safety Valve) for mapred-site.xml and enter

the parameter, value, and description:

<property>
 <name>mapreduce.input.fileinputformat.list-status.num-threads</name>
 <value>number_of_threads</value>

Apache Hive Guide | 79

Tuning Apache Hive in CDH

 <description>Number of threads used to list and fetch block locations for input paths

 specified by FileInputFormat</description>
</property>

4. Click Save Changes.

Tuning Hive MSCK (Metastore Check) Performance on S3

Running the MSCK command with the REPAIR TABLE option is a simple way to bulk add partitions to Hive tables. See
the Apache Language Manual for details about using MSCK REPAIR TABLE. MSCK REPAIR TABLE scans the file
system to look for directories that correspond to a partition and then registers them with the Hive metastore. Prior to
CDH 5.11, MSCK performance was slower on S3 when compared to HDFS due to the overhead created by collecting
metadata on S3. In CDH 5.11 and later, MSCKmetadata calls are now issued in parallel, which significantly improves
performance.

Use the following parameters to tune Hive MSCKmetadata call performance on S3. The default values yield good
performance gains for a wide range of workloads, but you can further tune them to optimize for specific workloads.
The hive.metastore.fshandler.threads parameter can be set as a service-wide default with ClouderaManager,
but cannot be set at the session level. The hive.msck.repair.batch.size parameter can be set with Cloudera
Manager at the service level or on a per-query basis using the Hive SET command. See Setting the Hive MSCK REPAIR
TABLE Tuning Parameters as Service-Wide Defaults with Cloudera Manager on page 81.

DefaultSettingsDescriptionParameter Name

15Range
between:0 and
30

Sets the number of threads that the Hive
metastore uses when adding partitions in bulk to
the metastore. Each thread performs metadata
operations for each partition added, such as

hive.metastore.fshandler.threads

collecting statistics for the partition or checking
if the partition directory exists.

This parameter is also used to control the size of
the thread pool that is used by MSCK whe4n it
scans the file system looking for directories that
correspond to table partitions. Each thread
performs a list status on each possible partition
directory.

0Range
between:0 and
2,147,483,647

Sets the number of partition objects sent per
batch from the HiveServe2 service to the Hive
metastore servicewith theMSCK REPAIR TABLE
command. If this parameter is set to a value

hive.msck.repair.batch.size

higher than zero, newpartition information is sent
from HiveServer2 to the Hive metastore in
batches. Sending this information in batches
improves how memory is used in the metastore,
avoiding client read timeout exceptions. If this
parameter is set to 0, all partition information is
sent at once in a single Thrift call.

Tuning Tips

The hive.metastore.fshandler.threads parameter can be increased if the MSCK REPAIR TABLE command is
taking excessive time to scan S3 for potential partitions to add. Do not set this parameter to a value higher than 30 to
avoid putting excessive load on S3, which can lead to throttling issues.

80 | Apache Hive Guide

Tuning Apache Hive in CDH

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-RecoverPartitions(MSCKREPAIRTABLE)

Increase the value set for the hive.msck.repair.batch.size parameter if you receive the following exception:

SocketTimeoutException: Read timed out

This exception is thrown by HiveServer2 when a metastore operation takes longer to complete than the time specified
for the hive.metastore.client.socket.timeout parameter. If you simply increase the timeout, it must be set
across all metastore operations and requires restarting the metastore service. It is preferable to increase the value set
forhive.msck.repair.batch.size, which specifies the number of partition objects that are added to themetastore
at one time. Increasing hive.msck.repair.batch.size to 3000 can help mitigate timeout exceptions returned
when running MSCK commands. Set to a lower value if you have multiple MSCK commands running in parallel.

Setting hive.msck.repair.batch.size on a Per-Query Basis

Use the Hive SET command to specify how many partition objects are sent per batch from the HiveServer2 service to
the Hive metastore service at the session level.

For example, to specify that batches containing 3,000 partition objects each are sent:

set hive.msck.repair.batch.size=3000

Setting the Hive MSCK REPAIR TABLE Tuning Parameters as Service-Wide Defaults with Cloudera Manager

UseClouderaManager to set thehive.metastore.fshandler.threads and thehive.msck.repair.batch.size
parameters as service-wide defaults:

1. In the Cloudera Manager Admin Console, go to the Hive service.
2. In the Hive service page, click the Configuration tab.
3. On the Configuration page, search for each parameter to set them.
4. Click Save Changes.

Configuring HMS High Availability in CDH
You can enable Hive metastore high availability (HA) so that your cluster is resilient to failures if a metastore becomes
unavailable. The HA mode is recommended to address fail-over situations. No load balancing is done.

Recommendations

Cloudera recommends that each instance of the metastore runs on a separate cluster host.

Enabling HMS High Availability Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the Hive service.
2. If you have a secure cluster, change the Hive Delegation Token Store implementation. Non-secure clusters can

skip this step.

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.
See Modifying Configuration Properties Using Cloudera Manager.

a. Click the Configuration tab.
b. Select Scope > Hive Metastore Server.
c. Select Category > Advanced.
d. Locate the Hive Metastore Delegation Token Store property or search for it by typing its name In the Search

box.
e. Select org.apache.hadoop.hive.thrift.DBTokenStore.
f. Click Save Changes to commit the changes.

Apache Hive Guide | 81

Tuning Apache Hive in CDH

3. Click the Instances tab.
4. Click Add Role Instances.
5. Click the text field under Hive Metastore Server.
6. Check the box by the host on which to run the additional metastore and click OK.
7. Click Continue and click Finish.
8. Check the box by the new Hive Metastore Server role.
9. Select Actions for Selected > Start, and click Start to confirm.
10. Click Close and click to display the stale configurations page.
11. Click Restart Stale Services and click Restart Now.
12. Click Finish after the cluster finishes restarting.

Configuring HiveServer2 High Availability in CDH
To enable high availability for multiple HiveServer2 hosts, configure a load balancer to manage them. To increase
stability and security, configure the load balancer on a proxy server. The following sections describe how to enable
high availability by using Cloudera Manager or how to enable it manually for unmanaged clusters.

Warning:

• In the first step of enabling HiveServer2 high availability below, you enable Hive Delegation Token
Store implementation. Oozie needs this implementation for secure HS2 HA. Otherwise, the Oozie
server can get a delegation token from one HS2 server, but the actual query might run against
another HS2 server, which does not recognize the HS2 delegation token. Exception: If you enable
HMS HA, do not enable Hive Delegation Token Store; otherwise, Oozie job issues occur.

• HiveServer2 high availability does not automatically fail and retry long-running Hive queries. If
any of the HiveServer2 instances fail, all queries running on that instance fail and are not retried.
Instead, the client application must re-submit the queries.

• After you enable HiveServer2 high availability, existing Oozie jobs must be changed to reflect the
HiveServer2 address.

• On Kerberos-enabled clusters, youmust use the load balancer's principal to connect to HS2
directly; otherwise, the after you enable HiveServer2 high availability, direct connections to
HiveServer2 instances fail.

Enabling HiveServer2 High Availability Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the Hive service.
2. If you have a secure cluster, change the Hive Delegation Token Store implementation. Non-secure clusters can

skip this step.

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.
See Modifying Configuration Properties Using Cloudera Manager.

a. Click the Configuration tab.
b. Select Scope > Hive Metastore Server.
c. Select Category > Advanced.
d. Locate the Hive Metastore Delegation Token Store property or search for it by typing its name In the Search

box.
e. Select org.apache.hadoop.hive.thrift.DBTokenStore.

3. Add multiple HiveServer2 instances to your cluster:

1. Click the Instances tab, and then click Add Role Instances.

82 | Apache Hive Guide

Tuning Apache Hive in CDH

2. On theAdd Role Instances to Hive page under theHiveServer2 column heading, click Select hosts, and select
the hosts that should have a HiveServer2 instance.

3. Click OK, and then click Continue. The Instances page appears where you can start the new HiveServer2
instances.

4. Click the Configuration tab.
5. Select Scope > HiveServer2.
6. Select Category >Main.
7. Locate the HiveServer2 Load Balancer property or search for it by typing its name in the Search box.
8. Enter values for <hostname>:<port number>. For example, hs2load_balancer.example.com:10015.

Note: When you set the HiveServer2 Load Balancer property, Cloudera Manager regenerates
the keytabs for HiveServer2 roles. The principal in these keytabs contains the load balancer
hostname. If there is a Hue service that depends on this Hive service, it also uses the load balancer
to communicate with Hive.

9. Click Save Changes to commit the changes.
10. Restart the Hive service.

Configuring HiveServer2 to Load Balance Behind a Proxy on Unmanaged Clusters

For unmanaged clusters with multiple users and availability requirements, you can configure a proxy server to relay
requests to and fromeachHiveServer2 host. Applications connect to a singlewell-knownhost and port, and connection
requests to the proxy succeed even when hosts running HiveServer2 become unavailable.

Unmanaged Clusters with Kerberos Enabled

1. Create the hive/<load_balancer_fully_qualified_domain_name> principal and the merged keytab.

• If you are usingMIT Kerberos, connect to the KDC as root and run the following command inkadmin.local.
Replace <load_balancer_fully_qualified_domain_name> with the fully qualified domain name of
the load balancer host:

kadmin.local: addprinc -randkey hive/<load_balancer_fully_qualified_domain_name>

• If you are using Microsoft Active Directory for your KDC, see Microsoft documentation to create a principal
and keytab for Hive. The principal must be named
hive/<load_balancer_fully_qualified_domain_name> and the keytab must contain all of the Hive
host keytabs for your cluster.

For example, if your load balancer is hs2loadbalancer.example.com and you have two HiveServer2
instances on host hs2-host-1.example.com and hs2-host-2.example.com, if you run klist -ekt
hive-proxy.keytab, it should return the following:

[root@cdh_user-linux named]# klist -ekt /tmp/hive-proxy.keytab
Keytab name: FILE:/tmp/hive-proxy.keytab
KVNO Timestamp Principal
---- ------------------- --
 1 09/08/2015 12:46:25 hive/hs2loadbalancer.example.com@EXAMPLE.COM
(aes256-cts-hmac-sha1-96)
 2 09/08/2015 12:46:37 hive/hs2-host-1.example.com@EXAMPLE.COM (aes256-cts-hmac-sha1-96)

 2 09/08/2015 12:46:42 hive/hs2-host-2.example.com@EXAMPLE.COM (aes256-cts-hmac-sha1-96)

Apache Hive Guide | 83

Tuning Apache Hive in CDH

2. While you are still connected to kadmin.local, list the hive/<hs2_hostname> principals:

kadmin.local: listprincs hive/*
hive/hs2-host-1.example.com@EXAMPLE.COM
hive/hs2-host-2.example.com@EXAMPLE.COM

3. While you are still connected to kadmin.local, create a hive-proxy.keytab, which contains the load balancer
and all of the hive/<hs2_hostname> principals:

kadmin.local: xst -k /tmp/hive-proxy.keytab -norandkey hive/hs2loadbalancer.example.com
kadmin.local: xst -k /tmp/hive-proxy.keytab -norandkey hive/hs2-host-1.example.com
kadmin.local: xst -k /tmp/hive-proxy.keytab -norandkey hive/hs2-host-2.example.com

Note that a single xst is used per entry, which appends each entry to the keytab. Also note that the -norandkey
parameter is specified. This is required so you do not break existing keytabs.

4. Validate the keytab by running klist:

[root@cdh_user-linux named]# klist -ekt /tmp/hive-proxy.keytab
Keytab name: FILE:/tmp/hive-proxy.keytab
KVNO Timestamp Principal
---- ------------------- --
 1 09/08/2015 12:46:25 hive/hs2loadbalancer.example.com@EXAMPLE.COM
(aes256-cts-hmac-sha1-96)
 2 09/08/2015 12:46:37 hive/hs2-host-1.example.com@EXAMPLE.COM (aes256-cts-hmac-sha1-96)

 2 09/08/2015 12:46:42 hive/hs2-host-2.example.com@EXAMPLE.COM (aes256-cts-hmca-sha1-96)

5. Distribute the hive-proxy.keytab to all HiveServer2 hosts. Make sure that /var/lib/hive exists on each
node and copy the hive-proxy.keytab to /var/lib/hive on each node. Then confirm that permissions are
set to hive:hive on the directory and the keytab:

[root@cdh5xx-1 ~]# rm -f /var/lib/hive/hive-proxy.keytab
[root@cdh5xx-1 ~]# mkdir -p /var/lib/hive
[root@cdh5xx-1 ~]# cp /tmp/hive-proxy.keytab /var/lib/hive
[root@cdh5xx-1 ~]# chown -R hive:hive /var/lib/hive
[root@cdh5xx-1 ~]# ls -lart /var/lib/hive/
total 16
drwxr-xr-x. 49 root root 4096 Jun 7 17:39 ..
-rw-r--r-- 1 hive hive 983 Jun 7 17:40 hive.keystore
-rw------- 1 hive hive 1412 Sep 8 14:38 hive-proxy.keytab
drwxr-xr-x 2 hive hive 4096 Sep 8 14:38 .

6. Configure HiveServer2 to use the new keytab and load balancer principal by setting the
hive.server2.authentication.kerberos.principal and the
hive.server2.authentication.kerberos.keytab properties in the hive-site.xml file. For example, to
set these properties for the examples used in the above steps, your hive-site.xml is set as follows:

<property>
 <name>hive.server2.authentication.kerberos.principal</name>
 <value>hive/hs2loadbalancer.example.com@EXAMPLE.COM</value>
</property>
<property>
 <name>hive.server2.authentication.kerberos.keytab</name>
 <value>/var/lib/hive/hive-proxy.keytab</value>

84 | Apache Hive Guide

Tuning Apache Hive in CDH

</property>

7. Restart the Hive service.
8. Download load-balancing proxy software of your choice on a single host. For example, see Example HAProxy

Configuration.
9. Configure the software, typically by editing a configuration file. Usually this configuration includes:

a. Setting the port for the load balancer to listen on and to relay HiveServer2 requests back and forth.
b. Setting the port and hostname for each HiveServer2 host. These are the hosts from which the load balancer

chooses when relaying each query.

10. Run the load-balancing proxy server and point it at the configuration file.
11. Point all scripts, jobs, or application configurations to the new proxy server instead of any specific HiveServer2

instance.

Unmanaged Clusters WITHOUT Kerberos

To configure HiveServer2 for high availability for unmanaged clusters, use the following steps.

1. Download load-balancing proxy software of your choice on a single host. For example, see Example HAProxy
Configuration.

2. Configure the software, typically by editing a configuration file. Usually this configuration includes:

a. Setting the port for the load balancer to listen on and to relay HiveServer2 requests back and forth.
b. Setting the port and hostname for each HiveServer2 host. These are the hosts from which the load balancer

chooses when relaying each query.

3. Run the load-balancing proxy server and point it at the configuration file.
4. Point all scripts, jobs, or application configurations to the new proxy server instead of any specific HiveServer2

instance.

Example HAProxy Configuration

If you are not already using a load-balancing proxy, you can experimentwith HAProxy a free, open source load balancer.

To install and configure HAProxy, an open source load balancer, perform the following steps.

1. Download the appropriate from the HAProxy web site.
2. As the root user, install HAProxy:

sudo yum -y install haproxy

3. Edit the HAProxy configuration file to listen on port 10000 and point to each HiveServer2 instance. Make sure to
configure for sticky sessions. Here is an example configuration file:

global
 # To have these messages end up in /var/log/haproxy.log you will
 # need to:
 #
 # 1) configure syslog to accept network log events. This is done
 # by adding the '-r' option to the SYSLOGD_OPTIONS in
 # /etc/sysconfig/syslog
 #
 # 2) configure local2 events to go to the /var/log/haproxy.log
 # file. A line like the following can be added to
 # /etc/sysconfig/syslog
 #
 # local2.* /var/log/haproxy.log
 #
 log 127.0.0.1 local0

Apache Hive Guide | 85

Tuning Apache Hive in CDH

 log 127.0.0.1 local1 notice
 chroot /var/lib/haproxy
 pidfile /var/run/haproxy.pid
 maxconn 4000
 user haproxy
 group haproxy
 daemon

 # turn on stats unix socket
 #stats socket /var/lib/haproxy/stats

#---
common defaults that all the 'listen' and 'backend' sections will
use if not designated in their block
#
You might need to adjust timing values to prevent timeouts.
#---
defaults
 mode http
 log global
 option httplog
 option dontlognull
 option http-server-close
 option forwardfor except 127.0.0.0/8
 option redispatch
 retries 3
 maxconn 3000
 contimeout 5000
 clitimeout 50000
 srvtimeout 50000

#
This sets up the admin page for HA Proxy at port 25002.
#
listen stats :25002
 balance
 mode http
 stats enable
 stats auth username:password

This is the setup for HS2. beeline client connect to load_balancer_host:10001.
HAProxy will balance connections among the list of servers listed below.
listen hiveserver2 :10001
 mode tcp
 option tcplog
 balance source

 server hiveserver2_1 hs2-host-1.example.com:10000
 server hiveserver2_2 hs2-host-2.example.com:10000
 server hiveserver2_3 hs2-host-3.example.com:10000
 server hiveserver2_4 hs2-host-4.example.com:10000

4. Set HAProxy to start when the system starts:

chkconfig haproxy on

5. Start HAProxy:

service haproxy start

86 | Apache Hive Guide

Tuning Apache Hive in CDH

Query Vectorization for Apache Hive in CDH
By default, the Hive query execution engine processes one row of a table at a time. The single row of data goes through
all the operators in the query before the next row is processed, resulting in very inefficient CPU usage. In vectorized
query execution, data rows are batched together and represented as a set of column vectors. The basic idea of vectorized
query execution is to process a batch of rows as an array of column vectors:

Figure 3: How Hive Query Vectorization Works

When query vectorization is enabled, the query engine processes vectors of columns, which greatly improves CPU
utilization for typical query operations like scans, filters, aggregates, and joins.

Enabling Hive Query Vectorization

Hive query vectorization is enabled by default in CDH 6 and CDH 5. However, in CDH 5 vectorized query execution in
Hive is only possible on ORC-formatted tables, which Cloudera recommends you do not use for overall compatibility
with the CDH platform. Instead, Cloudera recommends that you use tables in the Parquet format because all CDH
components support this format and it can be consumed by all CDH components.

Hive query vectorization is enabled or disabled for all file formats by setting the
hive.vectorized.execution.enabled property to true or false andmaking sure that no value is set for the
hive.vectorized.input.format.excludes property. To ensure that query vectorization is used for the Parquet
file format, you must make sure that the hive.vectorized.input.format.excludes property is not set to
org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat.

Using Cloudera Manager to Enable or Disable Query Vectorization for Parquet Files on a Server-wide Basis

For managed clusters, open the Cloudera Manager Admin Console and perform the following steps:

1. Select the Hive service.
2. Click the Configuration tab.
3. Search for enable vectorization.

To view all the available vectorization properties for Hive, search for hiveserver2_vectorized. All the
vectorization properties are in the Performance category.

Apache Hive Guide | 87

Tuning Apache Hive in CDH

4. Select the Enable VectorizationOptimization option to enable query vectorization. To disable query vectorization,
uncheck the box that is adjacent to HiveServer2 Default Group.

5. To enable or disable Hive query vectorization for the Parquet file format, set the Exclude Vectorized Input Formats
property in Cloudera Manager as follows:

• To disable vectorization for Parquet files only, set this property to
org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat

• To enable vectorization for all file formats including Parquet, set this property to Custom and leave the setting
blank.

6. Click Save Changes.
7. Click the Instances tab, and then click the Restart the service (or the instance) for the changes to take effect:

Manually Enabling or Disabling Query Vectorization for Parquet Files on a Server-Wide Basis

To enable query vectorization for Parquet files on unmanaged clusters on a server-wide basis:

• Set the hive.vectorized.execution.enabled property to true in the hive-site.xml file:

<property>
 <name>hive.vectorized.execution.enabled</name>
 <value>true</value>
 <description>Enables query vectorization.</description>
</property>

• Ensure there is no value set for the hive.vectorized.input.format.excludes property in the
hive-site.xml file:

<property>
 <name>hive.vectorized.input.format.excludes</name>
 <value/>
 <description>Does not exclude query vectorization on any file format including
Parquet.</description>

88 | Apache Hive Guide

Tuning Apache Hive in CDH

</property>

To disable query vectorization for Parquet files only on unmanaged clusters on a server-wide basis:

• Set the hive.vectorized.execution.enabled property to true in the hive-site.xml file:

<property>
 <name>hive.vectorized.execution.enabled</name>
 <value>true</value>
 <description>Enables query vectorization.</description>
</property>

• Set the hive.vectorized.input.format.excludes property to
org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat in the hive-site.xml file:

<property>
 <name>hive.vectorized.input.format.excludes</name>
 <value>org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat</value>
 <description>Disables query vectorization on Parquet file formats only.</description>
</property>

To enable query vectorization on all file formats:

• Set the hive.vectorized.execution.enabled property to true in the hive-site.xml file:

<property>
 <name>hive.vectorized.execution.enabled</name>
 <value>true</value>
 <description>Enables query vectorization.</description>
</property>

• Ensure there is no value set for the hive.vectorized.input.format.excludes property in the
hive-site.xml file:

<property>
 <name>hive.vectorized.input.format.excludes</name>
 <value/>
 <description>Does not exclude query vectorization on any file format.</description>
</property>

To disable query vectorization on all file formats:

Set the hive.vectorized.execution.enabled property to false in the hive-site.xml file:

<property>
 <name>hive.vectorized.execution.enabled</name>
 <value>false</value>
 <description>Disables query vectorization on all file formats.</description>
</property>

Apache Hive Guide | 89

Tuning Apache Hive in CDH

Enabling or Disabling Hive Query Vectorization for Parquet Files on a Session Basis

Use the Hive SET command to enable or disable query vectorization on an individual session. Enabling or disabling
query vectorization on a session basis is useful to test the effects of vectorization on the execution of specific sets of
queries.

To enable query vectorization for all file formats including Parquet on an individual session only:

SET hive.vectorized.execution.enabled=true;
SET hive.vectorized.input.format.excludes= ;

Setting hive.vectorized.input.format.excludes to a blank value ensures that this property is unset and that
no file formats are excluded from query vectorization.

To disable query vectorization for Parquet files only on an individual session only:

SET hive.vectorized.execution.enabled=true;
SET
hive.vectorized.input.format.excludes=org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat;

To enable query vectorization for all file formats on an individual session only:

SET hive.vectorized.execution.enabled=true;
SET hive.vectorized.input.format.excludes= ;

Setting hive.vectorized.input.format.excludes to a blank value ensures that this property is unset and that
no file formats are excluded from query vectorization.

To disable query vectorization for all file formats on an individual session only:

SET hive.vectorized.execution.enabled=false;

Tuning Hive Query Vectorization

Whenquery vectorization is enabled, there are additional properties you can set to tune howyour queries are vectorized.
These properties can be set in Cloudera Manager, can be set manually in the hive-site.xml file, or can be set on a
per-query basis using the Hive SET command. Use the same general steps listed in the previous section to configure
these properties in Cloudera Manager or manually.

hive.vectorized.adaptor.usage.mode

Description: Specifies the extent to which the vectorization engine tries to vectorize UDFs that do not have native
vectorized versions available. Selecting the none option specifies that only queries using native vectorized UDFs
are vectorized. Selecting the chosen option specifies that Hive chooses to vectorize a subset of the UDFs based on
performance benefits using the Vectorized Adaptor. Selecting the all option specifies that the Vectorized Adaptor
be used for all UDFs even when native vectorized versions are not available.

Recommendations: For optimum stability and correctness of query output, set this option to chosen.

Default Setting: chosen

hive.vectorized.execution.reduce.enabled

Description: Turns on or off vectorization for the reduce-side of query execution. Applies only when the execution
engine is set to Spark.

Recommendations: Enable this property by setting it to true if you are using Hive on Spark. Otherwise, do not
enable this property.

90 | Apache Hive Guide

Tuning Apache Hive in CDH

Default Setting: true

hive.vectorized.groupby.checkinterval

Description: For vectorized GROUP BY operations, specifies the number of row entries added to the hash table
before rechecking the average variable size when estimating memory usage.

Recommendations: Current testing indicates that the default setting is applicable in most cases.

Default Setting: 4096

hive.vectorized.groupby.flush.percent

Description: Sets the percentage between 0 and 100 percent of entries in the vectorized GROUP BY aggregation
hash that is flushed when the memory threshold is exceeded. To set no flushing, set this property to 0.0. To set
flushing at 100 percent, set this property to 1.0.

Recommendations: This sets the amount of data that is held in memory. To increase performance, increase the
setting. However, increase the setting conservatively to prevent out-of-memory issues.

Default Setting: 0.1, which sets the flush percentage to 10%

hive.vectorized.input.format.excludes

Description: Specifies input formats to exclude from vectorized query execution. You can select
org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat,
org.apache.hadoop.hive.ql.io.orc.OrcInputFormat, or Custom from a drop-down list. When you select Custom,
you can add another input format for exclusion, but currently no other format is supported. If you select Custom
and leave the field blank, query vectorization is applied to all file formats.

Important: Vectorized execution can still occur for an excluded input format based on whether
row SerDes or vector SerDes are enabled.

Recommendations: Use this property to automatically disable certain file formats from vectorized execution.
Cloudera recommends that you test your workloads on development clusters using vectorization and enable it in
production if you receive significant performance advantages. As an example, if you want to exclude vectorization
only on the ORC file format while keeping vectorization for all other file formats including the Parquet file format,
set this property to org.apache.hadoop.hive.ql.io.orc.OrcInputFormat.

Default Setting: org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat which disables query
vectorization for the Parquet file format only.

hive.vectorized.use.checked.expressions

Description: To enhance performance, vectorized expressions operate using wide data types like long and double.
When wide data types are used, numeric overflows can occur during expression evaluation in a different manner
for vectorized expressions than they do for non-vectorized expressions. Consequently, different query results can
be returned for vectorized expressions compared to results returned for non-vectorized expressions.When enabled,
Hive uses vectorized expressions that handle numeric overflows in the same way as non-vectorized expressions
are handled.

Recommendations: Keep this property set totrue, if youwant results across vectorized and non-vectorized queries
to be consistent.

Default Setting: true

hive.vectorized.use.vectorized.input.format

Description: Enables Hive to take advantage of input formats that support vectorization when they are available.

Recommendations: Enable this property by setting it to true if you have Parquet or ORC workloads that you want
to be vectorized.

Default Setting: true

hive.vectorized.use.vector.serde.deserialize

Description: Enables Hive to use built-in vector SerDes to process text and SequenceFile tables for vectorized query
execution. In addition, this configuration also helps vectorization of intermediate tasks inmulti-stage query execution.

Recommendations: Keep this set to false. Setting this property to truemight help multi-stage workloads, but
when set to true, it enables text vectorization, which Cloudera does not support.

Apache Hive Guide | 91

Tuning Apache Hive in CDH

Default Setting: false

Supported/Unsupported Data Types and Functions

Most common data types and functions are supported by Hive query vectorization on Parquet tables in CDH. The
following subsections provide more details about data type and function support.

Supported/Unsupported Data Types

Currently, some complex data types, such as map, list, and union are not supported for Hive query vectorization on
Parquet tables in CDH. Even though the struct data type is supported, it is vectorized only when all of the fields
defined within the struct are primitives. The following data types are supported.

Table 2: Supported Data Types for Hive Query Vectorization on Parquet Tables

tinyintsmallintint

longintegerbigint

interval_year_monthtimestampshort

stringbinaryboolean

doublefloatbyte

structvoid

Supported/Unsupported Functions

Common arithmetic, boolean (for example AND, OR), comparison, mathematical (for example SIN, COS, LOG), date,
and type-cast functions are supported. Also common aggregate functions such as MIN, MAX, COUNT, AVG, and SUM are
also supported. If a function is not supported, the vectorizer attempts to vectorize the function based on the configuration
value specified for hive.vectorized.adaptor.usage.mode. You can set this property to none or chosen. To set
this property in Cloudera Manager, search for the hive.vectorized.adaptor.usage.mode property on the
Configuration page for the Hive service, and set it to none or chosen as appropriate. For unmanaged clusters, set it
manually in the hive-site.xml file for server-wide scope. To set it on a session basis, use the Hive SET command
as described above.

Verifying a Query is Vectorized

To verify that a query is vectorized, use the EXPLAIN VECTORIZATION statement. This statement returns a query
plan that shows how theHive query execution engine processes your query andwhether vectorization is being triggered.

Example of Verifying that Query Vectorization is Triggered for Your Query

This example uses the Hive table p_clients, which uses the Parquet format and contains the following columns and
data types:

DESCRIBE p_clients;

+------------------+------------+----------+
| col_name | data_type | comment |
+------------------+------------+----------+
name	string	
symbol	string	
lastsale	double	
marketlabel	string	
marketamount	bigint	
ipoyear	int	
segment	string	
business	string	
quote	string	

92 | Apache Hive Guide

Tuning Apache Hive in CDH

+------------------+------------+----------+

To get the query execution plan for a query, enter the following commands in a Beeline session:

EXPLAIN VECTORIZATION SELECT COUNT(*) FROM p_clients WHERE ipoyear = 2009;

This command returns the following query execution plan:

Figure 4: EXPLAIN VECTORIZATION Query Execution Plan for Hive Table Using the Parquet Format

Vectorization is explained in several parts of this query plan:

1. The PLAN VECTORIZATION section shows a high-level view of the vectorization status for the query. The enabled
flag set to truemeans that vectorization is turned on and the enabledConditionsMet flag shows that it is

Apache Hive Guide | 93

Tuning Apache Hive in CDH

enabled because the hive.vectorized.execution.enabled property is set to true. If vectorization is not
enabled, the enabledConditionsNotMet flag shows why.

2. Then in the STAGE PLANS section, the output shows the vectorization status for each task of query execution.
For example, there might be multiple map and reduce tasks for a query and it is possible that only a subset of
these tasks are vectorized. In the above example, the Stage-1 sub-section shows there is only one map task and
one reduce task. The Execution mode sub-section of the map task shows whether the task is vectorized. In this
case, vectorized displays, which means that the vectorizer was able to successfully validate and vectorize all
of the operators for this map task.

3. TheMap Vectorization sub-section showsmore details ofmap task vectorization. Specifically, the configurations
that affect the map side vectorization are shown along with whether these configurations are enabled. If the
configurations are enabled, they are listed for enabledConditionsMet. If the configurations are not enabled,
they are listed for enabledConditionsNotMet as explained in the above PLAN VECTORIZATION section. In
this example, it shows that the map side of query execution is enabled because the
hive.vectorized.use.vectorized.input.format property is set to true. This section also contains details
about input file format and adaptor settings used in the map side of query execution.

4. The Reduce Vectorization sub-section shows that the reduce side of query execution was not vectorized
because the hive.vectorized.execution.reduce.enabled property is set to false. This sub-section also
shows that the execution engine is not set to Tez or Spark, which are needed for reduce side vectorization. In this
particular example, to enable reduce side vectorization, the execution engine should be set to Spark and the
hive.vectorized.execution.reduce.enabled property should be set to true.

By using theEXPLAIN VECTORIZATION statementwith your queries, you can find out before you deploy themwhether
vectorization will be triggered and what properties you must set to enable it.

94 | Apache Hive Guide

Tuning Apache Hive in CDH

Hive/Impala Replication

Note: This page contains references to CDH 5 components or features that have been removed from
CDH6. These references are only applicable if you aremanaging a CDH5 clusterwith ClouderaManager
6. For more information, see Deprecated Items.

Minimum Required Role: BDR Administrator (also provided by Full Administrator)

Hive/Impala replication enables you to copy (replicate) your Hive metastore and data from one cluster to another and
synchronize the Hivemetastore and data set on the destination cluster with the source, based on a specified replication
schedule. The destination cluster must be managed by the Cloudera Manager Server where the replication is being
set up, and the source cluster can be managed by that same server or by a peer Cloudera Manager Server.

Configuration notes:

• If thehadoop.proxyuser.hive.groups configuration has been changed to restrict access to theHiveMetastore
Server to certain users or groups, the hdfs group or a group containing the hdfs user must also be included in
the list of groups specified for Hive/Impala replication to work. This configuration can be specified either on the
Hive service as an override, or in the core-site HDFS configuration. This applies to configuration settings on both
the source and destination clusters.

• If you configured Synchronizing HDFS ACLs and Sentry Permissions on the target cluster for the directory where
HDFS data is copied during Hive/Impala replication, the permissions that were copied during replication, are
overwritten by the HDFS ACL synchronization and are not preserved

• If you are using Kerberos to secure your clusters, see Enabling Replication Between Clusters with Kerberos
Authentication for details about configuring it.

Note: If your deployment includes tables backed by Kudu, BDR filters out Kudu tables for a Hive
replication in order to prevent data loss or corruption. Even though BDR does not replicate the data
in the Kudu tables, it might replicate the tables' metadata entries to the destination.

Network Latency and Replication
High latency among clusters can cause replication jobs to run more slowly, but does not cause them to fail. For best
performance, latency between the source cluster NameNode and the destination cluster NameNode should be less
than 80milliseconds. (You can test latency using the Linux ping command.) Cloudera has successfully tested replications
with latency of up to 360 milliseconds. As latency increases, replication performance degrades.

Host Selection for Hive/Impala Replication
If your cluster has Hive non-Gateway roles installed on hosts with limited resources, Hive/Impala replication may use
these hosts to run commands for the replication, which can cause the performance of the replication to degrade. To
improve performance, you can specify the hosts (a ”white list”) to use during replication so that the lower-resource
hosts are not used.

To configure the hosts used for Hive/Impala Replication:

1. Click Clusters > Hive > Configuration.
2. Type Hive Replication in the search box.
3. Locate the Hive Replication Environment Advanced Configuration Snippet (Safety Valve) property.

Apache Hive Guide | 95

Hive/Impala Replication

4. Add theHOST_WHITELIST property. Enter a comma-separated list of hostnames to use for Hive/Impala replication.
For example:

HOST_WHITELIST=host-1.mycompany.com,host-2.mycompany.com

5. Enter a Reason for change, and then click Save Changes to commit the changes.

Hive Tables and DDL Commands
The following applies when using the drop table and truncate table DDL commands:

• If you configure replication of a Hive table and then later drop that table, the table remains on the destination
cluster. The table is not dropped when subsequent replications occur.

• If you drop a table on the destination cluster, and the table is still included in the replication job, the table is
re-created on the destination during the replication.

• If you drop a table partition or index on the source cluster, the replication job also drops them on the destination
cluster.

• If you truncate a table, and theDelete Policy for the replication job is set toDelete to Trash orDelete Permanently,
the corresponding data files are deleted on the destination during a replication.

Replication of Parameters
Hive replication replicates parameters of databases, tables, partitions, table column stats, indexes, views, and Hive
UDFs.

You can disable replication of parameters:

1. Log in to the Cloudera Manager Admin Console.
2. Go to the Hive service.
3. Click the Configuration tab.
4. Search for "Hive Replication Environment Advanced Configuration Snippet"
5. Add the following parameter:

REPLICATE_PARAMETERS=false

6. Click Save Changes.

Hive Replication in Dynamic Environments
To use BDR for Hive replication in environments where the Hive Metastore changes, such as when a database or table
gets created or deleted, additional configuration is needed.

1. Open the Cloudera Manager Admin Console.
2. Search for the HDFS Client Advanced Configuration Snippet (Safety Valve) for hdfs-site.xml property on the

source cluster.
3. Add the following properties:

• Name: replication.hive.ignoreDatabaseNotFound

Value: true

• Name:replication.hive.ignoreTableNotFound

Value: true

4. Save the changes.

96 | Apache Hive Guide

Hive/Impala Replication

5. Restart the HDFS service.

Guidelines for Snapshot Diff-based Replication
By default, BDR uses snapshot differences ("diff") to improve performance by comparing HDFS snapshots and only
replicating the files that are changed in the source directory. While Hive metadata requires a full replication, the data
stored in Hive tables can take advantage of snapshot diff-based replication.

To use this feature, follow these guidelines:

• The source and target clusters must be managed by Cloudera Manager 5.15.0 or higher. If the destination is
Amazon S3 orMicrosoft ADLS, the source clustermust beManaged by ClouderaManager 5.15.0 or higher. Snapshot
diff-based restore to S3 or ADLS is not supported

• The source and target clusters run CDH 5.15.0 or higher, 5.14.2 or higher, or 5.13.3 or higher.
• Verify that HDFS snapshots are immutable on the source and destination clusters.

In the Cloudera Manager Admin Console, go to Clusters > <HDFS service> > Configuration and search for Enable
Immutable Snapshots.

• Do not use snapshot diff for globbed paths. It is not optimized for globbed paths.
• Set the snapshot root directory as low in the hierarchy as possible.
• To use the Snapshot diff feature, the user who is configured to run the job, needs to be either a super user or the

owner of the snapshottable root, because the run-as-usermust have the permission to list the snapshots.
• Decide if you want BDR to abort on a snapshot diff failure or continue the replication. If you choose to configure

BDR to continue the replication when it encounters an error, BDR performs a complete replication. Note that
continuing the replication can result in a longer duration since a complete replication is performed.

• BDR performs a complete replication when one or more of the following change: Delete Policy, Preserve Policy,
Target Path, or Exclusion Path.

• Paths from both source and destination clusters in the replication schedule must be under a snapshottable root
or should be snapshottable for the schedule to run using snapshot diff.

• Maintain amaximumof onemillion changes in a snapshot diff for an optimumperformance of the snapshot delete
operation.

The time taken by aNameNode to delete a snapshot is proportional to the number of changes between the current
snapshot and the previous snapshot. The changes include addition, deletion, and updation of files. If a snapshot
containsmore than amillion changes, the snapshot delete operationmight prevent theNameNode fromprocessing
other requests, which may result in premature failover thereby destabilising the cluster.

• If a Hive replication schedule is created to replicate a database, ensure all the HDFS paths for the tables in that
database are either snapshottable or under a snapshottable root. For example, if the database that is being
replicated has external tables, all the external table HDFS data locations should be snapshottable too. Failing to
do so will cause BDR to fail to generate a diff report. Without a diff report, BDR will not use snapshot diff.

• After every replication, BDR retains a snapshot on the source cluster. Using the snapshot copy on the source
cluster, BDR performs incremental backups for the next replication cycle. BDR retains snapshots on the source
cluster only if:

– Source and target clusters in the Cloudera Manager are 5.15 and higher
– Source and target CDH are 5.13.3+, 5.14.2+, and 5.15+ respectively

Replicating from Insecure to Secure Clusters
You can use BDR to replicate data from an insecure cluster, one that does not use Kerberos authentication, to a secure
cluster, a cluster that uses Kerberos. Note that the reverse is not true. BDR does not support replicating from a secure
cluster to an insecure cluster.

Apache Hive Guide | 97

Hive/Impala Replication

To perform the replication, the destination cluster must be managed by Cloudera Manager 6.1.0 or higher. The source
cluster must run Cloudera Manager 5.14.0 or higher in order to be able to replicate to Cloudera Manager 6. For more
information about supported replication scenarios, see Supported Replication Scenarios.

Note: In replication scenarios where a destination cluster has multiple source clusters, all the source
clusters must either be secure or insecure. BDR does not support replication from amixture of secure
and insecure source clusters.

To enable replication from an insecure cluster to a secure cluster, you need a user that exists on all the hosts on both
the source cluster and destination cluster. Specify this user in the Run As Username field when you create a replication
schedule.

The following steps describe how to add a user:

1. On a host in the source or destination cluster, add a user with the following command:

sudo -u hdfs hdfs dfs -mkdir -p /user/<username>

For example, the following command creates a user named milton:

sudo -u hdfs hdfs dfs -mkdir -p /user/milton

2. Set the permissions for the user directory with the following command:

sudo -u hdfs hdfs dfs -chown <username> /user/username

For example, the following command makes milton the owner of the milton directory:

sudo -u hdfs hdfs dfs -chown milton /user/milton

3. Create the supergroup group for the user you created in step 1 with the following command:

groupadd supergroup

4. Add the user you created in step 1 to the group you created:

usermod -G supergroup <username>

For example, add milton to the group named supergroup:

usermod -G supergroup milton

5. Repeat this process for all hosts in the source and destination clusters so that the user and group exists on all of
them.

After you complete this process, specify the user you created in theRunAsUsername fieldwhen you create a replication
schedule.

Configuring Replication of Hive/Impala Data
1. Verify that your cluster conforms to one of the Supported Replication Scenarios.
2. If the source cluster is managed by a different Cloudera Manager server than the destination cluster, configure a

peer relationship.
3. Do one of the following:

• From the Backup tab, select Replications.
• From the Clusters tab, go to the Hive service and select Quick Links > Replication.

98 | Apache Hive Guide

Hive/Impala Replication

The Schedules tab of the Replications page displays.

4. Select Create New Schedule > Hive Replication. The General tab displays.
5. Select the General tab to configure the following:

Note: If you are replicating to or from S3 or ADLS, follow the steps under Hive/Impala Replication
To and From Cloud Storage on page 106 before completing these steps.

a. Use the Name field to provide a unique name for the replication schedule.
b. Use the Source drop-down list to select the cluster with the Hive service you want to replicate.
c. Use the Destination drop-down list to select the destination for the replication. If there is only one Hive

service managed by Cloudera Manager available as a destination, this is specified as the destination. If more
than one Hive service is managed by this Cloudera Manager, select from among them.

d. Based on the type of destination cluster you plan to use, select one of these two options:

• Use HDFS Destination
• Use Cloud Destination

Note: For using cloud storage in the target cluster, you must set up a valid cloud storage
account and verify that the cloud storage has enough space to save the replicated data.

e. If you select Use Cloud Destination, provide the following details:

• Cloud Destination Account - Enter the name of the cloud account which is used to store the replicated
data. For example: ADLS or S3. This should be one of the configured external accounts.

• Cloud Destination Path - Specifies the cloud destination storage path where you can store the replicated
data from source to destination cluster. The Hive2 instance is updated to point its metadata to use the
cloud destination where the replicated data resides.

f. Leave Replicate All checked to replicate all the Hive databases from the source. To replicate only selected
databases, uncheck this option and enter the database name(s) and tables you want to replicate.

• You can specifymultiple databases and tables using the plus symbol to addmore rows to the specification.
• You can specify multiple databases on a single line by separating their names with the pipe (|) character.

For example: mydbname1|mydbname2|mydbname3.
• Regular expressions can be used in either database or table fields, as described in the following table:

ResultRegular Expression

Any database or table name.[\w].+

Any database or table except the one named
myname.

(?!myname\b).+

All tables of the db1 and db2 databases.db1|db2
[\w_]+

All tables of the db1 and db2 databases (alternate
method).

db1
[\w_]+

Click the "+" button and then enter

db2
[\w_]+

g. Select a Schedule:

• Immediate - Run the schedule Immediately.
• Once - Run the schedule one time in the future. Set the date and time.
• Recurring - Run the schedule periodically in the future. Set the date, time, and interval between runs.

Apache Hive Guide | 99

Hive/Impala Replication

h. To specify the user that should run the MapReduce job, use the Run As Username option. By default,
MapReduce jobs run as hdfs. To run the MapReduce job as a different user, enter the user name. If you are
using Kerberos, youmust provide a user name here, and it must have an ID greater than 1000.

Note: The user running the MapReduce job should have read and execute permissions
on the Hive warehouse directory on the source cluster. If you configure the replication job
to preserve permissions, superuser privileges are required on the destination cluster.

i. Specify the Run on peer as Username option if the peer cluster is configured with a different superuser. This
is only applicable while working in a kerberized environment.

6. Select the Resources tab to configure the following:

• Scheduler Pool – (Optional) Enter the name of a resource pool in the field. The value you enter is used by
theMapReduce Service you specifiedwhenClouderaManager executes theMapReduce job for the replication.
The job specifies the value using one of these properties:

– MapReduce – Fair scheduler: mapred.fairscheduler.pool
– MapReduce – Capacity scheduler: queue.name
– YARN – mapreduce.job.queuename

• MaximumMap Slots andMaximum Bandwidth – Limits for the number of map slots and for bandwidth per
mapper. The default is 100 MB.

• Replication Strategy – Whether file replication should be static (the default) or dynamic. Static replication
distributes file replication tasks among the mappers up front to achieve a uniform distribution based on file
sizes. Dynamic replication distributes file replication tasks in small sets to the mappers, and as each mapper
processes its tasks, it dynamically acquires and processes the next unallocated set of tasks.

7. Select the Advanced tab to specify an export location, modify the parameters of the MapReduce job that will
perform the replication, and set other options. You can select a MapReduce service (if there is more than one in
your cluster) and change the following parameters:

• Uncheck the Replicate HDFS Files checkbox to skip replicating the associated data files.
• If both the source and destination clusters use CDH 5.7.0 or later up to and including 5.11.x, select the

Replicate ImpalaMetadata drop-down list and selectNo to avoid redundant replication of Impala metadata.
(This option only displays when supported by both source and destination clusters.) You can select the
following options for Replicate Impala Metadata:

– Yes – replicates the Impala metadata.
– No – does not replicate the Impala metadata.
– Auto – Cloudera Manager determines whether or not to replicate the Impala metadata based on the

CDH version.

To replicate Impala UDFs when the version of CDH managed by Cloudera Manager is 5.7 or lower, see
Replicating Data to Impala Clusters for information on when to select this option.

• The Force Overwrite option, if checked, forces overwriting data in the destination metastore if incompatible
changes are detected. For example, if the destinationmetastorewasmodified, and a newpartitionwas added
to a table, this option forces deletion of that partition, overwriting the table with the version found on the
source.

Important: If the Force Overwrite option is not set, and the Hive/Impala replication process
detects incompatible changes on the source cluster, Hive/Impala replication fails. This
sometimes occurswith recurring replications, where themetadata associatedwith an existing
database or table on the source cluster changes over time.

• By default, Hive metadata is exported to a default HDFS location (/user/${user.name}/.cm/hive) and
then imported from this HDFS file to the destination Hive metastore. In this example, user.name is the

100 | Apache Hive Guide

Hive/Impala Replication

process user of the HDFS service on the destination cluster. To override the default HDFS location for this
export file, specify a path in the Export Path field.

Note: In a Kerberized cluster, the HDFS principal on the source cluster must have read,
write, and execute access to the Export Path directory on the destination cluster.

• Number of concurrent HMS connections - The number of concurrent Hive Metastore connections. These
connections are used to concurrently import and export metadata from Hive. Increasing the number of
threads can improve BDR performance. By default, any new replication schedules will use 5 connections.

If you set the value to 1 or more, BDR uses multi-threading with the number of connections specified. If you
set the value to 0 or fewer, BDR uses single threading and a single connection.

Note that the source and destination clusters must run a ClouderaManager version that supports concurrent
HMS connections, Cloudera Manager 5.15.0 or higher and Cloudera Manager 6.1.0 or higher.

• By default, HiveHDFS data files (for example,/user/hive/warehouse/db1/t1) are replicated to a location
relative to "/" (in this example, to /user/hive/warehouse/db1/t1). To override the default, enter a path
in the HDFS Destination Path field. For example, if you enter /ReplicatedData, the data files would be
replicated to /ReplicatedData/user/hive/warehouse/db1/t1.

• Select theMapReduce Service to use for this replication (if there is more than one in your cluster).
• Log Path - An alternative path for the logs.
• Description - A description for the replication schedule.
• Skip Checksum Checks - Whether to skip checksum checks, which are performed by default.

Checksums are used for two purposes:

• To skip replication of files that have already been copied. If Skip Checksum Checks is selected, the
replication job skips copying a file if the file lengths and modification times are identical between the
source and destination clusters. Otherwise, the job copies the file from the source to the destination.

• To redundantly verify the integrity of data. However, checksums are not required to guarantee accurate
transfers between clusters. HDFS data transfers are protected by checksums during transfer and storage
hardware also uses checksums to ensure that data is accurately stored. These two mechanisms work
together to validate the integrity of the copied data.

• Skip Listing Checksum Checks - Whether to skip checksum check when comparing two files to determine
whether they are same or not. If skipped, the file size and last modified time are used to determine if files
are the same or not. Skipping the check improves performance during the mapper phase. Note that if you
select the Skip Checksum Checks option, this check is also skipped.

• Abort on Error - Whether to abort the job on an error. By selecting the check box, files copied up to that
point remain on the destination, but no additional files will be copied. Abort on Error is off by default.

• Abort on Snapshot Diff Failures - If a snapshot diff fails during replication, BDR uses a complete copy to
replicate data. If you select this option, the BDR aborts the replication when it encounters an error instead.

• Delete Policy - Whether files that were on the source should also be deleted from the destination directory.
Options include:

– Keep Deleted Files - Retains the destination files even when they no longer exist at the source. (This is
the default.).

– Delete to Trash - If the HDFS trash is enabled, files are moved to the trash folder. (Not supported when
replicating to S3 or ADLS.)

– Delete Permanently - Uses the least amount of space; use with caution.

• Preserve - Whether to preserve the Block Size, Replication Count, and Permissions as they exist on the
source file system, or to use the settings as configured on the destination file system. By default, settings are
preserved on the source.

Apache Hive Guide | 101

Hive/Impala Replication

Note: You must be running as a superuser to preserve permissions. Use the "Run As
Username" option to ensure that is the case.

• Alerts - Whether to generate alerts for various state changes in the replication workflow. You can alert On
Failure, On Start, On Success, or On Abort (when the replication workflow is aborted).

8. Click Save Schedule.

The replication task appears as a row in the Replications Schedule table. See Viewing Replication Schedules on
page 102.

To specify additional replication tasks, select Create > Hive Replication.

Note: If your replication job takes a long time to complete, and tables change before the replication
finishes, the replication may fail. Consider making the Hive Warehouse Directory and the directories
of any external tables snapshottable, so that the replication job creates snapshots of the directories
before copying the files. See Using Snapshots with Replication.

Replication of Impala and Hive User Defined Functions (UDFs)

By default, for clusters where the version of CDH is 5.7 or higher, Impala and Hive UDFs are persisted in the Hive
Metastore and are replicated automatically as part of Hive/Impala replications. See User-Defined Functions (UDFs),
Replicating Data to Impala Clusters, and Managing Apache Hive User-Defined Functions on page 47.

To replicate Impala UDFs when the version of CDHmanaged by Cloudera Manager is 5.6 or lower, see Replicating Data
to Impala Clusters for information onwhen to select the Replicate ImpalaMetadata option on theAdvanced tab when
creating a Hive/Impala replication schedule.

After a replication has run, you can see the number of Impala and Hive UDFs that were replicated during the last run
of the schedule on the Replication Schedules page:

For previously-run replications, the number of replicated UDFs displays on the Replication History page:

Viewing Replication Schedules
The Replications Schedules page displays a row of information about each scheduled replication job. Each row also
displays recent messages regarding the last time the Replication job ran.

102 | Apache Hive Guide

Hive/Impala Replication

Figure 5: Replication Schedules Table

Only one job corresponding to a replication schedule can occur at a time; if another job associated with that same
replication schedule starts before the previous one has finished, the second one is canceled.

You can limit the replication jobs that are displayed by selecting filters on the left. If you do not see an expected
schedule, adjust or clear the filters. Use the search box to search the list of schedules for path, database, or table
names.

The Replication Schedules columns are described in the following table.

Table 3: Replication Schedules Table

DescriptionColumn

An internally generated ID number that identifies the schedule. Provides a convenient way to
identify a schedule.

Click the ID column label to sort the replication schedule table by ID.

ID

The unique name you specify when you create a schedule.Name

The type of replication scheduled, either HDFS or Hive.Type

The source cluster for the replication.Source

The destination cluster for the replication.Destination

Average throughput per mapper/file of all the files written. Note that throughput does not
include the following information: the combined throughput of all mappers and the time taken
to perform a checksum on a file after the file is written.

Throughput

The progress of the replication.Progress

The date and time when the replication last ran. Displays None if the scheduled replication has
not yet been run. Click the date and time link to view the Replication History page for the
replication.

Displays one of the following icons:

Last Run

• - Successful. Displays the date and time of the last run replication.
• - Failed. Displays the date and time of a failed replication.
• - None. This scheduled replication has not yet run.
•

- Running. Displays a spinner and bar showing the progress of the replication.

Apache Hive Guide | 103

Hive/Impala Replication

DescriptionColumn

Click the Last Run column label to sort the Replication Schedules table by the last run date.

The date and time when the next replication is scheduled, based on the schedule parameters
specified for the schedule. Hover over the date to view additional details about the scheduled
replication.

Click the Next Run column label to sort the Replication Schedules table by the next run date.

Next Run

Displays on the bottom line of each row, depending on the type of replication:Objects

• Hive - A list of tables selected for replication.
• HDFS - A list of paths selected for replication.

For example:

The following items are available from the Action button:Actions

• ShowHistory - Opens theReplicationHistory page for a replication. See Viewing Replication
History.

• Edit Configuration - Opens the Edit Replication Schedule page.
• Dry Run - Simulates a run of the replication task but does not actually copy any files or

tables. After a Dry Run, you can select Show History, which opens the Replication History
page where you can view any error messages and the number and size of files or tables
that would be copied in an actual replication.

• Click Collect Diagnostic Data to open the Send Diagnostic Data screen, which allows you
to collect replication-specific diagnostic data for the last 10 runs of the schedule:

1. Select Send Diagnostic Data to Cloudera to automatically send the bundle to Cloudera
Support. You can also enter a ticket number and comments when sending the bundle.

2. Click Collect and Send Diagnostic Data to generate the bundle and open the
Replications Diagnostics Command screen.

3. When the command finishes, click Download Result Data to download a zip file
containing the bundle.

• Run Now - Runs the replication task immediately.
• Disable | Enable - Disables or enables the replication schedule. No further replications are

scheduled for disabled replication schedules.
• Delete - Deletes the schedule. Deleting a replication schedule does not delete copied files

or tables.

• While a job is in progress, the Last Run column displays a spinner and progress bar, and each stage of the replication
task is indicated in the message beneath the job's row. Click the Command Details link to view details about the
execution of the command.

• If the job is successful, the number of files copied is indicated. If there have been no changes to a file at the source
since the previous job, then that file is not copied. As a result, after the initial job, only a subset of the files may
actually be copied, and this is indicated in the success message.

• If the job fails, the icon displays.
• To viewmore information about a completed job, select Actions > Show History. See Viewing Replication History.

104 | Apache Hive Guide

Hive/Impala Replication

Enabling, Disabling, or Deleting A Replication Schedule

When you create a new replication schedule, it is automatically enabled. If you disable a replication schedule, it can
be re-enabled at a later time.

To enable, disable, or delete a replication schedule:

• Click Actions > Enable|Disable|Delete in the row for a replication schedule.

To enable, disable, or delete multiple replication schedules:

1. Select one or more replication schedules in the table by clicking the check box the in the left column of the table.
2. Click Actions for Selected > Enable|Disable|Delete.

Viewing Replication History
You can view historical details about replication jobs on the Replication History page.

To view the history of a replication job:

1. Select Backup > Replication Schedules to go to the Replication Schedules page.
2. Locate the row for the job.
3. Click Actions > Show History.

Figure 6: Replication History Screen (HDFS)

Figure 7: Replication History Screen (Hive, Failed Replication)

The Replication History page displays a table of previously run replication jobs with the following columns:

Table 4: Replication History Table

DescriptionColumn

Time when the replication job started.

Expand the display and show details of the replication. In this screen, you can:

Start Time

• Click the View link to open the Command Details page, which displays details and
messages about each step in the execution of the command. Expand the display for a
Step to:

Apache Hive Guide | 105

Hive/Impala Replication

DescriptionColumn

View the actual command string.–
– View the Start time and duration of the command.
– Click the Context link to view the service status page relevant to the command.
– Select one of the tabs to view the Role Log, stdout, and stderr for the command.

See Viewing Running and Recent Commands.

• Click Collect Diagnostic Data to open the Send Diagnostic Data screen, which allows
you to collect replication-specific diagnostic data for this run of the schedule:

1. Select Send Diagnostic Data to Cloudera to automatically send the bundle to
Cloudera Support. You can also enter a ticket number and comments when sending
the bundle.

2. Click Collect and Send Diagnostic Data to generate the bundle and open the
Replications Diagnostics Command screen.

3. When the command finishes, click Download Result Data to download a zip file
containing the bundle.

• (HDFS only) Link to view details on theMapReduce Job used for the replication. See
Viewing and Filtering MapReduce Activities.

• (Dry Run only) View the number of Replicable Files. Displays the number of files that
would be replicated during an actual replication.

• (Dry Run only) View the number of Replicable Bytes. Displays the number of bytes that
would be replicated during an actual replication.

• Link to download a CSV file containing a Replication Report. This file lists the databases
and tables that were replicated.

• View the number of Errors that occurred during the replication.
• View the number of Impala UDFs replicated. (Displays only for Hive/Impala replications

where Replicate Impala Metadata is selected.)
• Click the link to download a CSV file containing aDownload Listing. This file lists the files

and directories that were replicated.
• Click the link to download a CSV file containing Download Status.
• If a user was specified in the Run As Username field when creating the replication job,

the selected user displays.
• View messages returned from the replication job.

Amount of time the replication job took to complete.Duration

Indicates success or failure of the replication job.Outcome

Number of files expected to be copied, based on the parameters of the replication schedule.Files Expected

Number of files actually copied during the replication.Files Copied

(Hive only) Number of tables replicated.Tables

Number of files that failed to be copied during the replication.Files Failed

Number of files that were deleted during the replication.Files Deleted

Number of files skipped during the replication. The replication process skips files that already
exist in the destination and have not changed.

Files Skipped

Hive/Impala Replication To and From Cloud Storage
You can use Cloudera Manager to replicate Hive/Impala data and metadata to and from S3 or ADLS, however you
cannot replicate data from one S3 or ADLS instance to another using ClouderaManager. Youmust have the appropriate

106 | Apache Hive Guide

Hive/Impala Replication

credentials to access the S3 or ADLS account. Additionally, you must create buckets in S3 or a data lake store in ADLS
to store the replicated files.

When you replicate data to cloud storage with BDR, BDR also backs up file metadata, including extended attributes
and ACLs.

To configure Hive/Impala replication to or from S3 or ADLS:

1. Create AWS Credentials or Azure Credentials. See How to Configure AWS Credentials or Configuring ADLS Access
Using Cloudera Manager.

Important: If AWS S3 access keys are rotated, you must restart Cloudera Manager server;
otherwise, Hive replication fails.

2. Select Backup > Replication Schedules.
3. Click Create Schedule > Hive Replication.
4. To back up data to S3:

a. Select the Source cluster from the Source drop-down list.
b. Select the S3 or ADLS destination (one of the AWS Credentials or ADLS Credentials you created) from the

Destination drop-down list.
c. Enter the path where the data should be copied to in S3 or ADLS.

For S3, use the following form:

s3a://S3_bucket_name/path

For ADLS, use the following form:

adl://<accountname>.azuredatalakestore.net/<path>

d. Select one of the following Replication Options:

• Metadata and Data – Backs up the Hive data from HDFS and its associated metadata.
• Metadata only – Backs up only the Hive metadata.

5. To restore data from S3 or ADLS:

a. Select the Amazon S3 source (one of theAWS Credentials or Azure Credentials accounts) from the Source
drop-down list.

b. Select the destination cluster from the Destination drop-down list.
c. Enter the path to the metadata file (export.json) where the data should be copied from in S3 or ADLS.

For S3, use the following form:

s3a://S3_bucket_name/path_to_metadata_file

For ADLS, use the following form:

adl://<accountname>.azuredatalakestore.net/<path_to_metadata_file>

d. Select one of the following Replication Options:

• Metadata and Data – Restores the Hive data from HDFS from S3 and its associated metadata.
• Metadata only – Restores only the Hive metadata.
• Reference Data From Cloud – Restores only the Hive tables and references the tables on S3 or ADLS as

a Hive external table. If you drop a table in Hive, the data remains on S3 or ADLS. Only data that was
backed up using a Hive/Impala Replication schedule can be restored. However, you can restore a Hive
external table that is stored in S3 or ADLS.

Apache Hive Guide | 107

Hive/Impala Replication

6. Complete the configuration of the Hive/Impala replication schedule by following the steps under Configuring
Replication of Hive/Impala Data on page 98, beginning with step 5.f on page 99

Ensure that the following basic permissions are available to provide read-write access to S3 through the S3A connector:

s3:Get*
s3:Delete*
s3:Put*
s3:ListBucket
s3:ListBucketMultipartUploads
s3:AbortMultipartUpload

108 | Apache Hive Guide

Hive/Impala Replication

Monitoring the Performance of Hive/Impala Replications

Note: This page contains references to CDH 5 components or features that have been removed from
CDH6. These references are only applicable if you aremanaging a CDH5 clusterwith ClouderaManager
6. For more information, see Deprecated Items.

You can monitor the progress of a Hive/Impala replication schedule using performance data that you download as a
CSV file from the ClouderaManager Admin console. This file contains information about the tables and partitions being
replicated, the average throughput, and other details that can help diagnose performance issues during Hive/Impala
replications. You can view this performance data for running Hive/Impala replication jobs and for completed jobs.

To view the performance data for a running Hive/Impala replication schedule:

1. Go to Backup > Replication Schedules.
2. Locate the row for the schedule.
3. Click Performance Reports and select one of the following options:

• HDFS Performance Summary – downloads a summary performance report of the HDFS phase of the running
Hive replication job.

• HDFSPerformance Full – downloads a full performance report of theHDFS phase of the runningHive replication
job.

• Hive Performance – downloads a report of Hive performance.

4. To view the data, import the file into a spreadsheet program such as Microsoft Excel.

To view the performance data for a completed Hive/Impala replication schedule:

1. Go to Backup > Replication Schedules.
2. Locate the schedule and click Actions > Show History.

The Replication History page for the replication schedule displays.

3. Click to expand the display of the selected schedule.
4. To view performance of the Hive phase, click Download CSV next to the Hive Replication Report label and select

one of the following options:

• Results – download a listing of replicated tables.
• Performance – download a performance report for the Hive replication.

Apache Hive Guide | 109

Monitoring the Performance of Hive/Impala Replications

Note: The option to download the HDFS Replication Report might not appear if the HDFS phase
of the replication skipped all HDFS files because they have not changed, or if the Replicate HDFS
Files option (located on the Advanced tab when creating Hive/Impala replication schedules) is
not selected.

See Table 5: Hive Performance Report Columns on page 111 for a description of the data in the HDFS performance
reports.

5. To view performance of the HDFS phase, clickDownload CSV next to theHDFS Replication Report label and select
one of the following options:

• Listing – a list of files and directories copied during the replication job.
• Status - full status report of files where the status of the replication is one of the following:

– ERROR – An error occurred and the file was not copied.
– DELETED – A deleted file.
– SKIPPED – A file where the replication was skipped because it was up-to-date.

• Error Status Only – full status report, filtered to show files with errors only.
• Deleted Status Only – full status report, filtered to show deleted files only.
• Skipped Status Only– full status report, filtered to show skipped files only.
• Performance – summary performance report.
• Full Performance – full performance report.

See Table 1 for a description of the data in the HDFS performance reports.

6. To view the data, import the file into a spreadsheet program such as Microsoft Excel.

The performance data is collected every two minutes. Therefore, no data is available during the initial execution of a
replication job because not enough samples are available to estimate throughput and other reported data.

110 | Apache Hive Guide

Monitoring the Performance of Hive/Impala Replications

The data returned by the CSV files downloaded from the ClouderaManager Admin console has the following structure:

Table 5: Hive Performance Report Columns

DescriptionHivePerformanceDataColumns

Time when the performance data was collectedTimestamp

Name of the host where the YARN or MapReduce job was running.Host

Name of the database.DbName

Name of the table.TableName

Number of seconds elapsed from the start of the copy operation.TotalElapsedTimeSecs

Total number of tables to be copied.

The value of the columnwill be -1 for replications where ClouderaManager cannot
determine the number of tables being changed.

TotalTableCount

Total number of partitions to be copied.

If the source cluster is running ClouderaManager 5.9 or lower, this column contains
a value of -1 because older releases do not report this information.

TotalPartitionCount

Current number of databases copied.DbCount

Number of failed database copy operations.DbErrorCount

Total number of tables (for all databases) copied so far.TableCount

Total number of tables copied for current database.CurrentTableCount

Total number of failed table copy operations.TableErrorCount

Total number of partitions copied so far (for all tables).PartitionCount

Total number of partitions copied for the current table.CurrPartitionCount

Number of partitions skipped because they were copied in the previous run of the
replication job.

PartitionSkippedCount

Total number of index files copied (for all databases).IndexCount

Total number of index files copied for the current database.CurrIndexCount

Number of Index files skipped because they were not altered.

Due to a bug in Hive, this value is always zero.

IndexSkippedCount

Number of Hive functions copied.HiveFunctionCount

Number of Impala objects copied.ImpalaObjectCount

A sample CSV file, as presented in Excel, is shown here:

Note the following limitations and known issues:

• If you click the CSV download too soon after the replication job starts, Cloudera Manager returns an empty file
or a CSV file that has columns headers only and a message to try later when performance data has actually been
collected.

Apache Hive Guide | 111

Monitoring the Performance of Hive/Impala Replications

• If you employ a proxy user with the form user@domain, performance data is not available through the links.
• If the replication job only replicates small files that can be transferred in less than a few minutes, no performance

statistics are collected.
• For replication schedules that specify theDynamic Replication Strategy, statistics regarding the last file transferred

by a MapReduce job hide previous transfers performed by that MapReduce job.
• Only the last trace of each MapReduce job is reported in the CSV file.

112 | Apache Hive Guide

Monitoring the Performance of Hive/Impala Replications

Overview of Apache Hive Security in CDH

Securing Hive involves configuring or enabling:

• Authentication for Hive metastore, HiveServer2, and all Hive clients with your deployment of LDAP and Kerberos
for your cluster.

See Hive Authentication, HiveServer2 Security Configuration, and Using Hive to Run Queries on a Secure HBase
Server for details.

• Authorization for HiveServer2 using role-based, fine-grained authorization that is implemented with Apache
Sentry policies. Youmust configure HiveServer2 authentication before you configure authorization because Apache
Sentry depends on an underlying authentication framework to reliably identify the requesting user.

See Authorization With Apache Sentry, User to Group Mapping, and Authorization Privilege Model for Hive and
Impala for details. Configure Sentry permissions using GRANT and REVOKE statements using the HiveServer2 client,
the Beeline CLI. See Hive SQL Syntax for Use with Sentry on page 117 for details.

Important: Cloudera does not support Apache Ranger or Hive's native authorization frameworks
for configuring access control in Hive. Use Cloudera-supported Apache Sentry instead.

• Encryption to secure the network connection between HiveServer2 and Hive clients.

In CDH 5.5 and later, encryption between HiveServer2 and its clients has been decoupled from Kerberos
authentication. (Prior to CDH 5.5, SASL QOP encryption for JDBC client drivers required connections authenticated
by Kerberos.) De-coupling the authentication process from the transport-layer encryption process means that
HiveServer2 can support two different approaches to encryption between the service and its clients (Beeline,
JDBC/ODBC) regardless of whether Kerberos is being used for authentication, specifically:

• SASL
• TLS/SSL

Unlike TLS/SSL, SASL QOP encryption does not require certificates and is aimed at protecting core Hadoop RPC
communications. However, SASL QOP may have performance issues when handling large amounts of data, so
depending on your usage patterns, TLS/SSL may be a better choice. See the following topics for details about
configuring HiveServer2 services and clients for TLS/SSL and SASL QOP encryption.

See Configuring Encrypted Communication Between HiveServer2 and Client Drivers on page 114 for details.

Securing the default database

Hive contains a default database default. Everyone can access the database if you set
sentry.hive.restrict.defaultDB=false in sentry-site.xml. You cannot use the default database and
perform basic operations, such as listing database names, if this property is set to true.

Accessing the information_schema

To query the information_schma, sentry.hive.restrict.defaultDBmust be set to false in sentry-site.xml.

Apache Hive Guide | 113

Overview of Apache Hive Security in CDH

https://www.ietf.org/rfc/rfc2222.txt
https://tools.ietf.org/html/rfc5246

Configuring Encrypted Communication Between HiveServer2 and
Client Drivers

In CDH5.5 and later, encryption betweenHiveServer2 and its clients has been decoupled fromKerberos authentication.
(Prior to CDH 5.5, SASL QOP encryption for JDBC client drivers required connections authenticated by Kerberos.)
De-coupling the authentication process from the transport-layer encryption process means that HiveServer2 can
support two different approaches to encryption between the service and its clients (Beeline, JDBC/ODBC) regardless
of whether Kerberos is being used for authentication, specifically:

• SASL
• TLS/SSL

Unlike TLS/SSL, SASL QOP encryption does not require certificates and is aimed at protecting core Hadoop RPC
communications. However, SASLQOPmay have performance issueswhen handling large amounts of data, so depending
on your usage patterns, TLS/SSLmay be a better choice. See the following topics for details about configuringHiveServer2
services and clients for TLS/SSL and SASL QOP encryption.

Configuring TLS/SSL Encryption for HiveServer2
HiveServer2 can be configured to support TLS/SSL connections from JDBC/ODBC clients using the Cloudera Manager
Admin Console (for clusters that run in the context of Cloudera Manager Server), or manually using the command line.

Requirements and Assumptions

Whether youuse ClouderaManager AdminConsole ormanuallymodify theHive configuration file for TLS/SSL encryption,
the steps assume that the HiveServer2 node in the cluster has the necessary server key, certificate, keystore, and trust
store set up on the host system. For details, see any of the following:

• Encrypting Data in Transit
• How to Configure TLS Encryption for Cloudera Manager
• How To Obtain and Deploy Keys and Certificates for TLS/SSL

The configuration paths and filenames shownbelow assume that hostname variable ($(hostname -f)-server.jks)
was used with Java keytool commands to create keystore, as shown in this example:

$ sudo keytool -genkeypair -alias $(hostname -f)-server -keyalg RSA -keystore \
/opt/cloudera/security/pki/$(hostname -f)-server.jks -keysize 2048 -dname \
"CN=$(hostname
-f),OU=dept-name-optional,O=company-name,L=city,ST=state,C=two-digit-nation" \
-storepass password -keypass password

See the appropriate How-To guide from the above list for more information.

Using Cloudera Manager to Enable TLS/SSL

To configure TLS/SSL for Hive in clusters managed by Cloudera Manager:

1. Log in to the Cloudera Manager Admin Console.
2. Select Clusters > Hive.
3. Click the Configuration tab.
4. Select Hive (Service-Wide) for the Scope filter.
5. Select Security for the Category filter. The TLS/SSL configuration options display.
6. Enter values for your cluster as follows:

114 | Apache Hive Guide

Configuring Encrypted Communication Between HiveServer2 and Client Drivers

https://www.ietf.org/rfc/rfc2222.txt
https://tools.ietf.org/html/rfc5246

DescriptionProperty

Click the checkbox to enable encrypted client-server communications between
HiveServer2 and its clients using TLS/SSL.

Enable TLS/SSL for HiveServer2

Enter the path to the Java keystore on the host system. For example:

/opt/cloudera/security/pki/server-name-server.jks

HiveServer2 TLS/SSL Server JKS
Keystore File Location

Enter the password for the keystore that was passed at the Java keytool
command-line when the key and keystore were created. As detailed in How To

HiveServer2 TLS/SSL Server JKS
Keystore File Password

Obtain and Deploy Keys and Certificates for TLS/SSL, the password for the
keystore must be the same as the password for the key.

Enter the path to the Java trust store on the host system. Cloudera clusters are
typically configured to use the alternative trust store, jssecacerts, set up at
$JAVA_HOME/jre/lib/security/jssecacerts.

HiveServer2 TLS/SSL Certificate
Trust Store File

For example:

The entry field for certificate trust store password has been left empty because the trust store is typically not
password protected—it contains no keys, only publicly available certificates that help establish the chain of trust
during the TLS/SSL handshake. In addition, reading the trust store does not require the password.

7. Click Save Changes.
8. Restart the Hive service.

Client Connections to HiveServer2 Over TLS/SSL

Clients connecting to a HiveServer2 over TLS/SSLmust be able to access the trust store on the HiveServer2 host system.
The trust store contains intermediate and other certificates that the client uses to establish a chain of trust and verify
server certificate authenticity. The trust store is typically not password protected.

Note: The trust storemay have been password protected to prevent its contents frombeingmodified.
However, password protected trust stores can be read from without using the password.

The client needs the path to the trust store when attempting to connect to HiveServer2 using TLS/SSL. This can be
specified using two different approaches, as follows:

Apache Hive Guide | 115

Configuring Encrypted Communication Between HiveServer2 and Client Drivers

• Pass the path to the trust store each time you connect to HiveServer in the JDBC connection string:

jdbc:hive2://fqdn.example.com:10000/default;ssl=true;\
sslTrustStore=$JAVA_HOME/jre/lib/security/jssecacerts;trustStorePassword=extraneous

or,
• Set the path to the trust store one time in the Java system javax.net.ssl.trustStore property:

java
-Djavax.net.ssl.trustStore=/usr/java/jdk1.7.0_67-cloudera/jre/lib/security/jssecacerts
 \
-Djavax.net.ssl.trustStorePassword=extraneous MyClass \
jdbc:hive2://fqdn.example.com:10000/default;ssl=true

Configuring SASL Encryption for HiveServer2
Communications between Hive JDBC or ODBC drivers and HiveServer2 can be encrypted using SASL, a framework for
authentication and data security rather than a protocol like TLS/SSL. Support for SASL (Simple Authentication and
Security Layer) in HiveServer2 preceded the support for TLS/SSL. SASL offers three different Quality of Protection (QOP)
levels as shown in the table:

Default. Authentication only.auth

Authentication with integrity protection. Signed message digests (checksums)
verify the integrity of messages sent between client and server.

auth-int

Authentication with confidentiality (transport-layer encryption). Use this setting
for encrypted communications from clients to HiveServer2.

auth-conf

To support encryption for communications between client and server processes, specify the QOP auth-conf setting
for the SASL QOP property in the HiveServer2 configuration file (hive-site.xml). For example,

<property>
 <name>hive.server2.thrift.sasl.qop</name>
 <value>auth-conf</value>
</property>

Client Connections to HiveServer2 Using SASL

The client connection stringmustmatch the parameter value specified for the HiveServer2 configuration. This example
shows how to specify encryption for the Beeline client in the JDBC connection URL:

beeline> !connect jdbc:hive2://fqdn.example.com:10000/default; \
principal=hive/_HOST@EXAMPLE.COM;sasl.qop=auth-conf

The _HOST is a wildcard placeholder that gets automatically replaced with the fully qualified domain name (FQDN) of
the server running the HiveServer2 daemon process.

116 | Apache Hive Guide

Configuring Encrypted Communication Between HiveServer2 and Client Drivers

Hive SQL Syntax for Use with Sentry

Sentry permissions can be configured through GRANT and REVOKE statements issued either interactively or
programmatically through the HiveServer2 SQL command line interface, Beeline (documentation available here). The
syntax described below is very similar to the GRANT and REVOKE commands that are available in well-established
relational database systems.

In HUE, the Sentry Admin that creates roles and grants privileges must belong to a group that has ALL privileges on the
server. For example, you can create a role for the group that contains the hive or impala user, and grant ALL ON SERVER
.. WITH GRANT OPTION to that role:

CREATE ROLE <admin role>;
GRANT ALL ON SERVER <server1> TO ROLE <admin role> WITH GRANT OPTION;
GRANT ROLE <admin role> TO GROUP <hive>;

Important:

• When Sentry is enabled, you must use Beeline to execute Hive queries. Hive CLI is not supported
with Sentry and must be disabled. See Disabling Hive CLI for information on how to disable the
Hive CLI.

• There are somedifferences in syntax betweenHive and the corresponding Impala SQL statements.
For Impala syntax, see SQL Statements.

• No privilege is required to drop a function. Any user can drop a function.

Sentry supports column-level authorization with the SELECT privilege. Information about column-level authorization
is in the Column-Level Authorization on page 124 section of this page.

See the sections below for details about the supported statements and privileges:

ALTER DATABASE Statement
Use the ALTER TABLE statement to set or transfer ownership of an HMS database in Sentry. Object ownership must
be enabled in Sentry to assign ownership to an object. For information on how to enable object ownership and the
privileges an object owner has on the object, see Object Ownership.

You can grant the OWNER privilege on a database to a role or a user with the following commands, respectively:

ALTER DATABASE <database name> SET OWNER ROLE <role name>
ALTER DATABASE <database name> SET OWNER USER <user name>

ALTER TABLE Statement
Use the ALTER TABLE statement to set or transfer ownership of an HMS table in Sentry. Object ownership must be
enabled in Sentry to assign ownership to an object. For information on how to enable object ownership and the
privileges an object owner has on the object, see Object Ownership.

You can grant the OWNER privilege on a table to a role or a user with the following commands, respectively:

ALTER TABLE <table name> SET OWNER ROLE <role name>
ALTER TABLE <table name> SET OWNER USER <user name>

Apache Hive Guide | 117

Hive SQL Syntax for Use with Sentry

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-Beeline%E2%80%93NewCommandLineShell

In Hive, the ALTER TABLE statement also sets the owner of a view. Use the following commands to grant the OWNER
privilege on a view:

ALTER TABLE <view name> SET OWNER ROLE <role name>
ALTER TABLE <view name> SET OWNER USER <user name>

ALTER VIEW Statement
In Impala, use the ALTER VIEW statement to transfer ownership of a view in Sentry. Object ownership must be enabled
in Sentry to assign ownership to an object. For information on how to enable object ownership and the privileges an
object owner has on the object, see Object Ownership.

You can grant the OWNER privilege on a table to a role or a user with the following commands, respectively:

ALTER VIEW <view name> SET OWNER ROLE <role name>
ALTER VIEW <view name> SET OWNER USER <user name>

In Hive, use the ALTER TABLE statement to transfer ownership of a view.

CREATE ROLE Statement
The CREATE ROLE statement creates a role to which privileges can be granted. Privileges can be granted to roles,
which can then be assigned to users. A user that has been assigned a role will only be able to exercise the privileges
of that role.

Only users that have administrative privileges can create or drop roles. By default, the hive, impala and hue users
have admin privileges in Sentry.

CREATE ROLE <role name>;

Note that role names are case-insensitive.

DROP ROLE Statement
The DROP ROLE statement can be used to remove a role from the database. Once dropped, the role will be revoked
for all users to whom it was previously assigned. Queries that are already executing will not be affected. However,
since Hive checks user privileges before executing each query, active user sessions in which the role has already been
enabled will be affected.

DROP ROLE <role name>;

GRANT ROLE Statement
The GRANT ROLE statement can be used to grant roles to groups. Only Sentry admin users can grant roles to a group.

GRANT ROLE <role name> [, <role name>]
 TO GROUP <group name> [,GROUP <group name>]

Sentry only allows you to grant roles to groups that have alphanumeric characters and underscores (_) in the group
name. If the group name contains a non-alphanumeric character that is not an underscore, you can put the group
name in backticks (`) to execute the command. For example, Sentry will return an error for the following command:

GRANT ROLE test TO GROUP test-group;

118 | Apache Hive Guide

Hive SQL Syntax for Use with Sentry

To grant a role to this group, put the group name in backticks:

GRANT ROLE test TO GROUP `test-group`;

The following command, which contains an underscore, is also acceptable:

GRANT ROLE test TO GROUP test_group;

REVOKE ROLE Statement
The REVOKE ROLE statement can be used to revoke roles from groups. Only Sentry admin users can revoke the role
from a group.

REVOKE ROLE <role name> [, <role name>]
 FROM GROUP <group name> [,GROUP <group name>]

GRANT <Privilege> Statement
Use the GRANT <Privilege> statement to grant privileges on an object to a role. The statement uses the following
syntax:

GRANT
<privilege> [, <privilege>]

 ON <object type> <object name>
 TO ROLE <role name> [,ROLE <role name>]

For example, you might enter the following statement:

GRANT SELECT ON TABLE feathered_dinosaurs TO ROLE archaeopteryx

The following table describes the privileges you can grant and the objects that they apply to:

Table 6: Privilege Types

ObjectPrivilege

Server, database, table, URIALL

Server, databaseCREATE

Server, database, tableINSERT

Server, database, tableREFRESH (Impala only)

Server, database, table, view, columnSELECT

You can also grant the SELECT privilege on a specific column of a table with the following statement:

GRANT SELECT <column name> ON TABLE <table name> TO ROLE <role name>;

GRANT <Privilege> ON URIs (HDFS and S3A)
You can only grant the ALL privilege on a URI. See Granting Privileges on URIs for more information about using URIs
with Sentry.

If the GRANT for Sentry URI does not specify the complete scheme, or the URI mentioned in Hive DDL statements does
not have a scheme, Sentry automatically completes the URI by applying the default scheme based on the HDFS

Apache Hive Guide | 119

Hive SQL Syntax for Use with Sentry

configuration provided in the fs.defaultFS property. Using the same HDFS configuration, Sentry can also
auto-complete URIs in case the URI is missing a scheme and an authority component.

When a user attempts to access a URI, Sentry will check to see if the user has the required privileges. During the
authorization check, if the URI is incomplete, Sentry will complete the URI using the default HDFS scheme. Note that
Sentry does not check URI schemes for completion when they are being used to grant privileges. This is because users
can GRANT privileges on URIs that do not have a complete scheme or do not already exist on the filesystem.

For example, in CDH5.8 and later, the followingCREATE EXTERNAL TABLE statementworks even though the statement
does not include the URI scheme.

GRANT ALL ON URI 'hdfs://namenode:XXX/path/to/table' TO ROLE <role name>;
CREATE EXTERNAL TABLE foo LOCATION 'namenode:XXX/path/to/table' TO ROLE <role name>;

Similarly, the following CREATE EXTERNAL TABLE statement works even though it is missing scheme and authority
components.

GRANT ALL ON URI 'hdfs://namenode:XXX/path/to/table' TO ROLE <role name>;
CREATE EXTERNAL TABLE foo LOCATION '/path/to/table'

Since Sentry supports both HDFS and Amazon S3, in CDH 5.8 and later, Cloudera recommends that you specify the
fully qualified URI in GRANT statements to avoid confusion. If the underlying storage is a mix of S3 and HDFS, the risk
of granting the wrong privileges increases. The following are examples of fully qualified URIs:

• HDFS: hdfs://host:port/path/to/hdfs/table
• S3: s3a://host:port/path/to/s3/table

REVOKE <Privilege> Statement
You can use the REVOKE <Privilege> statement to revoke previously-granted privileges that a role has on an object.

REVOKE
<privilege> [, <privilege>]

 ON <object type> <object name>
 FROM ROLE <role name> [,ROLE <role name>]

For example, you can revoke previously-granted SELECT privileges on specific columns of a table with the following
statement:

REVOKE SELECT <column name> ON TABLE <table name> FROM ROLE <role name>;

GRANT <Privilege> ... WITH GRANT OPTION
You can add theWITH GRANT OPTION clause to a GRANT <PRIVILEGE> statement to allow the role to grant and revoke
the privilege to and from other roles.

The WITH GRANT OPTION clause uses the following syntax:

GRANT
<privilege>

 ON <object type> <object name>
 TO ROLE <role name>
 WITH GRANT OPTION

When you use theWITHGRANTOPTION clause, the ability to grant and revoke privileges applies to the object container
and all its children. For example, if you give GRANT privileges to a role at the database level, that role can grant and
revoke privileges to and from the database and all the tables in the database.

120 | Apache Hive Guide

Hive SQL Syntax for Use with Sentry

Only a role with the GRANT option on a privilege can revoke that privilege from other roles. And you cannot revoke
the GRANT privilege from a role without also revoking the privilege. To revoke the GRANT privilege, revoke the privilege
that it applies to and then grant that privilege again without the WITH GRANT OPTION clause.

You can use the WITH GRANT OPTION clause with the following privileges:

• ALL
• CREATE
• INSERT
• REFRESH (Impala only)
• SELECT

WITH GRANT OPTION Example

For example, if you grant a role the SELECT privilege with the following statement:

GRANT SELECT ON DATABASE coffee_database TO ROLE coffee_bean WITH GRANT OPTION

The coffee_bean role can grant SELECT privileges to other roles on the coffee_database and all the tables within that
database.

When you revoke a privilege from a role, the GRANT privilege is also revoked from that role. For example, if you revoke
SELECT privileges from the coffee_bean role with this command:

REVOKE SELECT ON DATABASE coffee_database FROM ROLE coffee_bean

The coffee_bean role can no longer grant SELECT privileges on the coffee_database or its tables.

To remove theWITHGRANTOPTIONprivilege from the coffee_bean role and still allow the role to have SELECT privileges
on the coffee_database, you must run these two commands:

REVOKE SELECT ON coffee_database FROM ROLE coffee_bean;
 GRANT SELECT ON coffee_database TO ROLE coffee_bean;

SET ROLE Statement
Sentry enforces restrictions on queries based on the roles and privileges that the user has. A user can have multiple
roles and a role can have multiple privileges.

The SET ROLE command enforces restrictions at the role level, not at the user level. When you use the SET ROLE
command to make a role active, the role becomes current for the session. If a role is not current for the session, it is
inactive and the user does not have the privileges assigned to that role. A user can only use the SET ROLE command
for roles that have been granted to the user.

To list the roles that are current for the user, use the SHOW CURRENT ROLES command. By default, all roles that are
assigned to the user are current.

You can use the following SET ROLE commands:

SET ROLE NONE

Makes all roles for the user inactive. When no role is current, the user does not have any privileges and cannot
execute a query.

SET ROLE ALL

Makes all roles that have been granted to the user active. All privileges assigned to those roles are applied. When
the user executes a query, the query is filtered based on those privileges.

SET ROLE role name

Makes a single role active. The privileges assigned to that role are applied. When the user executes a query, the
query is filtered based on the privileges assigned to that role.

Apache Hive Guide | 121

Hive SQL Syntax for Use with Sentry

SHOW Statement
• Lists the database(s) for which the current user has database, table, or column-level access:

SHOW DATABASES;

• Lists the table(s) for which the current user has table or column-level access:

SHOW TABLES;

• Lists the column(s) to which the current user has SELECT access:

SHOW COLUMNS (FROM|IN) <table name> [(FROM|IN) <database name>];

• Lists all the roles in the system (only for sentry admin users):

SHOW ROLES;

• Lists all the roles in effect for the current user session:

SHOW CURRENT ROLES;

• Lists all the roles assigned to the given group name (only allowed for Sentry admin users and others users that
are part of the group specified by group name):

SHOW ROLE GRANT GROUP group name;

• The SHOW statement can also be used to list the privileges that have been granted to a role or all the grants given
to a role for a particular object.

It lists all the grants for the given <role name> (only allowed for Sentry admin users and other users that have
been granted the role specified by <role name>). The following commandwill also list any column-level privileges:

SHOW GRANT ROLE <role name>;

• Lists all the grants for a role or user on the given <object name> (only allowed for Sentry admin users and other
users that have been granted the role specified by <role name>). The following command will also list any
column-level privileges:

SHOW GRANT ROLE <role name> on <object type> <object name>;
SHOW GRANT USER <user name> on <object type> <object name>;

• Lists the roles and users that have grants on the Hive object. It does not show inherited grants from a parent
object. It only shows grants that are applied directly to the object. This command is only available for Hive.

SHOW GRANT ON <hive object>;

• In Hive, this statement lists all the privileges the user has on objects. In Impala, this statement shows the privileges
the user has and the privileges the user's roles have on objects.

SHOW GRANT USER <user name>;

Privileges
Sentry supports the following privilege types:

122 | Apache Hive Guide

Hive SQL Syntax for Use with Sentry

CREATE

The CREATE privilege allows a user to create databases, tables, and functions. Note that to create a function, the user
also must have ALL permissions on the JAR where the function is located, i.e. GRANT ALL ON URI is required.

You can grant the CREATE privilege on a server or database with the following commands, respectively:

GRANT CREATE ON SERVER <server name> TO ROLE <role name>
GRANT CREATE ON DATABASE <database name> TO ROLE <role name>

For example, you might enter the following command:

GRANT CREATE ON SERVER super_cool_server TO ROLE my_favorite_role

You can use the GRANT CREATE statement with the WITH GRANT OPTION clause. The WITH GRANT OPTION clause
allows the granted role to grant the privilege to other roles on the system. See GRANT <Privilege> ... WITH GRANT
OPTION on page 120 for more information about how to use the clause.

The following table shows the CREATE privilege scope:

Available OperationsScope

Create databases, tables, views, and functionsServer

Create tables and views in the databaseDatabase

Not allowedTable

OWNER

The OWNER privilege gives a user or role special privileges on a database, table, or view in HMS. An object can only
have one owner at a time. For more information about the OWNER privilege, see Object Ownership.

The owner of an object can execute any action on the object, similar to the ALL privilege. However, the object owner
cannot transfer object ownership unless theALL privilegeswith GRANT option is selected. You can specify the privileges
that an object owner has on the object with the OWNER Privileges for Sentry Policy Database Objects setting in
Cloudera Manager.

The following table shows the OWNER privilege scope:

Available OperationsScope

Not available.Server

Any action allowed by the ALL privilege on the database and tables
within the database except transferring ownership of the database
or tables.

Database

WITH GRANT enabled: Allows the user or role to grant and revoke
privileges to other roles on the database, tables, and views. The user
can also transfer ownership of the database and tables within the
database. If ownership is transferred at the database level, ownership
of the tables is not transferred; the original owner continues to have
the OWNER privilege on the tables.

Any action allowed by the ALL privilege on the table except
transferring ownership of the table or view.

Table / View

WITH GRANT enabled: Allows the user or role to transfer ownership
of the table or view as well as grant and revoke privileges to other
roles on the table or view.

For more information about the OWNER privilege, see Object Ownership.

Apache Hive Guide | 123

Hive SQL Syntax for Use with Sentry

REFRESH (Impala Only)

The REFRESH privilege allows a user to execute commands that update metadata information on Impala databases
and tables, such as the REFRESH and INVALIDATE METADATA commands. Keep in mind that metadata invalidation or
refresh in Impala is an expensive procedure that can cause performance issues if it is overused.

You can grant the REFRESH privilege on a server, table, or database with the following commands, respectively:

GRANT REFRESH ON SERVER <server name> TO ROLE <role name>
GRANT REFRESH ON DATABASE <database name> TO ROLE <role name>
GRANT REFRESH ON TABLE <table name> TO ROLE <role name>

You can use the GRANT REFRESH statement with the WITH GRANT OPTION clause. The WITH GRANT OPTION clause
allows the granted role to grant the privilege to other roles on the system. See GRANT <Privilege> ... WITH GRANT
OPTION on page 120 for more information about how to use the clause.

The following table shows the REFRESH privilege scope:

Available OperationsScope

Invalidate the metadata of all tables on the serverServer

Invalidate the metadata of all tables in the databaseDatabase

Invalidate and refresh the table metadataTable

SELECT

The SELECT privilege allows a user to view table data and metadata. In additon, you can use the SELECT privilige to
provide column-level authorization. See Column-Level Authorization on page 124 below for details.

You can grant the SELECT privilege on a server, table, or database with the following commands, respectively:

GRANT SELECT ON SERVER <server name> TO ROLE <role name>
GRANT SELECT ON DATABASE <database name> TO ROLE <role name>
GRANT SELECT ON TABLE <table name> TO ROLE <role name>

Available OperationsScope

View table data and metadata of all tables in all the
databases on the server

Server

View table data andmetadata of all tables in the databaseDatabase

View table data and metadataTable

View table data and metadata for the granted columnColumn

View • In CDH 5.x, column-level permissionswith the SELECT
privilege are not available for views.

• In CDH 6.x, column-level permissionswith the SELECT
privilege are avaialbe for views in Hive, but not in
Impala.

Column-Level Authorization

Sentry provides column-level authorization with the SELECT privilege. You can grant the SELECT privilege to a role
for a subset of columns in a table. If a new column is added to the table, the role will not have the SELECT privilege
on that column until it is explicitly granted.

124 | Apache Hive Guide

Hive SQL Syntax for Use with Sentry

You can grant and revoke the SELECT privilege on a set of columns with the following commands, respectively:

GRANT SELECT (<column name>) ON TABLE <table name> TO ROLE <role name>;
REVOKE SELECT (<column name>) ON TABLE <table name> FROM ROLE <role name>;

Users with column-level authorization can execute the following commands on the columns that they have access to.
Note that the commands will only return data and metadata for the columns that the user's role has been granted
access to.

• SELECT <column name> FROM TABLE <table name>;

• SELECT COUNT <column name> FROM TABLE <table name>;

• SELECT <column name> FROM TABLE <table name> WHERE <column name> <operator> GROUP BY

<column name>;

• SHOW COLUMNS (FROM|IN) <table name> [(FROM|IN) <database name>];

As a rule, a user with select access to columns in a table cannot perform table-level operations, however, if a user has
SELECT access to all the columns in a table, that user can also execute the following command:

SELECT * FROM TABLE <table name>;

Considerations for Column-Level Authorization

When you implement column-level authorization, consider the following:

• When a user has column-level permissions, it may be confusing that they cannot execute a select * from
<tablename> statement even though they have select privileges on some of the columns in the table. Instead,
the user must explicitely define the columns that they want to query.

• Using views instead of column-level authorization requires additional administration, such as creating the view
and administering the Sentry grants. In addition, a new view may be needed for a new role, and third-party
applications must use a different view based on the role of the user.

• With HDFS sync enabled, even if a user has been granted access to all columns of a table, the user will not have
access ot the corresponding HDFS data files. This is because Sentry does not consider SELECT on all columns
equivalent to explicitely being granted SELECT on the table.

• Column-level access control for access from Spark SQL is not supported by the HDFS-Sentry plug-in.

Apache Hive Guide | 125

Hive SQL Syntax for Use with Sentry

Troubleshooting Apache Hive in CDH

This section provides guidance on problems you may encounter while installing, upgrading, or running Hive.

With Hive, the most common troubleshooting aspects involve performance issues and managing disk space. Because
Hive uses an underlying compute mechanism such as MapReduce or Spark, sometimes troubleshooting requires
diagnosing and changing configuration in those lower layers. In addition, problems can also occur if the metastore
metadata gets out of synchronization. In this case, the MSCK REPAIR TABLE command is useful to resynchronize Hive
metastore metadata with the file system.

Troubleshooting

HiveServer2 Service Crashes

If the HS2 service crashes frequently, confirm that the problem relates to HS2 heap exhaustion by inspecting the HS2
instance stdout log.

1. In Cloudera Manager, from the home page, go to Hive > Instances.
2. In the Instances page, click the link of the HS2 node that is down:

Figure 8: HiveServer2 Link on the Cloudera Manager Instances Page

3. On the HiveServer2 page, click Processes.
4. On the HiveServer2 Processes page, scroll down to the Recent Log Entries and click the link to the Stdout log.

126 | Apache Hive Guide

Troubleshooting Apache Hive in CDH

Figure 9: Link to the Stdout Log on the Cloudera Manager Processes Page

5. In the stdout.log, look for the following error:

 # java.lang.OutOfMemoryError: Java heap space
 # -XX:OnOutOfMemoryError="/usr/lib64/cmf/service/common/killparent.sh"
 # Executing /bin/sh -c "/usr/lib64/cmf/service/common/killparent.sh"

Video: Troubleshooting HiveServer2 Service Crashes

For more information about configuring Java heap size for HiveServer2, see the following video:

After you start the video, click YouTube in the lower right corner of the player window to watch it on YouTube where
you can resize it for clearer viewing.

Best Practices for Using MSCK REPAIR TABLE
Hive stores a list of partitions for each table in its metastore. The MSCK REPAIR TABLE command was designed to
bulk-add partitions that already exist on the filesystem but are not present in the metastore. It can be useful if you
lose the data in your Hive metastore or if you are working in a cloud environment without a persistent metastore. See
Tuning ApacheHive Performance on theAmazon S3 Filesystem in CDHonpage 74 or Configuring ADLSGen1 Connectivity
on page 56 for more information.

Apache Hive Guide | 127

Troubleshooting Apache Hive in CDH

Example: How MSCK REPAIR TABLE Works

The following example illustrates how MSCK REPAIR TABLE works.

1. Create directories and subdirectories on HDFS for the Hive table employee and its department partitions:

$ sudo -u hive hdfs dfs -mkdir -p /user/hive/dataload/employee/dept=sales
$ sudo -u hive hdfs dfs -mkdir -p /user/hive/dataload/employee/dept=service
$ sudo -u hive hdfs dfs -mkdir -p /user/hive/dataload/employee/dept=finance

2. List the directories and subdirectories on HDFS:

$ sudo -u hdfs hadoop fs -ls -R /user/hive/dataload
drwxr-xr-x - hive hive 0 2017-06-16 17:49 /user/hive/dataload/employee
drwxr-xr-x - hive hive 0 2017-06-16 17:49 /user/hive/dataload/employee/dept=finance
drwxr-xr-x - hive hive 0 2017-06-16 17:47 /user/hive/dataload/employee/dept=sales
drwxr-xr-x - hive hive 0 2017-06-16 17:48 /user/hive/dataload/employee/dept=service

3. Use Beeline to create the employee table partitioned by dept:

CREATE EXTERNAL TABLE employee (
 eid int, name string, position string
)
 PARTITIONED BY (dept string)
 LOCATION ‘/user/hive/dataload/employee’
 ;

4. Still in Beeline, use the SHOW PARTITIONS command on the employee table that you just created:

SHOW PARTITIONS employee;

This command shows none of the partition directories you created in HDFS because the information about these
partition directories have not been added to the Hive metastore. Here is the output of SHOW PARTITIONS on
the employee table:

+------------+--+
| partition |
+------------+--+
+------------+--+
No rows selected (0.118 seconds)

5. Use MSCK REPAIR TABLE to synchronize the employee table with the metastore:

MSCK REPAIR TABLE employee;

6. Then run the SHOW PARTITIONS command again:

SHOW PARTITIONS employee;

128 | Apache Hive Guide

Troubleshooting Apache Hive in CDH

Now this command returns the partitions you created on the HDFS filesystem because the metadata has been
added to the Hive metastore:

+---------------+--+
| partition |
+---------------+--+
| dept=finance |
| dept=sales |
| dept=service |
+---------------+--+
3 rows selected (0.089 seconds)

Guidelines for Using the MSCK REPAIR TABLE Command

Here are some guidelines for using the MSCK REPAIR TABLE command:

• Running MSCK REPAIR TABLE is very expensive. It consumes a large portion of system resources. Only use it to
repair metadata when the metastore has gotten out of sync with the file system. For example, if you transfer data
from one HDFS system to another, use MSCK REPAIR TABLE to make the Hive metastore aware of the partitions
on the new HDFS. For routine partition creation, use the ALTER TABLE ... ADD PARTITION statement.

• A good use ofMSCK REPAIR TABLE is to repair metastoremetadata after youmove your data files to cloud storage,
such as Amazon S3. If you are using this scenario, see Tuning Hive MSCK (Metastore Check) Performance on S3
on page 80 for information about tuning MSCK REPAIR TABLE command performance in this scenario.

• RunMSCK REPAIR TABLE as a top-level statement only. Do not run it from inside objects such as routines, compound
blocks, or prepared statements.

Apache Hive Guide | 129

Troubleshooting Apache Hive in CDH

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting frommechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to thatWork or DerivativeWorks thereof, that is intentionally submitted to Licensor for inclusion in theWork
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving theWork, but excluding communication that is conspicuouslymarked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whoma Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare DerivativeWorks of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license tomake, havemade,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

130 | Cloudera

Appendix: Apache License, Version 2.0

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within theWork constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the DerivativeWorks; or, within a display generated by the DerivativeWorks, if andwherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure ormalfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

Cloudera | 131

Appendix: Apache License, Version 2.0

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

132 | Cloudera

Appendix: Apache License, Version 2.0

	Table of Contents
	Best Practices for Using Apache Hive in CDH
	Overview of Apache Hive Installation and Upgrade in CDH
	Configuring Apache Hive in CDH
	Configuring the Hive Metastore for CDH
	Metastore Deployment Modes
	Supported Metastore Databases
	Metastore Memory and Hardware Requirements
	General Metastore Tuning Recommendations
	Configuring the Metastore Database
	Configuring a Remote MySQL Database for the Hive Metastore
	Configuring a Remote PostgreSQL Database for the Hive Metastore
	Configuring a Remote Oracle Database for the Hive Metastore
	Specifying a JDBC URL Override for Database Connections

	Configuring HiveServer2 for CDH
	HiveServer2 Memory and Hardware Requirements
	hive.zookeeper.client.port
	JDBC driver
	Authentication
	Running HiveServer2

	Starting the Hive Metastore in CDH
	Apache Hive File System Permissions in CDH
	Starting, Stopping, and Using HiveServer2 in CDH
	Using the Beeline CLI

	Using Apache Hive with HBase in CDH
	Using the Metastore Schema Tool in CDH
	Schema Version Verification and Validation
	Using schematool
	Prerequisite Configuration
	Usage Examples

	Installing Cloudera JDBC and ODBC Drivers on Clients in CDH
	Cloudera Hive JDBC Driver Download
	Cloudera Hive ODBC Driver Download

	Setting HADOOP_MAPRED_HOME
	Configuring the Hive Metastore to Use HDFS High Availability in CDH

	Using & Managing Apache Hive in CDH
	Hive Roles
	Hive Execution Engines
	Use Cases for Hive
	Managing Hive Using Cloudera Manager
	Overview of Ingesting and Querying Data with Apache Hive in CDH
	Ingesting Data with Hive
	Column and Table Statistics for Query Optimization
	Transaction (ACID) Support in Hive
	Upstream Information for Hive

	Apache Parquet Tables with Hive in CDH
	Using Parquet Tables in Hive

	Running Apache Hive on Spark in CDH
	Configuring Hive on Spark
	Dynamic Partition Pruning for Hive Map Joins
	Enabling Dynamic Partition Pruning for Map Joins in Hive on Spark
	Enabling DPP on a Per-Query Basis with the Hive SET Command
	Enabling DPP as a Service-Wide Default with Cloudera Manager

	Verifying Your Query Uses Dynamic Partition Pruning in Hive on Spark
	Example of Verifying that Dynamic Partition Pruning Is Triggered For Your Query

	Queries That Trigger and Benefit from Dynamic Partition Pruning in Hive on Spark
	Debugging Dynamic Partition Pruning in Hive on Spark
	Debugging with Query Plans Produced with EXPLAIN
	Debugging with Logs

	Using Hive UDFs with Hive on Spark
	Troubleshooting Hive on Spark
	Delayed result from the first query after starting a new Hive on Spark session
	Exception in HiveServer2 log and HiveServer2 is down
	Out-of-memory error
	Spark applications stay alive forever

	Using HiveServer2 Web UI in CDH
	Accessing the HiveServer2 Web UI
	HiveServer2 Web UI Configuration
	Configurable Properties
	Configuring the HiverServer2 Web UI in Cloudera Manager

	Accessing Apache Hive Table Statistics in CDH
	Managing Apache Hive User-Defined Functions
	Registering a UDF in Hive
	Direct JAR Reference Configuration
	Hive Aux JARs Directory Configuration
	Reloadable Aux JAR Configuration
	Creating Temporary Functions
	Updating a User-Defined Function
	Calling a Hive UDF from Impala
	Adding Built-in UDFs to the HiveServer2 Blacklist

	Configuring Transient Apache Hive ETL Jobs to Use the Amazon S3 Filesystem in CDH
	About Transient Jobs
	Configuring and Running Jobs on Transient Clusters
	Configuring AWS Settings
	Best Practices
	Networking
	Data Access
	AWS Placement Groups

	Install Altus Director
	Create the Cluster Configuration File
	Testing the Cluster Configuration File

	Prepare the CDH AMIs
	Prepare the Job Wrapper Script
	Log Collection

	Prepare the End-to-End Job Submission Script
	Schedule the Recurring Job

	Configuring a Shared Amazon RDS as an HMS for CDH
	Advantages of This Approach
	How To Configure Amazon RDS as the Backend Database for a Shared Hive Metastore
	Supported Scenarios

	Configuring ADLS Gen1 Connectivity
	Setting up ADLS to Use with CDH
	Testing and Using ADLS Access
	User-Supplied Key for Each Job
	Single Master Key for Cluster-Wide Access
	User-Supplied Key stored in a Hadoop Credential Provider
	Create a Hadoop Credential Provider and reference it in a customized copy of the core-site.xml file for the service
	Creating a Credential Provider for ADLS
	ADLS Configuration Notes
	ADLS Trash Folder Behavior
	User and Group Names Displayed as GUIDs

	Importing Data into Hive with Sqoop Through HiverServer2
	Importing Data Through Hiveserver2
	Importing Data
	Prerequisites

	Steps

	Tuning Apache Hive in CDH
	Heap Size and Garbage Collection for Hive Components
	Memory and Hardware Requirements Recommendations
	Configuring Heap Size and Garbage Collection
	Using Cloudera Manager
	Using the Command Line

	HiveServer2 Performance Tuning
	Symptoms Displayed When HiveServer2 Heap Memory is Full
	HiveServer2 General Performance Problems or Connections Refused

	HiveServer2 Performance Best Practices
	HiveServer2 Heap Size Configuration Best Practices
	How the Number of Concurrent Connections Affect HiveServer2 Performance
	Identify Workload Characteristics That Increase Memory Pressure
	General Best Practices

	Tuning Apache Hive on Spark in CDH
	YARN Configuration
	Spark Configuration
	Hive Configuration
	Pre-warming YARN Containers

	Tuning Apache Hive Performance on the Amazon S3 Filesystem in CDH
	Tuning Hive Write Performance on S3
	Hive S3 Write Performance Tuning Parameters
	Setting Parameters on a Per-Query Basis with the Hive SET Command
	Setting Parameters as Service-Wide Defaults with Cloudera Manager

	Tuning the S3A Connector to Improve Hive Write Performance on S3
	Setting S3A Connector Parameters as Service-Wide Defaults
	Known Limitations

	Tuning Hive Dynamic Partitioning Performance on S3
	Tuning Tips
	Setting the Hive Dynamic Partition Loading Parameter on a Per-Query Basis
	Setting the Hive Dynamic Partition Loading Parameter as a Service-Wide Default with Cloudera Manager

	Tuning Hive INSERT OVERWRITE Performance on S3
	Tuning Tips
	Setting the Hive INSERT OVERWRITE Performance Tuning Parameter on a Per-Query Basis
	Setting the Hive INSERT OVERWRITE Performance Tuning Parameter as a Service-Wide Default with Cloudera Manager

	Tuning Hive Table Partition Read Performance on S3
	Tuning Tips
	Setting the Hive Table Partition Read Performance Tuning Parameters on a Per-Query Basis
	Setting Hive Table Partition Read Performance Tuning Parameters as Service-Wide Defaults with Cloudera Manager

	Tuning Hive MSCK (Metastore Check) Performance on S3
	Tuning Tips
	Setting hive.msck.repair.batch.size on a Per-Query Basis
	Setting the Hive MSCK REPAIR TABLE Tuning Parameters as Service-Wide Defaults with Cloudera Manager

	Configuring HMS High Availability in CDH
	Enabling HMS High Availability Using Cloudera Manager

	Configuring HiveServer2 High Availability in CDH
	Enabling HiveServer2 High Availability Using Cloudera Manager
	Configuring HiveServer2 to Load Balance Behind a Proxy on Unmanaged Clusters
	Unmanaged Clusters with Kerberos Enabled
	Unmanaged Clusters WITHOUT Kerberos
	Example HAProxy Configuration

	Query Vectorization for Apache Hive in CDH
	Enabling Hive Query Vectorization
	Using Cloudera Manager to Enable or Disable Query Vectorization for Parquet Files on a Server-wide Basis
	Manually Enabling or Disabling Query Vectorization for Parquet Files on a Server-Wide Basis
	Enabling or Disabling Hive Query Vectorization for Parquet Files on a Session Basis

	Tuning Hive Query Vectorization
	Supported/Unsupported Data Types and Functions
	Supported/Unsupported Data Types
	Supported/Unsupported Functions

	Verifying a Query is Vectorized
	Example of Verifying that Query Vectorization is Triggered for Your Query

	Hive/Impala Replication
	Network Latency and Replication
	Host Selection for Hive/Impala Replication
	Hive Tables and DDL Commands
	Replication of Parameters
	Hive Replication in Dynamic Environments
	Guidelines for Snapshot Diff-based Replication
	Replicating from Insecure to Secure Clusters
	Configuring Replication of Hive/Impala Data
	Replication of Impala and Hive User Defined Functions (UDFs)

	Viewing Replication Schedules
	Enabling, Disabling, or Deleting A Replication Schedule

	Viewing Replication History
	Hive/Impala Replication To and From Cloud Storage

	Monitoring the Performance of Hive/Impala Replications
	Overview of Apache Hive Security in CDH
	Configuring Encrypted Communication Between HiveServer2 and Client Drivers
	Configuring TLS/SSL Encryption for HiveServer2
	Requirements and Assumptions
	Using Cloudera Manager to Enable TLS/SSL
	Client Connections to HiveServer2 Over TLS/SSL

	Configuring SASL Encryption for HiveServer2
	Client Connections to HiveServer2 Using SASL

	Hive SQL Syntax for Use with Sentry
	ALTER DATABASE Statement
	ALTER TABLE Statement
	ALTER VIEW Statement
	CREATE ROLE Statement
	DROP ROLE Statement
	GRANT ROLE Statement
	REVOKE ROLE Statement
	GRANT <Privilege> Statement
	GRANT <Privilege> ON URIs (HDFS and S3A)
	REVOKE <Privilege> Statement
	GRANT <Privilege> ... WITH GRANT OPTION
	WITH GRANT OPTION Example

	SET ROLE Statement
	SHOW Statement
	Privileges
	CREATE
	OWNER
	REFRESH (Impala Only)
	SELECT
	Column-Level Authorization
	Considerations for Column-Level Authorization

	Troubleshooting Apache Hive in CDH
	Troubleshooting
	HiveServer2 Service Crashes
	Video: Troubleshooting HiveServer2 Service Crashes

	Best Practices for Using MSCK REPAIR TABLE
	Example: How MSCK REPAIR TABLE Works
	Guidelines for Using the MSCK REPAIR TABLE Command

	Appendix: Apache License, Version 2.0

