
Cloudera Search

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or
service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logosmentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this documentmay be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subjectmatter in this document. Except as expressly
provided in anywritten license agreement fromCloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.
395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Cloudera Search 6.3.x
Date: September 30, 2021

Table of Contents

Cloudera Search Overview...7
How Cloudera Search Works..8

Understanding Cloudera Search...9

Cloudera Search and Other Cloudera Components...10

Cloudera Search Architecture..11
Cloudera Search Configuration Files..13

Cloudera Search Tasks and Processes..14
Ingestion..14

Indexing...14

Querying..15

Cloudera Search Tutorial..16
Validating the Cloudera Search Deployment..16
Configuring Sentry for Test Collection..16

Creating a Test Collection..17

Indexing Sample Data..18

Querying Sample Data...19

Next Steps..19

Preparing to Index Sample Tweets with Cloudera Search..19
Configuring Sentry for Tweet Collection...19

Create a Collection for Tweets...20

Copy Sample Tweets to HDFS...21

Using MapReduce Batch Indexing to Index Sample Tweets...22
Batch Indexing into Online Solr Servers Using GoLive..23

Batch Indexing into Offline Solr Shards..25

Near Real Time (NRT) Indexing Tweets Using Flume..28
Install Flume...28

Sentry Configuration for NRT Indexing Using Flume..28

Copy Configuration Template Files..28

Configuring the Flume Solr Sink...29

Configuring Flume Solr Sink to Access the Twitter Public Stream..30

Starting the Flume Agent...31

Indexing a File Containing Tweets with Flume HTTPSource...32

Indexing a File Containing Tweets with Flume SpoolDirectorySource..33

Using Hue with Cloudera Search..35
Search User Interface in Hue..35

Deployment Planning for Cloudera Search...37
Choosing Where to Deploy the Cloudera Search Processes..37

Guidelines for Deploying Cloudera Search...37

Schemaless Mode Overview and Best Practices..39

Deploying Cloudera Search...41
Installing and Starting ZooKeeper Server...41

Initializing Solr..41

Generating Collection Configuration..41

Creating Collections...42

Using Search through a Proxy for High Availability..42
Overview of Proxy Usage and Load Balancing for Search..42

Special Proxy Considerations for Clusters Using Kerberos...43

Using Custom JAR Files with Search...43

Cloudera Search Security...44
Enable Kerberos Authentication in Cloudera Search..45

Managing Cloudera Search...46
Managing Cloudera Search Configuration..46
Managing Configuration Using Configs or Instance Directories..47

Config Templates...50

Updating the Schema in a Solr Collection..50

Managing Collections in Cloudera Search..50
Creating a Solr Collection...51

Viewing Existing Solr Collections..52

Deleting All Documents in a Solr Collection...52

Backing Up and Restoring Solr Collections...52

Deleting a Solr Collection...53

solrctl Reference...53

Example solrctl Usage..62
Using solrctl with an HTTP proxy...62

Creating Replicas of Existing Shards..63

Converting Instance Directories to Configs..63

Configuring Sentry for a Collection..63

Migrating Solr Replicas...64

Backing Up and Restoring Cloudera Search...67
Prerequisites..67

Sentry Configuration..68

Backing Up a Solr Collection..68

Restoring a Solr Collection...70

Cloudera Search Backup and Restore Command Reference..71

Extracting, Transforming, and Loading Data With Cloudera Morphlines..................74
Example Morphline Usage...76

Indexing Data Using Cloudera Search...81
Near Real Time Indexing Using Cloudera Search..81
Near Real Time Indexing Using Flume...81

Lily HBase Near Real Time Indexing for Cloudera Search..85

Batch Indexing Using Cloudera Search...96
Spark Indexing...96

MapReduce Indexing...102

Cloudera Search Frequently Asked Questions...121
General...121
What is Cloudera Search?..121

What is the difference between Lucene and Solr?...121

What is Apache Tika?...121

How does Cloudera Search relate to web search?...121

How does Cloudera Search relate to enterprise search?...121

How does Cloudera Search relate to custom search applications?..121

Which Solr Server should I send my queries to?...121

Do Search security features use Kerberos?..121

Can I restrict access to collections?..122

Do I need to configure Sentry restrictions for each access mode, such as for the admin console and for the command

line?..122

Does Search support indexing data stored in JSON files and objects?...122

How can I set up Cloudera Search so that results include links back to the source that contains the result?...................122

Why do I get an error “no field name specified in query and no default specified via 'df' param" when I query a

Schemaless collection?...122

Performance and Fail Over...122
How large of an index does Cloudera Search support per search server?...123

What is the response time latency I can expect?...123

How does Cloudera Search performance compare to Apache Solr?..123

What happens when a write to the Lucene indexer fails?...123

What hardware or configuration changes can I make to improve Search performance?...123

Where should I deploy Solr Servers?..123

What happens if a host running a Solr Server process fails?...123

How is performance affected if the Solr Server is running on a node with no local data?...123

Are there settings that can help avoid out of memory (OOM) errors during data ingestion?...123

How can I redistribute shards across a cluster?...124

Can I adjust replication levels?...124

How do I manage resources for Cloudera Search and other components on the same cluster?.......................................124

Schema Management..124
If my schema changes, will I need to re-index all of my data and files?..124

Can I extract fields based on regular expressions or rules?...124

Can I use nested schemas?..124

What is Apache Avro and how can I use an Avro schema for more flexible schema evolution?..124

Supportability...125
Does Cloudera Search support multiple languages?...125

Which file formats does Cloudera Search support for indexing? Does it support searching images?...............................125

Troubleshooting Cloudera Search...126
Cloudera Search Configuration and Log Files...127
Viewing and Modifying Cloudera Search Configuration..127

Viewing and Modifying Log Levels for Cloudera Search and Related Services..127

Cloudera Search Log Files..128

Identifying Problems in Your Cloudera Search Deployment..128

Solr Query Returns no Documents when Executed with a Non-Privileged User...130

Appendix: Apache License, Version 2.0...134

Cloudera Search Overview

Cloudera Search provides easy, natural language access to data stored in or ingested into Hadoop, HBase, or cloud
storage. End users and other web services can use full-text queries and faceted drill-down to explore text,
semi-structured, and structured data as well as quickly filter and aggregate it to gain business insight without requiring
SQL or programming skills.

Cloudera Search is Apache Solr fully integrated in the Cloudera platform, taking advantage of the flexible, scalable,
and robust storage system and data processing frameworks included in CDH. This eliminates the need to move large
data sets across infrastructures to perform business tasks. It further enables a streamlined data pipeline, where search
and text matching is part of a larger workflow.

Cloudera Search incorporates Apache Solr, which includes Apache Lucene, SolrCloud, andApache Tika. Cloudera Search
is included with CDH.

Using Cloudera Search with the CDH infrastructure provides:

• Simplified infrastructure
• Better production visibility and control
• Quicker insights across various data types
• Quicker problem resolution
• Simplified interaction and platform access for more users and use cases beyond SQL
• Scalability, flexibility, and reliability of search services on the same platform used to run other types of workloads

on the same data
• A unified security model across all processes with access to your data
• Flexibility and scale in ingest and pre-processing options

The following table describes Cloudera Search features.

Table 1: Cloudera Search Features

DescriptionFeature

Cloudera Manager provides unified and centralized management and
monitoring for CDH and Cloudera Search. Cloudera Manager simplifies

Unified management and monitoring
with Cloudera Manager

deployment, configuration, and monitoring of your search services. Many
existing search solutions lack management and monitoring capabilities and
fail to provide deep insight into utilization, system health, trending, and other
supportability aspects.

Solrctl is a command line tool that allows convenient, centralizedmanagement
of:

Simple cluster and collection
management using the solrctl tool

• Solr instance configurations and schemas in ZooKeeper
• Solr collection life cycle including low level control (Solr cores)
• Collection snapshots, Backup and restore operations
• SolrCloud cluster initialization and configuration
• Sentry authorization and permissions

Cloudera Search is integrated with HDFS for robust, scalable, and self-healing
index storage. Indexes created by Solr/Lucene are directly written in HDFS

Index storage in HDFS

with the data, instead of to local disk, thereby providing fault tolerance and
redundancy.

Cloudera Search is optimized for fast read and write of indexes in HDFS while
indexes are served and queried through standard Solr mechanisms. Because

Cloudera Search | 7

Cloudera Search Overview

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

DescriptionFeature

data and indexes are co-located, data processing does not require transport
or separately managed storage.

To facilitate index creation for large data sets, Cloudera Search has built-in
MapReduce jobs for indexing data stored in HDFS or HBase. As a result, the

Batch index creation through
MapReduce

linear scalability ofMapReduce is applied to the indexing pipeline, off-loading
Solr index serving resources.

Cloudera Search provides integration with Flume to support near real-time
indexing. As new events pass through a Flume hierarchy and are written to
HDFS, those events can be written directly to Cloudera Search indexers.

Real-time and scalable indexing at data
ingest

In addition, Flume supports routing events, filtering, and annotation of data
passed to CDH. These features work with Cloudera Search for improved index
sharding, index separation, and document-level access control.

A Cloudera Search GUI is provided as a Hue plug-in, enabling users to
interactively query data, view result files, and do faceted exploration. Hue can

Easy interaction and data exploration
through Hue

also schedule standing queries and explore index files. This GUI uses the
Cloudera Search API, which is based on the standard Solr API. The
drag-and-drop dashboard interfacemakes it easy for anyone to create a Search
dashboard.

Cloudera Search can use Apache Tika for parsing and preparation of many of
the standard file formats for indexing. Additionally, Cloudera Search supports

Simplified data processing for Search
workloads

Avro, Hadoop Sequence, and Snappy file format mappings, as well as Log file
formats, JSON, XML, and HTML.

Cloudera Search also providesMorphlines, an easy-to-use, pre-built library of
commondata preprocessing functions.Morphlines simplifies data preparation
for indexing over a variety of file formats. Users can easily implement
Morphlines for Flume, Kafka, and HBase, or re-use the same Morphlines for
other applications, such as MapReduce or Spark jobs.

Cloudera Search integrateswith HBase, enabling full-text search of HBase data
without affecting HBase performance or duplicating data storage. A listener

HBase search

monitors the replication event stream fromHBase RegionServers and captures
each write or update-replicated event, enabling extraction and mapping (for
example, usingMorphlines). The event is then sent directly to Solr for indexing
and storage in HDFS, using the same process as for other indexing workloads
of Cloudera Search. The indexes can be served immediately, enabling free-text
searching of HBase data.

How Cloudera Search Works
In near real-time indexing use cases, such as log or event stream analytics, Cloudera Search indexes events that are
streamed through Apache Flume, Apache Kafka, Spark Streaming, or HBase. Fields and events are mapped to standard
Solr indexable schemas. Lucene indexes the incoming events and the index is written and stored in standard Lucene
index files in HDFS. Regular Flume event routing and storage of data in partitions in HDFS can also be applied. Events
can be routed and streamed through multiple Flume agents and written to separate Lucene indexers that can write
into separate index shards, for better scale when indexing and quicker responses when searching.

The indexes are loaded from HDFS to Solr cores, exactly like Solr would have read from local disk. The difference in
the design of Cloudera Search is the robust, distributed, and scalable storage layer of HDFS, which helps eliminate
costly downtime and allows for flexibility across workloads without having to move data. Search queries can then be

8 | Cloudera Search

Cloudera Search Overview

submitted to Solr through either the standard Solr API, or through a simple search GUI application, included in Cloudera
Search, which can be deployed in Hue.

Cloudera Search batch-oriented indexing capabilities can address needs for searching across batch uploaded files or
large data sets that are less frequently updated and less in need of near-real-time indexing. It can also be conveniently
used for re-indexing (a common pain point in stand-alone Solr) or ad-hoc indexing for on-demand data exploration.
Often, batch indexing is done on a regular basis (hourly, daily, weekly, and so on) as part of a larger workflow.

For such cases, Cloudera Search includes a highly scalable indexing workflow based on MapReduce or Spark. A
MapReduce or Spark workflow is launched for specified files or folders in HDFS, or tables in HBase, and the field
extraction and Solr schema mapping occurs during the mapping phase. Reducers use embedded Lucene to write the
data as a single index or as index shards, depending on your configuration and preferences. After the indexes are stored
in HDFS, they can be queried by using standard Solr mechanisms, as previously described above for the near-real-time
indexing use case. You can also configure these batch indexing options to post newly indexed data directly into live,
active indexes, served by Solr. This GoLive option enables a streamlined data pipeline without interrupting service to
process regularly incoming batch updates.

The Lily HBase Indexer Service is a flexible, scalable, fault tolerant, transactional, near real-time oriented system for
processing a continuous stream of HBase cell updates into live search indexes. The Lily HBase Indexer uses Solr to index
data stored in HBase. As HBase applies inserts, updates, and deletes to HBase table cells, the indexer keeps Solr
consistent with the HBase table contents, using standard HBase replication features. The indexer supports flexible
custom application-specific rules to extract, transform, and load HBase data into Solr. Solr search results can contain
columnFamily:qualifier links back to the data stored in HBase. This way applications can use the Search result
set to directly access matching raw HBase cells. Indexing and searching do not affect operational stability or write
throughput of HBase because the indexing and searching processes are separate and asynchronous to HBase.

Understanding Cloudera Search
Cloudera Search fits into the broader set of solutions available for analyzing information in large data sets. CDH provides
both the means and the tools to store the data and run queries. You can explore data through:

• MapReduce or Spark jobs
• Impala queries
• Cloudera Search queries

CDH provides storage for and access to large data sets by using MapReduce jobs, but creating these jobs requires
technical knowledge, and each job can take minutes or more to run. The longer run times associated with MapReduce
jobs can interrupt the process of exploring data.

To provide more immediate queries and responses and to eliminate the need to write MapReduce applications, you
can use Apache Impala. Impala returns results in seconds instead of minutes.

Although Impala is a fast, powerful application, it uses SQL-based querying syntax. Using Impala can be challenging for
users who are not familiar with SQL. If you do not know SQL, you can use Cloudera Search. Although Impala, Apache
Hive, and Apache Pig all require a structure that is applied at query time, Search supports free-text search on any data
or fields you have indexed.

How Search Uses Existing Infrastructure

Any data already in a CDH deployment can be indexed and made available for query by Cloudera Search. For data that
is not stored in CDH, Cloudera Search provides tools for loading data into the existing infrastructure, and for indexing
data as it is moved to HDFS or written to Apache HBase.

By leveraging existing infrastructure, Cloudera Search eliminates the need to create new, redundant structures. In
addition, Cloudera Search uses services provided by CDH and Cloudera Manager in a way that does not interfere with
other tasks running in the same environment. This way, you can reuse existing infrastructure without the cost and
problems associated with running multiple services in the same set of systems.

Cloudera Search | 9

Cloudera Search Overview

Cloudera Search and Other Cloudera Components
Cloudera Search interacts with other Cloudera components to solve different problems. The following table lists
Cloudera components that contribute to the Search process and describes how they interact with Cloudera Search:

Applicable ToContributionComponent

All casesStores source documents. Search indexes source documents to make
them searchable. Files that support Cloudera Search, such as Lucene

HDFS

index files and write-ahead logs, are also stored in HDFS. Using HDFS
provides simpler provisioning on a larger base, redundancy, and fault
tolerance.WithHDFS, Cloudera Search servers are essentially stateless,
so host failures have minimal consequences. HDFS also provides
snapshotting, inter-cluster replication, and disaster recovery.

Many casesSearch includes a pre-built MapReduce-based job. This job can be
used for on-demand or scheduled indexing of any supported data set

MapReduce

stored in HDFS. This job uses cluster resources for scalable batch
indexing.

Many casesSearch includes a Flume sink that enables writing events directly to
indexers deployed on the cluster, allowing data indexing during
ingestion.

Flume

Many casesHue includes a GUI-based Search application that uses standard Solr
APIs and can interact with data indexed in HDFS. The application

Hue

provides support for the Solr standard query language and visualization
of faceted search functionality.

Many casesA morphline is a rich configuration file that defines an ETL
transformation chain. Morphlines can consume any kind of data from

Morphlines

any data source, process the data, and load the results into Cloudera
Search. Morphlines run in a small, embeddable Java runtime system,
and can be used for near real-time applications such as the flume
agent as well as batch processing applications such as a Spark job.

Many casesCoordinates distribution of data and metadata, also known as shards.
It provides automatic failover to increase service resiliency.

ZooKeeper

Some casesThe CrunchIndexerTool can use Spark to move data from HDFS files
into Apache Solr, and run the data through a morphline for extraction
and transformation.

Spark

Some casesSupports indexing of stored data, extracting columns, column families,
and key information as fields. AlthoughHBase does not use secondary

HBase

indexing, Cloudera Search can facilitate full-text searches of content
in rows and tables in HBase.

Some casesDeploys, configures,manages, andmonitors Cloudera Search processes
and resource utilization across services on the cluster. Cloudera

Cloudera Manager

Manager helps simplify Cloudera Search administration, but it is not
required.

Some casesClouderaNavigator provides governance for Hadoop systems including
support for auditing Search operations.

Cloudera Navigator

Some casesApache Sentry enables role-based, fine-grained authorization for
Cloudera Search. Sentry can apply restrictions to various actions, such

Sentry

as accessing data, managing configurations through config objects, or
creating collections. Restrictions are consistently enforced, regardless

10 | Cloudera Search

Cloudera Search Overview

Applicable ToContributionComponent

of how users attempt to complete actions. For example, restricting
access to data in a collection restricts that access whether queries
come from the command line, a browser, Hue, or through the admin
console.

Some casesAutomates scheduling and management of indexing jobs. Oozie can
check for new data and begin indexing jobs as required.

Oozie

Some casesFurther analyzes search results.Impala

Some casesFurther analyzes search results.Hive

Some casesProvides a columnar storage format, enabling especially rapid result
returns for structured workloads such as Impala or Hive. Morphlines
provide an efficient pipeline for extracting data from Parquet.

Parquet

Some casesIncludes metadata that Cloudera Search can use for indexing.Avro

Some casesSearch uses this message broker project to increase throughput and
decrease latency for handling real-time data.

Kafka

Some casesIngests data in batch and enables data availability for batch indexing.Sqoop

Cloudera Search Architecture
Cloudera Search runs as a distributed service on a set of servers, and each server is responsible for a portion of the
searchable data. The data is split into smaller pieces, copies are made of these pieces, and the pieces are distributed
among the servers. This provides two main advantages:

• Dividing the content into smaller pieces distributes the task of indexing the content among the servers.
• Duplicating the pieces of thewhole allows queries to be scaledmore effectively and enables the system to provide

higher levels of availability.

Each Cloudera Search server can handle requests independently. Clients can send requests to index documents or
perform searches to any Search server, and that server routes the request to the correct server.

Cloudera Search | 11

Cloudera Search Overview

Each Search deployment requires:

• ZooKeeper on at least one host. You can install ZooKeeper, Search, and HDFS on the same host.
• HDFS on at least one, but as many as all hosts. HDFS is commonly installed on all cluster hosts.
• Solr on at least one but as many as all hosts. Solr is commonly installed on all cluster hosts.

More hosts with Solr and HDFS provides the following benefits:

• More Search servers processing requests.
• More Search and HDFS collocation increasing the degree of data locality. More local data provides faster

performance and reduces network traffic.

The following graphic illustrates some of the key elements in a typical deployment.

This graphic illustrates:

1. A client submits a query over HTTP.
2. The response is received by the NameNode and then passed to a DataNode.
3. The DataNode distributes the request among other hosts with relevant shards.
4. The results of the query are gathered and returned to the client.

Also notice that the:

• Cloudera Manager provides client and server configuration files to other servers in the deployment.
• ZooKeeper server provides information about the state of the cluster and the other hosts running Solr.

12 | Cloudera Search

Cloudera Search Overview

The information a client must send to complete jobs varies:

• For queries, a client must have the hostname of the Solr server and the port to use.
• For actions related to collections, such as adding or deleting collections, the name of the collection is required as

well.
• Indexing jobs, such as MapReduceIndexer jobs, use a MapReduce driver that starts a MapReduce job. These

jobs can also process morphlines and index the results to Solr.

Cloudera Search Configuration Files

Configuration files in a Cloudera Search deployment include:

• Solr config files stored in ZooKeeper:

– solrconfig.xml: Contains Solr configuration parameters.
– schema.xml: Contains configuration that specifies the fields a document can contain, and how those fields

are processed when adding documents to the index, or when querying those fields.

• Files copied from hadoop-conf in HDFS configurations to Solr servers:

– core-site.xml

– hdfs-site.xml

– ssl-client.xml

– hadoop-env.sh

– topology.map

– topology.py

• Cloudera Manager manages the following configuration files:

– cloudera-monitor.properties

– cloudera-stack-monitor.properties

• Logging and security configuration files:

– log4j.properties

– jaas.conf

– solr.keytab

– sentry-site.xml

You can use parcels or packages to deploy Search. Some files are always installed to the same location and some files
are installed to different locations based on whether the installation is completed using parcels or packages.

Client Files
Client files are always installed to the same location and are required on any host where corresponding services are
installed. In a Cloudera Manager environment, Cloudera Manager manages settings. In an unmanaged deployment,
all files can be manually edited. Client configuration locations are:

• /etc/solr/conf for Solr client settings files
• /etc/hadoop/conf for HDFS, MapReduce, and YARN client settings files
• /etc/zookeeper/conf for ZooKeeper configuration files

Server Files

Server configuration file locations vary based on how services are installed.

• Cloudera Manager environments store configuration files in /var/run/.
• Unmanaged environments store configuration files in /etc/<service>/conf. For example:

– /etc/solr/conf

– /etc/zookeeper/conf

Cloudera Search | 13

Cloudera Search Overview

– /etc/hadoop/conf

Cloudera Search Tasks and Processes
For content to be searchable, it must exist in CDH and be indexed. Content can either already exist in CDH and be
indexed on demand, or it can be updated and indexed continuously. To make content searchable, first ensure that it
is ingested or stored in CDH.

Ingestion

You can move content to CDH by using:

• Flume, a flexible, agent-based data ingestion framework.
• A copy utility such as distcp for HDFS.
• Sqoop, a structured data ingestion connector.

Indexing

Content must be indexed before it can be searched. Indexing comprises the following steps:

1. Extraction, transformation, and loading (ETL) - Use existing engines or frameworks such as Apache Tika or Cloudera
Morphlines.

a. Content and metadata extraction
b. Schema mapping

2. Index creation using Lucene.

a. Index creation
b. Index serialization

Indexes are typically stored on a local file system. Lucene supports additional indexwriters and readers. OneHDFS-based
interface implemented as part of Apache Blur is integratedwith Cloudera Search and has been optimized for CDH-stored
indexes. All index data in Cloudera Search is stored in and served from HDFS.

You can index content in three ways:

Batch indexing using MapReduce

To use MapReduce to index documents, run a MapReduce job on content in HDFS to produce a Lucene index. The
Lucene index is written to HDFS, and this index is subsequently used by Search services to provide query results.

Batch indexing is most often used when bootstrapping a Search cluster. The Map phase of the MapReduce task parses
input into indexable documents, and the Reduce phase indexes the documents produced by the Map. You can also
configure a MapReduce-based indexing job to use all assigned resources on the cluster, utilizing multiple reducing
steps for intermediate indexing and merging operations, and then writing the reduction to the configured set of shard
sets for the service. This makes the batch indexing process as scalable as MapReduce workloads.

Near real-time (NRT) indexing using Flume

Cloudera Search includes a Flume sink that enables you to write events directly to the indexer. This sink provides a
flexible, scalable, fault-tolerant, near real-time (NRT) system for processing continuous streams of records to create
live-searchable, free-text search indexes. Typically, data ingested using the Flume sink appears in search results in
seconds, although you can tune this delay.

Data can flow frommultiple sources throughmultiple flume hosts. These hosts, which can be spread across a network,
route this information to one or more Flume indexing sinks. Optionally, you can split the data flow, storing the data in
HDFS while writing it to be indexed by Lucene indexers on the cluster. In that scenario, data exists both as data and as
indexed data in the same storage infrastructure. The indexing sink extracts relevant data, transforms the material, and

14 | Cloudera Search

Cloudera Search Overview

loads the results to live Solr search servers. These Solr servers are immediately ready to serve queries to end users or
search applications.

This flexible, customizable system scales effectively because parsing is moved from the Solr server to the multiple
Flume hosts for ingesting new content.

Search includes parsers for standard data formats including Avro, CSV, Text, HTML, XML, PDF, Word, and Excel. You
can extend the system by adding additional custom parsers for other file or data formats in the form of Tika plug-ins.
Any type of data can be indexed: a record is a byte array of any format, and custom ETL logic can handle any format
variation.

In addition, Cloudera Search includes a simplifying ETL framework called Cloudera Morphlines that can help adapt and
pre-process data for indexing. This eliminates the need for specific parser deployments, replacing them with simple
commands.

Cloudera Search is designed to handle a variety of use cases:

• Search supports routing tomultiple Solr collections to assign a single set of servers to supportmultiple user groups
(multi-tenancy).

• Search supports routing to multiple shards to improve scalability and reliability.
• Index servers can be collocatedwith live Solr servers serving end-user queries, or they can be deployed on separate

commodity hardware, for improved scalability and reliability.
• Indexing load can be spread across a large number of index servers for improved scalability and can be replicated

across multiple index servers for high availability.

This flexible, scalable, highly available system provides low latency data acquisition and low latency querying. Instead
of replacing existing solutions, Search complements use cases based on batch analysis of HDFS data usingMapReduce.
In many use cases, data flows from the producer through Flume to both Solr and HDFS. In this system, you can use
NRT ingestion and batch analysis tools.

NRT indexing using the API

Other clients can complete NRT indexing. This is donewhen the client first writes files directly to HDFS and then triggers
indexing using the Solr REST API. Specifically, the API does the following:

1. Extract content from the document contained in HDFS, where the document is referenced by a URL.
2. Map the content to fields in the search schema.
3. Create or update a Lucene index.

This is useful if you index as part of a larger workflow. For example, you could trigger indexing from an Oozie workflow.

Querying

After data is available as an index, the query API provided by the Search service allows direct queries to be completed
or to be facilitated through a command-line tool or graphical interface. Hue includes a simple GUI-based Search
application, or you can create a custom application based on the standard Solr API. Any application that works with
Solr is compatible and runs as a search-serving application for Cloudera Search because Solr is the core.

Cloudera Search | 15

Cloudera Search Overview

Cloudera Search Tutorial

This tutorial introduces you to Cloudera Search and demonstrates some of its basic capabilities to help you become
familiar with the concepts and components involved in Search. It demonstrates creating a simple test collection to
validate your Cloudera Search installation, and then continues on to more advanced use cases of batch indexing, and
then ingesting and indexing tweets from the Twitter public stream.

The topics in this tutorial assume you have completed the instructions in Deploying Cloudera Search on page 41. The
examples in this tutorial use two shards, so make sure that your deployment includes at least two Solr servers.

This tutorial usesmodifiedschema.xml andsolrconfig.xml configuration files. In the versions of these files included
with the tutorial, unused fields have been removed for simplicity. Original versions of these files includemany additional
options. For information on all available options, see the Apache Solr wiki:

• SchemaXml
• SolrConfigXml

Validating the Cloudera Search Deployment
After installing and deploying Cloudera Search, you can validate the deployment by indexing and querying sample
documents. You can think of this as a type of "Hello, World!" for Cloudera Search to make sure that everything is
installed and working properly.

Before beginning this process, make sure you have access to the Apache Solr admin web console. If your cluster is
Kerberos-enabled, make sure you have access to the solr@EXAMPLE.COM Kerberos principal (where EXAMPLE.COM
is your Kerberos realm name).

Configuring Sentry for Test Collection

If you have enabled Apache Sentry for authorization, youmust have UPDATE permission for the admin=collections
object as well as the collection you are creating (test_collection in this example). You can also use the wildcard
(*) to grant permissions to create any collection.

Formore information on configuring Sentry and granting permissions, see Configuring Sentry Authorization for Cloudera
Search.

To grant your user account (jdoe in this example) the necessary permissions:

1. Switch to the Sentry admin user (solr in this example) using kinit:

kinit solr@EXAMPLE.COM

2. Create a Sentry role for your user account:

solrctl sentry --create-role cloudera_tutorial_role

3. Map a group to this role. In this example, user jdoe is a member of the eng group:

solrctl sentry --add-role-group cloudera_tutorial_role eng

4. Grant UPDATE privileges to the cloudera_tutorial_role role for the admin=collections object and
test_collection collection:

solrctl sentry --grant-privilege cloudera_tutorial_role 'admin=collections->action=UPDATE'
solrctl sentry --grant-privilege cloudera_tutorial_role
'collection=test_collection->action=UPDATE'

16 | Cloudera Search

Cloudera Search Tutorial

http://wiki.apache.org/solr/SchemaXml
http://wiki.apache.org/solr/SolrConfigXml
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

You also need to grant UPDATE privileges on the Config object to be able to upload instance configurations on
which you will base your collection:

solrctl sentry --grant-privilege cloudera_tutorial_role
'config=test_collection_config->action=UPDATE'

For more information on the Sentry privilege model for Cloudera Search, see Authorization Privilege Model for
Cloudera Search.

Creating a Test Collection

1. If you are using Kerberos, kinit as the user that has privileges to create the collection:

kinit jdoe@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

2. Make sure that the SOLR_ZK_ENSEMBLE environment variable is set in /etc/solr/conf/solr-env.sh. For
example:

cat /etc/solr/conf/solr-env.sh

export
SOLR_ZK_ENSEMBLE=zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181/solr

If you are using Cloudera Manager, this is automatically set on hosts with a Solr Server or Gateway role.

3. Generate configuration files for the collection:

solrctl instancedir --generate $HOME/test_collection_config

4. If you are using Sentry for authorization, overwrite solrconfig.xml with solrconfig.xml.secure. If you
omit this step, Sentry authorization is not enabled for the collection:

cp $HOME/test_collection_config/conf/solrconfig.xml.secure
$HOME/test_collection_config/conf/solrconfig.xml

This example uses collection level security only, so you need to disable document level security which is enabled
by default in the generated instance configuration files. To do this, edit the newly generated solrconfig.xml:

vi $HOME/test_collection_config/conf/solrconfig.xml

Locate the section:

<searchComponent name="queryDocAuthorization"
class="org.apache.solr.handler.component.QueryDocAuthorizationComponent" >

and change

<bool name="enabled">true</bool>

to

<bool name="enabled">false</bool>

For more information, see Providing Document-Level Security Using Sentry and Solr Query Returns no Documents
when Executed with a Non-Privileged User on page 130.

Cloudera Search | 17

Cloudera Search Tutorial

5. Use the ConfigSets API to upload the configuration to ZooKeeper:

(cd $HOME/test_collection_config/conf && zip -r - *) | curl -k --negotiate -u : -X POST
 --header "Content-Type:application/octet-stream" --data-binary @-
"https://search01.example.com:8985/solr/admin/configs?action=UPLOAD&name=test_collection_config"

Note: This command requires the sentry privilege
'config=test_collection_config->action=UPDATE' you granted previously.

Note: Starting fromCDH 6, the securitymodel has changed to only allow direct ZooKeeperwrites
of the Solr znodes to the solr user only. Therefore, the solrctl instancedir command used
in CDH 5.x will not work here:

solrctl instancedir --create test_collection_config
$HOME/test_collection_config

To make the command work you could create a jaas configuration file to create the instancedir
as the solr user. However, it is a more secure method to use the ConfigSets API as provided in
the curl example above. The client of the ConfigSets API does not connect to ZooKeeper directly,
it connects to Solr therefore, it goes through Kerberos authentication and Sentry authorization.

6. Create a new collection with two shards (specified by the -s parameter) using the named configuration (specified
by the -c parameter):

solrctl collection --create test_collection -s 2 -c test_collection_config

Indexing Sample Data

Cloudera Search includes sample data for testing and validation. Run the following commands to index this data for
searching. Replace search01.example.com in the example below with the name of any host running the Solr Server
process.

• Parcel-based Installation (Security Enabled):

cd /opt/cloudera/parcels/CDH/share/doc/solr-doc*/example/exampledocs
find *.xml -exec curl -i -k --negotiate -u:
https://search01.example.com:8985/solr/test_collection/update -H "Content-Type: text/xml"
 --data-binary @{} \;

• Parcel-based Installation (Security Disabled):

cd /opt/cloudera/parcels/CDH/share/doc/solr-doc*/example/exampledocs
java -Durl=http://search01.example.com:8983/solr/test_collection/update -jar post.jar
*.xml

• Package-based Installation (Security Enabled):

cd /usr/share/doc/solr-doc*/example/exampledocs
find *.xml -exec curl -i -k --negotiate -u:
https://search01.example.com:8985/solr/test_collection/update -H "Content-Type: text/xml"
 --data-binary @{} \;

• Package-based Installation (Security Disabled):

cd /usr/share/doc/solr-doc*/example/exampledocs
java -Durl=http://search01.example.com:8983/solr/test_collection/update -jar post.jar
*.xml

18 | Cloudera Search

Cloudera Search Tutorial

https://lucene.apache.org/solr/guide/7_4/configsets-api.html

Querying Sample Data

Run a query to verify that the sample data is successfully indexed and that you are able to search it:

1. Open the Solr admin web interface in a browser by accessing the following URL:

• Security Enabled: https://search01.example.com:8985/solr
• Security Disabled: http://search01.example.com:8983/solr

Replace search01.example.com with the name of any host running the Solr Server process. If you have security
enabled on your cluster, enter the credentials for the solr@EXAMPLE.COM principal when prompted.

2. Select Cloud from the left panel.
3. Select one of the hosts listed for the test_collection collection.
4. From the Core Selector drop-down menu in the left panel, select the test_collection shard.
5. Select Query from the left panel and click Execute Query. If you see results such as the following, indexing was

successful:

 "response": {
 "numFound": 32,
 "start": 0,
 "maxScore": 1,
 "docs": [
 {
 "id": "SP2514N",
 "name": "Samsung SpinPoint P120 SP2514N - hard drive - 250 GB - ATA-133",
 "manu": "Samsung Electronics Co. Ltd.",
 "manu_id_s": "samsung",
 "cat": [
 "electronics",
 "hard drive"
],

Note: For more readable output, set the wt parameter to json and select the indent option before
running the query.

Next Steps

After you have verified that Cloudera Search is installed and running properly, you can experiment with other methods
of ingesting and indexing data. This tutorial uses tweets to demonstrate batch indexing and near real time (NRT)
indexing. Continue on to the next portion of the tutorial:

• Preparing to Index Sample Tweets with Cloudera Search on page 19

To learn more about Solr, see the Apache Solr Tutorial.

Preparing to Index Sample Tweets with Cloudera Search
In this section of the Cloudera Search tutorial, you will create a collection for tweets. The remaining examples in the
tutorial use the same collection, so make sure that you follow these instructions carefully.

Configuring Sentry for Tweet Collection

If you have enabled Apache Sentry for authorization, youmust have UPDATE permission for the admin=collections
object as well as the collection you are creating (cloudera_tutorial_tweets in this example). You can also use
the wildcard (*) to grant permissions to create any collection.

Formore information on configuring Sentry and granting permissions, see Configuring Sentry Authorization for Cloudera
Search.

To grant your user account (jdoe in this example) the necessary permissions:

Cloudera Search | 19

Cloudera Search Tutorial

http://lucene.apache.org/solr/4_3_0/tutorial.html

1. Switch to the Sentry admin user (solr in this example) using kinit:

kinit solr@EXAMPLE.COM

2. Grant UPDATE privileges to the cloudera_tutorial_role role for the admin=collections object and
cloudera_tutorial_tweets collection:

solrctl sentry --grant-privilege cloudera_tutorial_role 'admin=collections->action=UPDATE'
solrctl sentry --grant-privilege cloudera_tutorial_role
'collection=cloudera_tutorial_tweets->action=UPDATE'

The cloudera_tutorial_role role was created in Configuring Sentry for Test Collection on page 16. For more
information on the Sentry privilege model for Cloudera Search, see Authorization Privilege Model for Cloudera
Search.

Create a Collection for Tweets

1. On a host with Solr Server installed, make sure that the SOLR_ZK_ENSEMBLE environment variable is set in
/etc/solr/conf/solr-env.sh. For example:

cat /etc/solr/conf/solr-env.sh

export
SOLR_ZK_ENSEMBLE=zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181/solr

If you are using Cloudera Manager, this is automatically set on hosts with a Solr Server or Gateway role.

2. If you are using Kerberos, kinit as the user that has privileges to create the collection:

kinit jdoe@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

3. Generate the configuration files for the collection, including the tweet-specific schema.xml:

• Parcel-based Installation:

solrctl instancedir --generate $HOME/cloudera_tutorial_tweets_config
cp
/opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/collection1/conf/schema.xml
 $HOME/cloudera_tutorial_tweets_config/conf

• Package-based Installation:

solrctl instancedir --generate $HOME/cloudera_tutorial_tweets_config
cp /usr/share/doc/search*/examples/solr-nrt/collection1/conf/schema.xml
$HOME/cloudera_tutorial_tweets_config/conf

4. If you are using Apache Sentry for authorization, overwrite solrconfig.xml with solrconfig.xml.secure.
If you omit this step, Sentry authorization is not enabled for the collection:

cp $HOME/cloudera_tutorial_tweets_config/conf/solrconfig.xml.secure
$HOME/cloudera_tutorial_tweets_config/conf/solrconfig.xml

5. Upload the configuration to ZooKeeper:

solrctl instancedir --create cloudera_tutorial_tweets_config
$HOME/cloudera_tutorial_tweets_config

20 | Cloudera Search

Cloudera Search Tutorial

6. Create a new collection with two shards (specified by the -s parameter) using the named configuration (specified
by the -c parameter):

solrctl collection --create cloudera_tutorial_tweets -s 2 -c
cloudera_tutorial_tweets_config

7. Verify that the collection is live. Open the Solr admin web interface in a browser by accessing the following URL:

• TLS/SSL Enabled: https://search01.example.com:8985/solr/#/~cloud
• TLS/SSL Disabled: http://search01.example.com:8983/solr/#/~cloud

If you have Kerberos authentication enabled on your cluster, enter the credentials for the solr@EXAMPLE.COM
principal when prompted. Replace search01.example.com with the name of any host running the Solr Server
process. Look for the cloudera_tutorial_tweets collection to verify that it exists.

8. Prepare the configuration for use with MapReduce:

cp -r $HOME/cloudera_tutorial_tweets_config $HOME/cloudera_tutorial_tweets_mr_config

Copy Sample Tweets to HDFS

1. Copy the provided sample tweets to HDFS. These tweetswill be used to demonstrate the batch indexing capabilities
of Cloudera Search:

• Parcel-based Installation (Security Enabled):

kinit hdfs@EXAMPLE.COM

hdfs dfs -mkdir -p /user/jdoe

hdfs dfs -chown jdoe:jdoe /user/jdoe

kinit jdoe@EXAMPLE.COM

hdfs dfs -mkdir -p /user/jdoe/indir

hdfs dfs -put
/opt/cloudera/parcels/CDH/share/doc/search*/examples/test-documents/sample-statuses-*.avro
 /user/jdoe/indir/

hdfs dfs -ls /user/jdoe/indir

• Parcel-based Installation (Security Disabled):

sudo -u hdfs hdfs dfs -mkdir -p /user/jdoe

sudo -u hdfs hdfs dfs -chown jdoe:jdoe /user/jdoe

hdfs dfs -mkdir -p /user/jdoe/indir

hdfs dfs -put
/opt/cloudera/parcels/CDH/share/doc/search*/examples/test-documents/sample-statuses-*.avro
 /user/jdoe/indir/

hdfs dfs -ls /user/jdoe/indir

Cloudera Search | 21

Cloudera Search Tutorial

• Package-based Installation (Security Enabled):

kinit hdfs@EXAMPLE.COM

hdfs dfs -mkdir -p /user/jdoe

hdfs dfs -chown jdoe:jdoe /user/jdoe

kinit jdoe@EXAMPLE.COM

hdfs dfs -mkdir -p /user/jdoe/indir

hdfs dfs -put /usr/share/doc/search*/examples/test-documents/sample-statuses-*.avro
/user/jdoe/indir/

hdfs dfs -ls /user/jdoe/indir

• Package-based Installation (Security Disabled):

sudo -u hdfs hdfs dfs -mkdir -p /user/jdoe

sudo -u hdfs hdfs dfs -chown jdoe:jdoe /user/jdoe

hdfs dfs -mkdir -p /user/jdoe/indir

hdfs dfs -put /usr/share/doc/search*/examples/test-documents/sample-statuses-*.avro
/user/jdoe/indir/

hdfs dfs -ls /user/jdoe/indir

2. Ensure that outdir is empty and exists in HDFS:

hdfs dfs -rm -r -skipTrash /user/jdoe/outdir

hdfs dfs -mkdir /user/jdoe/outdir

hdfs dfs -ls /user/jdoe/outdir

The sample tweets are now in HDFS and ready to be indexed. Continue to Using MapReduce Batch Indexing to Index
Sample Tweets on page 22 to index the sample tweets or to Near Real Time (NRT) Indexing Tweets Using Flume on
page 28 to index live tweets from the Twitter public stream.

Using MapReduce Batch Indexing to Index Sample Tweets

Note: This page contains references to CDH 5 components or features that have been removed from
CDH6. These references are only applicable if you aremanaging a CDH5 clusterwith ClouderaManager
6. For more information, see Deprecated Items.

The following sections include examples that illustrate how to use MapReduce for batch indexing. Batch indexing is
useful for periodically indexing large amounts of data, or for indexing a dataset for the first time. Before continuing,
make sure that you have:

22 | Cloudera Search

Cloudera Search Tutorial

• Completed the procedures in .
• If necessary, completed the Sentry configuration in Configuring Sentry for Tweet Collection on page 19.

Batch Indexing into Online Solr Servers Using GoLive

Warning: Batch indexing into offline Solr shards is not supported in environments in which batch
indexing into online Solr servers using GoLive occurs.

MapReduceIndexerTool is a MapReduce batch job driver that creates a set of Solr index shards from a set of input files
andwrites the indexes into HDFS in a flexible, scalable, and fault-tolerantmanner. Using GoLive,MapReduceIndexerTool
also supportsmerging the output shards into a set of live customer-facing Solr servers. The following steps demonstrate
these capabilities.

1. If you are working with a secured cluster, configure your client jaas.conf file as described in Configuring a
jaas.conf File.

2. If you are using Kerberos, kinit as the user that has privileges to update the collection:

kinit jdoe@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

3. Delete any existing documents in the cloudera_tutorial_tweets collection. If your cluster does not have
security enabled, run the following commands as the solr user by adding sudo -u solr before the command:

solrctl collection --deletedocs cloudera_tutorial_tweets

4. Run theMapReduce job with the --go-live parameter. Replace nn01.example.com and zk01.example.comwith
your NameNode and ZooKeeper hostnames, respectively.

• Parcel-based Installation (Security Enabled):

YARN_OPTS="-Djava.security.auth.login.config=/path/to/jaas.conf" yarn jar
/opt/cloudera/parcels/CDH/lib/solr/contrib/mr/search-mr-*-job.jar
org.apache.solr.hadoop.MapReduceIndexerTool -D 'mapred.child.java.opts=-Xmx500m' -D
'mapreduce.job.user.classpath.first=true' --log4j
/opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/log4j.properties
--morphline-file
/opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/test-morphlines/tutorialReadAvroContainer.conf
 --output-dir hdfs://nn01.example.com:8020/user/jdoe/outdir --verbose --go-live --zk-host
zk01.example.com:2181/solr --collection cloudera_tutorial_tweets

hdfs://nn01.example.com:8020/user/jdoe/indir

• Parcel-based Installation (Security Disabled):

yarn jar /opt/cloudera/parcels/CDH/lib/solr/contrib/mr/search-mr-*-job.jar
org.apache.solr.hadoop.MapReduceIndexerTool -D 'mapred.child.java.opts=-Xmx500m' -D
'mapreduce.job.user.classpath.first=true' --log4j
/opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/log4j.properties
--morphline-file
/opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/test-morphlines/tutorialReadAvroContainer.conf
 --output-dir hdfs://nn01.example.com:8020/user/jdoe/outdir --verbose --go-live --zk-host
zk01.example.com:2181/solr --collection cloudera_tutorial_tweets

hdfs://nn01.example.com:8020/user/jdoe/indir

• Package-based Installation (Security Enabled):

YARN_OPTS="-Djava.security.auth.login.config=/path/to/jaas.conf" yarn jar
/usr/lib/solr/contrib/mr/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool
 -D 'mapred.child.java.opts=-Xmx500m' -D 'mapreduce.job.user.classpath.first=true'
--log4j /usr/share/doc/search*/examples/solr-nrt/log4j.properties --morphline-file
/usr/share/doc/search*/examples/solr-nrt/test-morphlines/tutorialReadAvroContainer.conf
 --output-dir hdfs://nn01.example.com:8020/user/jdoe/outdir --verbose --go-live --zk-host

Cloudera Search | 23

Cloudera Search Tutorial

zk01.example.com:2181/solr --collection cloudera_tutorial_tweets
hdfs://nn01.example.com:8020/user/jdoe/indir

• Package-based Installation (Security Disabled):

yarn jar /usr/lib/solr/contrib/mr/search-mr-*-job.jar
org.apache.solr.hadoop.MapReduceIndexerTool -D 'mapred.child.java.opts=-Xmx500m' -D
'mapreduce.job.user.classpath.first=true' --log4j
/usr/share/doc/search*/examples/solr-nrt/log4j.properties --morphline-file
/usr/share/doc/search*/examples/solr-nrt/test-morphlines/tutorialReadAvroContainer.conf
 --output-dir hdfs://nn01.example.com:8020/user/jdoe/outdir --verbose --go-live --zk-host
zk01.example.com:2181/solr --collection cloudera_tutorial_tweets

hdfs://nn01.example.com:8020/user/jdoe/indir

This command requires a morphline file, which must include a SOLR_LOCATOR directive. Any CLI parameters for
--zkhost and --collection override the parameters of the solrLocator. The SOLR_LOCATOR directive
might appear as follows:

SOLR_LOCATOR : {
 # Name of solr collection
 collection : collection_name

 # ZooKeeper ensemble
 zkHost : "zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181/solr"
}

morphlines : [
 {
 id : morphline1
 importCommands : ["org.kitesdk.**", "org.apache.solr.**"]
 commands : [
 { generateUUID { field : id } }

 { # Remove record fields that are unknown to Solr schema.xml.
 # Recall that Solr throws an exception on any attempt to load a document that
 # contains a field that isn't specified in schema.xml.
 sanitizeUnknownSolrFields {
 solrLocator : ${SOLR_LOCATOR} # Location from which to fetch Solr schema
 }
 }

 { logDebug { format : "output record: {}", args : ["@{}"] } }

 {
 loadSolr {
 solrLocator : ${SOLR_LOCATOR}
 }
 }
]
 }
]

For help on how to run the MapReduce job, run the following command:

• Parcel-based Installation:

yarn jar /opt/cloudera/parcels/CDH/lib/solr/contrib/mr/search-mr-*-job.jar
org.apache.solr.hadoop.MapReduceIndexerTool --help

• Package-based Installation:

yarn jar /usr/lib/solr/contrib/mr/search-mr-*-job.jar
org.apache.solr.hadoop.MapReduceIndexerTool --help

For development purposes, you can use the --dry-run option to run in local mode and print documents to
stdout instead of loading them into Solr. Using this option causes themorphline to run locally without submitting
a job to MapReduce. Running locally provides faster turnaround during early trial and debug sessions.

24 | Cloudera Search

Cloudera Search Tutorial

To print diagnostic information, such as the content of records as they pass through the morphline commands,
enable TRACE log level diagnostics by adding the following entry to your log4j.properties file:

log4j.logger.org.kitesdk.morphline=TRACE

The log4j.properties file location can be specified by using the MapReduceIndexerTool --log4j
/path/to/log4j.properties command-line option.

5. Check the job status at:

http://rm01.example.com:8090/cluster

For secure clusters, replace http with https.
6. When the job is complete, run a Solr query. For example, for a Solr server running on search01.example.com,

go to one of the following URLs in a browser, depending on whether you have enabled security on your cluster:

• Security Enabled:
https://search01.example.com:8985/solr/cloudera_tutorial_tweets/select?q=*%3A*&wt=json&indent=true

• Security Disabled:
http://search01.example.com:8983/solr/cloudera_tutorial_tweets/select?q=*%3A*&wt=json&indent=true

If indexing was successful, this page displays the first 10 query results.

Batch Indexing into Offline Solr Shards

Running the MapReduce job without GoLive causes the job to create a set of Solr index shards from a set of input files
andwrite the indexes to HDFS. You can then explicitly point each Solr server to one of the HDFS output shard directories.

Batch indexing into offline Solr shards is mainly intended for offline use-cases by advanced users. Use cases requiring
read-only indexes for searching can be handled by using batch indexing without the --go-live option. By not using
GoLive, you can avoid copying datasets between segments, thereby reducing resource utilization.

1. If you are working with a secured cluster, configure your client jaas.conf file as described in Configuring a
jaas.conf File.

2. If you are using Kerberos, kinit as the user that has privileges to update the collection:

kinit jdoe@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

3. Delete any existing documents in the cloudera_tutorial_tweets collection. If your cluster does not have
security enabled, run the following commands as the solr user by adding sudo -u solr before the command:

solrctl collection --deletedocs cloudera_tutorial_tweets

4. Delete the contents of the outdir directory:

hdfs dfs -rm -r -skipTrash /user/jdoe/outdir/*

5. Run theMapReduce job as follows, replacing nn01.example.com in the commandwith yourNameNodehostname.

• Parcel-based Installation (Security Enabled):

YARN_OPTS="-Djava.security.auth.login.config=/path/to/jaas.conf" yarn jar
/opt/cloudera/parcels/CDH/lib/solr/contrib/mr/search-mr-*-job.jar
org.apache.solr.hadoop.MapReduceIndexerTool -D 'mapred.child.java.opts=-Xmx500m' -D
'mapreduce.job.user.classpath.first=true' --log4j
/opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/log4j.properties
--morphline-file
/opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/test-morphlines/tutorialReadAvroContainer.conf
 --output-dir hdfs://nn01.example.com:8020/user/jdoe/outdir --verbose --solr-home-dir

Cloudera Search | 25

Cloudera Search Tutorial

$HOME/cloudera_tutorial_tweets_config --collection cloudera_tutorial_tweets --shards 2
 hdfs://nn01.example.com:8020/user/jdoe/indir

• Parcel-based Installation (Security Disabled):

yarn jar /opt/cloudera/parcels/CDH/lib/solr/contrib/mr/search-mr-*-job.jar
org.apache.solr.hadoop.MapReduceIndexerTool -D 'mapred.child.java.opts=-Xmx500m' -D
'mapreduce.job.user.classpath.first=true' --log4j
/opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/log4j.properties
--morphline-file
/opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/test-morphlines/tutorialReadAvroContainer.conf
 --output-dir hdfs://nn01.example.com:8020/user/jdoe/outdir --verbose --solr-home-dir
$HOME/cloudera_tutorial_tweets_config --collection cloudera_tutorial_tweets --shards 2
 hdfs://nn01.example.com:8020/user/jdoe/indir

• Package-based Installation (Security Enabled):

YARN_OPTS="-Djava.security.auth.login.config=/path/to/jaas.conf" yarn jar
/usr/lib/solr/contrib/mr/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool
 -D 'mapred.child.java.opts=-Xmx500m' -D 'mapreduce.job.user.classpath.first=true'
--log4j /usr/share/doc/search*/examples/solr-nrt/log4j.properties --morphline-file
/usr/share/doc/search*/examples/solr-nrt/test-morphlines/tutorialReadAvroContainer.conf
 --output-dir hdfs://nn01.example.com:8020/user/jdoe/outdir --verbose --solr-home-dir
$HOME/cloudera_tutorial_tweets_config --collection cloudera_tutorial_tweets --shards 2
 hdfs://nn01.example.com:8020/user/jdoe/indir

• Package-based Installation (Security Disabled):

yarn jar /usr/lib/solr/contrib/mr/search-mr-*-job.jar
org.apache.solr.hadoop.MapReduceIndexerTool -D 'mapred.child.java.opts=-Xmx500m' -D
'mapreduce.job.user.classpath.first=true' --log4j
/usr/share/doc/search*/examples/solr-nrt/log4j.properties --morphline-file
/usr/share/doc/search*/examples/solr-nrt/test-morphlines/tutorialReadAvroContainer.conf
 --output-dir hdfs://nn01.example.com:8020/user/jdoe/outdir --verbose --solr-home-dir
$HOME/cloudera_tutorial_tweets_config --collection cloudera_tutorial_tweets --shards 2
 hdfs://nn01.example.com:8020/user/jdoe/indir

6. Check the job status at:

http://rm01.example.com:8090/cluster

For secure clusters, replace http with https.
7. After the job is completed, check the generated index files. Individual shards are written to the results directory

with names of the form part-00000, part-00001, part-00002, and so on. This example has two shards:

hdfs dfs -ls /user/jdoe/outdir/results

hdfs dfs -ls /user/jdoe/outdir/results/part-00000/data/index

8. Stop the Solr service:

• Cloudera Manager: Solr service > Actions > Stop
• Unmanaged: On each Solr server host, run:

sudo service solr-server stop

26 | Cloudera Search

Cloudera Search Tutorial

9. Identify the paths to each Solr core:

hdfs dfs -ls /solr/cloudera_tutorial_tweets

Found 2 items
drwxr-xr-x - solr solr 0 2017-03-13 06:20
/solr/cloudera_tutorial_tweets/core_node1
drwxr-xr-x - solr solr 0 2017-03-13 06:20
/solr/cloudera_tutorial_tweets/core_node2

10. Move the index shards into place.

a. (Kerberos only) Switch to the solr user:

kinit solr@EXAMPLE.COM

b. Remove outdated files. If your cluster does not have security enabled, run the following commands as the
solr user by adding sudo -u solr before the command:

hdfs dfs -rm -r -skipTrash /solr/cloudera_tutorial_tweets/core_node1/data/index
hdfs dfs -rm -r -skipTrash /solr/cloudera_tutorial_tweets/core_node1/data/tlog
hdfs dfs -rm -r -skipTrash /solr/cloudera_tutorial_tweets/core_node2/data/index
hdfs dfs -rm -r -skipTrash /solr/cloudera_tutorial_tweets/core_node2/data/tlog

c. Change ownership of the results directory to solr. If your cluster has security enabled, kinit as the HDFS
superuser (hdfs by default) before running the following command. If your cluster does not have security
enabled, run the command as the HDFS superuser by adding sudo -u hdfs before the command:

hdfs dfs -chown -R solr /user/jdoe/outdir/results

d. (Kerberos only) Switch to the solr user:

kinit solr@EXAMPLE.COM

e. Move the two index shards into place. If your cluster does not have security enabled, run the following
commands as the solr user by adding sudo -u solr before the command

hdfs dfs -mv /user/jdoe/outdir/results/part-00000/data/index
/solr/cloudera_tutorial_tweets/core_node1/data

hdfs dfs -mv /user/jdoe/outdir/results/part-00001/data/index
/solr/cloudera_tutorial_tweets/core_node2/data

11. Start the Solr service:

• Cloudera Manager: Solr service > Actions > Start
• Unmanaged: On each Solr server host, run:

sudo service solr-server start

12. Run some Solr queries. For example, for a Solr server running on search01.example.com, go to one of the
following URLs in a browser, depending on whether you have enabled security on your cluster:

• Security Enabled:
https://search01.example.com:8985/solr/cloudera_tutorial_tweets/select?q=*%3A*&wt=json&indent=true

• Security Disabled:
http://search01.example.com:8983/solr/cloudera_tutorial_tweets/select?q=*%3A*&wt=json&indent=true

If indexing was successful, this page displays the first 10 query results.

Cloudera Search | 27

Cloudera Search Tutorial

To index live tweets from the Twitter public stream, continue on to Near Real Time (NRT) Indexing Tweets Using Flume
on page 28.

Near Real Time (NRT) Indexing Tweets Using Flume
The following section describes how to use Flume for near real time (NRT) indexing using tweets from the Twitter
public stream as an example. Near real time indexing is generally used when new data needs to be returned in query
results in time frames measured in seconds. Before continuing, make sure that you have completed the procedures
in Preparing to Index Sample Tweets with Cloudera Search on page 19.

Install Flume

If you have not already done so, install Flume. For Cloudera Manager installations, Flume is included in CDH, and no
additional action is required for installation. Add the Flume service to the cluster following the instructions in Adding
a Service.

Sentry Configuration for NRT Indexing Using Flume

If your cluster has security enabled and is using Apache Sentry for authorization, make sure that the Flume system
user (flume by default) has permission to update the collection (cloudera_tutorial_tweets in this example):

1. Switch to the Sentry admin user (solr in this example) using kinit:

kinit solr@EXAMPLE.COM

2. Create a Sentry role:

solrctl sentry --create-role cloudera_tutorial_flume

3. Map the flume group to this role:

solrctl sentry --add-role-group cloudera_tutorial_flume flume

4. Grant UDPATE privileges to the cloudera_tutorial_flume role for the cloudera_tutorial_tweets
collections:

solrctl sentry --grant-privilege cloudera_tutorial_flume
'collection=cloudera_tutorial_tweets->action=update'

For more information on the Sentry privilege model for Cloudera Search, see Authorization Privilege Model for
Cloudera Search.

Copy Configuration Template Files

Copy the configuration files as follows:

• Parcel-based Installation: For Cloudera Manager environments, the Flume agent is configured in a later section.
Skip to Configuring the Flume Solr Sink on page 29.

• Package-based Installation:

sudo cp -r $HOME/cloudera_tutorial_tweets_config
/etc/flume-ng/conf/cloudera_tutorial_tweets
sudo cp /usr/share/doc/search*/examples/solr-nrt/twitter-flume.conf
/etc/flume-ng/conf/flume.conf
sudo cp
/usr/share/doc/search*/examples/solr-nrt/test-morphlines/tutorialReadAvroContainer.conf
 /etc/flume-ng/conf/morphline.conf

28 | Cloudera Search

Cloudera Search Tutorial

Configuring the Flume Solr Sink

Warning: Usingmore than one Flume agent for this tutorial can result in blocked access to the Twitter
public stream. When you configure the Flume agent as described in this section, make sure that you
are configuring a single agent on a single host, and not the entire Flume service.

This topic describes how to configure the Flume Solr Sink for both parcel-based and package-based installations:

• For parcel-based installations, use ClouderaManager to edit the configuration files similar to the process described
in Configuring the Flume Agents.

• For package-based installations, use command-line tools (such as vi) to edit files.

1. Modify the Flume configuration for a single agent to specify the Flume source details and configure the flow. You
must set the relative or absolute path to the morphline configuration file.

• Parcel-based Installation: In the Cloudera Manager Admin Console, go to Flume service > Instances > Agent
(select one) > Configuration. When prompted to make configuration changes on the service configuration
page, click Cancel. Set Agent Name to twitter_stream and modify Configuration File exactly as follows.
You will replace the YOUR_TWITTER_* values in a later step:

twitter_stream.sources = twitterSrc
twitter_stream.channels = memoryChannel
twitter_stream.sinks = solrSink

twitter_stream.sources.twitterSrc.type = org.apache.flume.source.twitter.TwitterSource
twitter_stream.sources.twitterSrc.consumerKey = YOUR_TWITTER_CONSUMER_KEY
twitter_stream.sources.twitterSrc.consumerSecret = YOUR_TWITTER_CONSUMER_SECRET
twitter_stream.sources.twitterSrc.accessToken = YOUR_TWITTER_ACCESS_TOKEN
twitter_stream.sources.twitterSrc.accessTokenSecret = YOUR_TWITTER_ACCESS_TOKEN_SECRET
twitter_stream.sources.twitterSrc.maxBatchDurationMillis = 200
twitter_stream.sources.twitterSrc.channels = memoryChannel

twitter_stream.channels.memoryChannel.type = memory
twitter_stream.channels.memoryChannel.capacity = 10000
twitter_stream.channels.memoryChannel.transactionCapacity = 1000

twitter_stream.sinks.solrSink.type =
org.apache.flume.sink.solr.morphline.MorphlineSolrSink
twitter_stream.sinks.solrSink.channel = memoryChannel
twitter_stream.sinks.solrSink.morphlineFile = morphlines.conf

Click Save Changes.

• Package-based Installation: If you copied the configuration templates as described in Copy Configuration
Template Files on page 28, no further action is required in this step.

2. Edit the Morphline configuration to specify Solr environment details.

• Parcel-based Installation: In the Cloudera Manager Admin Console, go to Flume service > Instances > Agent
(select one) > Configuration. When prompted to make configuration changes on the service configuration
page, click Cancel. Make sure that you selected the same agent that you selected in step 1. Edit the
SOLR_LOCATOR directive in theMorphlines File as follows. Edit the SOLR_LOCATOR entry only. Leave the
rest of the configuration unedited.

SOLR_LOCATOR : {
 # Name of solr collection
 collection : cloudera_tutorial_tweets

 # ZooKeeper ensemble
 zkHost : "zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181/solr"
}

Replace the example ZooKeeper hostnames with the hostnames of your ZooKeeper servers.

Click Save Changes.

Cloudera Search | 29

Cloudera Search Tutorial

https://dev.twitter.com/streaming/public

• Package-based Installation: Edit the SOLR_LOCATOR section in /etc/flume-ng/conf/morphline.conf
as follows:

SOLR_LOCATOR : {
 # Name of solr collection
 collection : cloudera_tutorial_tweets

 # ZooKeeper ensemble
 zkHost : "zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181/solr"
}

Replace the example ZooKeeper hostnames with the hostnames of your ZooKeeper servers.

3. (Unmanaged environments only) Copy flume-env.sh.template to flume-env.sh:

sudo cp /etc/flume-ng/conf/flume-env.sh.template /etc/flume-ng/conf/flume-env.sh

4. Update the Java heap size.

• Parcel-based Installation: In the Cloudera Manager Admin Console, go to Flume service > Instances > Agent
(select one) > Configuration. When prompted to make configuration changes on the service configuration
page, click Cancel. Make sure that you selected the same agent that you selected in step 1. Select Category >
Resource Management, and then set Java Heap Size of Agent in Bytes to 500 and selectMiB in the unit
drop-down menu. Click Save Changes.

• Package-based Installation: Edit /etc/flume-ng/conf/flume-env.sh or
/opt/cloudera/parcels/CDH/etc/flume-ng/conf/flume-env.sh, inserting or replacingJAVA_OPTS
as follows:

JAVA_OPTS="-Xmx500m"

5. (Optional)Modify Flume logging settings to facilitate monitoring and debugging:

• Parcel-based Installation: In the Cloudera Manager Admin Console, go to Flume service > Instances > Agent
(select one) > Configuration. When prompted to make configuration changes on the service configuration
page, click Cancel. Make sure that you selected the same agent that you selected in step 1. Select Category >
Advanced, and then modify Agent Logging Advanced Configuration Snippet (Safety Valve) to include:

log4j.logger.org.apache.flume.sink.solr=DEBUG
log4j.logger.org.kitesdk.morphline=TRACE

• Package-based Installation: Run the following commands:

sudo bash -c 'echo "log4j.logger.org.apache.flume.sink.solr=DEBUG" >>
/etc/flume-ng/conf/log4j.properties'
sudo bash -c 'echo "log4j.logger.org.kitesdk.morphline=TRACE" >>
/etc/flume-ng/conf/log4j.properties'

6. (Optional) In an unmanaged environment you can use SEARCH_HOME to configure where Flume finds Cloudera
Search dependencies for the Flume Solr Sink. To set SEARCH_HOME use a command similar to the following:

export SEARCH_HOME=/usr/lib/search

Alternatively, you can add the same setting to /etc/flume-ng/conf/flume-env.sh.

In a ClouderaManagermanaged environment, ClouderaManager automatically updates the SOLR_HOME location
with any required dependencies.

Configuring Flume Solr Sink to Access the Twitter Public Stream

Use the Twitter developer site to generate credentials to access the Twitter public stream:

30 | Cloudera Search

Cloudera Search Tutorial

1. Sign in to https://apps.twitter.com with a Twitter account.
2. On the Application Management page, click Create New App.
3. Fill in the form to represent the Search installation. This can represent multiple clusters, and does not require the

callback URL. Because this is not a publicly distributed application, the values you enter for the required name,
description, and website fields are not important.

4. Read and accept the Developer Agreement, then click Create your Twitter application at the bottom of the page.
5. Click on the Keys and Access Tokens tab, then click Create my access token button at the bottom.

The Flume TwitterSource uses the Twitter 1.1 API, which requires authentication of both the consumer (application)
and the user (you). Consider this information confidential, just like your regular Twitter credentials. Edit the Flume
configuration and replace the following properties with the credentials you generated:

agent.sources.twitterSrc.consumerKey = YOUR_TWITTER_CONSUMER_KEY
agent.sources.twitterSrc.consumerSecret = YOUR_TWITTER_CONSUMER_SECRET
agent.sources.twitterSrc.accessToken = YOUR_TWITTER_ACCESS_TOKEN
agent.sources.twitterSrc.accessTokenSecret = YOUR_TWITTER_ACCESS_TOKEN_SECRET

To edit the Flume configuration:

• Parcel-based Installation: In the Cloudera Manager Admin Console, go to Flume service > Instances > Agent
(select one) > Configuration. When prompted to make configuration changes on the service configuration page,
click Cancel. Make sure that you selected the same agent that you configured earlier. Modify the Configuration
File parameter.

• Package-based Installation: Edit /etc/flume-ng/conf/flume.conf.

For authentication to succeed, you must make sure the system clock is set correctly on the Flume agent host that
connects to Twitter. You can install NTP and keep the host synchronized by running the ntpd service, or manually
synchronize by using the command sudo ntpdate pool.ntp.org. To confirm that the time is set correctly, make
sure that the output of the command date --utcmatches the time shown at
http://www.timeanddate.com/worldclock/timezone/utc. You can also set the timemanually using the date command.

Starting the Flume Agent

1. If you are using Kerberos, kinit as the user that has privileges to update the collection:

kinit jdoe@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

2. Delete all existing documents in the cloudera_tutorial_tweets collection. If your cluster does not have
security enabled, run the following command as the solr user by adding sudo -u solr before the command:

solrctl collection --deletedocs cloudera_tutorial_tweets

3. Start or restart the Flume agent configured in Configuring the Flume Solr Sink on page 29:

• Parcel-based Installation: Flume service > Instances > Agent (select one) > Actions > Restart this Agent.
Make sure that you selected the same agent that you configured earlier.

• Package-based Installation:

sudo /etc/init.d/flume-ng-agent restart

4. Monitor progress in the Flume log file and watch for errors:

tail -f /var/log/flume-ng/flume*.log

After restarting the Flume agent, use the Cloudera Search web UI. For example, if you have a Solr server running on
search01.example.com, go to one of the following URLs in a browser to verify that new tweets have been ingested
into Solr:

Cloudera Search | 31

Cloudera Search Tutorial

https://apps.twitter.com
http://www.timeanddate.com/worldclock/timezone/utc

• Security Enabled:
https://search01.example.com:8985/solr/cloudera_tutorial_tweets/select?q=*%3A*&sort=created_at+desc&wt=json&indent=true

• Security Disabled:
http://search01.example.com:8983/solr/cloudera_tutorial_tweets/select?q=*%3A*&sort=created_at+desc&wt=json&indent=true

The query sorts the result set such that the most recently ingested tweets are at the top, based on the created_at
timestamp. If you rerun the query, new tweets show up at the top of the result set.

To print diagnostic information, such as the content of records as they pass through the morphline commands, enable
TRACE log level diagnostics by adding the following to your log4j.properties file:

log4j.logger.org.kitesdk.morphline=TRACE

In Cloudera Manager, you can use the safety valve to add the setting.

Go to Flume service > Configuration > View and Edit > Agent > Advanced > Agent Logging Advanced Configuration
Snippet (Safety Valve). After setting this value, restart the service.

Indexing a File Containing Tweets with Flume HTTPSource

HTTPSource lets you ingest data into Solr by POSTing a file over HTTP. HTTPSource sends data using a channel to a
sink, in this case a SolrSink. For more information, see Flume Solr BlobHandler Configuration Options on page 84.

1. Stop the Flume agent that you configured in Configuring the Flume Solr Sink on page 29:

• Parcel-based Installation: Flume service > Instances > Agent (select one) > Actions > Stop this Agent. Make
sure that you selected the same agent that you configured earlier.

• Package-based Installation:

sudo /etc/init.d/flume-ng-agent stop

2. If you are using Kerberos, kinit as the user that has privileges to update the collection:

kinit jdoe@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

3. Delete all existing documents in the cloudera_tutorial_tweets collection. If your cluster does not have
security enabled, run the following commands as the solr user by adding sudo -u solr before the command:

solrctl collection --deletedocs cloudera_tutorial_tweets

4. Modify the Flume configuration:

• Parcel-based Installation: In the Cloudera Manager Admin Console, go to Flume service > Instances > Agent
(select one) > Configuration. When prompted to make configuration changes on the service configuration
page, click Cancel. Replace the Configuration File configuration with the following:

twitter_stream.sources = httpSrc
twitter_stream.channels = memoryChannel
twitter_stream.sinks = solrSink

twitter_stream.sources.httpSrc.type = org.apache.flume.source.http.HTTPSource
twitter_stream.sources.httpSrc.port = 5140
twitter_stream.sources.httpSrc.handler = org.apache.flume.sink.solr.morphline.BlobHandler
twitter_stream.sources.httpSrc.handler.maxBlobLength = 2000000000
twitter_stream.sources.httpSrc.channels = memoryChannel

twitter_stream.channels.memoryChannel.type = memory
twitter_stream.channels.memoryChannel.capacity = 10000
twitter_stream.channels.memoryChannel.transactionCapacity = 1000

32 | Cloudera Search

Cloudera Search Tutorial

twitter_stream.sinks.solrSink.type =
org.apache.flume.sink.solr.morphline.MorphlineSolrSink
twitter_stream.sinks.solrSink.channel = memoryChannel
twitter_stream.sinks.solrSink.morphlineFile = morphlines.conf

Click Save Changes.

• Package-based Installation: If you copied the configuration templates as described in Copy Configuration
Template Files on page 28, edit /etc/flume-ng/conf/flume.conf and comment out all sources except
the HTTP source as follows:

#agent.sources = twitterSrc
agent.sources = httpSrc
#agent.sources = spoolSrc
#agent.sources = avroSrc

5. Start the Flume agent:

• Parcel-based Installation: Flume service > Instances > Agent (select one) > Actions > Start this Agent. Make
sure that you selected the same agent that you configured earlier.

• Package-based Installation:

sudo /etc/init.d/flume-ng-agent start

6. Send a file containing tweets to the HTTP source. Run the following commands on a cluster host, replacing
flume01.example.com with the hostname of the Flume agent you configured as the HTTP source:

• Parcel-based Installation:

cd /opt/cloudera/parcels/CDH/share/doc/search-*/examples/test-documents
curl --data-binary @sample-statuses-20120906-141433-medium.avro
'http://flume01.example.com:5140?resourceName=sample-statuses-20120906-141433-medium.avro'
 --header 'Content-Type:application/octet-stream' --verbose

• Package-based Installation:

cd /usr/share/doc/search-*/examples/test-documents
curl --data-binary @sample-statuses-20120906-141433-medium.avro
'http://flume01.example.com:5140?resourceName=sample-statuses-20120906-141433-medium.avro'
 --header 'Content-Type:application/octet-stream' --verbose

7. Check the log for status or errors:

tail /var/log/flume-ng/flume*.log

8. Run a Solr query. For example, for a Solr server running on search01.example.com, go to one of the following
URLs in a browser, depending on whether you have enabled TLS on your cluster:

• Security Enabled:
https://search01.example.com:8985/solr/cloudera_tutorial_tweets/select?q=*%3A*&wt=json&indent=true

• Security Disabled:
http://search01.example.com:8983/solr/cloudera_tutorial_tweets/select?q=*%3A*&wt=json&indent=true

If indexing was successful, this page displays the first 10 query results.

Indexing a File Containing Tweets with Flume SpoolDirectorySource

SpoolDirectorySource specifies a directory on a local disk that Flumemonitors. Flume automatically transfers data
from files in this directory to Solr. SpoolDirectorySource sends data over a channel to a sink, in this case a SolrSink.

1. Stop the Flume agent configured in Configuring the Flume Solr Sink on page 29:

Cloudera Search | 33

Cloudera Search Tutorial

Parcel-based Installation: Flume service > Instances > Agent (select one) > Actions > Stop this Agent. Make
sure that you selected the same agent that you configured earlier.

•

• Package-based Installation:

sudo /etc/init.d/flume-ng-agent stop

2. If you are using Kerberos, kinit as the user that has privileges to update the collection:

kinit jdoe@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

3. Delete all existing documents in the cloudera_tutorial_tweets collection. If your cluster does not have
security enabled, run the following commands as the solr user by adding sudo -u solr before the command:

solrctl collection --deletedocs cloudera_tutorial_tweets

4. Modify the Flume configuration:

• Parcel-based Installation: In the Cloudera Manager Admin Console, go to Flume service > Instances > Agent
(select one) > Configuration. When prompted to make configuration changes on the service configuration
page, click Cancel. Replace the Configuration File configuration with the following:

twitter_stream.sources = spoolSrc
twitter_stream.channels = memoryChannel
twitter_stream.sinks = solrSink

twitter_stream.sources.spoolSrc.type = spooldir
twitter_stream.sources.spoolSrc.spoolDir = /tmp/myspooldir
twitter_stream.sources.spoolSrc.ignorePattern = \.
twitter_stream.sources.spoolSrc.deserializer =
org.apache.flume.sink.solr.morphline.BlobDeserializer$Builder
twitter_stream.sources.spoolSrc.deserializer.maxBlobLength = 2000000000
twitter_stream.sources.spoolSrc.batchSize = 1
twitter_stream.sources.spoolSrc.fileHeader = true
twitter_stream.sources.spoolSrc.fileHeaderKey = resourceName
twitter_stream.sources.spoolSrc.channels = memoryChannel

twitter_stream.channels.memoryChannel.type = memory
twitter_stream.channels.memoryChannel.capacity = 10000
twitter_stream.channels.memoryChannel.transactionCapacity = 1000

twitter_stream.sinks.solrSink.type =
org.apache.flume.sink.solr.morphline.MorphlineSolrSink
twitter_stream.sinks.solrSink.channel = memoryChannel
twitter_stream.sinks.solrSink.morphlineFile = morphlines.conf

Click Save Changes.

• Package-based Installation: If you copied the configuration templates as described in Copy Configuration
Template Files on page 28, edit /etc/flume-ng/conf/flume.conf and comment out all sources except
the spool source as follows:

#agent.sources = twitterSrc
#agent.sources = httpSrc
agent.sources = spoolSrc
#agent.sources = avroSrc

5. Delete the spool directory if it exists, and then create a new spool directory. Run the following commands on the
host running the Flume agent that you configured:

rm -rf /tmp/myspooldir
sudo -u flume mkdir /tmp/myspooldir

34 | Cloudera Search

Cloudera Search Tutorial

6. Start the Flume agent:

• Parcel-based Installation: Flume service > Instances > Agent (select one) > Actions > Start this Agent. Make
sure that you selected the same agent that you configured earlier.

• Package-based Installation:

sudo /etc/init.d/flume-ng-agent start

7. Copy a file containing tweets to the /tmp/myspooldir directory. To ensure that no partial files are ingested,
copy and then atomically move files. Run the following commands on the host running the Flume agent that you
configured:

• Parcel-based Installation:

sudo -u flume cp
/opt/cloudera/parcels/CDH/share/doc/search*/examples/test-documents/sample-statuses-20120906-141433-medium.avro
 /tmp/myspooldir/.sample-statuses-20120906-141433-medium.avro
sudo -u flume mv /tmp/myspooldir/.sample-statuses-20120906-141433-medium.avro
/tmp/myspooldir/sample-statuses-20120906-141433-medium.avro

• Package-based Installation:

sudo -u flume cp
/usr/share/doc/search*/examples/test-documents/sample-statuses-20120906-141433-medium.avro
 /tmp/myspooldir/.sample-statuses-20120906-141433-medium.avro
sudo -u flume mv /tmp/myspooldir/.sample-statuses-20120906-141433-medium.avro
/tmp/myspooldir/sample-statuses-20120906-141433-medium.avro

8. Check the log for status or errors:

tail /var/log/flume-ng/flume*.log

9. Check the completion status:

find /tmp/myspooldir

10. Run a Solr query. For example, for a Solr server running on search01.example.com, go to one of the following
URLs in a browser, depending on whether you have enabled security on your cluster:

• Security Enabled:
https://search01.example.com:8985/solr/cloudera_tutorial_tweets/select?q=*%3A*&wt=json&indent=true

• Security Disabled:
http://search01.example.com:8983/solr/cloudera_tutorial_tweets/select?q=*%3A*&wt=json&indent=true

If indexing was successful, this page displays the first 10 query results.

Using Hue with Cloudera Search
Cloudera Search includes a Hue application that provides a customizable UI. Using Hue with Cloudera Search involves
importing collections. After you import collections, you can work with them through the Hue user interface.

You can use the Hue Web UI to run search queries. For example, for the server search01.example.com, use:
http://search01.example.com:8889/hue/indexer/new_search.

Search User Interface in Hue

The following figure shows the Search application integrated with the Hue user interface.

Cloudera Search | 35

Cloudera Search Tutorial

36 | Cloudera Search

Cloudera Search Tutorial

Deployment Planning for Cloudera Search

Cloudera Search provides interactive search and scalable indexing. Before you begin installing Cloudera Search:

• Review the Cloudera Enterprise 6 Requirements and Supported Versions.
• Decide whether to install Cloudera Search by using Cloudera Manager or by using package management tools.
• Select themachines onwhich youwant to install Cloudera Search, as well as any other services you are collocating

with Search.
• Identify the tasks and workloads you need to manage and the types of data you need to search. This information

can help guide the deployment process.

Important: Cloudera Search does not support Solr contribmodules, such as DataImportHandler.
Morphlines, Spark Crunch indexer,MapReduce and Lily HBase indexers are part of the Cloudera Search
product itself, therefore they are supported.

Choosing Where to Deploy the Cloudera Search Processes
You can collocate Solr Server roles with YARN NodeManager and HDFS DataNode roles. When collocating with
NodeManager roles, make sure that machine resources are not oversubscribed.

Guidelines for Deploying Cloudera Search

Memory Considerations

CDH initially deploys Solr with a Java virtual machine (JVM) size of 1 GB, but this is insufficient for most use cases.
Consider the following when determining an optimal JVM size for production usage:

• The more searchable data you have, the more memory you need. In general, 10 TB of searchable data requires
more memory than 1 TB of searchable data.

• Indexingmore fields requiresmorememory. For example, indexing all fields in a collection of logs, emailmessages,
or Wikipedia entries requires more memory than indexing only the Date Created field.

• If the system must be stable and respond quickly, more memory might help. If slow responses are acceptable,
you might be able to use less memory.

To ensure an appropriate amount of memory, consider your requirements and experiment in your environment. In
general:

• Machines with 16 GB RAM are sufficient for some smaller loads or for evaluation.
• Machines with 32 GB RAM are sufficient for some production environments.
• Machines with 96 GB RAM are sufficient for most situations.

Deployment Guidelines

Consider the information in this topic as guidance instead of absolute requirements. You can use a sample application
to benchmark different use cases and data types and sizes to help you identify themost important performance factors.

To determine how best to deploy Search in your environment, define use cases. The same Solr index can have different
hardware requirements, depending on the types of queries performed. The most common variation in hardware
requirements ismemory. For example, thememory requirements for faceting vary depending on the number of unique
terms in the faceted field. Suppose you want to use faceting on a field that has 10 unique values. In this case, only 10
logical containers are required for counting. No matter how many documents are in the index, memory overhead is
almost nonexistent.

Cloudera Search | 37

Deployment Planning for Cloudera Search

Conversely, the same index could have unique timestamps for every entry, and you want to facet on that field with a
: -type query. In this case, each index requires its own logical container. With this organization, if you had a large
number of documents—500million, for example—then faceting across 10 fieldswould increase the RAM requirements
significantly.

For this reason, you must consider use cases and data characteristics before you can estimate hardware requirements.
Important parameters to consider are:

• Number of documents. For Cloudera Search, sharding is almost always required.
• Approximate word count for each potential field.
• What information is stored in the Solr index and what information is only for searching? Information stored in the

index is returned with the search results.
• Foreign language support:

– How many different languages appear in your data?
– What percentage of documents are in each language?
– Is language-specific search supported? This determineswhether accent folding and storing the text in a single

field is sufficient.
– What language families will be searched? For example, you could combine all Western European languages

into a single field, but combining English and Chinese into a single field is not practical. Even with similar
languages, using a single field for different languages can be problematic. For example, sometimes accents
alter the meaning of a word, and in such cases, accent folding loses important distinctions.

• Faceting requirements:

– Be wary of faceting on fields that have many unique terms. For example, faceting on timestamps or free-text
fields typically has a high cost. Faceting on a field with more than 10,000 unique values is typically not useful.
Ensure that any such faceting requirement is necessary.

– What types of facets are needed? You can facet on queries as well as field values. Faceting on queries is often
useful for dates. For example, “in the last day” or “in the last week” can be valuable. Using Solr Date Math
to facet on a bare “NOW” is almost always inefficient. Facet-by-query is not memory-intensive because the
number of logical containers is limited by the number of queries specified, nomatter howmany unique values
are in the underlying field. This can enable faceting on fields that contain information such as dates or times,
while avoiding the problem described for faceting on fields with unique terms.

• Sorting requirements:

– Sorting requires one integer for each document (maxDoc), which can take up significantmemory. Additionally,
sorting on strings requires storing each unique string value.

• Paging requirements. End users rarely look beyond the first few pages of search results. For use cases requiring
deep paging (paging through a large number of results), using cursors can improve performance and resource
utilization. For more information, see Pagination of Results on the Apache Solr wiki. Cursors are supported in CDH
5.2 and higher.

• Is advanced search capability planned? If so, how will it be implemented? Significant design decisions depend on
user requirements:

– Can users be expected to learn about the system? Advanced screens can intimidate e-commerce users, but
these screens can be more effective if users can be expected to learn them.

– How long will users wait for results? Data mining or other design requirements can affect response times.

• How many simultaneous users must your system accommodate?
• Update requirements. An update in Solr refers both to adding new documents and changing existing documents:

– Loading new documents:

– Bulk. Will the index be rebuilt from scratch periodically, or will there only be an initial load?
– Incremental. At what rate will new documents enter the system?

– Updating documents:

38 | Cloudera Search

Deployment Planning for Cloudera Search

https://cwiki.apache.org/confluence/display/solr/Pagination+of+Results

– Can you characterize the expected number of modifications to existing documents?
– How much latency is acceptable between when a document is added to Solr and when it is available in

Search results?

• Security requirements. Solr has no built-in security options, although Cloudera Search supports authentication
using Kerberos and authorization using Sentry. In Solr, document-level security is usually best accomplished by
indexing authorization tokens with the document. The number of authorization tokens applied to a document is
largely irrelevant; for example, thousands are reasonable but can be difficult to administer. The number of
authorization tokens associated with a particular user should be no more than 100 in most cases. Security at this
level is often enforced by appending an fq clause to the query, and adding thousands of tokens in an fq clause
is expensive.

– A post filter, also known as a no-cache filter, can help with access schemes that cannot use an fq clause.
These are not cached and are applied only after all less-expensive filters are applied.

– If grouping, faceting is not required to accurately reflect true document counts, so you can use some shortcuts.
For example, ACL filtering is expensive in some systems, sometimes requiring database access. If completely
accurate faceting is required, you must completely process the list to reflect accurate facets.

• Required query rate, usually measured in queries-per-second (QPS):

– At a minimum, deploy machines with sufficient hardware resources to provide an acceptable response rate
for a single user. Some types of queries can utilize the system so much that performance for even a small
number of users is unacceptable. In this case, resharding can help.

– If QPS is only somewhat lower than required and you do not want to reshard, you can often improve
performance by adding replicas to each shard.

– As the number of shards in your deployment increases, the general QPS rate starts to slowly decrease. This
typically occurs when there are hundreds of shards.

Schemaless Mode Overview and Best Practices
Schemaless mode removes the need to design a schema before beginning to use Search. This can help you begin using
Search more quickly, but schemaless mode is typically less efficient and effective than using a deliberately designed
schema.

Note: Cloudera recommends pre-defining a schema before moving to production.

With the default non-schemaless mode, you create a schema by writing a schema.xml file before loading data into
Solr so it can be used by Cloudera Search. You typically write a different schema definition for each type of data being
ingested, because the different data types usually have different field names and values. Writing a custom schema is
done by examining the data to be imported so its structure can be understood, and then creating a schema that
accommodates that data. For example, emails might have a field for recipients and log files might have a field for IP
addresses for machines reporting errors. Conversely, emails typically do not have an IP address field and log files
typically do not have recipients. Therefore, the schema you use to import emails is different from the schema you use
to import log files.

Cloudera Search offers schemaless mode to help facilitate sample deployments without the need to pre-define a
schema. While schemaless is not suitable for production environments, it can help demonstrate the functionality and
features of Cloudera Search. Schemaless mode operates based on three principles:

1. The schema is automatically updated using an API. When not using schemaless mode, users manually modify the
schema.xml file or use the Schema API.

2. As data is ingested, it is analyzed and a guess is made about the type of data in the field. Supported types include
Boolean, Integer, Long, Float, Double, Date, and Text.

Cloudera Search | 39

Deployment Planning for Cloudera Search

3. When a new field is encountered, the schema is automatically updated using the API. The update is based on the
guess about the type of data in the field.

For example, if schemaless encounters a field that contains "6.022", this would be determined to be type Float, whereas
"Mon May 04 09:51:52 CDT 2009" would be determined to be type Date.

By combining these techniques, Schemaless:

1. Starts without a populated schema.
2. Intakes and analyzes data.
3. Modifies the schema based on guesses about the data.
4. Ingests the data so it can be searched based on the schema updates.

To generate a configuration for use in Schemaless mode, use solrctl instancedir --generate path
-schemaless. Then, create the instancedir and collection as with non-schemaless mode. For more information, see
solrctl Reference on page 53.

Best Practices

User Defined Schemas Recommended for Production Use Cases

Schemaless Solr is useful for getting started quickly and for understanding the underlying structure of the data you
want to search. However, Schemaless Solr is not recommended for production use cases. Because the schema is
automatically generated, a mistake like misspelling the name of the field alters the schema, rather than producing an
error. The mistake may not be caught until much later and once caught, may require re-indexing to fix. Also, an
unexpected input format may cause the type guessing to pick a field type that is incompatible with data that is
subsequently ingested, preventing further ingestion until the incompatibility is manually addressed. Such a case is rare,
but could occur. For example, if the first instance of a field was an integer, such as '9', but subsequent entries were
text such as '10 Spring Street', the schema would make it impossible to properly ingest those subsequent entries.
Therefore, Schemaless Solr may be useful for deciding on a schema during the exploratory stage of development, but
Cloudera recommends defining the schema in the traditional way before moving to production.

Give each Collection its own unique Instancedir

Solr supports using the same instancedir formultiple collections. In schemalessmode, automatic schema field additions
actually change the underlying instancedir. Thus, if two collections are using the same instancedir, schema field additions
meant for one collection will actually affect the other one as well. Therefore, Cloudera recommended that each
collection have its own instancedir.

40 | Cloudera Search

Deployment Planning for Cloudera Search

Deploying Cloudera Search

When you deploy Cloudera Search, SolrCloud partitions your data set into multiple indexes and processes, and uses
ZooKeeper to simplify management, which results in a cluster of coordinating Apache Solr servers.

Note: Before you start

Review Deployment Planning for Cloudera Search on page 37.

Installing and Starting ZooKeeper Server
SolrCloud mode uses Apache ZooKeeper as a highly available, central location for cluster management. For a small
cluster, running ZooKeeper collocatedwith theNameNode is recommended. For larger clusters, usemultiple ZooKeeper
servers.

If you do not already have a ZooKeeper service added to your cluster, add it using the instructions in Adding a Service
for Cloudera Manager installations.

Initializing Solr
For Cloudera Manager installations, if you have not yet added the Solr service to your cluster, do so now using the
instructions in Adding a Service. The Add a Service wizard automatically configures and initializes the Solr service.

Generating Collection Configuration
To start using Solr and indexing data, you must configure a collection to hold the index. A collection requires the
following configuration files:

• solrconfig.xml

• schema.xml

• Any additional files referenced in the xml files

The solrconfig.xml file contains all of the Solr settings for a given collection, and the schema.xml file specifies
the schema that Solr uses when indexing documents. For more details on how to configure a collection, see
http://wiki.apache.org/solr/SchemaXml.

Configuration files for a collection are contained in a directory called an instance directory. To generate a template
instance directory, run the following command:

solrctl instancedir --generate $HOME/solr_configs

You can customize a collection by directly editing the solrconfig.xml and schema.xml files created in
$HOME/solr_configs/conf.

After you completing the configuration, you can make it available to Solr by running the following command, which
uploads the contents of the instance directory to ZooKeeper:

solrctl instancedir --create <collection_name> $HOME/solr_configs

Use the solrctl utility to verify that your instance directory uploaded successfully and is available to ZooKeeper. List
the uploaded instance directories as follows:

solrctl instancedir --list

Cloudera Search | 41

Deploying Cloudera Search

http://wiki.apache.org/solr/SchemaXml

For example, if you used the--create command to create a collectionnamedweblogs, the--list command should
return weblogs.

Important: Although you can create a collection directly in /var/lib/solr, Cloudera recommends
using the solrctl utility instead.

Creating Collections
The Solr server does not include any default collections. Create a collection using the following command:

solrctl collection --create <collection_name> -s <shard_count>

To use the configuration that you provided to Solr in previous steps, use the same collection name (weblogs in our
example). The -s <shard_count> parameter specifies the number of SolrCloud shards you want to partition the
collection across. The number of shards cannot exceed the total number of Solr servers in your SolrCloud cluster.

To verify that the collection is active, go to
http://search01.example.com:8983/solr/<collection_name>/select?q=*%3A*&wt=json&indent=true

in a browser. For example, for the collection weblogs, the URL is
http://search01.example.com:8983/solr/weblogs/select?q=*%3A*&wt=json&indent=true. Replace
search01.example.com with the hostname of one of the Solr server hosts.

You can also view the SolrCloud topology using the URL http://search01.example.com:8983/solr/#/~cloud.

For more information on completing additional collection management tasks, see Managing Cloudera Search on page
46.

Using Search through a Proxy for High Availability
Using a proxy server to relay requests to and from the Apache Solr service can help meet availability requirements in
production clusters serving many users.

A proxy server works a set of servers that is organized into a server group. A proxy server does not necessarily work
with all servers in a deployment.

Overview of Proxy Usage and Load Balancing for Search

Configuring a proxy server to relay requests to and from the Solr service has the following advantages:

• Applications connect to a single well-known host and port, rather than keeping track of the hosts where the Solr
service is running. This is especially useful for non-Java Solr clients such as web browsers or command-line tools
such as curl.

Note: The Solr Java client (solrj) can inspect Zookeeper metadata to automatically locate the
individual Solr servers, so load-balancing proxy support is not necessary.

• If any host running the Solr service becomes unavailable, application connection requests still succeed because
you always connect to the proxy server rather than a specific host running the Solr server.

• Users can configure an SSL terminating proxy for Solr to secure the data exchanged with the external clients
without requiring SSL configuration for the Solr cluster itself. This is relevant only if the Solr cluster is deployed
on a trusted network and needs to communicate with clients that may not be on the same network. Many of the
advantages of SSL offloading are described in SSL Offloading, Encryption, and Certificates with NGINX.

• The "coordinator host" for each Search query potentially requires more memory and CPU cycles than the other
hosts that process the query. The proxy server can issue queries using round-robin scheduling, so that each

42 | Cloudera Search

Deploying Cloudera Search

https://www.nginx.com/blog/nginx-ssl/

connection uses a different coordinator host. This load-balancing technique lets the hosts running the Solr service
share this additional work, rather than concentrating it on a single machine.

The following setup steps are a general outline that apply to any load-balancing proxy software.

1. Download the load-balancing proxy software. It should only need to be installed and configured on a single host.
2. Configure the software, typically by editing a configuration file. Set up a port on which the load balancer listens

to relay Search requests back and forth.
3. Specify the host and port settings for each Solr service host. These are the hosts that the load balancer chooses

from when relaying each query. In most cases, use 8983, the default query and update port.
4. Run the load-balancing proxy server, pointing it at the configuration file that you set up.

Special Proxy Considerations for Clusters Using Kerberos

In a cluster using Kerberos, applications check host credentials to verify that the host they are connecting to is the
same one that is actually processing the request, to preventman-in-the-middle attacks. To clarify that the load-balancing
proxy server is legitimate, perform these extra Kerberos setup steps:

1. This section assumes you are startingwith a Kerberos-enabled cluster. Formore information, see Enabling Kerberos
Authentication for CDH.

2. Choose the host you will use for the proxy server. Based on the Kerberos setup procedure, it should already have
an entry solr/proxy_host@realm in its keytab:

• Cloudera Manager:

1. Navigate to Solr service > Configuration > Category >Main
2. Set the value of Solr Load Balancer to <hostname>:<port>, specifying the hostname and port of the

proxy host.
3. Click Save Changes.
4. Launch the Stale Configurations wizard to restart the Solr service and any dependent services.

Cloudera Manager transparently handles the keytab and dependent service updates.

Using Custom JAR Files with Search
Search for CDH supports custom plug-in code. You load classes into JAR files and then configure Search to find these
files. To correctly deploy custom JARs, ensure that:

• Custom JARs are pushed to the same location on all hosts in your cluster that are hosting Cloudera Search (Solr
Service).

• Supporting configuration files direct Search to find the custom JAR files.
• Any required configuration files such as schema.xml or solrconfig.xml reference the custom JAR code.

The following procedure describes how to use custom JARs. Some cases may not require completion of every step.
For example, indexer tools that support passing JARs as arguments may not require modifying xml files. However,
completing all configuration steps helps ensure the custom JARs are used correctly in all cases.

1. Place your custom JAR in the same location on all hosts in your cluster.
2. For all collections where custom JARs will be used, modify solrconfig.xml to include references to the new

JAR files.

These directives can include explicit or relative references and can use wildcards. In the solrconfig.xml file,
add <lib> directives to indicate the JAR file locations or <path> directives for specific jar files:

<lib path="/usr/lib/solr/lib/MyCustom.jar" />

Cloudera Search | 43

Deploying Cloudera Search

or

<lib dir="/usr/lib/solr/lib" />

or

<lib dir="../../../myProject/lib" regex=".*\.jar" />

3. For all collections inwhich custom JARswill be used, reference custom JAR code in the appropriate Solr configuration
file. The two configuration files that most commonly reference code in custom JARs are solrconfig.xml and
schema.xml.

4. For all collections in which custom JARs will be used, use solrctl to update ZooKeeper's copies of configuration
files such as solrconfig.xml and schema.xml:

solrctl instancedir --update name path

• name specifies the instancedir associated with the collection using solrctl instancedir --create.
• path specifies the directory containing the collection's configuration files.

For example:

solrctl instancedir --update collection1 $HOME/solr_configs

5. For all collections in which custom JARs will be used, use RELOAD to refresh information:

http://<hostname>:<port>/solr/admin/collections?action=RELOAD&name=collectionname

For example:

http://example.com:8983/solr/admin/collections?action=RELOAD&name=collection1

When the RELOAD command is issued to any host that hosts a collection, that host sends subcommands to all
replicas in the collection. All relevant hosts refresh their information, so this command must be issued once per
collection.

6. Ensure that the class path includes the location of the custom JAR file:

a. For example, if you store the custom JAR file in /opt/myProject/lib/, add that path as a line to the
~/.profile for the Solr user.

b. Restart the Solr service to reload the PATH variable.
c. Repeat this process of updating the PATH variable for all hosts.

The system is now configured to find custom JAR files. Some command-line tools includedwith Cloudera Search support
specifying JAR files. For example, when using MapReduceIndexerTool, use the --libjars option to specify JAR
files to use. Tools that support specifying custom JARs include:

• MapReduceIndexerTool
• Lily HBase Indexer
• CrunchIndexerTool
• Flume indexing

Cloudera Search Security
Cloudera Search supports Kerberos for authentication, and Apache Sentry for authorization. Auditing is handled by
Cloudera Navigator.

For information on enabling Kerberos for Cloudera Search, see Enabling Kerberos Authentication for CDH. For information
on enable Sentry for authorization, see Configuring Sentry Authorization for Cloudera Search.

44 | Cloudera Search

Deploying Cloudera Search

For information on using Cloudera Navigator for auditing, see Cloudera Navigator Auditing.

Enable Kerberos Authentication in Cloudera Search

Kerberos authentication must be configured in Cloudera Manager for the cluster where Solr is deployed.

1. In Cloudera Manager select the Solr service.
2. Select Configuration and find the Solr Secure Authentication property.
3. Click the radio button next to the Kerberos option.
4. Click Save Changes.
5. Restart the Solr service.

Cloudera Search | 45

Deploying Cloudera Search

Managing Cloudera Search

Most Cloudera Search configuration is managed using solrctl, a wrapper script included with Cloudera Search. You
can manipulate collections, instance directories, configs, individual cores, and so on.

A SolrCloud collection is the top-level object for indexing documents and providing a query interface. Each collection
must be associated with a configuration, using either an instance directory or a config object. Different collections can
use the same configuration. Each collection is typically replicated among several SolrCloud instances. Each replica is
called a core and is assigned to an individual Solr service. The assignment process is managed automatically, but you
can apply fine-grained control over individual cores using the solrctl core command.

A typical deployment workflow with solrctl consists of:

1. Establishing a configuration

• If using configs, creating a config object from a template.
• If using instance directories, generating an instance directory and uploading it to ZooKeeper.

2. Creating a collection associated with the name of the config or instance directory.

For a comparison of configs and instance directories, seeManaging Configuration Using Configs or Instance Directories
on page 47.

For more information on managing Cloudera Search, see the following topics:

Managing Cloudera Search Configuration
Cloudera Search configuration is primarily controlled by several configuration files, some of which are stored in Apache
ZooKeeper:

• solr.xml

This file is stored in ZooKeeper, and controls global properties for Apache Solr. To edit this file, youmust download
it from ZooKeeper, make your changes, and then upload the modified file back to ZooKeeper using the solrctl
cluster command. For information about the solr.xml file, see Solr Configuration Files and Solr Cores and
solr.xml in the Solr documentation.

• solrconfig.xml

Each collection in Solr uses a solrconfig.xml file, stored in ZooKeeper, to control collection behavior. For
information about the solrconfig.xml file, see Solr Configuration Files and Configuring solrconfig.xml in the
Solr documentation.

• managed-schema or schema.xml

In CDH 6, Cloudera recommends using a managed schema, and making schema changes using the Schema API
(Apache Solr documentation). Collections in CDH 6 use either a managed schema or the legacy schema.xml file.
These files, also stored in ZooKeeper and assigned to a collection, define the schema for the documents you are
indexing. For example, they specify which fields to index, the expected data type for each field, the default field
to query when the field is unspecified, and so on. For information about managed-schema and schema.xml,
see Schema Factory Definition in SolrConfig in the Solr documentation.

• core.properties

Unlike other configuration files, this file is stored in the local filesystem rather than ZooKeeper, and is used for
core discovery. For more information on this process and the structure of the file, see Defining core.properties in
the Solr documentation.

46 | Cloudera Search

Managing Cloudera Search

https://lucene.apache.org/solr/guide/7_0/solr-configuration-files.html
https://lucene.apache.org/solr/guide/7_0/solr-cores-and-solr-xml.html
https://lucene.apache.org/solr/guide/7_0/solr-cores-and-solr-xml.html
https://lucene.apache.org/solr/guide/7_0/solr-configuration-files.html
https://lucene.apache.org/solr/guide/7_0/configuring-solrconfig-xml.html
https://lucene.apache.org/solr/guide/7_0/schema-api.html
https://lucene.apache.org/solr/guide/7_0/schema-api.html
https://lucene.apache.org/solr/guide/7_0/schema-factory-definition-in-solrconfig.html
https://lucene.apache.org/solr/guide/7_0/defining-core-properties.html

Managing Configuration Using Configs or Instance Directories

The solrctl utility includes the config and instancedir commands for managing configuration. Configs and
instance directories refer to the same thing: named configuration sets used by collections,as specified by the solrctl
collection --create -c <configName> command.

Although configs and instance directories are functionally identical from the perspective of the Solr server, there a
number of important administrative differences between these two implementations:

Table 2: Config and Instance Directory Comparison

Instance DirectoryConfigAttribute

Security • No ZooKeeper security support.
Any user can create, delete, or

• In a Kerberos-enabled cluster, the
ZooKeeper znodes associated
with configurations created using modify an instancedir directly

in ZooKeeper.thesolrctl config command
automatically have proper
ZooKeeper ACLs.

• Because instancedir updates
ZooKeeper directly, it is the
client's responsibility to add the• Apache Sentry can be used to

control access to the ConfigSets proper ACLs, which can be
cumbersome.API (which is used by the

solrctl config command).
For more information, see
Configuring Sentry Authorization
for Cloudera Search and Securing
Configswith ZooKeeper ACLs and
Sentry on page 49.

Manually edited locally and
re-uploaded directly to ZooKeeper
using solrctl utility.

Generated from existing configs or
instance directories in ZooKeeper
using the ConfigSets API.

Creation method

One standard template.Template support • Several predefined templates are
available. These can be used as
the basis for creating additional
configs. Additional templates can
be created by creating configs
that are immutable.

• Mutable configs that use a
managed schema can only be
modified using the SchemaAPI as
opposed to being manually
edited. As a result, configs are
less flexible, but they are also less
error-prone than instance
directories.

Instance directories include a single
template that supports enabling

Configs include a number of
templates, each with Sentry-enabled

Sentry support

Sentry. To enable Sentry withand non-Sentry-enabled versions. To
instancedirs, overwrite the originalenable Sentry, choose a

Sentry-enabled template. solrconfig.xml file with
solrconfig.xml.secure as
described in Enabling Sentry for a Solr
Collection.

Cloudera Search | 47

Managing Cloudera Search

https://lucene.apache.org/solr/guide/7_0/configsets-api.html

Managing Configs

You can manage configuration objects directly using the solrctl config command, which is a wrapper script for
the ConfigSets API.

Configs are named configuration sets that you can referencewhen creating collections. Thesolrctl config command
syntax is as follows:

solrctl config [--create <name> <baseConfig> [-p <name>=<value>]...]
 [--delete <name>]

• --create <name> <baseConfig>: Creates a new config based on an existing config. The config is created with
the specified <name>, using <baseConfig> as the template. For more information about config templates, see
Config Templates on page 50.

– -p <name>=<value>: Overrides a <baseConfig> setting. The only config property that you can override is
immutable, so the possible options are-p immutable=true and-p immutable=false. If you are copying
an immutable config, such as a template, use -p immutable=false to make sure that you can edit the
new config.

• --delete <name>: Deletes the specified config. You cannot delete an immutable config without accessing
ZooKeeper directly as the solr super user.

If you are using Apache Sentry, you must have permissions for the specific config you are creating or deleting, as well
as the admin=collections privilege object.

Managing Instance Directories

An instance directory is a named set of configuration files. You can generate an instance directory template locally,
edit the configuration, and then upload the directory to ZooKeeper as a named configuration set. You can then reference
this named configuration set when creating a collection.

Creating configuration sets using instance directories cannot be restricted using Sentry. If you want to control access
to configuration sets, you must enable ZooKeeper ACLs and use configs instead.

The solrctl instancedir command syntax is as follows:

solrctl instancedir [--generate <path> [-schemaless]]
 [--create <name> <path>]
 [--update <name> <path>]
 [--get <name> <path>]
 [--delete <name>]
 [--list]

• --generate <path>: Generates an instance directory template on the local filesystemat <path>. The configuration
files are located in the conf subdirectory under <path>.

– -schemaless: Generates a schemaless instance directory template. For more information on schemaless
support, see Schemaless Mode Overview and Best Practices on page 39.

• --create <name> <path>: Uploads a copy of the instance directory from <path> on the local filesystem to
ZooKeeper. If an instance directory with the specified <name> already exists, this command fails. Use --update
to modify existing instance directories.

• --update <name> <path>: Overwrites an existing instance directory in ZooKeeper using the specified files on
the local filesystem. This command is analogous to first running --delete <name> followed by --create
<name> <path>.

• --get <name> <path>: Downloads the specified instance directory from ZooKeeper to the specified path on
the local filesystem. You can then edit the configuration and then re-upload it using --update.

• --delete <name>: Deletes the specified instance directory from ZooKeeper.
• --list: Lists existing instance directories as well as configs created by the solrctl config command.

48 | Cloudera Search

Managing Cloudera Search

https://lucene.apache.org/solr/guide/7_0/configsets-api.html

Securing Configs with ZooKeeper ACLs and Sentry

You can restrict access to configuration sets by setting ZooKeeper ACLs on all znodes under and including /solr and
using Sentry to control access to the ConfigSets API. Sentry requires Kerberos authentication.

The solrctl instancedir command interacts directly with ZooKeeper, and therefore cannot be protected by
Sentry. Because the solrctl config command is a wrapper script for the ConfigSets API, it can be protected by
Sentry.

To force users to use the ConfigSets API, you must set all ZooKeeper znodes under and including /solr to read-only
(except the solr user):

1. Create a jaas.conf file containing the following:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=false
 useTicketCache=true
 principal="solr@EXAMPLE.COM";
};

Replace EXAMPLE.COM with your Kerberos realm name.

2. Set the LOG4J_PROPS environment variable to a log4j.properties file:

export LOG4J_PROPS=/etc/zookeeper/conf/log4j.properties

3. Set the ZKCLI_JVM_FLAGS environment variable:

export ZKCLI_JVM_FLAGS="-Djava.security.auth.login.config=/path/to/jaas.conf \
-DzkACLProvider=org.apache.solr.common.cloud.SaslZkACLProvider \
-Droot.logger=INFO,console"

4. Authenticate as the solr user:

kinit solr@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

5. Run the zkcli.sh script as follows:

• Cloudera Manager Deployment:

/opt/cloudera/parcels/CDH/lib/solr/bin/zkcli.sh -zkhost zk01.example.com:2181 -cmd
updateacls /solr

• Unmanaged Deployment:

/usr/lib/solr/bin/zkcli.sh -zkhost zk01.example.com:2181 -cmd updateacls /solr

Replace zk01.example.com with the hostname of a ZooKeeper server.

After completing these steps, you cannot run commands such as solrctl instancedir --create or solrctl
instancedir --deletewithout first authenticating as thesolr@EXAMPLE.COM super user principal. Unauthenticated
users can still run solrctl instancedir --list and solrctl instancedir --get, because those commands
only perform read operations against ZooKeeper.

After setting ZooKeeper ACLs, you must configure Sentry to allow users to create and delete configs. For instructions
on configuring Sentry for configs, see Configuring Sentry Authorization for Cloudera Search.

Cloudera Search | 49

Managing Cloudera Search

Config Templates

Configs can be declared as immutable, which means they cannot be deleted or have their Schema updated by the
Schema API. Immutable configs are uneditable config templates that are the basis for additional configs. After a config
ismade immutable, you cannot change it backwithout accessing ZooKeeper directly as thesolr (orsolr@EXAMPLE.COM
principal, if you are using Kerberos) super user.

Solr provides a set of immutable config templates. These templates are only available after Solr initialization, so
templates are not available in upgrades until after Solr is initialized or re-initialized. Templates include:

Table 3: Available Config Templates and Attributes

Supports SentryUses Schemaless SolrSupports Schema APITemplate Name

managedTemplate

schemalessTemplate

managedTemplateSecure

schemalessTemplateSecure

Note: schemalessTemplate is the same as the template generated by the solrctl instancedir
--generate command.

Config templates are managed using the solrctl config command. For example:

• To create a new config based on the managedTemplateSecure template:

solrctl config --create newConfig managedTemplateSecure -p immutable=false

• To create a new template (immutable config) from an existing config:

solrctl config --create newTemplate existingConfig -p immutable=true

Updating the Schema in a Solr Collection

If your collectionwas configured using an instance directory, you can download the instance directory, editschema.xml,
then re-upload it to ZooKeeper. For instructions, see Managing Instance Directories on page 48.

If your collection was configured using a config, you can update the schema using the Schema API. For information on
using the Schema API, see Schema API in the Apache Solr Reference Guide.

Managing Collections in Cloudera Search
A collection in Cloudera Search refers to a repository for indexing and querying documents. Collections typically contain
the same types of documents with similar schemas. For example, you might create separate collections for email,
Twitter data, logs, forum posts, customer interactions, and so on.

Collections are managed using the solrctl command. For a reference to the solrctl commands and options, see
solrctl Reference on page 53.

50 | Cloudera Search

Managing Cloudera Search

https://lucene.apache.org/solr/guide/7_0/schema-api.html

Creating a Solr Collection

If you have enabled Apache Sentry for authorization, youmust have UPDATE permission for the admin=collections
object as well as the collection you are creating. For example, if you want to create a collection named logs, you need
the following Sentry permissions:

solr_admin = admin=collections->action=UDPATE, collection=logs->action=UDPATE

If you want to be able to create any collection, you can use the wildcard permission:

solr_admin = admin=collections->action=UDPATE, collection=*->action=UDPATE

Formore information on configuring Sentry and granting permissions, see Configuring Sentry Authorization for Cloudera
Search.

Note: Although it is not currenly strictly enforced, you are strongly recommended to observe the
following limitations on collection names:

• Use only ASCII alphanumeric characters (A-Za-z0-9), hyphen (-), or underscore (_).
• Avoid using the strings shard and replica.

To create a collection:

1. If you are using Kerberos, kinit as a user with permission to create the collection:

kinit solradmin@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

2. On a host running a Solr server, make sure that the SOLR_ZK_ENSEMBLE environment variable is set in
/etc/solr/conf/solr-env.sh. For example:

cat /etc/solr/conf/solr-env.sh
export
SOLR_ZK_ENSEMBLE=zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181/solr

If you are using Cloudera Manager, this is automatically set on hosts with a Solr Server or Gateway role.

3. Generate configuration files for the collection:

• Using Configs with Sentry:

solrctl config --create logs_config managedTemplateSecure -p immutable=false

• Using Configs without Sentry:

solrctl config --create logs_config managedTemplate -p immutable=false

• Using Instance Directories with Sentry:

solrctl instancedir --generate $HOME/logs_config
cp $HOME/logs_config/conf/solrconfig.xml.secure $HOME/logs_config/conf/solrconfig.xml
Edit the configuration files as needed
solrctl instancedir --create logs_config $HOME/logs_config

• Using Instance Directories without Sentry:

solrctl instancedir --generate $HOME/logs_config
Edit the configuration files as needed
solrctl instancedir --create logs_config $HOME/logs_config

Cloudera Search | 51

Managing Cloudera Search

For more information on configs and instance directories, see Managing Configuration Using Configs or Instance
Directories on page 47.

4. Create a new collection using the specified configuration:

solrctl collection --create logs -s <numShards> -c logs_config

Viewing Existing Solr Collections

You can viewexisting collections using thesolrctl collection --list command. This commanddoes not require
Sentry authorization, because it reads the information from ZooKeeper.

Deleting All Documents in a Solr Collection

Deleting all documents in a Solr collection does not delete the collection or its configuration files. It only deletes the
index. This can be useful for rapid prototyping of configuration changes in test environments.

If you have enabled Sentry for authorization, you must have UDPATE permission for the admin=collections object
as well as the collection in which you are deleting documents. For example, if you want to delete documents in a
collection named logs, you need the following Sentry permissions:

solr_admin = admin=collections->action=UDPATE, collection=logs->action=UDPATE

If you want to be able to delete documents in any collection, you can use the wildcard permission:

solr_admin = admin=collections->action=UDPATE, collection=*->action=UDPATE

Formore information on configuring Sentry and granting permissions, see Configuring Sentry Authorization for Cloudera
Search.

To delete all documents in a collection:

1. If you are using Kerberos, kinit as a user with permission to delete the collection:

kinit solradmin@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

2. On a host running Solr Server, make sure that the SOLR_ZK_ENSEMBLE environment variable is set in
/etc/solr/conf/solr-env.sh. For example:

$ cat /etc/solr/conf/solr-env.sh
export
SOLR_ZK_ENSEMBLE=zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181/solr

If you are using Cloudera Manager, this is automatically set on hosts with a Solr Server or Gateway role.

3. Delete the documents:

solrctl collection --deletedocs logs

Backing Up and Restoring Solr Collections

CDH 5.9 and higher include a backup/restore mechanism primarily designed to provide disaster recovery capability
for Apache Solr. You can create a backup of a Solr collection and restore from this backup if the index is corrupted due
to a software bug, or if an administrator accidentally or maliciously deletes a collection or a subset of documents. This
procedure can also be used as part of a cluster migration (for example, if you are migrating to a cloud environment),
or to recover from a failed upgrade.

For more information, see Backing Up and Restoring Cloudera Search on page 67.

52 | Cloudera Search

Managing Cloudera Search

Deleting a Solr Collection

Deleting a Solr collection deletes the collection and its index, but does not delete its configuration files.

If you have enabled Sentry for authorization, you must have UDPATE permission for the admin=collections object
as well as the collection you are deleting. For example, if you want to delete a collection named logs, you need the
following Sentry permissions:

solr_admin = admin=collections->action=UDPATE, collection=logs->action=UDPATE

If you want to be able to delete any collection, you can use the wildcard permission:

solr_admin = admin=collections->action=UDPATE, collection=*->action=UDPATE

Formore information on configuring Sentry and granting permissions, see Configuring Sentry Authorization for Cloudera
Search.

To delete a collection:

1. If you are using Kerberos, kinit as a user with permission to delete the collection:

kinit solradmin@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

2. On a host running Solr Server, make sure that the SOLR_ZK_ENSEMBLE environment variable is set in
/etc/solr/conf/solr-env.sh. For example:

$ cat /etc/solr/conf/solr-env.sh
export
SOLR_ZK_ENSEMBLE=zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181/solr

If you are using Cloudera Manager, this is automatically set on hosts with a Solr Server or Gateway role.

3. Delete the collection:

solrctl collection --delete logs

solrctl Reference
Thesolrctl utility is awrapper shell script includedwith Cloudera Search formanaging collections, instance directories,
configs, Apache Sentry permissions, and more.

For some examples of common tasks using solrctl, see Example solrctl Usage on page 62.

Make sure that the host onwhich you are running the solrctl utility has either aGateway or Solr Server role assigned.

In general, if an operation succeeds, solrctl exits silently with a success exit code. If an error occurs, solrctl prints
a diagnostics message combined with a failure exit code. solrctl supports specifying a log4j.properties file by
setting theLOG4J_PROPS environment variable. By default, theLOG4J_PROPS setting specifies thelog4j.properties
in the Solr configuration directory (for example, /etc/solr/conf/log4j.properties).Many solrctl commands
redirect stderr to /dev/null, so Cloudera recommends that your log4j properties file specify a location other
than stderr for log output.

You can run solrctl on any host that is configured as part of the SolrCloud deployment (the Solr service in Cloudera
Manager environments) . To run any solrctl command on a host outside of SolrCloud deployment, ensure that
SolrCloud hosts are reachable and provide --zk and --solr command line options.

If you are using solrctl to manage your deployment in an environment that requires Kerberos authentication, you
must have a valid Kerberos ticket, which you can get using kinit.

Cloudera Search | 53

Managing Cloudera Search

For collection configuration, users have the option of interacting directly with ZooKeeper using the instancedir
option or using the Solr ConfigSets API using the config option. For more information, see Managing Configuration
Using Configs or Instance Directories on page 47.

Syntax

The general solrctl command syntax is:

solrctl [options] command [command-arg] [command [command-arg]] ...

Each element and its possible values are described in the following sections.

Options

If used, the following options must precede commands:

• --solr <solr_uri>: Directs solrctl to a SolrCloud web API available at the specified URI. This option is
required for hosts running outside of SolrCloud. A sample URI might be:
http://search01.example.com:8983/solr.

• --zk <zk_ensemble>: Directs solrctl to a particular ZooKeeper quorum. This option is required for hosts
running outside of SolrCloud. For example:
zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181/solr. Output from
solrctl commands that use the --zk option is sent to /dev/null, so no results are displayed.

• --jaas /path/to/jaas.conf: Used to identify a JAAS configuration that specifies the principalwith permissions
tomodify Solrmetadata. The principal is typically solr@EXAMPLE.COM. In Kerberos-enabled environmentswhere
ZooKeeper ACLs protect Solr metadata, you must use this parameter when modifying metadata.

• --help: Prints help.
• --quiet: Suppresses most solrctlmessages.
• --debug: Prints errors to stdout.
• --trace: Prints the executed commands to stdout.

Commands

Thesolrctl commandsinit,instancedir,config,collection,cluster, andsentry affect the entire SolrCloud
deployment and only need to be run once per required operation.

The solrctl core command affects a single SolrCloud host.

• init [--force]: The init command, which initializes the overall state of the SolrCloud deployment, must be
run before starting solr-server daemons for the first time. Use this command cautiously because it erases all
SolrCloud deployment state information from ZooKeeper, including all configuration files. It does not delete
collections. After successful initialization, you cannot recover any previous state.

54 | Cloudera Search

Managing Cloudera Search

•instancedir [--generate <path> [-schemaless]]
 [--create <name> <path>]
 [--update <name> <path>]
 [--get <name> <path>]
 [--delete <name>]
 [--list]

Manipulates instance directories. The following options are supported:

– --generate <path>: Generates an instance directory template on the local filesystem at <path>. The
configuration files are located in the conf subdirectory under <path>.

– -schemaless: Generates a schemaless instance directory template. Formore information on schemaless
support, see Schemaless Mode Overview and Best Practices on page 39.

– --create <name> <path>: Uploads a copy of the instance directory from <path> on the local filesystem
to ZooKeeper. If an instance directory with the specified <name> already exists, this command fails. Use
--update to modify existing instance directories.

– --update <name> <path>: Overwrites an existing instance directory in ZooKeeper using the specified files
on the local filesystem. This command is analogous to first running --delete <name> followed by --create
<name> <path>.

– --get <name> <path>: Downloads the specified instance directory from ZooKeeper to the specified path
on the local filesystem. You can then edit the configuration and then re-upload it using --update.

– --delete <name>: Deletes the specified instance directory from ZooKeeper.
– --list: Lists existing instance directories, including configs created by the solrctl config command.

•config [--create <name> <baseConfig> [-p <name>=<value>]...]
 [--delete name]

Manipulates configs. The following options are supported:

– --create name <baseConfig> [-p <name>=<value>: Creates a new config based on an existing config.
The config is created with the specified <name>, using <baseConfig> as the template. For more information
about config templates, see Config Templates on page 50. The-p name=value option verrides a <baseConfig>
setting. The only config property that you can override is immutable, so the possible options are -p
immutable=true and -p immutable=false. If you are copying an immutable config, such as a template,
use -p immutable=false to make sure that you can edit the new config.

– --delete name: Deletes the specified config. You cannot delete an immutable config without accessing
ZooKeeper directly as the solr super user.

•collection [--create <name> -s <numShards>
 [-a]
 [-c <configName>]
 [-r <replicationFactor>]
 [-m <maxShardsPerHost>]
 [-n <createHostSet>]]
 [--delete <name>]
 [--reload <name>]
 [--stat <name>]
 [--deletedocs <name>]
 [--list]
 [--create-snapshot <snapshotName> -c <collectionName>]
 [--delete-snapshot <snapshotName> -c <collectionName>]
 [--list-snapshots <collectionName>]
 [--describe-snapshot <snapshotName> -c <collectionName>]
 [--prepare-snapshot-export <snapshotName> -c <collectionName> -d <destDir>
[-p <fsPathPrefix>]]
 [--export-snapshot <snapshotName> [-s <sourceDir>] [-c <collectionName>] -d
<destDir>]

 [--restore name -b <backupName> -l <backupLocation> -i <requestId>
 [-a]
 [-c <configName>]
 [-r <replicationFactor>]

Cloudera Search | 55

Managing Cloudera Search

 [-m <maxShardsPerNode>]]
 [--request-status <requestId>]

Manipulates collections. The following options are supported:

– --create <name> -s <numShards> [-a] [-c <configName>] [-r <replicationFactor>] [-m

<maxShardsPerHost>] [-n <hostList>]]: Creates a new collection with <numShards> shards.

The -a option enables automatic addition of replicas (autoAddReplicas=true) if machines hosting existing
shards become unavailable.

The collection uses the specified <configName> for its configuration set, and the specified
<replicationFactor> controls the number of replicas for the collection. Keep inmind that this replication
factor is on top of the HDFS replication factor.

The maximum shards per host is determined by <maxShardsPerHost>, and you can specify specific hosts
for the collection in the <hostList>.

The only required parameters are <name> and -s <numShards>. If -c <configName> is not provided, it
is assumed to be the same as the name of the collection.

– --delete <name>: Deletes a collection.
– --reload <name>: Reloads a collection.
– --stat <name>: Outputs SolrCloud specific run-time information for a collection.
– --deletedocs <name>: Purges all indexed documents from a collection.
– --list: Lists all collections.
– The snapshot-related commands are covered in detail in Backing Up and Restoring Cloudera Search on page

67.

•core [--create <name> [-p <name>=<value>]...]
 [--reload <name>]
 [--unload <name>]
 [--status <name>]

Manipulates cores. The following options are supported:

– --create <name> [-p <name>=<value>]: Creates a new core. The core is configured using
<name>=<value> pairs. For more information about configuration options, see Solr documentation.

– --reload <name>: Reloads a core.
– --unload <name>: Unloads a core.
– --status <name>: Prints status of a core.

•cluster [--get-solrxml <file>]
 [--put-solrxml <file>]
 [--set-property <name> <value>]
 [--remove-property <name>]
 [--get-clusterstate <file>]

Manages cluster configuration. The following options are supported:

– --get-solrxml <file>: Downloads the cluster configuration file solr.xml from ZooKeeper to the local
system.

– --put-solrxml <file>: Uploads the specified file to ZooKeeper as the cluster configuration filesolr.xml.
– [--set-property <name> <value>]: Sets property names and values. Typically used in a deployment

that is not managed by Cloudera Manager. For example, to configure a cluster to use TLS/SSL:

solrctl cluster --set-property urlScheme https

– [--remove-property <name>]: Removes the specified property.
– [--get-clusterstate <file>]: Downloads the clusterstate.json file from ZooKeeper to the local

56 | Cloudera Search

Managing Cloudera Search

http://lucene.apache.org/solr/resources.html

system.

Note: In CDH 6, the clusterstate.json file is split per collection, and cluster state
information is stored in separate, collection-specific files under
/collections/collectionname/state.json. The solrctl command still has the
get-clusterstate command, but the clusterstate.json file that it downloads is
empty.

Cloudera Search | 57

Managing Cloudera Search

There are three ways to access a collection’s state.json file in CDH 6.

58 | Cloudera Search

Managing Cloudera Search

Using the Solr Administration User Interface:

1. Open the Solr Administration User Interface.
2. Click Cloud > Tree, and expand /collections.
3. Open the collection of your choice.
4. Select the state.json file. The contents of the file are displayed on the right.

Cloudera Search | 59

Managing Cloudera Search

Using Solr’s ZooKeeper CLI:

60 | Cloudera Search

Managing Cloudera Search

1. Run the zkcli.sh script as follows:

/usr/lib/solr/bin/zkcli.sh -zkhost zk01.example.com:2181 -cmd getfile
/solr/collections/example/state.json ./state_examplecollection.json

• Replace zk01.example.com with the hostname of your ZooKeeper server.
• Replace example with the name of your collection.
• Replace ./ with the path where you want to save the file.
• Replace examplecollection with the name you want to use for the saved file.

The state.json file is downloaded from ZooKeeper to the local filesystem.

2. Run cat state_examplecollection.json to display the contents of the state.json file.

Sample output would be similar to the following.

{"example":{
 "pullReplicas":"0",
 "replicationFactor":"1",
 "router":{"name":"compositeId"},
 "maxShardsPerNode":"1",
 "autoAddReplicas":"false",
 "nrtReplicas":"1",
 "tlogReplicas":"0",
 "shards":{"shard1":{
 "range":"80000000-7fffffff",
 "state":"active",
 "replicas":{"core_node2":{
 "dataDir":"hdfs://solr01.com:8020/solr/example/core_node2/data/",
 "base_url":"http://solr01.com.com:8983/solr",
 "node_name":"solr01.com.com:8983_solr",
 "type":"NRT",
 "force_set_state":"false",
 "ulogDir":"hdfs://solr01.com.com:8020/solr/example/core_node2/data/tlog",

 "core":"example_shard1_replica_n1",
 "shared_storage":"true",
 "state":"active",
 "leader":"true"}}}}}}[root@solr01 ~]#

Using Solr API:

1. Run the curl command and retrieve a json file that contains the status of every collection:

$ curl --negotiate -u :
'http://solr01.com:8983/solr/admin/collections?action=CLUSTERSTATUS'

Note: The use of the curl command depends onwhether Kerberos and SSL are enabled
or not. If Kerberos is enabled, it needs kinit. If SSL is enabled, the http port changes
to https and the port default value changes from 8983 to 8985. For more information,
see Using Kerberos with curl.

•sentry [--create-role <role>]
 [--drop-role <role>]
 [--add-role-group <role> <group>]
 [--delete-role-group <role> <group>]
 [--list-roles [-g <group>]]
 [--grant-privilege <role> <privilege>]
 [--revoke-privilege <role> <privilege>]
 [--list-privileges <role>]
 [--convert-policy-file <file> [-dry-run]]

Manages Sentry configuration. The following options are supported:

Cloudera Search | 61

Managing Cloudera Search

– [--create-role <role>]: Creates a new Sentry role using the specified name.
– [--drop-role <role>]: Deletes the specified Sentry role.
– [--add-role-group <role> <group>]: Assigns an existing Sentry role to the specified group.
– [--delete-role-group <role> <group>]: Removes the specified role from the specified group.
– [--list-roles [-g group]]: Lists all roles. Optionally, lists all roles assigned to the specified groupwhen

-g <group> is used.
– [--grant-privilege <role> <privilege>]: Grants the specified privilege to the specified role. For

information on privilege syntax, see Using Roles and Privileges with Sentry.
– [--revoke-privilege <role> <privilege>]: Revokes the specified privilege from the specified role.
– [--list-privileges <role>]: Lists all privileges granted to the specified role.
– [--convert-policy-file <file> [-dry-run]]: Converts the specified policy file to permissions in

the Sentry service. This command adds roles, assigns roles to group, and grants permissions. For CDH versions
5.12 and higher, the Solr Gateway role includes HDFS configuration files to facilitate Sentry integration.
Because of this, the <file> path must be specified as file:///path/to/file, or else the solrctl
sentry command attempts to locate the file in HDFS.

The file-based model allows case-sensitive role names. During conversion, all roles and groups are converted
to lower case.

• If a policy-file conversionwill change the case of roles or groups, a warning is presented. Policy conversion
can proceed, but if you have enabled document-level security and use role names as your tokens, you
must re-index using the new lower case role names after conversion is complete.

• If a policy-file conversion will change the case of roles or groups, creating a name collision, an error
occurs and conversion cannot occur. In such a case, youmust eliminate the collisions before proceeding.
For example, you could rename or delete the roles or groups that cause a collision.

The -dry-run option runs the process of converting the policy file, but sends the results to stdout without
applying the changes. This can be used for quick turnaround when debugging failures.

After converting the policy file to permissions in the Sentry service, make sure to enable Sentry for Solr, as
described in Migrating from Sentry Policy Files to the Sentry Service.

Example solrctl Usage
This topic includes some examples of:

• Configuration changes that may be required for solrctl to function as desired.
• Common tasks completed with solrctl.

Using solrctl with an HTTP proxy

Using solrctl tomanage a deployment in an environment that uses an HTTP proxy fails because solrctl uses curl,
which attempts to use the proxy. You can disable the proxy so solrctl succeeds:

• Modify the settings for the current shell by exporting the NO_PROXY environment variable. For example:

export NO_PROXY='*'

• Modify the settings for single commands by prefacing solrctl with NO_PROXY='*'. For example:

NO_PROXY='*' solrctl collection --create collectionName -s 3

62 | Cloudera Search

Managing Cloudera Search

Creating Replicas of Existing Shards

You can create additional replicas of existing shards using a command of the following form:

solrctl core --create <newCore> -p collection=<name> \
-p shard=<shard_to_replicate>

For example to create a new replica of collection named collection1 that is comprised of shard1, use the following
command:

solrctl core --create collection1_shard1_replica2 \
-p collection=collection1 -p shard=shard1

Converting Instance Directories to Configs

Cloudera Search supports converting existing deployments that use instance directories to use configs:

1. Create a temporary config based on the existing instance directory. For example, if the instance directory name
is weblogs_config:

solrctl config --create weblogs_config_temp weblogs_config \
-p immutable=false

2. Delete the existing instance directory. For example:

solrctl instancedir --delete weblogs_config

3. Create a config using the same name as the instance directory you just deleted, based on the temporary config
you created earlier.

solrctl config --create weblogs_config weblogs_config_temp \
-p immutable=false

4. Delete the temporary config:

solrctl config --delete weblogs_config_temp

5. Reload the affected collection (weblogs in this example):

solrctl collection --reload weblogs

Configuring Sentry for a Collection

If you have enabled Apache Sentry for authorization, youmust have UPDATE permission for the admin=collections
object as well as the collection you are creating (test_collection in this example). You can also use the wildcard
(*) to grant permissions to create any collection.

Formore information on configuring Sentry and granting permissions, see Configuring Sentry Authorization for Cloudera
Search.

To grant your user account (jdoe in this example) the necessary permissions:

1. Switch to the Sentry admin user (solr in this example) using kinit:

kinit solr@EXAMPLE.COM

2. Create a Sentry role for your user account:

solrctl sentry --create-role test_role

Cloudera Search | 63

Managing Cloudera Search

3. Map a group to this role. In this example, user jdoe is a member of the eng group:

solrctl sentry --add-role-group test_role eng

4. Grant UPDATE privileges to the test_role role for the admin=collections object and test_collection
collection:

solrctl sentry --grant-privilege test_role 'admin=collections->action=UPDATE'
solrctl sentry --grant-privilege test_role 'collection=test_collection->action=UPDATE'

For more information on the Sentry privilege model for Cloudera Search, see Authorization Privilege Model for
Cloudera Search.

Migrating Solr Replicas
When you replace a host, migrating replicas on that host to the new host, instead of depending on failure recovery,
can help ensure optimal performance.

Where possible, the Solr service routes requests to the proper host. Both ADDREPLICA and DELETEREPLICA
Collections API calls can be sent to any host in the cluster. For more information on the Collections API, see the
Collections API section of Apache Solr Reference Guide 4.10 (PDF).

• For adding replicas, the node parameter ensures the new replica is created on the intended host. If no host is
specified, Solr selects a host with relatively fewer replicas.

• For deleting replicas, the request is routed to the host that hosts the replica to be deleted.

Adding replicas can be resource intensive. For best results, add replicas when the system is not under heavy load. For
example, do not add replicas when heavy indexing is occurring or when MapReduceIndexerTool jobs are running.

Cloudera recommends using API calls to create and unload cores. Do not use the Cloudera Manager Admin Console
or the Solr Admin UI for these tasks.

This procedure uses the following names:

• Host names:

– Origin: solr01.example.com.
– Destination: solr02.example.com.

• Collection name: email
• Replicas:

– The original replica email_shard1_replica1, which is on solr01.example.com.
– The new replica email_shard1_replica2, which will be on solr02.example.com.

To migrate a replica to a new host:

1. (Optional) If you want to add a replica to a particular node, review the contents of the live_nodes directory on
ZooKeeper to find all nodes available to host replicas. Open the Solr Administration User interface, click Cloud,
click Tree, and expand live_nodes. The Solr Administration User Interface, including live_nodes, might appear as
follows:

64 | Cloudera Search

Managing Cloudera Search

http://archive.apache.org/dist/lucene/solr/ref-guide/apache-solr-ref-guide-4.10.pdf

Note: Information about Solr nodes can also be found in clusterstate.json, but that file
only lists nodes currently hosting replicas. Nodes running Solr but not currently hosting replicas
are not listed in clusterstate.json.

2. Add the new replica on solr02.example.com using the ADDREPLICA API call.

http://solr01.example.com:8983/solr/admin/collections?action=ADDREPLICA&collection=email&shard=shard1&node=solr02.example.com:8983_solr

3. Verify that the replica creation succeeds and moves from recovery state to ACTIVE. You can check the replica
status in the Cloud view, which can be found at a URL similar to:
http://solr02.example.com:8983/solr/#/~cloud.

Cloudera Search | 65

Managing Cloudera Search

Note: Do not delete the original replica until the new one is in the ACTIVE state.When the newly
added replica is listed as ACTIVE, the index has been fully replicated to the newly added replica.
The total time to replicate an index varies according to factors such as network bandwidth and
the size of the index. Replication times on the scale of hours are not uncommon and do not
necessarily indicate a problem.

You can use the details command to get an XML document that contains information about
replication progress. Use curl or a browser to access a URI similar to:

http://solr02.example.com:8983/solr/email_shard1_replica2/replication?command=details

Accessing this URI returns an XML document that contains content about replication progress. A
snippet of the XML content might appear as follows:

...
<str name="numFilesDownloaded">126</str>
<str name="replication StartTime">Tue Jan 21 14:34:43 PST 2014</str>
<str name="timeElapsed">457s</str>
<str name="currentFile">4xt_Lucene41_0.pos</str>
<str name="currentFileSize">975.17 MB</str>
<str name="currentFileSizeDownloaded">545 MB</str>
<str name="currentFileSizePercent">55.0</str>
<str name="bytesDownloaded">8.16 GB</str>
<str name="totalPercent">73.0</str>
<str name="timeRemaining">166s</str>
<str name="downloadSpeed">18.29 MB</str>
...

4. Use the CLUSTERSTATUS API call to retrieve information about the cluster, including current cluster status:

http://solr01.example.com:8983/solr/admin/collections?action=clusterstatus&wt=json&indent=true

Review the returned information to find the correct replica to remove. An example of the JSON file might appear
as follows:

5. Delete the old replica on solr01.example.com server using the DELETEREPLICA API call:

http://solr01.example.com:8983/solr/admin/collections?action=DELETEREPLICA&collection=email&shard=shard1&replica=core_node2

The DELETEREPLICA call removes the datadir.

66 | Cloudera Search

Managing Cloudera Search

Backing Up and Restoring Cloudera Search

Important: The following documentation is about backing up and restoring Cloudera Search, which
is based on the SolrCloud implementation of Apache Solr. Cloudera Search does not support backups
using the Solr replication handler.

CDH 5.9 and higher include a backup/restore mechanism primarily designed to provide disaster recovery capability
for Apache Solr. You can create a backup of a Solr collection and restore from this backup if the index is corrupted due
to a software bug, or if an administrator accidentally or maliciously deletes a collection or a subset of documents. This
procedure can also be used as part of a cluster migration (for example, if you are migrating to a cloud environment),
or to recover from a failed upgrade.

At a high level, the steps to back up a Solr collection are as follows:

1. Create a snapshot.
2. If you are exporting the snapshot to a remote cluster, prepare the snapshot for export.
3. Export the snapshot to either the local cluster or a remote one. This step uses the Hadoop DistCP utility.

The backup operation uses the native Solr snapshot capability to capture a point-in-time, consistent state of index data
for a specified Solr collection. You can then use the Hadoop DistCp utility to copy the index files and the associated
metadata for that snapshot to a specified location in HDFS or a cloud object store (for example, Amazon S3).

The Solr snapshotmechanism is based on theApache Lucene IndexDeletionPolicy abstraction,which enables applications
such as Cloudera Search to manage the lifecycle of specific index commits. A Solr snapshot assigns a user-specified
name to the latest hard-committed state. After the snapshot is created, the Lucene index files associated with the
commit are retained until the snapshot is explicitly deleted. The index files associated with the snapshot are preserved
regardless of document updates and deletions, segment merges during index optimization, and so on.

Creating a snapshot does not take much time because it only preserves the snapshot metadata and does not copy the
associated index files. A snapshot does have some storage overhead corresponding to the size of the index because
the index files are retained indefinitely until the snapshot is deleted.

Solr snapshots can help you recover from some scenarios, such as accidental ormalicious datamodification or deletion.
They are insufficient to address others, such as index corruption and accidental or malicious administrative action (for
example, deleting a collection, changing collection configuration, and so on). To address these situations, export
snapshots regularly and before performing non-trivial administrative operations such as changing the schema, splitting
shards, or deleting replicas.

Exporting a snapshot exports the collection metadata as well as the corresponding Lucene index files. This operation
internally uses the Hadoop DistCp utility to copy the Lucene index files and metadata, which creates a full backup at
the specified location. After the backup is created, the original Solr snapshot can be safely deleted if necessary.

Important: If you create a snapshot and do not export it, you do not have a complete backup, and
cannot restore index files if they are accidentally or maliciously deleted.

Prerequisites

Before you begin backing up Cloudera Search, make sure that solr.xml contains following configuration section:

 <backup>
 <repository name="hdfs"
class="org.apache.solr.core.backup.repository.HdfsBackupRepository" default="true">
 <str name="solr.hdfs.home">${solr.hdfs.home:}</str>
 <str name="solr.hdfs.confdir">${solr.hdfs.confdir:}</str>
 <str
name="solr.hdfs.security.kerberos.enabled">${solr.hdfs.security.kerberos.enabled:false}</str>

 <str
name="solr.hdfs.security.kerberos.keytabfile">${solr.hdfs.security.kerberos.keytabfile:}</str>

Cloudera Search | 67

Managing Cloudera Search

https://lucene.apache.org/solr/guide/7_0/making-and-restoring-backups.html#standalone-mode-backups
https://lucene.apache.org/solr/guide/7_0/making-and-restoring-backups.html#standalone-mode-backups
https://lucene.apache.org/core/7_0_0/core/org/apache/lucene/index/IndexDeletionPolicy.html

 <str
name="solr.hdfs.security.kerberos.principal">${solr.hdfs.security.kerberos.principal:}</str>

 <str
name="solr.hdfs.permissions.umask-mode">${solr.hdfs.permissions.umask-mode:000}</str>
 </repository>
 </backup>

New installations of CDH 5.9 and higher include this section. For upgrades, you must manually add it and restart the
Solr service.

To edit the solr.xml file:

1. Download solr.xml from ZooKeeper:

solrctl cluster --get-solrxml $HOME/solr.xml

2. Edit the file locally and add the <backup> section at the end of the solr.xml file before the closing </solr>
tag.

3. Upload the modified file to ZooKeeper:

solrctl cluster --put-solrxml $HOME/solr.xml

Sentry Configuration

As part of backup/restoremechanism, the following APIs are introduced. The following table shows the required Sentry
authorization privileges for each action. For more information on configuring Sentry privileges, see Configuring Sentry
Authorization for Cloudera Search.

Table 4: Solr Snapshot Sentry Permissions

ActionRequired Privileges

CREATESNAPSHOTadmin=collections->action=UPDATE
collection=<collectionName>->action=UPDATE DELETESNAPSHOT

RESTORE

LISTSNAPSHOTSadmin=collections->action=QUERY
collection=<collectionName>->action=QUERY BACKUP

Backing Up a Solr Collection

Use the following procedure to back up a Solr collection. For more information on the commands used, see Cloudera
Search Backup and Restore Command Reference on page 71.

If you are using a secure (Kerberos-enabled) cluster, specify your jaas.conf file by adding the following parameter
to each command:

--jaas /path/to/jaas.conf

If TLS is enabled for the Solr service, specify the truststore and password using the ZKCLI_JVM_FLAGS environment
variable before you begin the procedure:

export ZKCLI_JVM_FLAGS="-Djavax.net.ssl.trustStore=/path/to/truststore \
-Djavax.net.ssl.trustStorePassword=trustStorePassword"

68 | Cloudera Search

Managing Cloudera Search

1. Create a snapshot. On a host running Solr Server, run the following command:

solrctl collection --create-snapshot <snapshotName> -c <collectionName>

For example, to create a snapshot for a collection named tweets:

solrctl collection --create-snapshot tweets-$(date +%Y%m%d%H%M) -c tweets
Successfully created snapshot with name tweets-201803281043 for collection tweets

2. If you are backing up the Solr collection to a remote cluster, prepare the snapshot for export. If you are backing
up the Solr collection to the local cluster, skip this step.

solrctl collection --prepare-snapshot-export <snapshotName> -c <collectionName> -d
<destDir>

The destination HDFS directory path (specified by the -d option) must exist on the local cluster before you run
this command. Make sure that the Solr superuser (solr by default) has permission to write to this directory.

For example:

hdfs dfs -mkdir -p /path/to/backup-staging/tweets-201803281043
hdfs dfs -chown :solr /path/to/backup-staging/tweets-201803281043
solrctl collection --prepare-snapshot-export tweets-201803281043 -c tweets \
-d /path/to/backup-staging/tweets-201803281043

3. Export the snapshot. This step uses theDistCp utility to back up the collectionmetadata aswell as the corresponding
index files. The destination directory must exist and be writable by the Solr superuser (solr by default). To export
the snapshot to a remote cluster, run the following command:

solrctl collection --export-snapshot <snapshotName> -s <sourceDir> -d
<protocol>://<namenode>:<port>/<destDir>

For example:

• HDFS protocol:

solrctl collection --export-snapshot tweets-201803281043 -s
/path/to/backup-staging/tweets-201803281043 \
-d hdfs://nn01.example.com:8020/path/to/backups

• WebHDFS protocol:

solrctl collection --export-snapshot tweets-201803281043 -s
/path/to/backup-staging/tweets-201803281043 \
-d webhdfs://nn01.example.com:20101/path/to/backups

To export the snapshot to the local cluster, run the following command:

solrctl collection --export-snapshot <snapshotName> -c <collectionName> -d <destDir>

For example:

solrctl collection --export-snapshot tweets-201803281043 -c tweets -d /path/to/backups/

4. Delete the snapshot:

solrctl collection --delete-snapshot <snapshotName> -c <collectionName>

Cloudera Search | 69

Managing Cloudera Search

For example:

solrctl collection --delete-snapshot tweets-201803281043 -c tweets

Restoring a Solr Collection

Use the following procedure to restore a Solr collection. For more information on the commands used, see Cloudera
Search Backup and Restore Command Reference on page 71.

If you are using a secure (Kerberos-enabled) cluster, specify your jaas.conf file by adding the following parameter
to each command:

-jaas /path/to/jaas.conf

If TLS is enabled for the Solr service, specify the truststore and password by using the ZKCLI_JVM_FLAGS environment
variable before you begin the procedure:

export ZKCLI_JVM_FLAGS="-Djavax.net.ssl.trustStore=/path/to/truststore \
-Djavax.net.ssl.trustStorePassword=trustStorePassword"

1. If you are restoring from a backup stored on a remote cluster, copy the backup from the remote cluster to the
local cluster. If you are restoring from a local backup, skip this step.

Run the following commands on the cluster to which you want to restore the collection:

hdfs dfs -mkdir -p /path/to/restore-staging
hadoop distcp <protocol>://<namenode>:<port>/path/to/backup /path/to/restore-staging

For example:

• HDFS protocol:

hadoop distcp hdfs://nn01.example.com:8020/path/to/backups/tweets-201803281043
/path/to/restore-staging

• WebHDFS protocol:

hadoop distcp webhdfs://nn01.example.com:20101/path/to/backups/tweets-201803281043
/path/to/restore-staging

2. Start the restore procedure. Run the following command:

solrctl collection --restore <restoreCollectionName> -l <backupLocation> -b <snapshotName>
 -i <requestId>

Make sure that you use a unique <requestID> each time you run this command. For example:

solrctl collection --restore tweets -l /path/to/restore-staging -b tweets-201803281043
 -i restore-tweets

3. Monitor the status of the restore operation. Run the following command periodically:

solrctl collection --request-status <requestId>

Look for <str name="state"> in the output. For example (emphasis added):

solrctl collection --request-status restore-tweets
 <?xml version="1.0" encoding="UTF-8"?> <response> <lst name="responseHeader"> <int
name="status"> 0</int> <int name="QTime"> 1</int> </lst> \

70 | Cloudera Search

Managing Cloudera Search

<lst name="status"> <str name="state"> completed</str> <str name="msg"> found
restore-tweets in completed tasks</str> </lst> </response>

The state parameter can be one of the following:

• running: The restore operation is running.
• completed: The restore operation is complete.
• failed: The restore operation failed.
• notfound: The specified <requestID> does not exist.

Cloudera Search Backup and Restore Command Reference

Use the following commands to create snapshots, back up, and restore Solr collections. If you are using a secure
(Kerberos-enabled) cluster, specify your jaas.conf file by adding the following parameter to the command:

-jaas /path/to/jaas.conf

If TLS is enabled for the Solr service, specify the truststore and password by using the ZKCLI_JVM_FLAGS environment
variable:

export ZKCLI_JVM_FLAGS="-Djavax.net.ssl.trustStore=/path/to/truststore \
-Djavax.net.ssl.trustStorePassword=trustStorePassword"

Create a snapshot

Command: solrctl collection --create-snapshot <snapshotName> -c <collectionName>

Description: Creates a named snapshot for the specified collection.

Delete a snapshot

Command: solrctl collection --delete-snapshot <snapshotName> -c <collectionName>

Description: Deletes the specified snapshot for the specified collection.

Describe a snapshot

Command: solrctl collection --describe-snapshot <snapshotName> -c <collectionName>

Description: Provides detailed information about a snapshot for the specified collection.

List all snapshots

Command: solrctl collection --list-snapshots <collectionName>

Description: Lists all snapshots for the specified collection.

Prepare snapshot for export to a remote cluster

Command: solrctl collection --prepare-snapshot-export <snapshotName> -c <collectionName>
-d <destDir>

Description: Prepares the snapshot for export to a remote cluster. If you are exporting the snapshot to the local cluster,
you do not need to run this command. This command generates collection metadata as well as information about the
Lucene index files corresponding to the snapshot.

The destination HDFS directory path (specified by the -d option) must exist on the local cluster before you run this
command. Make sure that the Solr superuser (solr by default) has permission to write to this directory.

If you are running the snapshot export command on a remote cluster, specify the HDFS protocol (such as WebHDFS
or HFTP) to be used for accessing the Lucene index files corresponding to the snapshot on the source cluster. For more

Cloudera Search | 71

Managing Cloudera Search

information about the Hadoop DistCP utility, see Copying Cluster Data Using DistCp. This configuration is driven by the
-p option which expects a fully qualified URI for the root filesystem on the source cluster, for example
webhdfs://namenode.example.com:20101/.

Export snapshot to local cluster

Command: solrctl collection --export-snapshot <snapshotName> -c <collectionName> -d
<destDir>

Description: Creates a backup copy of the Solr collection metadata as well as the associated Lucene index files at the
specified location. The -d configuration option specifies the directory path where this backup copy is be created. This
directory must exist before exporting the snapshot, and the Solr superuser must be able to write to it.

Export snapshot to remote cluster

Command: solrctl collection --export-snapshot <snapshotName> -s <sourceDir> -d <destDir>

Description: Creates a backup copy of the Solr collection snapshot, which includes collection metadata as well as
Lucene index files at the specified location. The -d configuration option specifies the directory path where this backup
copy is be created.

Make sure that you prepare the snapshot for export before exporting it to a remote cluster.

You can run this command on either the source or destination cluster, depending on your environment and the DistCp
utility requirements. For more information, see Copying Cluster Data Using DistCp. If the destination cluster does not
have the solrctl utility, you must run the command on the source cluster. The exported snapshot state can then be
copied using standard tools, such as DistCp.

The source and destination directory paths (specified by the -s and -d options, respectively) must be specified relative
to the cluster fromwhich you are running the command. Directories on the local cluster are formatted as/path/to/dir,
and directories on the remote cluster are formatted as <protocol>://<namenode>:<port>/path/to/dir. For
example:

• Local path: /solr-backup/tweets-2016-10-19
• Remote HDFS path: hdfs://nn01.example.com:8020/solr-backup/tweets-2016-10-19
• Remote WebHDFS path: webhdfs://nn01.example.com:20101/solr-backup/tweets-2016-10-19

The source directory (specified by the -s option) is the directory containing the output of the solrctl collection
--prepare-snapshot-export command. The destination directory (specified by the -d option) must exit on the
destination cluster before running this command.

If your cluster is secured (Kerberos-enabled), initialize your Kerberos credentials by using kinit before executing this
command.

Restore from a local snapshot

Command: solrctl collection --restore <restoreCollectionName> -l <backupLocation> -b
<snapshotName> -i <requestId>

Description: Restores the state of an earlier created backup as a new Solr collection. Run this command on the cluster
on which you want to restore the backup.

The -l configuration option specifies the local HDFS directory where the backup is stored. If the backup is stored on
a remote cluster, you must copy it to the local cluster before restoring it. The Solr superuser (solr by default) must
have permission to read from this directory.

The -b configuration option specifies the name of the backup to be restored.

Because the restore operation can take a long time to complete depending on the size of the exported snapshot, it is
run asynchronously. The -i configuration parameter specifies a unique identifier for tracking operation. For more
information, see Check the status of an operation on page 73.

The optional -a configuration option enables the autoAddReplicas feature for the new Solr collection.

72 | Cloudera Search

Managing Cloudera Search

The optional -c configuration option specifies the configName for the new Solr collection. If this option is not specified,
the configName of the original collection at the time of backup is used. If the specified configName does not exist,
the restore operation creates a new configuration from the backup.

The optional -r configuration option specifies the replication factor for the new Solr collection. If this option is not
specified, the replication factor of the original collection at the time of backup is used.

The optional -m configuration option specifies the maximum number of replicas (maxShardsPerNode) to create on
each Solr Server. If this option is not specified, the maxShardsPerNode configuration of the original collection at the
time of backup is used.

If your cluster is secured (Kerberos-enabled), initialize your Kerberos credentials using kinit before running this
command.

Check the status of an operation

Command: solrctl collection --request-status <requestId>

Description: Displays the status of the specified operation. The status can be one of the following:

• running: The restore operation is running.
• completed: The restore operation is complete.
• failed: The restore operation failed.
• notfound: The specified requestID is not found.

If your cluster is secured (Kerberos-enabled), initialize your Kerberos credentials (using kinit) before running this
command.

Cloudera Search | 73

Managing Cloudera Search

Extracting, Transforming, and Loading DataWith ClouderaMorphlines

Cloudera Morphlines is an open-source framework that reduces the time and skills required to build or change Search
indexing applications. A morphline is a rich configuration file that simplifies defining an ETL transformation chain. Use
these chains to consume any kind of data from any data source, process the data, and load the results into Cloudera
Search. Executing in a small, embeddable Java runtime system, morphlines can be used for near real-time applications
as well as batch processing applications. The following diagram shows the process flow:

Morphlines can be seen as an evolution of Unix pipelines, where the data model is generalized to work with streams
of generic records, including arbitrary binary payloads. Morphlines can be embedded into Hadoop components such
as Search, Flume, MapReduce, Pig, Hive, and Sqoop.

The framework ships with a set of frequently used high-level transformation and I/O commands that can be combined
in application-specificways. The plug-in systemallows you to add new transformations and I/O commands and integrates
existing functionality and third-party systems.

This integration enables the following:

• Rapid Hadoop ETL application prototyping
• Complex stream and event processing in real time
• Flexible log file analysis
• Integration of multiple heterogeneous input schemas and file formats
• Reuse of ETL logic building blocks across Search applications

The high-performance Cloudera runtime compiles a morphline, processing all commands for a morphline in the same
thread and adding no artificial overhead. For high scalability, you can deploy many morphline instances on a cluster
in many Flume agents and MapReduce tasks.

The following components execute morphlines:

• MapReduceIndexerTool
• Flume Morphline Solr Sink and Flume MorphlineInterceptor

Cloudera also provides a corresponding Cloudera Search Tutorial.

Data Morphlines Support

Morphlines manipulate continuous or arbitrarily large streams of records. The data model can be described as follows:
A record is a set of named fields where each field has an ordered list of one or more values. A value can be any Java
Object. That is, a record is essentially a hash table where each hash table entry contains a String key and a list of Java
Objects as values. (The implementation uses Guava’s ArrayListMultimap, which is a ListMultimap). Note that a
field can have multiple values and any two records need not use common field names. This flexible data model
corresponds exactly to the characteristics of the Solr/Lucene data model, meaning a record can be seen as a
SolrInputDocument. A field with zero values is removed from the record - fields with zero values effectively do not
exist.

Not only structured data, but also arbitrary binary data can be passed into and processed by amorphline. By convention,
a record can contain an optional field named _attachment_body, which can be a Java java.io.InputStream or
Java byte[]. Optionally, such binary input data can be characterized in more detail by setting the fields named

74 | Cloudera Search

Extracting, Transforming, and Loading Data With Cloudera Morphlines

_attachment_mimetype (such as application/pdf) and _attachment_charset (such as UTF-8) and
_attachment_name (such as cars.pdf), which assists in detecting and parsing the data type.

This generic data model is useful to support a wide range of applications.

Important: Cloudera Search does not support Solr contribmodules, such as DataImportHandler.
Morphlines, Spark Crunch indexer,MapReduce and Lily HBase indexers are part of the Cloudera Search
product itself, therefore they are supported.

How Morphlines Act on Data

A command transforms a record into zero or more records. Commands can access all record fields. For example,
commands can parse fields, set fields, remove fields, rename fields, find and replace values, split a field into multiple
fields, split a field into multiple values, or drop records. Often, regular expression based pattern matching is used as
part of the process of acting on fields. The output records of a command are passed to the next command in the chain.
A command has a Boolean return code, indicating success or failure.

For example, consider the case of a multi-line input record: A command could take this multi-line input record and
divide the single record into multiple output records, one for each line. This output could then later be further divided
using regular expression commands, splitting each single line record out into multiple fields in application specific
ways.

A command can extract, clean, transform, join, integrate, enrich and decorate records inmany otherways. For example,
a command can join records with external data sources such as relational databases, key-value stores, local files or IP
Geo lookup tables. It can also perform tasks such as DNS resolution, expand shortened URLs, fetch linked metadata
from social networks, perform sentiment analysis and annotate the record accordingly, continuouslymaintain statistics
for analytics over sliding windows, compute exact or approximate distinct values and quantiles.

A command can also consume records and pass them to external systems. For example, a command can load records
into Solr orwrite them to aMapReduce Reducer or pass them into an online dashboard. The following diagram illustrates
some pathways along which data might flow with the help of morphlines:

Morphline Characteristics

A command can contain nested commands. Thus, a morphline is a tree of commands, akin to a push-based data flow
engine or operator tree in DBMS query execution engines.

Cloudera Search | 75

Extracting, Transforming, and Loading Data With Cloudera Morphlines

A morphline has no notion of persistence, durability, distributed computing, or host failover. A morphline is basically
just a chain of in-memory transformations in the current thread. There is no need for a morphline to manage multiple
processes, hosts, or threads because this is already addressed by host systems such as MapReduce, Flume, or Storm.
However, amorphline does support passing notifications on the control plane to command subtrees. Such notifications
include BEGIN_TRANSACTION, COMMIT_TRANSACTION, ROLLBACK_TRANSACTION, SHUTDOWN.

Themorphline configuration file is implemented using the HOCON format (Human-Optimized Config Object Notation).
HOCON is basically JSON slightly adjusted for configuration file use cases. HOCON syntax is defined at HOCON github
page and is also used by Akka and Play.

How Morphlines Are Implemented

Cloudera Search includes several maven modules that contain morphline commands for integration with Apache Solr
including SolrCloud, flexible log file analysis, single-line records, multi-line records, CSV files, regular expression based
pattern matching and extraction, operations on record fields for assignment and comparison, operations on record
fields with list and set semantics, if-then-else conditionals, string and timestamp conversions, scripting support for
dynamic Java code, a small rules engine, logging, metrics and counters, integration with Avro, integration with Apache
Tika parsers, integration with Apache Hadoop Sequence Files, auto-detection of MIME types from binary data using
Apache Tika, and decompression and unpacking of arbitrarily nested container file formats, among others. These are
described in the following chapters.

Example Morphline Usage
The following examples show how you can use morphlines.

Using Morphlines to Index Avro

This example illustrates using a morphline to index an Avro file with a schema.

1. View the content of the Avro file to understand the data:

$ wget http://archive.apache.org/dist/avro/avro-1.7.4/java/avro-tools-1.7.4.jar
$ java -jar avro-tools-1.7.4.jar tojson \
/usr/share/doc/search*/examples/test-documents/sample-statuses-20120906-141433.avro

2. Inspect the schema of the Avro file:

$ java -jar avro-tools-1.7.4.jar getschema
/usr/share/doc/search*/examples/test-documents/sample-statuses-20120906-141433.avro

{
 "type" : "record",
 "name" : "Doc",
 "doc" : "adoc",
 "fields" : [{
 "name" : "id",
 "type" : "string"
 }, {
 "name" : "user_statuses_count",
 "type" : ["int", "null"]
 }, {
 "name" : "user_screen_name",
 "type" : ["string", "null"]
 }, {
 "name" : "created_at",
 "type" : ["string", "null"]
 }, {
 "name" : "text",
 "type" : ["string", "null"]
 }

 ...

76 | Cloudera Search

Extracting, Transforming, and Loading Data With Cloudera Morphlines

https://github.com/typesafehub/config/blob/master/HOCON.md
https://github.com/typesafehub/config/blob/master/HOCON.md
http://akka.io
http://www.playframework.com/

]
}

3. Extract the id, user_screen_name, created_at, and text fields from the Avro records, and then store and
index them in Solr, using the following Solr schema definition in schema.xml:

<fields>
 <field name="id" type="string" indexed="true" stored="true" required="true"
multiValued="false" />
 <field name="username" type="text_en" indexed="true" stored="true" />
 <field name="created_at" type="tdate" indexed="true" stored="true" />
 <field name="text" type="text_en" indexed="true" stored="true" />

 <field name="_version_" type="long" indexed="true" stored="true"/>
 <dynamicField name="ignored_*" type="ignored"/>
</fields>

The Solr output schema omits some Avro input fields, such as user_statuses_count. If your data includes Avro
input fields that are not included in the Solr output schema, youmaywant tomake changes to data as it is ingested.
For example, suppose you need to rename the input field user_screen_name to the output field username.
Also suppose that the time format for the created_at field is yyyy-MM-dd'T'HH:mm:ss'Z'. Finally, suppose
any unknown fields present are to be removed. Recall that Solr throws an exception on any attempt to load a
document that contains a field that is not specified in schema.xml.

4. These transformation rules that make it possible to modify data so it fits your particular schema can be expressed
with morphline commands called readAvroContainer, extractAvroPaths, convertTimestamp,
sanitizeUnknownSolrFields and loadSolr, by editing a morphline.conf file.

Specify server locations in a SOLR_LOCATOR variable; used later in
variable substitutions:
SOLR_LOCATOR : {
 # Name of solr collection
 collection : collection1

 # ZooKeeper ensemble
 zkHost : "127.0.0.1:2181/solr"
}

Specify an array of one or more morphlines, each of which defines an ETL
transformation chain. A morphline consists of one or more potentially
nested commands. A morphline is a way to consume records such as Flume events,
HDFS files or blocks, turn them into a stream of records, and pipe the stream
of records through a set of easily configurable transformations on its way to
Solr.
morphlines : [
 {
 # Name used to identify a morphline. For example, used if there are multiple
 # morphlines in a morphline config file.
 id : morphline1

 # Import all morphline commands in these java packages and their subpackages.
 # Other commands that may be present on the classpath are not visible to this
 # morphline.
 importCommands : ["org.kitesdk.**", "org.apache.solr.**"]

 commands : [
 {
 # Parse Avro container file and emit a record for each Avro object
 readAvroContainer {
 # Optionally, require the input to match one of these MIME types:
 # supportedMimeTypes : [avro/binary]

 # Optionally, use a custom Avro schema in JSON format inline:
 # readerSchemaString : """<json can go here>"""

 # Optionally, use a custom Avro schema file in JSON format:
 # readerSchemaFile : /path/to/syslog.avsc
 }

Cloudera Search | 77

Extracting, Transforming, and Loading Data With Cloudera Morphlines

http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#readAvroContainer
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#extractAvroPaths
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#convertTimestamp
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#sanitizeUnknownSolrFields
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#loadSolr

 }

 {
 # Consume the output record of the previous command and pipe another
 # record downstream.
 #
 # extractAvroPaths is a command that uses zero or more Avro path
 # excodeblockssions to extract values from an Avro object. Each excodeblockssion

 # consists of a record output field name, which appears to the left of the
 # colon ':' and zero or more path steps, which appear to the right.
 # Each path step is separated by a '/' slash. Avro arrays are
 # traversed with the '[]' notation.
 #
 # The result of a path excodeblockssion is a list of objects, each of which
 # is added to the given record output field.
 #
 # The path language supports all Avro concepts, including nested
 # structures, records, arrays, maps, unions, and others, as well as a flatten
 # option that collects the primitives in a subtree into a flat list. In the
 # paths specification, entries on the left of the colon are the target Solr
 # field and entries on the right specify the Avro source paths. Paths are read
 # from the source that is named to the right of the colon and written to the
 # field that is named on the left.
 extractAvroPaths {
 flatten : false
 paths : {
 id : /id
 username : /user_screen_name
 created_at : /created_at
 text : /text
 }
 }
 }

 # Consume the output record of the previous command and pipe another
 # record downstream.
 #
 # convert timestamp field to native Solr timestamp format
 # such as 2012-09-06T07:14:34Z to 2012-09-06T07:14:34.000Z
 {
 convertTimestamp {
 field : created_at
 inputFormats : ["yyyy-MM-dd'T'HH:mm:ss'Z'", "yyyy-MM-dd"]
 inputTimezone : America/Los_Angeles
 outputFormat : "yyyy-MM-dd'T'HH:mm:ss.SSS'Z'"
 outputTimezone : UTC
 }
 }

 # Consume the output record of the previous command and pipe another
 # record downstream.
 #
 # This command deletes record fields that are unknown to Solr
 # schema.xml.
 #
 # Recall that Solr throws an exception on any attempt to load a document
 # that contains a field that is not specified in schema.xml.
 {
 sanitizeUnknownSolrFields {
 # Location from which to fetch Solr schema
 solrLocator : ${SOLR_LOCATOR}
 }
 }

 # log the record at DEBUG level to SLF4J
 { logDebug { format : "output record: {}", args : ["@{}"] } }

 # load the record into a Solr server or MapReduce Reducer
 {
 loadSolr {
 solrLocator : ${SOLR_LOCATOR}
 }

78 | Cloudera Search

Extracting, Transforming, and Loading Data With Cloudera Morphlines

 }
]
 }
]

Using Morphlines with Syslog

The following example illustrates using a morphline to extract information from a syslog file. A syslog file contains
semi-structured lines of the following form:

<164>Feb 4 10:46:14 syslog sshd[607]: listening on 0.0.0.0 port 22.

The program extracts the following record from the log line and loads it into Solr:

syslog_pri:164
syslog_timestamp:Feb 4 10:46:14
syslog_hostname:syslog
syslog_program:sshd
syslog_pid:607
syslog_message:listening on 0.0.0.0 port 22.

Use the following rules to create a chain of transformation commands, which are expressed with the readLine, grok,
and logDebugmorphline commands, by editing a morphline.conf file.

Specify server locations in a SOLR_LOCATOR variable; used later in
variable substitutions:
SOLR_LOCATOR : {
 # Name of solr collection
 collection : collection1

 # ZooKeeper ensemble
 zkHost : "127.0.0.1:2181/solr"
}

Specify an array of one or more morphlines, each of which defines an ETL
transformation chain. A morphline consists of one or more potentially
nested commands. A morphline is a way to consume records such as Flume events,
HDFS files or blocks, turn them into a stream of records, and pipe the stream
of records through a set of easily configurable transformations on the way to
a target application such as Solr.
morphlines : [
 {
 id : morphline1
 importCommands : ["org.kitesdk.**"]

 commands : [
 {
 readLine {
 charset : UTF-8
 }
 }

 {
 grok {
 # a grok-dictionary is a config file that contains prefabricated regular
expressions
 # that can be referred to by name.
 # grok patterns specify such a regex name, plus an optional output field name.
 # The syntax is %{REGEX_NAME:OUTPUT_FIELD_NAME}
 # The input line is expected in the "message" input field.
 dictionaryFiles : [target/test-classes/grok-dictionaries]
 expressions : {
 message : """<%{POSINT:syslog_pri}>%{SYSLOGTIMESTAMP:syslog_timestamp}
%{SYSLOGHOST:syslog_hostname} %{DATA:syslog_program}(?:\[%{POSINT:syslog_pid}\])?:
%{GREEDYDATA:syslog_message}"""
 }
 }
 }

Cloudera Search | 79

Extracting, Transforming, and Loading Data With Cloudera Morphlines

http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#readLine
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#grok
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#logTrace_logDebug_logInfo_logWarn_logError

 # Consume the output record of the previous command and pipe another
 # record downstream.
 #
 # This command deletes record fields that are unknown to Solr
 # schema.xml.
 #
 # Recall that Solr throws an exception on any attempt to load a document
 # that contains a field that is not specified in schema.xml.
 {
 sanitizeUnknownSolrFields {
 # Location from which to fetch Solr schema
 solrLocator : ${SOLR_LOCATOR}
 }
 }

 # log the record at DEBUG level to SLF4J
 { logDebug { format : "output record: {}", args : ["@{}"] } }

 # load the record into a Solr server or MapReduce Reducer
 {
 loadSolr {
 solrLocator : ${SOLR_LOCATOR}
 }
 }

]
 }
]

Next Steps

Learn more about morphlines and Kite. Cloudera Search for CDH 6.3 includes a build of Kite 0.10.0 that includes Kite
0.17.0 fixes and features. For more information, see:

• Kite Software Development Kit
• Morphlines Reference Guide

80 | Cloudera Search

Extracting, Transforming, and Loading Data With Cloudera Morphlines

http://kitesdk.org/docs/0.13.0/kite-morphlines/index.html
http://kitesdk.org/docs/0.13.0/kite-morphlines/morphlinesReferenceGuide.html

Indexing Data Using Cloudera Search

There are generally two approaches to indexing data using Cloudera Search:

1. Near real time (NRT) indexing
2. Batch indexing

Near real time indexing is generally usedwhen newdata needs to be returned in query results in time framesmeasured
in seconds, whereas batch indexing is useful for situations where large amounts of data is indexed at regular intervals,
or for indexing a new dataset for the first time.

Near real time indexing generally uses a framework such as Apache Flume or Apache Kafka to continuously ingest and
index data. The Lily HBase Indexer can also be used for NRT indexing on Apache HBase tables.

Batch indexing usually relies on MapReduce/YARN jobs to periodically index large datasets. The Lily HBase Indexer can
also be used for batch indexing HBase tables.

For more information, see:

Near Real Time Indexing Using Cloudera Search
For near real time (NRT) indexing, there are multiple options for ingesting and indexing data:

• Using Flume with the MorphlinesSolrSink
• Using the Lily HBase Indexer to index updates to HBase tables

Near Real Time Indexing Using Flume

Apache Flume with the MorphlinesSolrSink is a flexible, scalable, fault tolerant, transactional, near real-time (NRT)
system for processing a continuous stream of records into live search indexes. Latency from the time of data arrival
to the time data appears in search query results is typically measured in seconds, and is tunable.

Data flows from Flume sources across the network to Flume sinks (in this case, MorphlinesSolrSink). The sinks extract
the relevant data, transform it, and load it into a set of live Solr servers, which in turn serve queries to end users or
search applications.

The ETL functionality is flexible and customizable, using chains of morphline commands that pipe records from one
transformation command to another. Commands to parse and transform a set of standard data formats such as Avro,
CSV, text, HTML, XML, PDF, Word, or Excel, are provided out of the box. You can add additional custom commands
and parsers as morphline plugins for other file or data formats. Do this by implementing a simple Java interface that
consumes a record (such as a file) as an InputStream plus some headers and contextual metadata. The record
consumed by the Java interface is used to generate and output a new record. Any kind of data format can be indexed,
any Solr documents for any kind of Solr schema can be generated, and any custom ETL logic can be registered and run.
For more information, see the Morphlines Reference Guide.

Routing to multiple Solr collections enables multi-tenancy, and routing to a SolrCloud cluster improves scalability.
Flume agents can be co-locatedwith live Solr servers serving end user queries, or deployed on separate industry-standard
hardware to improve scalability and reliability. Indexing load can be spread across a large number of Flume agents,
and Flume features such as Load balancing Sink Processor can help improve scalability and achieve high availability.

Flume indexing enables low-latency data acquisition and querying. It complements (instead of replaces) use cases
based on batch analysis of HDFS data usingMapReduce. Inmany use cases, data flows simultaneously from the producer
through Flume into both Solr and HDFS using features such as the Replicating Channel Selector to replicate an incoming
flow into two output flows. You can use near real-time ingestion as well as batch analysis tools.

For a more comprehensive discussion of the Flume Architecture, see Large Scale Data Ingestion using Flume.

Flume is included in CDH. If you are using Cloudera Manager, add the Flume service using the Add a Service wizard.

Cloudera Search | 81

Indexing Data Using Cloudera Search

http://kitesdk.org/docs/1.1.0/morphlines/morphlines-reference-guide.html
http://flume.apache.org/FlumeUserGuide.html#load-balancing-sink-processor
http://flume.apache.org/FlumeUserGuide.html#replicating-channel-selector-default
http://www.slideshare.net/ydn/flume-hug

For exercises demonstrating using Flume with Solr for NRT indexing, see Cloudera Search Tutorial.

For Flume configuration options relevant to Solr, see the following topics:

Flume MorphlineSolrSink Configuration Options

TheMorphlineSolrSink is a Flume sink used to ingest and index documents into Cloudera Search. For ClouderaManager
environments, the Flumeagent is configuredusing procedures described in Configuring the FlumeAgents. For unmanaged
environments, you can use the standard configuration file flume.conf to configure Flume agents, including their
sources, sinks, and channels. For more information about flume.conf, see the Flume User Guide.

Flume Morphline SolrSink supports the following configuration options (required options in bold):

DescriptionDefaultProperty Name

Must be set to the fully qualified class name
(FQCN)org.apache.flume.sink.solr.
morphline.MorphlineSolrSink.

type

Specifies the channel to use for transferring
records. For more information, see Flume
Channels in the Flume User Guide.

channel

The location of themorphline configuration
file.

morphlineFile

• For Cloudera Manager deployments,
use:

<agentName>.sinks.<sinkName>.
morphlineFile=morphlines.conf

• For unmanageddeployments, provide
the relative or absolute path on the
local filesystem to the morphline
configuration file. For example,
/etc/flume-ng/conf/

tutorialReadAvroContainer.conf

Themaximumnumber of Flume events per
transaction. The transaction is committed

100batchSize

when the specified batchSize or
batchDurationMillis is reached,
whichever comes first.

The maximum duration for a transaction,
in milliseconds. The transaction is

1000batchDurationMillis

committedwhen the specifiedbatchSize
or batchDurationMillis is reached,
whichever comes first.

The FQCN of a class implementing
org.apache.flume.sink.solr.morphline.SolrIndexer.

org.apache.flume.sink.solr.

morphline.MorphlineSolrIndexer

indexerClass

The name of the morphline to use when
there is more than one morphline in a
morphline configuration file.

nullmorphlineId

This example shows a section for a MorphlineSolrSink named solrSink for an agent named agent:

agent.sinks.solrSink.type = org.apache.flume.sink.solr.morphline.MorphlineSolrSink
agent.sinks.solrSink.channel = memoryChannel

82 | Cloudera Search

Indexing Data Using Cloudera Search

http://flume.apache.org/FlumeUserGuide.html
http://flume.apache.org/FlumeUserGuide.html#flume-channels
http://flume.apache.org/FlumeUserGuide.html#flume-channels

agent.sinks.solrSink.batchSize = 100
agent.sinks.solrSink.batchDurationMillis = 1000
agent.sinks.solrSink.morphlineFile = /etc/flume-ng/conf/morphline.conf
agent.sinks.solrSink.morphlineId = morphline1

Note: This example uses a FlumeMemoryChannel to easily get started. For production environments,
it is often more appropriate to configure a Flume FileChannel instead, which is a high performance
transactional persistent queue.

Flume MorphlineInterceptor Configuration Options

Flume can modify and drop events using Interceptors, which can be attached to any Flume source. The
MorphlineInterceptor runs morphline transformations on intercepted events. For example, a morphline can ignore
events or alter or insert certain event headers using regular expression-based pattern matching, or it can auto-detect
and set a MIME type using Apache Tika. Interceptors can be used for content-based routing in a Flume topology.

Flume also supports multiplexing event flows by defining a flow multiplexer that can replicate or selectively route an
event to specific channels. The Flume User Guide example demonstrates a source from agent foo fanning out the flow
to three different channels. This can be a replicating ormultiplexingfan-out. In a replicating fan-out, each event is
sent to all three channels. In a multiplexing fan-out, an event is sent to a subset of available channels when an event
attributematches a specified value. For example, if an event attribute calledstream.type is set to application/pdf,
it goes to channel1 and channel3. If the attribute is set to avro/binary, it goes to channel2. If a channel is
unavailable, then an exception is thrown, and the event is replayed after the channel becomes available again. You
can configure this mapping in the flume.conf file.

The MorphlineInterceptor supports the following configuration options (required options in bold):

DescriptionDefaultProperty
Name

Must be set to the fully qualified class name (FQCN)
org.apache.flume.sink.solr.

morphline.MorphlineInterceptor$Builder.

type

The location of the morphline configuration file.morphlineFile

• For Cloudera Manager deployments, use:

<agentName>.sources.<sourceName>.interceptors.
<interceptorName>.morphlineFile = morphlines.conf

• For unmanaged deployments, provide the relative or absolute path on
the local filesystem to the morphline configuration file. For example,
/etc/flume-ng/conf/morphline.conf.

The name of the morphline to use when there is more than one morphline
in a morphline configuration file.

nullmorphlineId

This example shows a section for aMorphlineInterceptor namedmorphlineinterceptorfor a source namedavroSrc
for an agent named agent:

agent.sources.avroSrc.interceptors = morphlineinterceptor
agent.sources.avroSrc.interceptors.morphlineinterceptor.type =
org.apache.flume.sink.solr.morphline.MorphlineInterceptor$Builder
agent.sources.avroSrc.interceptors.morphlineinterceptor.morphlineFile =
/etc/flume-ng/conf/morphline.conf
agent.sources.avroSrc.interceptors.morphlineinterceptor.morphlineId = morphline1

Cloudera Search | 83

Indexing Data Using Cloudera Search

http://flume.apache.org/FlumeUserGuide.html
http://flume.apache.org/FlumeUserGuide.html
http://flume.apache.org/FlumeUserGuide.html#flume-interceptors
http://en.wikipedia.org/wiki/Internet_media_type
http://flume.apache.org/FlumeUserGuide.html#multiplexing-the-flow

Note: A morphline interceptor cannot generate more than one output record for each input event.

Flume Solr UUIDInterceptor Configuration Options

Flume can modify and drop events using Interceptors, which can be attached to any Flume source. The Solr
UUIDInterceptor sets a universally unique 128-bit identifier (such as f692639d-483c-1b5f-cd61-183cb1726ae0)
on each event.

Cloudera recommends assigning UUIDs to events as early as possible (for example, in the first Flume source of your
data flow). This allows you to de-duplicate events that are duplicated as a result of replication or re-delivery in a Flume
pipeline that is designed for high availability and high performance. If available, application-level UUIDs are preferable
to auto-generated UUIDs because they enable subsequent updates and deletion of the document in Solr using that
key. If application-level UUIDs are not present, you can useUUIDInterceptor to automatically assignUUIDs to document
events.

The UUIDInterceptor supports the following configuration options (required options in bold):

DescriptionDefaultProperty Name

Must be set to the fully qualified class name
(FQCN)org.apache.flume.sink.solr.
morphline.UUIDInterceptor$Builder.

type

The name of the Flume header to use for setting the UUID.idheaderName

Determines whether to preserve existing UUID headers.truepreserveExisting

Specifies a string to prepend to each generated UUID.""prefix

For examples, see BlobHandler and BlobDeserializer.

Flume Solr BlobHandler Configuration Options

Flume accepts events by HTTP POST and GET operations using the HTTPSource Flume source.

HTTPSource transforms JSON input into events by default. You can also configure a BlobHandler for HTTPSource to
return events containing the request parameters along with the binary large object (BLOB) uploadedwith the request.
Because the entire BLOB is buffered in RAM, this usage is not generally appropriate for very large objects.

The Flume Solr BlobHandler supports the following configuration options (required options in bold):

DescriptionDefaultProperty Name

Must be set to the fully qualified class
name (FQCN)

handler

org.apache.flume.sink.

solr.morphline.BlobHandler.

Specifies the maximum number of
bytes to read and buffer per request.

100000000 (100 MB)handler.maxBlobLength

This example shows a section for an HTTPSource named httpSrc with a BlobHandler for an agent named agent:

agent.sources.httpSrc.type = org.apache.flume.source.http.HTTPSource
agent.sources.httpSrc.port = 5140
agent.sources.httpSrc.handler = org.apache.flume.sink.solr.morphline.BlobHandler
agent.sources.httpSrc.handler.maxBlobLength = 2000000000
agent.sources.httpSrc.interceptors = uuidinterceptor
agent.sources.httpSrc.interceptors.uuidinterceptor.type =
org.apache.flume.sink.solr.morphline.UUIDInterceptor$Builder
agent.sources.httpSrc.interceptors.uuidinterceptor.headerName = id

84 | Cloudera Search

Indexing Data Using Cloudera Search

http://flume.apache.org/FlumeUserGuide.html#flume-interceptors
http://flume.apache.org/FlumeUserGuide.html#http-source

#agent.sources.httpSrc.interceptors.uuidinterceptor.preserveExisting = false
#agent.sources.httpSrc.interceptors.uuidinterceptor.prefix = flume01.example.com
agent.sources.httpSrc.channels = memoryChannel

Flume Solr BlobDeserializer Configuration Options

Using SpoolDirectorySource, Flume can ingest data from files located in a directory on disk. Unlike other asynchronous
sources, SpoolDirectorySource does not lose data even if Flume is restarted or fails. Flume watches the directory
for new files and ingests them as they are detected.

By default, SpoolDirectorySource uses the newline (\n) delimiter to split input into Flume events. You can change
this behavior by configuring the Solr BlobDeserializer to read binary large objects (BLOBs) from
SpoolDirectorySource. Generally, each file is one BLOB (such as a PDF or image file). Because the entire BLOB is
buffered in RAM, this usage is not generally appropriate for very large objects.

The Solr BlobDeserializer supports the following configuration options (required options in bold):

DescriptionDefaultProperty Name

Must be set to the fully qualified class
name (FQCN)

deserializer

org.apache.flume.sink.solr.

morphline.BlobDeserializer$Builder.

Specifies the maximum number of
bytes to read and buffer per request.

100000000 (100 MB)deserializer.maxBlobLength

This example shows a section for a SpoolDirectorySource named spoolSrc with a BlobDeserializer for an
agent named agent:

agent.sources.spoolSrc.type = spooldir
agent.sources.spoolSrc.spoolDir = /tmp/myspooldir
agent.sources.spoolSrc.ignorePattern = \.
agent.sources.spoolSrc.deserializer =
org.apache.flume.sink.solr.morphline.BlobDeserializer$Builder
agent.sources.spoolSrc.deserializer.maxBlobLength = 2000000000
agent.sources.spoolSrc.batchSize = 1
agent.sources.spoolSrc.fileHeader = true
agent.sources.spoolSrc.fileHeaderKey = resourceName
agent.sources.spoolSrc.interceptors = uuidinterceptor
agent.sources.spoolSrc.interceptors.uuidinterceptor.type =
org.apache.flume.sink.solr.morphline.UUIDInterceptor$Builder
agent.sources.spoolSrc.interceptors.uuidinterceptor.headerName = id
#agent.sources.spoolSrc.interceptors.uuidinterceptor.preserveExisting = false
#agent.sources.spoolSrc.interceptors.uuidinterceptor.prefix = flume01.example.com
agent.sources.spoolSrc.channels = memoryChannel

Lily HBase Near Real Time Indexing for Cloudera Search

The Lily HBase NRT Indexer service is a flexible, scalable, fault-tolerant, transactional, near real-time (NRT) system for
processing a continuous stream of HBase cell updates into live search indexes. Typically it takes seconds for data
ingested into HBase to appear in search results; this duration is tunable. The Lily HBase Indexer uses SolrCloud to index
data stored in HBase. As HBase applies inserts, updates, and deletes to HBase table cells, the indexer keeps Solr
consistent with the HBase table contents, using standard HBase replication. The indexer supports flexible custom
application-specific rules to extract, transform, and load HBase data into Solr. Solr search results can contain
columnFamily:qualifier links back to the data stored in HBase. This way, applications can use the Search result
set to directly access matching raw HBase cells. Indexing and searching do not affect operational stability or write
throughput of HBase because the indexing and searching processes are separate and asynchronous to HBase.

To accommodate the HBase ingest load, you can run asmany Lily HBase Indexer services on different hosts as required.
Because the indexingwork is shared by all indexers, you can scale the service by addingmore indexers. The recommended
number of indexer is 1 for each HBase RegionServer but in a High Availability environment five worker nodes is the
minimum for acceptable performance and reliability. You can co-locate Lily HBase Indexer services with Solr servers

Cloudera Search | 85

Indexing Data Using Cloudera Search

http://flume.apache.org/FlumeUserGuide.html

on the same set of hosts. RegionServers can also be co-locate with Lily HBase Indexer on the same host to improve
performance.

Note: Specific workloads and usage patterns might require additional fine-tuning beyond these
general recommendation.

The Lily HBase NRT Indexer service must be deployed in an environment with a running HBase cluster, a running
SolrCloud cluster (the Solr service in Cloudera Manager), and at least one ZooKeeper quorum. This can be done with
or without Cloudera Manager. See Managing Services for more information on adding services such as the Lily HBase
Indexer Service.

Enabling Cluster-wide HBase Replication

The Lily HBase Indexer is implemented using HBase replication, presenting indexers as RegionServers of the worker
cluster. This requires HBase replication on the HBase cluster, as well as the individual tables to be indexed. To enable
replication:

Cloudera Manager:

1. Go to HBase service > Configuration > Category > Backup
2. Select the Enable Replication checkbox.
3. Set Replication Source Ratio to 1.
4. Set Replication Batch Size to 1000.
5. Click Save Changes.
6. Restart the HBase service (HBase service > Actions > Restart).

Unmanaged:

1. Add the following properties within the <configuration> tags in /etc/hbase/conf/hbase-site.xml on
every HBase cluster node:

 <property>
 <name>hbase.replication</name>
 <value>true</value>
 </property>
 <!-- Source ratio of 100% makes sure that each SEP consumer is actually
 used (otherwise, some can sit idle, especially with small clusters) -->
 <property>
 <name>replication.source.ratio</name>
 <value>1.0</value>
 </property>
 <!-- Maximum number of hlog entries to replicate in one go. If this is
 large, and a consumer takes a while to process the events, the
 HBase rpc call will time out. -->
 <property>
 <name>replication.source.nb.capacity</name>
 <value>1000</value>
 </property>
</configuration>

2. Restart the HBase services on all HBase cluster nodes.

Adding the Lily HBase Indexer Service

In Cloudera Manager, the Lily HBase Indexer service is called Key-Value Store Indexer, and the service role is called
Lily HBase Indexer. To add the service, follow the instructions in Adding a Service.

Configure HBase Dependency for Lily HBase NRT Indexer Service

Before starting Lily HBaseNRT Indexer services, youmust configure individual serviceswith the location of the ZooKeeper
ensemble that is used by the target HBase cluster. In Cloudera Manager, this is handled automatically when you set
the HBase Service dependency (Key-Value Store Indexer service > Configuration).

For unmanaged environments:

86 | Cloudera Search

Indexing Data Using Cloudera Search

1. Add the following property to /etc/hbase-solr/conf/hbase-indexer-site.xml on the hosts you are using
to run the LilyHBase Indexer service. Replace the ZooKeeper quorumwith the value forhbase.zookeeper.quorum
from /etc/hbase/conf/hbase-site.xml.

Unlike other ZooKeeper quorum configuration properties, the hbase.zookeeper.quorum property does not
include the ZooKeeper port or Znode:

<property>
 <name>hbase.zookeeper.quorum</name>
 <value>zk01.example.com,zk02.example.com,zk03.example.com</value>
</property>

2. Configure all Lily HBase Indexers to use a ZooKeeper quorum to coordinate with one another. You can use the
same ZooKeeper quorum as the HBase service. Add the following property to
/etc/hbase-solr/conf/hbase-indexer-site.xml, and replace the hostnames with your ZooKeeper
hostnames.

For this configuration property, the ZooKeeper designation includes the port:

<property>
 <name>hbaseindexer.zookeeper.connectstring</name>
 <value>zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181</value>
</property>

Configuring Lily HBase Indexer Security

The Lily HBase indexer supports Kerberos for authentication, and Apache Sentry for authorization. Formore information,
see Configuring Lily HBase Indexer Security on page 93.

Starting the Lily HBase NRT Indexer Service

You can use Cloudera Manager to start the Lily HBase Indexer Service (Key-Value Store Indexer service > Actions >
Start). In unmanaged deployments, you can start or restart a Lily HBase Indexer Daemon manually on a host using the
following command:

sudo service hbase-solr-indexer restart

After starting the Lily HBase NRT Indexer Services, verify that all daemons are running using the jps tool from the
Oracle JDK, which you can obtain from the Java SE Downloads page. For example:

sudo jps -lm
31407 sun.tools.jps.Jps -lm
26393 com.ngdata.hbaseindexer.Main

Once the service is running, you can create andmanage indexers. Continue to Using the Lily HBase NRT Indexer Service
on page 87.

Using the Lily HBase NRT Indexer Service

To index for column families of tables in an HBase cluster:

• Enable replication on HBase column families
• Create collections and configurations
• Register a Lily HBase Indexer configuration with the Lily HBase Indexer Service
• Verify that indexing is working

Enabling Replication on HBase Column Families

Ensure that cluster-wide HBase replication is enabled, as described in Enabling Cluster-wide HBase Replication on page
86. Use the HBase shell to define column-family replication settings.

Cloudera Search | 87

Indexing Data Using Cloudera Search

For every existing table, set the REPLICATION_SCOPE on every column family that you want to index:

hbase shell
hbase shell> disable 'sample_table'
hbase shell> alter 'sample_table', {NAME => 'columnfamily1', REPLICATION_SCOPE => 1}
hbase shell> enable 'sample_table'

For every new table, set the REPLICATION_SCOPE on every column family that you want to index using a command
such as the following:

hbase shell
hbase shell> create 'test_table', {NAME => 'testcolumnfamily', REPLICATION_SCOPE => 1}

Creating a Collection in Cloudera Search

A collection in Search used for HBase indexingmust have a Solr schema that accommodates the types of HBase column
families and qualifiers that are being indexed. To begin, consider adding the all-inclusive data field to a default schema.
Once you decide on a schema, create a collection using commands similar to the following:

solrctl instancedir --generate $HOME/hbase_collection_config
Edit $HOME/hbase_collection_config/conf/schema.xml as needed
If you are using Sentry for authorization, copy solrconfig.xml.secure to solrconfig.xml
 as follows: ##
cp $HOME/hbase_collection_config/conf/solrconfig.xml.secure
$HOME/hbase_collection_config/conf/solrconfig.xml ##
solrctl instancedir --create hbase_collection_config $HOME/hbase_collection_config
solrctl collection --create hbase_collection -s <numShards> -c hbase_collection_config

Creating a Lily HBase Indexer Configuration File

Configure individual Lily HBase Indexers using the hbase-indexer command-line utility. Typically, there is one Lily
HBase Indexer configuration file for each HBase table, but there can be as many Lily HBase Indexer configuration files
as there are tables, column families, and corresponding collections in Search. Each Lily HBase Indexer configuration is
defined in an XML file, such as morphline-hbase-mapper.xml.

An indexer configuration XML file must refer to the MorphlineResultToSolrMapper implementation and point to
the location of a Morphline configuration file, as shown in the following morphline-hbase-mapper.xml indexer
configuration file. For Cloudera Manager managed environments, set morphlineFile to the relative path
morphlines.conf. For unmanaged environments, specify the absolute path to a morphlines.conf that exists on
the Lily HBase Indexer host. Make sure the file is readable by the HBase system user (hbase by default).

$ cat $HOME/morphline-hbase-mapper.xml

<?xml version="1.0"?>
<indexer table="sample_table"
mapper="com.ngdata.hbaseindexer.morphline.MorphlineResultToSolrMapper">

 <!-- The relative or absolute path on the local file system to the
 morphline configuration file. -->
 <!-- Use relative path "morphlines.conf" for morphlines managed by
 Cloudera Manager -->
 <param name="morphlineFile" value="/path/to/morphlines.conf"/>

 <!-- The optional morphlineId identifies a morphline if there are multiple
 morphlines in morphlines.conf -->
 <!-- <param name="morphlineId" value="morphline1"/> -->

</indexer>

The Lily HBase Indexer configuration file also supports the standard attributes of any HBase Lily Indexer on the top-level
<indexer> element: table, mapping-type, read-row, mapper, unique-key-formatter, unique-key-field,
row-field, column-family-field, andtable-family-field. It does not support the <field> element and
<extract> elements.

88 | Cloudera Search

Indexing Data Using Cloudera Search

https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#table
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#mapping-type
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#read-row
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#mapper
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#unique-key-formatter
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#unique-key-field
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#row-field
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#column-family-field
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#table-family-field

Creating a Morphline Configuration File

After creating an indexer configuration XML file, you can configure morphline ETL transformation commands in a
morphlines.conf configuration file. The morphlines.conf configuration file can contain any number ofmorphline
commands. Typically, anextractHBaseCells command is the first command. ThereadAvroContainerorreadAvro
morphline commands are often used to extract Avro data from the HBase byte array. This configuration file can be
shared among different applications that use morphlines.

If you are using Cloudera Manager, the morphlines.conf file is edited within Cloudera Manager (Key-Value Store
Indexer service > Configuration > Category >Morphlines >Morphlines File).

For unmanaged environments, create the morphlines.conf file on the Lily HBase Indexer host:

cat /etc/hbase-solr/conf/morphlines.conf

morphlines : [
 {
 id : morphline1
 importCommands : ["org.kitesdk.morphline.**", "com.ngdata.**"]

 commands : [
 {
 extractHBaseCells {
 mappings : [
 {
 inputColumn : "data:*"
 outputField : "data"
 type : string
 source : value
 }

 #{
 # inputColumn : "data:item"
 # outputField : "_attachment_body"
 # type : "byte[]"
 # source : value
 #}
]
 }
 }

 #for avro use with type : "byte[]" in extractHBaseCells mapping above
 #{ readAvroContainer {} }
 #{
 # extractAvroPaths {
 # paths : {
 # data : /user_name
 # }
 # }
 #}

 { logTrace { format : "output record: {}", args : ["@{}"] } }
]
 }
]

Note: To function properly, the morphline must not contain a loadSolr command. The Lily HBase
Indexer must load documents into Solr, instead the morphline itself.

Understanding the extractHBaseCellsMorphline Command

The extractHBaseCellsmorphline command extracts cells from an HBase result and transforms the values into a
SolrInputDocument. The command consists of an array of zero or more mapping specifications.

Each mapping has:

• The inputColumn parameter, which specifies the data from HBase for populating a field in Solr. It has the form
of a column family name and qualifier, separated by a colon. The qualifier portion can end in an asterisk, which

Cloudera Search | 89

Indexing Data Using Cloudera Search

is interpreted as a wildcard. In this case, all matching column-family and qualifier expressions are used. The
following are examples of valid inputColumn values:

– mycolumnfamily:myqualifier

– mycolumnfamily:my*

– mycolumnfamily:*

• The outputField parameter specifies the morphline record field to which to add output values. The morphline
record field is also known as the Solr document field. Example: first_name.

• Dynamic output fields are enabled by the outputField parameter ending with a wildcard (*). For example:

inputColumn : "mycolumnfamily:*"
outputField : "belongs_to_*"

In this case, if you make these puts in HBase:

put 'table_name' , 'row1' , 'mycolumnfamily:1' , 'foo'
put 'table_name' , 'row1' , 'mycolumnfamily:9' , 'bar'

Then the fields of the Solr document are as follows:

belongs_to_1 : foo
belongs_to_9 : bar

• The type parameter defines the data type of the content in HBase. All input data is stored in HBase as byte arrays,
but all content in Solr is indexed as text, so a method for converting byte arrays to the actual data type is required.
The type parameter can be the name of a type that is supported by
org.apache.hadoop.hbase.util.Bytes.to* (which currently includesbyte[],int,long,string,boolean,
float, double, short, and bigdecimal). Use type byte[] to pass the byte array through to the morphline
without conversion.

– type:byte[] copies the byte array unmodified into the record output field

– type:int converts with org.apache.hadoop.hbase.util.Bytes.toInt

– type:long converts with org.apache.hadoop.hbase.util.Bytes.toLong

– type:string converts with org.apache.hadoop.hbase.util.Bytes.toString

– type:boolean converts with org.apache.hadoop.hbase.util.Bytes.toBoolean

– type:float converts with org.apache.hadoop.hbase.util.Bytes.toFloat

– type:double converts with org.apache.hadoop.hbase.util.Bytes.toDouble

– type:short converts with org.apache.hadoop.hbase.util.Bytes.toShort

– type:bigdecimal converts with org.apache.hadoop.hbase.util.Bytes.toBigDecimal

Alternatively, the type parameter can be the name of a Java class that implements the
com.ngdata.hbaseindexer.parse.ByteArrayValueMapper interface.

HBase data formatting does not alwaysmatchwhat is specified byorg.apache.hadoop.hbase.util.Bytes.*.
For example, this can occur with data of type float or double. You can enable indexing of such HBase data by
converting the data. There are various ways to do so, including:

• Using Java morphline command to parse input data, converting it to the expected output. For example:

{
 imports : "import java.util.*;" code: """ // manipulate the contents of a record field

 String stringAmount = (String) record.getFirstValue("amount");
 Double dbl = Double.parseDouble(stringAmount); record.replaceValues("amount",dbl);
 return child.process(record); // pass record to next command in chain """
}

90 | Cloudera Search

Indexing Data Using Cloudera Search

• Creating table fields with binary format and then using types such as double or float in a morphline.conf.
You could create a table in HBase for storing doubles using commands similar to:

CREATE TABLE sample_lily_hbase (id string, amount double, ts timestamp)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ('hbase.columns.mapping' = ':key,ti:amount#b,ti:ts,')
TBLPROPERTIES ('hbase.table.name' = 'sample_lily');

• The source parameter determines which portion of an HBase KeyValue is used as indexing input. Valid choices
are value or qualifier. When value is specified, the HBase cell value is used as input for indexing. When
qualifier is specified, then the HBase column qualifier is used as input for indexing. The default is value.

Registering a Lily HBase Indexer Configuration with the Lily HBase Indexer Service

When the content of the Lily HBase Indexer configuration XML file is satisfactory, register it with the Lily HBase Indexer
Service. Register the Lily HBase Indexer configuration file by uploading the Lily HBase Indexer configuration XML file
to ZooKeeper. For example:

1. If your cluster has security enabled, create a Java Authentication and Authorization Service (JAAS) configuration
file named jaas.conf in your home directory with the following contents:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=false
 useTicketCache=true
 principal="jdoe@EXAMPLE.COM";
};

Replace jdoe@EXAMPLE.COM with your user principal. Your user account must have WRITE permission to create
an indexer. For more information, see Configuring the Lily HBase Indexer Service to Use the Sentry Service on
page 93.

2. If your cluster has security enabled, authenticate with the user principal specified in your jaas.conf file:

kinit jdoe@EXAMPLE.COM

3. Run the following command to add the JAAS configuration to the system properties:

export HBASE_INDEXER_OPTS=-Djava.security.auth.login.config=jaas.conf

4. Run the following command to register your indexer configuration filewith the indexer service. If you have enabled
Sentry authorization, add the--http http://lily01.example.com:11060/indexer/ parameter, replacing
lily01.example.com with your Lily HBase Indexer hostname:

hbase-indexer add-indexer \
--name myIndexer \
--indexer-conf $HOME/morphline-hbase-mapper.xml \
--connection-param solr.zk=zk01.example.com,zk02.example.com,zk03.example.com/solr \
--connection-param solr.collection=hbase_collection \
--zookeeper zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181

Verify that the indexer was successfully created as follows. If you have enabled Sentry authorization, add the --http
http://lily01.example.com:11060/indexer/ parameter, replacing lily01.example.com with your Lily
HBase Indexer hostname:

hbase-indexer list-indexers -zookeeper
zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181
Number of indexes: 1

myIndexer
 + Lifecycle state: ACTIVE
 + Incremental indexing state: SUBSCRIBE_AND_CONSUME
 + Batch indexing state: INACTIVE

Cloudera Search | 91

Indexing Data Using Cloudera Search

 + SEP subscription ID: Indexer_myIndexer
 + SEP subscription timestamp: 2013-06-12T11:23:35.635-07:00
 + Connection type: solr
 + Connection params:
 + solr.collection = hbase-collection1
 + solr.zk = localhost/solr
 + Indexer config:
 110 bytes, use -dump to see content
 + Batch index config:
 (none)
 + Default batch index config:
 (none)
 + Processes
 + 1 running processes
 + 0 failed processes

Use theupdate-indexer anddelete-indexer command-line options of thehbase-indexer utility tomanipulate
existing Lily HBase Indexers. If you have enabled Sentry authorization, you must include the --http
http://lily01.example.com:11060/indexer/ parameter in all commands.

For more help, use the following commands:

hbase-indexer add-indexer --help
hbase-indexer list-indexers --help
hbase-indexer update-indexer --help
hbase-indexer delete-indexer --help

The morphlines.conf configuration file must be present on every host that runs an indexer. For Cloudera Manager
environments, this is handled automatically.

Morphline configuration files can be changed without re-creating the indexer itself, but youmust restart the Lily HBase
Indexer service for the changes to take effect.

Verifying that Indexing Works

Add rows to the indexed HBase table. For example:

hbase shell
hbase(main):001:0> put 'sample_table', 'row1', 'data', 'value'
hbase(main):002:0> put 'sample_table', 'row2', 'data', 'value2'

If the put operation succeeds, wait a few seconds, go to the SolrCloud UI query page, and query the data. Note the
updated rows in Solr.

To print diagnostic information, such as the content of records as they pass through the morphline commands, enable
the TRACE log level by adding the following to your log4j.properties file:

log4j.logger.org.kitesdk.morphline=TRACE
log4j.logger.com.ngdata=TRACE

For Cloudera Manager environments, the logging configuration is modified as follows:

1. Go to Key-Value Store Indexer service > Configuration > Category > Advanced.
2. Find the Lily HBase Indexer Logging Advanced Configuration Snippet (Safety Valve) property or search for it by

typing its name in the Search box.
3. Click Save Changes.
4. Restart the service (Key-Value Store Indexer service > Actions > Restart).

Examine the log files in /var/log/hbase-solr/lily-hbase-indexer-* for details.

Using the Indexer HTTP Interface

Beginningwith CDH 5.4 the Lily HBase Indexer includes an HTTP interface for the list-indexers, create-indexer,
update-indexer, and delete-indexer commands. This interface can be secured with Kerberos for authentication

92 | Cloudera Search

Indexing Data Using Cloudera Search

and Apache Sentry for authorization. For information on configuring security for the Lily HBase Indexer service, see
Configuring Lily HBase Indexer Security on page 87.

By default, the hbase-indexercommand line client does not use the HTTP interface. Use the HTTP interface to take
advantage of the features it provides, such as Kerberos authentication and Sentry integration. The hbase-indexer
command supports two additional parameters to the list-indexers, create-indexer, delete-indexer, and
update-indexer commands:

• --http: An HTTP URI for the HTTP interface. By default, this URI is of the form
http://lily01.example.com:11060/indexer/. If this parameter is specified, the Lily HBase Indexer uses
the HTTP API. If this parameter is not specified, the indexer communicates directly with ZooKeeper.

• --jaas: Specifies a Java Authentication and Authorization Service (JAAS) configuration file. This is only necessary
for Kerberos-enabled deployments.

Note: Make sure that you use fully qualified domain names (FQDN) when specifying hostnames for
both the Lily HBase Indexer host and the ZooKeeper hosts. Using FQDNs helps ensure proper Kerberos
realm mapping.

For example:

hbase-indexer list-indexers --http http://lily01.example.com:11060/indexer/ \
--jaas $HOME/jaas.conf --zookeeper
zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181

Configuring Lily HBase Indexer Security

The Lily HBase indexer supports Kerberos for authentication, and Apache Sentry for authorization. Formore information,
see Configuring Lily HBase Indexer Security on page 93.

Configuring Lily HBase Indexer Security

Note: This page contains references to CDH 5 components or features that have been removed from
CDH6. These references are only applicable if you aremanaging a CDH5 clusterwith ClouderaManager
6. For more information, see Deprecated Items.

Beginningwith CDH 5.4 the Lily HBase Indexer includes an HTTP interface for the list-indexers, create-indexer,
update-indexer, and delete-indexer commands. This interface can be secured with Kerberos for authentication
and Apache Sentry for authorization.

Configuring Lily HBase Indexer Service to Use Kerberos Authentication

To configure the Lily HBase Indexer to use Kerberos authentication, you must create principals and keytabs and then
modify certain configuration properties. If you are using Cloudera Manager to manage your cluster, much of this is
handled automatically. For unmanaged environments, youmust generate the Kerberos principals and keytabsmanually.

Formore an overview of Kerberos concepts (including principals and keytabs), see Kerberos Security Artifacts Overview.

To enable Kerberos authentication for the Lily HBase Indexer service:

1. Go to Key-Value Store Indexer service > Configuration > Category > Security.
2. Select the kerberos option for HBase Indexer Secure Authentication.
3. Click Save Changes.
4. Go to Administration > Security > Kerberos Credentials.
5. Click Generate Missing Credentials.
6. Restart the indexer service (Key-Value Store Indexer service > Actions > Restart).

Configuring the Lily HBase Indexer Service to Use the Sentry Service

The Lily HBase Indexer service uses Apache Sentry for authorization. To use Sentry for authorization, you must use the
indexer HTTP interface.

Cloudera Search | 93

Indexing Data Using Cloudera Search

If you are using policy files for Sentry, and want to switch to the Sentry service, see Migrating HBase Indexer Sentry
Policy Files to the Sentry Service on page 96.

To configure the Lily HBase Indexer to use the Sentry Service:

1. Go to Key-Value Store Indexer service > Configuration > Category > Policy File Based Sentry.
2. Make sure that the box labeled Enable Sentry Authorization using Policy Files is unchecked.
3. Click theMain category in the left pane.
4. Select the Sentry Service for the cluster (SENTRY-1 by default).
5. Click Save Changes.
6. Restart stale services (Key-Value Store Indexer service > Actions > Restart).

Configuring the Lily HBase Indexer Service to Use Sentry Policy Files

The Lily HBase Indexer service uses Apache Sentry for authorization. To use Sentry for authorization, you must use the
indexer HTTP interface.

Before CDH 5.14.0, Lily HBase Indexer supported only Sentry policy files. In CDH 5.14.0 and higher, it supports the
Sentry service, and includes a command line utility (hbase-indexer-sentry) for configuring Sentry. Cloudera
recommends using the Sentry Service. To migrate your policy files to the Sentry Service, see Migrating HBase Indexer
Sentry Policy Files to the Sentry Service on page 96.

To configure Sentry policy files for the Lily HBase Indexer:

1. Go to Key-Value Store Indexer service > Configuration > Category > Policy File Based Sentry.
2. Check the box labeled Enable Sentry Authorization using Policy Files.
3. If necessary, edit Sentry Global Policy File to change the HDFS location of the sentry-provider.ini file.
4. Click Save Changes.
5. Restart the service (Key-Value Store Indexer service > Actions > Restart).
6. Upload the sentry-provider.ini file to the specified location in HDFS. For example:

• Security Enabled:

kinit hdfs@EXAMPLE.COM
hdfs dfs -mkdir -p /user/hbaseindexer/sentry/
hdfs dfs -put /path/to/local/sentry-provider.ini /user/hbaseindexer/sentry/
hdfs dfs -chown -R hbase:hbase /user/hbaseindexer

• Security Disabled:

sudo -u hdfs hdfs dfs -mkdir -p /user/hbaseindexer/sentry/
sudo -u hdfs hdfs dfs -put /path/to/local/sentry-provider.ini /user/hbaseindexer/sentry/
sudo -u hdfs hdfs dfs -chown -R hbase:hbase /user/hbaseindexer

Managing Sentry Permissions for the Lily HBase Indexer

The Lily HBase Indexer privilege model specifies READ and WRITE privileges for each indexer. The privileges work as
follows:

• If a role has WRITE privilege for indexer1, that role can create, update, or delete an indexer named indexer1,
using the hbase-indexer command.

• READ privileges control what a user can see when running the hbase-indexer list-indexers command. If
a role has READ privileges for indexer1, the command output lists indexer1 if it exists. If an indexer named
indexer2 exists, but the role does not have READ privileges for it, that indexer is omitted from the response.

For example, consider the following privileges defined in a policy file:

[groups]
jdoe = admin
psherman = readonly

[roles]

94 | Cloudera Search

Indexing Data Using Cloudera Search

admin = indexer=*
readonly = indexer=*->action=READ

This policy file grants the jdoe user full access to all indexers, and the psherman user read access to all indexers. User
psherman can see all indexers, but cannot create new ones or modify existing ones.

Important: The Sentry privileges for the Lily HBase Indexer service apply only to indexers, and not
collections. You must separately grant the hbase user permission to update collections. For more
information on configuring Sentry authorization for collections, see Configuring Sentry Authorization
for Cloudera Search.

Before CDH 5.14.0, Lily HBase Indexer supported only Sentry policy files. In CDH 5.14.0 and higher, it supports the
Sentry service, and includes a command line utility (hbase-indexer-sentry) for configuring Sentry. The command
syntax is as follows:

/opt/cloudera/parcels/CDH/bin/hbase-indexer-sentry
Missing required option: [-lp List privilege, -rpr Revoke privilege from role, -lr List
 role, -arg Add role to group, -drg Delete role from group, -gpr Grant privilege to
role, -mgr Migrate ini file to Sentry service, -dr Drop role, -cr Create role]
usage: sentryShell
 -arg,--add_role_group Add role to group
 -c,--checkcompat Check compatibility with Sentry Service
 -conf,--sentry_conf <arg> sentry-site file path
 -cr,--create_role Create role
 -dr,--drop_role Drop role
 -drg,--delete_role_group Delete role from group
 -f,--policy_ini <arg> Policy file path
 -g,--groupname <arg> Group name
 -gpr,--grant_privilege_role Grant privilege to role
 -h,--help Shell usage
 -i,--import Import policy file
 -lp,--list_privilege List privilege
 -lr,--list_role List role
 -mgr,--migrate Migrate ini file to Sentry service
 -p,--privilege <arg> Privilege string
 -r,--rolename <arg> Role name
 -rpr,--revoke_privilege_role Revoke privilege from role
 -s,--service <arg> Name of the service being managed
 -t,--type <arg> [hive|solr|sqoop|.....]
 -v,--validate Validate policy file

Granting Privileges to a Role

The following is an example of how to add priviliges to the test role, which is part of the testGroup, for the
lilytestindexer.

1. Authenticate as Sentry admin.
2. Create the test role:

hbase-indexer-sentry -s "KS_INDEXER-1" -cr -r test

If you have modified your service name from the default, replace KS_INDEXER-1 with your custom service name.

3. Assign the role to the group testGroup:

hbase-indexer-sentry -s "KS_INDEXER-1" -arg -r test -g testGroup

4. Verify that the test role is part of the group testGroup:

hbase-indexer-sentry -s "KS_INDEXER-1" -lr -g testGroup

Cloudera Search | 95

Indexing Data Using Cloudera Search

5. Grant priviliges to test role:

hbase-indexer-sentry -s "KS_INDEXER-1" -gpr -r test -p "indexer=lilytestindexer->action=*"

6. Revoke priviliges from test role:

hbase-indexer-sentry -s "KS_INDEXER-1" -rpr -r test -p "indexer=lilytestindexer->action=*"

Migrating HBase Indexer Sentry Policy Files to the Sentry Service

If you are using CDH 5.14.0 or higher, and want to use the Sentry Service, you can migrate your policy files using the
hbase-indexer-sentry utility:

1. Make sure that you are running the Sentry Service in your cluster. If not, add the service, following the instructions
in Adding a Service.

2. Run the following command:

/opt/cloudera/parcels/CDH/bin/hbase-indexer-sentry -s "KS_INDEXER-1" -mgr -i -v -f
"hdfs://<namenode>:8020/path/to/sentry-provider.ini"

If you have modified your service name from the default, replace KS_INDEXER-1 with your custom service name.

This command validates and imports the specified policy file to the Sentry Service. For more information on the
command usage and syntax, see Managing Sentry Permissions for the Lily HBase Indexer on page 94.

3. Configure the Lily HBase Indexer service to use the Sentry service:

a. Uncheck the box labeled Enable Sentry Authorization using Policy Files (Key-Value Store Indexer service >
Configuration > Category > Policy File Based Sentry)

b. Configure the Sentry Service (Key-Value Store Indexer service > Configuration > Category >Main > Sentry
Service).

4. Restart the Lily HBase Indexer service (Key-Value Store Indexer service > Actions > Restart).

Batch Indexing Using Cloudera Search
Batch indexing usually relies on MapReduce/YARN or Spark jobs to periodically index large datasets, or to index new
datasets for the first time. The Lily HBase indexer, also called HBaseMapReduceIndexerTool, can be used for batch
indexing HBase tables.

Spark Indexing

If you are using Apache Spark, you can batch index data using CrunchIndexerTool.

CrunchIndexerTool is a Spark or MapReduce ETL batch job that pipes data from HDFS files into Apache Solr through a
morphline for extraction and transformation. The program is designed for flexible, scalable, fault-tolerant batch ETL
pipeline jobs. It is implemented as an Apache Crunch pipeline, allowing it to run on MapReduce or Spark execution
engines.

CrunchIndexerTool requires a working MapReduce or Spark cluster, such as one installed using Cloudera Manager. It
is included in parcel-based installations.

96 | Cloudera Search

Indexing Data Using Cloudera Search

Note: This command requires a morphline file, which must include a SOLR_LOCATOR directive. The
snippet that includes the SOLR_LOCATORmight appear as follows:

SOLR_LOCATOR : {
 # Name of solr collection
 collection : collection_name

 # ZooKeeper ensemble
 zkHost :
"zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181/solr"
}

morphlines : [
 {
 id : morphline1
 importCommands : ["org.kitesdk.**", "org.apache.solr.**"]
 commands : [
 { generateUUID { field : id } }

 { # Remove record fields that are unknown to Solr schema.xml.
 # Recall that Solr throws an exception on any attempt to load
a document that
 # contains a field that isn't specified in schema.xml.
 sanitizeUnknownSolrFields {
 solrLocator : ${SOLR_LOCATOR} # Location from which to fetch
 Solr schema
 }
 }

 { logDebug { format : "output record: {}", args : ["@{}"] } }

 {
 loadSolr {
 solrLocator : ${SOLR_LOCATOR}
 }
 }
]
 }
]

You can see the usage syntax CrunchIndexerTool by running the job with the -help argument. Unlike other Search
indexing tools, the CrunchIndexerTool jar does not contain all dependencies. If you try to run the job without
addressing this, you get an error such as the following:

hadoop jar /opt/cloudera/parcels/CDH/lib/solr/contrib/crunch/search-crunch.jar
org.apache.solr.crunch.CrunchIndexerTool -help
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/crunch/types/PType

 at java.lang.Class.forName0(Native Method)
 at java.lang.Class.forName(Class.java:348)
 at org.apache.hadoop.util.RunJar.run(RunJar.java:214)
 at org.apache.hadoop.util.RunJar.main(RunJar.java:136)
Caused by: java.lang.ClassNotFoundException: org.apache.crunch.types.PType
 at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
 ... 4 more

To see the command usage (or to run the job), you must first add the dependencies to the classpath:

• For parcel-based installations:

export HADOOP_CLASSPATH="/opt/cloudera/parcels/CDH/lib/search/lib/search-crunch/*"
hadoop jar /opt/cloudera/parcels/CDH/lib/solr/contrib/crunch/search-crunch.jar
org.apache.solr.crunch.CrunchIndexerTool -help

Cloudera Search | 97

Indexing Data Using Cloudera Search

• For package-based installations:

export HADOOP_CLASSPATH="/usr/lib/search/lib/search-crunch/*"
hadoop jar /usr/lib/solr/contrib/crunch/search-crunch.jar
org.apache.solr.crunch.CrunchIndexerTool -help

For reference, here is the command usage syntax:

Important: The command usage help incorrectly notes the following:

NOTE: MapReduce does not require extra steps for communicating with

kerberos-enabled Solr

To run the MapReduce job on a Kerberos-enabled cluster, you must create and specify a jaas.conf
file, as described in Configuring a jaas.conf File.

For example:

HADOOP_OPTS="-Djava.security.auth.login.config=/path/to/jaas.conf" \
hadoop jar
/opt/cloudera/parcels/CDH/lib/solr/contrib/crunch/search-crunch.jar \
org.apache.solr.crunch.CrunchIndexerTool [...]

MapReduceUsage: export HADOOP_CLASSPATH=$myDependencyJarPaths; hadoop jar $myDriverJar
org.apache.solr.crunch.CrunchIndexerTool --libjars $myDependencyJarFiles
[MapReduceGenericOptions]...
 [--input-file-list URI] [--input-file-format FQCN]
 [--input-file-projection-schema FILE]
 [--input-file-reader-schema FILE] --morphline-file FILE
 [--morphline-id STRING] [--pipeline-type STRING] [--xhelp]
 [--mappers INTEGER] [--parallel-morphline-inits INTEGER]
 [--dry-run] [--log4j FILE] [--chatty] [HDFS_URI [HDFS_URI ...]]

SparkUsage: spark-submit [SparkGenericOptions]... --master local|yarn --deploy-mode
client|cluster
--jars $myDependencyJarFiles --class org.apache.solr.crunch.CrunchIndexerTool $myDriverJar

 [--input-file-list URI] [--input-file-format FQCN]
 [--input-file-projection-schema FILE]
 [--input-file-reader-schema FILE] --morphline-file FILE
 [--morphline-id STRING] [--pipeline-type STRING] [--xhelp]
 [--mappers INTEGER] [--parallel-morphline-inits INTEGER]
 [--dry-run] [--log4j FILE] [--chatty] [HDFS_URI [HDFS_URI ...]]

Spark or MapReduce ETL batch job that pipes data from (splittable or non-
splittable) HDFS files into Apache Solr, and along the way runs the data
through a Morphline for extraction and transformation. The program is
designed for flexible, scalable and fault-tolerant batch ETL pipeline
jobs. It is implemented as an Apache Crunch pipeline and as such can run
on either the Apache Hadoop MapReduce or Apache Spark execution engine.

The program proceeds in several consecutive phases, as follows:

1) Randomization phase: This (parallel) phase randomizes the list of HDFS
input files in order to spread ingestion load more evenly among the mapper
tasks of the subsequent phase. This phase is only executed for non-
splittables files, and skipped otherwise.

2) Extraction phase: This (parallel) phase emits a series of HDFS file
input streams (for non-splittable files) or a series of input data records
(for splittable files).

3) Morphline phase: This (parallel) phase receives the items of the
previous phase, and uses a Morphline to extract the relevant content,
transform it and load zero or more documents into Solr. The ETL
functionality is flexible and customizable using chains of arbitrary
morphline commands that pipe records from one transformation command to
another. Commands to parse and transform a set of standard data formats

98 | Cloudera Search

Indexing Data Using Cloudera Search

such as Avro, Parquet, CSV, Text, HTML, XML, PDF, MS-Office, etc. are
provided out of the box, and additional custom commands and parsers for
additional file or data formats can be added as custom morphline commands.
Any kind of data format can be processed and any kind output format can be
generated by any custom Morphline ETL logic. Also, this phase can be used
to send data directly to a live SolrCloud cluster (via the loadSolr
morphline command).

The program is implemented as a Crunch pipeline and as such Crunch
optimizes the logical phases mentioned above into an efficient physical
execution plan that runs a single mapper-only job, or as the corresponding
Spark equivalent.

Fault Tolerance: Task attempts are retried on failure per the standard
MapReduce or Spark semantics. If the whole job fails you can retry simply
by rerunning the program again using the same arguments.

Comparison with MapReduceIndexerTool:

1) CrunchIndexerTool can also run on the Spark execution engine, not just
on MapReduce.
2) CrunchIndexerTool enables interactive low latency prototyping, in
particular in Spark 'local' mode.
3) CrunchIndexerTool supports updates (and deletes) of existing documents
in Solr, not just inserts.
4) CrunchIndexerTool can exploit data locality for splittable Hadoop files
(text, avro, avroParquet).
We recommend MapReduceIndexerTool for large scale batch ingestion use
cases where updates (or deletes) of existing documents in Solr are not
required, and we recommend CrunchIndexerTool for all other use cases.

CrunchIndexerOptions:
 HDFS_URI HDFS URI of file or directory tree to ingest.
 (default: [])
 --input-file-list URI, --input-list URI
 Local URI or HDFS URI of a UTF-8 encoded file
 containing a list of HDFS URIs to ingest, one URI
 per line in the file. If '-' is specified, URIs
 are read from the standard input. Multiple --
 input-file-list arguments can be specified.
 --input-file-format FQCN
 The Hadoop FileInputFormat to use for extracting
 data from splittable HDFS files. Can be a fully
 qualified Java class name or one of ['text',
 'avro', 'avroParquet']. If this option is present
 the extraction phase will emit a series of input
 data records rather than a series of HDFS file
 input streams.
 --input-file-projection-schema FILE
 Relative or absolute path to an Avro schema file
 on the local file system. This will be used as
 the projection schema for Parquet input files.
 --input-file-reader-schema FILE
 Relative or absolute path to an Avro schema file
 on the local file system. This will be used as
 the reader schema for Avro or Parquet input
 files. Example: src/test/resources/test-
 documents/strings.avsc
 --morphline-file FILE Relative or absolute path to a local config file
 that contains one or more morphlines. The file
 must be UTF-8 encoded. It will be uploaded to
 each remote task. Example: /path/to/morphline.conf
 --morphline-id STRING The identifier of the morphline that shall be
 executed within the morphline config file
 specified by --morphline-file. If the --morphline-
 id option is omitted the first (i.e. top-most)
 morphline within the config file is used.
 Example: morphline1
 --pipeline-type STRING
 The engine to use for executing the job. Can be
 'mapreduce' or 'spark'. (default: mapreduce)
 --xhelp, --help, -help
 Show this help message and exit

Cloudera Search | 99

Indexing Data Using Cloudera Search

 --mappers INTEGER Tuning knob that indicates the maximum number of
 MR mapper tasks to use. -1 indicates use all map
 slots available on the cluster. This parameter
 only applies to non-splittable input files
 (default: -1)
 --parallel-morphline-inits INTEGER
 Tuning knob that indicates the maximum number of
 morphline instances to initialize at the same
 time. This kind of rate limiting on rampup can be
 useful to avoid overload conditions such as
 ZooKeeper connection limits or DNS lookup limits
 when using many parallel mapper tasks because
 each such task contains one morphline. 1
 indicates initialize each morphline separately.
 This feature is implemented with a distributed
 semaphore. The default is to use no rate limiting
 (default: 2147483647)
 --dry-run Run the pipeline but print documents to stdout
 instead of loading them into Solr. This can be
 used for quicker turnaround during early trial &
 debug sessions. (default: false)
 --log4j FILE Relative or absolute path to a log4j.properties
 config file on the local file system. This file
 will be uploaded to each remote task. Example:
 /path/to/log4j.properties
 --chatty Turn on verbose output. (default: false)

SparkGenericOptions: To print all options run 'spark-submit --help'

MapReduceGenericOptions: Generic options supported are
 --conf <configuration file>
 specify an application configuration file
 -D <property=value> use value for given property
 --fs <local|namenode:port>
 specify a namenode
 --jt <local|resourcemanager:port>
 specify a ResourceManager
 --files <comma separated list of files>
 specify comma separated files to be copied to the
 map reduce cluster
 --libjars <comma separated list of jars>
 specify comma separated jar files to include in
 the classpath.
 --archives <comma separated list of archives>
 specify comma separated archives to be unarchived
 on the compute machines.

The general command line syntax is
bin/hadoop command [genericOptions] [commandOptions]

Examples:

Prepare - Copy input files into HDFS:
export myResourcesDir=src/test/resources # for build from git
export myResourcesDir=/opt/cloudera/parcels/CDH/share/doc/search-*/search-crunch # for
 CDH with parcels
export myResourcesDir=/usr/share/doc/search-*/search-crunch # for CDH with packages
hadoop fs -copyFromLocal $myResourcesDir/test-documents/hello1.txt
hdfs:/user/systest/input/

Prepare variables for convenient reuse:
export myDriverJarDir=target # for build from git
export myDriverJarDir=/opt/cloudera/parcels/CDH/lib/solr/contrib/crunch # for CDH with
 parcels
export myDriverJarDir=/usr/lib/solr/contrib/crunch # for CDH with packages
export myDependencyJarDir=target/lib # for build from git
export myDependencyJarDir=/opt/cloudera/parcels/CDH/lib/search/lib/search-crunch # for
 CDH with parcels
export myDependencyJarDir=/usr/lib/search/lib/search-crunch # for CDH with packages
export myDriverJar=$(find $myDriverJarDir -maxdepth 1 -name 'search-crunch-*.jar' !
-name '*-job.jar' ! -name '*-sources.jar')
export myDependencyJarFiles=$(find $myDependencyJarDir -name '*.jar' | sort | tr '\n'

100 | Cloudera Search

Indexing Data Using Cloudera Search

',' | head -c -1)
export myDependencyJarPaths=$(find $myDependencyJarDir -name '*.jar' | sort | tr '\n'
':' | head -c -1)
export myJVMOptions="-DmaxConnectionsPerHost=10000 -DmaxConnections=10000
-Djava.io.tmpdir=/my/tmp/dir/" # connection settings for solrj, also custom tmp dir

MapReduce on Yarn - Ingest text file line by line into Solr:
export HADOOP_CLIENT_OPTS="$myJVMOptions"; export HADOOP_CLASSPATH=$myDependencyJarPaths;
 hadoop \
 --config /etc/hadoop/conf.cloudera.YARN-1 \
 jar $myDriverJar org.apache.solr.crunch.CrunchIndexerTool \
 --libjars $myDependencyJarFiles \
 -D mapreduce.map.java.opts="-Xmx500m $myJVMOptions" \
 -D morphlineVariable.ZK_HOST=$(hostname):2181/solr \
 --files $myResourcesDir/test-documents/string.avsc \
 --morphline-file $myResourcesDir/test-morphlines/loadSolrLine.conf \
 --pipeline-type mapreduce \
 --chatty \
 --log4j $myResourcesDir/log4j.properties \
 /user/systest/input/hello1.txt

Spark in Local Mode (for rapid prototyping) - Ingest into Solr:
spark-submit \
 --master local \
 --deploy-mode client \
 --jars $myDependencyJarFiles \
 --executor-memory 500M \
 --conf "spark.executor.extraJavaOptions=$myJVMOptions" \
 --driver-java-options "$myJVMOptions" \
 # --driver-library-path /opt/cloudera/parcels/CDH/lib/hadoop/lib/native # for Snappy
 on CDH with parcels\
 # --driver-library-path /usr/lib/hadoop/lib/native # for Snappy on CDH with packages
 \
 --class org.apache.solr.crunch.CrunchIndexerTool \
 $myDriverJar \
 -D morphlineVariable.ZK_HOST=$(hostname):2181/solr \
 --morphline-file $myResourcesDir/test-morphlines/loadSolrLine.conf \
 --pipeline-type spark \
 --chatty \
 --log4j $myResourcesDir/log4j.properties \
 /user/systest/input/hello1.txt

Spark on Yarn in Client Mode (for testing) - Ingest into Solr:
Same as above, except replace '--master local' with '--master yarn'

View the yarn executor log files (there is no GUI yet):
yarn logs --applicationId $application_XYZ

Spark on Yarn in Cluster Mode (for production) - Ingest into Solr:
spark-submit \
 --master yarn \
 --deploy-mode cluster \
 --jars $myDependencyJarFiles \
 --executor-memory 500M \
 --conf "spark.executor.extraJavaOptions=$myJVMOptions" \
 --driver-java-options "$myJVMOptions" \
 --class org.apache.solr.crunch.CrunchIndexerTool \
 --files $(ls $myResourcesDir/log4j.properties),$(ls
$myResourcesDir/test-morphlines/loadSolrLine.conf)\
 $myDriverJar \
 -D hadoop.tmp.dir=/tmp \
 -D morphlineVariable.ZK_HOST=$(hostname):2181/solr \
 --morphline-file loadSolrLine.conf \
 --pipeline-type spark \
 --chatty \
 --log4j log4j.properties \
 /user/systest/input/hello1.txt

Spark on Yarn in Cluster Mode (for production) - Ingest into Secure (Kerberos-enabled)
 Solr:
Spark requires two additional steps compared to non-secure solr:
(NOTE: MapReduce does not require extra steps for communicating with kerberos-enabled
 Solr)

Cloudera Search | 101

Indexing Data Using Cloudera Search

1) Create a delegation token file
a) kinit as the user who will make solr requests
b) request a delegation token from solr and save it to a file:
e.g. using curl:
"curl --negotiate -u: http://solr-host:port/solr/?op=GETDELEGATIONTOKEN >
tokenFile.txt"
2) Pass the delegation token file to spark-submit:
a) add the delegation token file via --files
b) pass the file name via -D tokenFile
spark places this file in the cwd of the executor, so only list the file name,
 no path
spark-submit \
 --master yarn \
 --deploy-mode cluster \
 --jars $myDependencyJarFiles \
 --executor-memory 500M \
 --conf "spark.executor.extraJavaOptions=$myJVMOptions" \
 --driver-java-options "$myJVMOptions" \
 --class org.apache.solr.crunch.CrunchIndexerTool \
 --files $(ls $myResourcesDir/log4j.properties),$(ls
$myResourcesDir/test-morphlines/loadSolrLine.conf),tokenFile.txt\
 $myDriverJar \
 -D hadoop.tmp.dir=/tmp \
 -D morphlineVariable.ZK_HOST=$(hostname):2181/solr \
 -DtokenFile=tokenFile.txt \
 --morphline-file loadSolrLine.conf \
 --pipeline-type spark \
 --chatty \
 --log4j log4j.properties \
 /user/systest/input/hello1.txt

MapReduce Indexing

Cloudera Search provides the ability to batch index documents using MapReduce jobs.

For information on tools related to batch indexing, continue reading:

Running an Example Indexing Job

For examples of running a MapReduce job to index documents, see Cloudera Search Tutorial on page 16

MapReduceIndexerTool

MapReduceIndexerTool is a MapReduce batch job driver that takes a morphline and creates a set of Solr index shards
from a set of input files and writes the indexes into HDFS in a flexible, scalable, and fault-tolerant manner.

For more information on Morphlines, see:

• Extracting, Transforming, and LoadingDataWith ClouderaMorphlines on page 74 for an introduction toMorphlines.
• ExampleMorphlineUsage on page 76 formorphline examples, discussion of those examples, and links to additional

information.

MapReduceIndexerTool also supportsmerging the output shards into a set of live customer-facing Solr servers, typically
a SolrCloud.

Important: Merging output shards into live customer-facing Solr servers can only be completed if all
replicas are online.

The indexer creates an offline index on HDFS in the output directory specified by the --output-dir parameter. If
the --go-live parameter is specified, Solr merges the resulting offline index into the live running service. Thus, the
Solr servicemust have read access to the contents of the output directory to complete the go-live step. In an environment
with restrictive permissions, such as onewith an HDFS umask of 077, the Solr usermay not be able to read the contents
of the newly created directory. To address this issue, the indexer automatically applies the HDFS ACLs to enable Solr
to read the output directory contents. These ACLs are only applied if HDFS ACLs are enabled on the HDFS NameNode.
For more information, see HDFS Extended ACLs.

102 | Cloudera Search

Indexing Data Using Cloudera Search

The indexer onlymakes ACL updates to the output directory and its contents. If the output directory's parent directories
do not include the run permission, the Solr service is not be able to access the output directory. Solr must have run
permissions from standard permissions or ACLs on the parent directories of the output directory.

Note: Using --libjars parameter in dry-runmode does not work. Instead, specify the JAR files
using the HADOOP_CLASSPATH environmental variable.

MapReduceIndexerTool Input Splits

Different from some other indexing tools, theMapReduceIndexerTool does not operate on HDFS blocks as input splits.
This means that when indexing a smaller number of large files, fewer hosts may be involved. For example, indexing
two files that are each one GB results in two hosts acting as mappers. If these files were stored on a system with a 128
MB block size, othermappers might divide the work on the two files among 16mappers, corresponding to the 16 HDFS
blocks that store the two files.

This intentional design choice aligns with MapReduceIndexerTool supporting indexing non-splittable file formats such
as JSON, XML, jpg, or log4j.

In theory, this could result in inefficient use of resources when a single host indexes a large file while many other hosts
sit idle. In reality, this indexing strategy typically results in satisfactory performance in production environments because
in most cases the number of files is large enough that work is spread throughout the cluster.

While dividing tasks by input splits does not present problems in most cases, users may still want to divide indexing
tasks along HDFS splits. In that case, use the CrunchIndexerTool, which can work with Hadoop input splits using the
input-file-format option.

MapReduceIndexerTool Metadata

The MapReduceIndexerTool generates metadata fields for each input file when indexing. These fields can be used in
morphline commands. These fields can also be stored in Solr, by adding definitions like the following to your Solr
schema.xml file. After the MapReduce indexing process completes, the fields are searchable through Solr.

<!-- file metadata -->
<field name="file_download_url" type="string" indexed="false" stored="true" />
<field name="file_upload_url" type="string" indexed="false" stored="true" />
<field name="file_scheme" type="string" indexed="true" stored="true" />
<field name="file_host" type="string" indexed="true" stored="true" />
<field name="file_port" type="int" indexed="true" stored="true" />
<field name="file_path" type="string" indexed="true" stored="true" />
<field name="file_name" type="string" indexed="true" stored="true" />
<field name="file_length" type="tlong" indexed="true" stored="true" />
<field name="file_last_modified" type="tlong" indexed="true" stored="true" />
<field name="file_owner" type="string" indexed="true" stored="true" />
<field name="file_group" type="string" indexed="true" stored="true" />
<field name="file_permissions_user" type="string" indexed="true" stored="true" />
<field name="file_permissions_group" type="string" indexed="true" stored="true" />
<field name="file_permissions_other" type="string" indexed="true" stored="true" />
<field name="file_permissions_stickybit" type="boolean" indexed="true" stored="true" />

Example output:

"file_upload_url":"foo/test-documents/sample-statuses-20120906-141433.avro",
"file_download_url":"hdfs://host1.mycompany.com:8020/user/foo/
test-documents/sample-statuses-20120906-141433.avro",
"file_scheme":"hdfs",
"file_host":"host1.mycompany.com",
"file_port":8020,
"file_name":"sample-statuses-20120906-141433.avro",
"file_path":"/user/foo/test-documents/sample-statuses-20120906-141433.avro",
"file_last_modified":1357193447106,
"file_length":1512,
"file_owner":"foo",
"file_group":"foo",
"file_permissions_user":"rw-",
"file_permissions_group":"r--",

Cloudera Search | 103

Indexing Data Using Cloudera Search

"file_permissions_other":"r--",
"file_permissions_stickybit":false,

MapReduceIndexerTool Usage Syntax

Important: In CDH 6, you must run the indexer tool with the following command-line argument:

-D 'mapreduce.job.user.classpath.first=true'

Running the tool without this argument triggers the following error:

ERROR [main] org.apache.hadoop.mapred.YarnChild: Error running child :
 java.lang.NoSuchMethodError:
com.codahale.metrics.MetricRegistry.meter(Ljava/lang/String;Lcom/codahale/metrics/MetricRegistry$MetricSupplier;)Lcom/codahale/metrics/Meter;

• To view the usage syntax in a default parcel-based deployment, run:

hadoop jar /opt/cloudera/parcels/CDH/jars/search-mr-*-job.jar \
org.apache.solr.hadoop.MapReduceIndexerTool --help

• To view the usage syntax in a default package-based deployment, use:

hadoop jar /usr/lib/solr/contrib/mr/search-mr-*-job.jar \
org.apache.solr.hadoop.MapReduceIndexerTool --help

usage: hadoop [GenericOptions]... jar search-mr-*-job.jar
org.apache.solr.hadoop.MapReduceIndexerTool
 [--help] --output-dir HDFS_URI [--input-list URI]
 --morphline-file FILE [--morphline-id STRING] [--solr-home-dir DIR]
 [--update-conflict-resolver FQCN] [--mappers INTEGER]
 [--reducers INTEGER] [--max-segments INTEGER]
 [--fair-scheduler-pool STRING] [--dry-run] [--log4j FILE]
 [--verbose] [--show-non-solr-cloud] [--zk-host STRING] [--go-live]
 [--collection STRING] [--go-live-min-replication-factor INTEGER]
 [--go-live-threads INTEGER] [HDFS_URI [HDFS_URI ...]]

MapReduce batch job driver that takes a morphline and creates a set of
Solr index shards from a set of input files and writes the indexes into
HDFS, in a flexible, scalable and fault-tolerant manner. It also supports
merging the output shards into a set of live customer facing Solr servers,
typically a SolrCloud. The program proceeds in several consecutive
MapReduce based phases, as follows:

1) Randomization phase: This (parallel) phase randomizes the list of input
files in order to spread indexing load more evenly among the mappers of
the subsequent phase.

2) Mapper phase: This (parallel) phase takes the input files, extracts the
relevant content, transforms it and hands SolrInputDocuments to a set of
reducers. The ETL functionality is flexible and customizable using chains
of arbitrary morphline commands that pipe records from one transformation
command to another. Commands to parse and transform a set of standard data
formats such as Avro, CSV, Text, HTML, XML, PDF, Word, Excel, etc. are
provided out of the box, and additional custom commands and parsers for
additional file or data formats can be added as morphline plugins. This is
done by implementing a simple Java interface that consumes a record (e.g.
a file in the form of an InputStream plus some headers plus contextual
metadata) and generates as output zero or more records. Any kind of data
format can be indexed and any Solr documents for any kind of Solr schema
can be generated, and any custom ETL logic can be registered and executed.
Record fields, including MIME types, can also explicitly be passed by
force from the CLI to the morphline, for example: hadoop ... -D
morphlineField._attachment_mimetype=text/csv

3) Reducer phase: This (parallel) phase loads the mapper's

104 | Cloudera Search

Indexing Data Using Cloudera Search

SolrInputDocuments into one EmbeddedSolrServer per reducer. Each such
reducer and Solr server can be seen as a (micro) shard. The Solr servers
store their data in HDFS.

4) Mapper-only merge phase: This (parallel) phase merges the set of
reducer shards into the number of solr shards expected by the user, using
a mapper-only job. This phase is omitted if the number of shards is
already equal to the number of shards expected by the user.

5) Go-live phase: This optional (parallel) phase merges the output shards
of the previous phase into a set of live customer facing Solr servers,
typically a SolrCloud. If this phase is omitted you can explicitly point
each Solr server to one of the HDFS output shard directories.

Fault Tolerance: Mapper and reducer task attempts are retried on failure
per the standard MapReduce semantics. On program startup all data in the --
output-dir is deleted if that output directory already exists. If the
whole job fails you can retry simply by rerunning the program again using
the same arguments.

positional arguments:
 HDFS_URI HDFS URI of file or directory tree to index.
 (default: [])

optional arguments:
 --help, -help, -h Show this help message and exit
 --input-list URI Local URI or HDFS URI of a UTF-8 encoded file
 containing a list of HDFS URIs to index, one URI
 per line in the file. If '-' is specified, URIs
 are read from the standard input. Multiple --
 input-list arguments can be specified.
 --morphline-id STRING The identifier of the morphline that shall be
 executed within the morphline config file
 specified by --morphline-file. If the --morphline-
 id option is ommitted the first (i.e. top-most)
 morphline within the config file is used.
 Example: morphline1
 --solr-home-dir DIR Optional relative or absolute path to a local dir
 containing Solr conf/ dir and in particular
 conf/solrconfig.xml and optionally also lib/ dir.
 This directory will be uploaded to each MR task.
 Example: src/test/resources/solr/minimr
 --update-conflict-resolver FQCN
 Fully qualified class name of a Java class that
 implements the UpdateConflictResolver interface.
 This enables deduplication and ordering of a
 series of document updates for the same unique
 document key. For example, a MapReduce batch job
 might index multiple files in the same job where
 some of the files contain old and new versions of
 the very same document, using the same unique
 document key.
 Typically, implementations of this interface
 forbid collisions by throwing an exception, or
 ignore all but the most recent document version,
 or, in the general case, order colliding updates
 ascending from least recent to most recent
 (partial) update. The caller of this interface (i.
 e. the Hadoop Reducer) will then apply the
 updates to Solr in the order returned by the
 orderUpdates() method.
 The default
 RetainMostRecentUpdateConflictResolver
 implementation ignores all but the most recent
 document version, based on a configurable numeric
 Solr field, which defaults to the
 file_last_modified timestamp (default: org.apache.
 solr.hadoop.dedup.
 RetainMostRecentUpdateConflictResolver)
 --mappers INTEGER Tuning knob that indicates the maximum number of
 MR mapper tasks to use. -1 indicates use all map
 slots available on the cluster. (default: -1)
 --reducers INTEGER Tuning knob that indicates the number of reducers

Cloudera Search | 105

Indexing Data Using Cloudera Search

 to index into. 0 is reserved for a mapper-only
 feature that may ship in a future release. -1
 indicates use all reduce slots available on the
 cluster. -2 indicates use one reducer per output
 shard, which disables the mtree merge MR
 algorithm. The mtree merge MR algorithm improves
 scalability by spreading load (in particular CPU
 load) among a number of parallel reducers that
 can be much larger than the number of solr shards
 expected by the user. It can be seen as an
 extension of concurrent lucene merges and tiered
 lucene merges to the clustered case. The
 subsequent mapper-only phase merges the output of
 said large number of reducers to the number of
 shards expected by the user, again by utilizing
 more available parallelism on the cluster.
 (default: -1)
 --max-segments INTEGER
 Tuning knob that indicates the maximum number of
 segments to be contained on output in the index
 of each reducer shard. After a reducer has built
 its output index it applies a merge policy to
 merge segments until there are <= maxSegments
 lucene segments left in this index. Merging
 segments involves reading and rewriting all data
 in all these segment files, potentially multiple
 times, which is very I/O intensive and time
 consuming. However, an index with fewer segments
 can later be merged faster, and it can later be
 queried faster once deployed to a live Solr
 serving shard. Set maxSegments to 1 to optimize
 the index for low query latency. In a nutshell, a
 small maxSegments value trades indexing latency
 for subsequently improved query latency. This can
 be a reasonable trade-off for batch indexing
 systems. (default: 1)
 --dry-run Run in local mode and print documents to stdout
 instead of loading them into Solr. This executes
 the morphline in the client process (without
 submitting a job to MR) for quicker turnaround
 during early trial & debug sessions. (default:
 false)
 --log4j FILE Relative or absolute path to a log4j.properties
 config file on the local file system. This file
 will be uploaded to each MR task. Example:
 /path/to/log4j.properties
 --verbose, -v Turn on verbose output. (default: false)
 --show-non-solr-cloud Also show options for Non-SolrCloud mode as part
 of --help. (default: false)

Required arguments:
 --output-dir HDFS_URI HDFS directory to write Solr indexes to. Inside
 there one output directory per shard will be
 generated. Example: hdfs://c2202.mycompany.
 com/user/$USER/test
 --morphline-file FILE Relative or absolute path to a local config file
 that contains one or more morphlines. The file
 must be UTF-8 encoded. Example:
 /path/to/morphline.conf

Cluster arguments:
 Arguments that provide information about your Solr cluster.

 --zk-host STRING The address of a ZooKeeper ensemble being used by
 a SolrCloud cluster. This ZooKeeper ensemble will
 be examined to determine the number of output
 shards to create as well as the Solr URLs to
 merge the output shards into when using the --go-
 live option. Requires that you also pass the --
 collection to merge the shards into.

 The --zk-host option implements the same
 partitioning semantics as the standard SolrCloud

106 | Cloudera Search

Indexing Data Using Cloudera Search

 Near-Real-Time (NRT) API. This enables to mix
 batch updates from MapReduce ingestion with
 updates from standard Solr NRT ingestion on the
 same SolrCloud cluster, using identical unique
 document keys.

 Format is: a list of comma separated host:port
 pairs, each corresponding to a zk server.
 Example: '127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:
 2183' If the optional chroot suffix is used the
 example would look like: '127.0.0.1:2181/solr,
 127.0.0.1:2182/solr,127.0.0.1:2183/solr' where
 the client would be rooted at '/solr' and all
 paths would be relative to this root - i.e.
 getting/setting/etc... '/foo/bar' would result in
 operations being run on '/solr/foo/bar' (from the
 server perspective).

 If --solr-home-dir is not specified, the Solr
 home directory for the collection may be
 downloaded from this ZooKeeper ensemble.

Go live arguments:
 Arguments for merging the shards that are built into a live Solr
 cluster. Also see the Cluster arguments.

 --go-live Allows you to optionally merge the final index
 shards into a live Solr cluster after they are
 built. You can pass the ZooKeeper address with --
 zk-host and the relevant cluster information will
 be auto detected. (default: false)
 --collection STRING The SolrCloud collection to merge shards into
 when using --go-live and --zk-host. Example:
 collection1
 --go-live-min-replication-factor INTEGER
 The minimum number of SolrCloud replicas to
 successfully merge any final index shard into.
 The go-live job phase attempts to merge final
 index shards into all SolrCloud replicas. Some of
 these merge operations may fail, for example if
 some SolrCloud servers are down. This option
 enables indexing jobs to succeed even if some
 such merge operations fail on SolrCloud
 followers. Successful merge operations into all
 leaders are always required for job success,
 regardless of the value of --go-live-min-
 replication-factor. -1 indicates require
 successful merge operations into all replicas. 1
 indicates require successful merge operations
 only into leader replicas. (default: -1)
 --go-live-threads INTEGER
 Tuning knob that indicates the maximum number of
 live merges to run in parallel at one time.
 (default: 1000)

Generic options supported are:
 --conf <configuration file>
 specify an application configuration file
 -D <property=value> define a value for a given property
-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides
'fs.defaultFS' property from configurations.
 --jt <local|resourcemanager:port>
 specify a ResourceManager
 --files <file1,...> specify a comma-separated list of files to be
 copied to the map reduce cluster
 --libjars <jar1,...> specify a comma-separated list of jar files to be
 included in the classpath
 --archives <archive1,...>
 specify a comma-separated list of archives to be
 unarchived on the compute machines

The general command line syntax is:
command [genericOptions] [commandOptions]

Cloudera Search | 107

Indexing Data Using Cloudera Search

Examples:

(Re)index an Avro based Twitter tweet file:
sudo -u hdfs hadoop \
 --config /etc/hadoop/conf.cloudera.mapreduce1 \
 jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --log4j src/test/resources/log4j.properties \
 --morphline-file
../search-core/src/test/resources/test-morphlines/tutorialReadAvroContainer.conf \
 --solr-home-dir src/test/resources/solr/minimr \
 --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
 --shards 1 \
 hdfs:///user/$USER/test-documents/sample-statuses-20120906-141433.avro

(Re)index all files that match all of the following conditions:
1) File is contained in dir tree hdfs:///user/$USER/solrloadtest/twitter/tweets
2) file name matches the glob pattern 'sample-statuses*.gz'
3) file was last modified less than 100000 minutes ago
4) file size is between 1 MB and 1 GB
Also include extra library jar file containing JSON tweet Java parser:
hadoop fs \
 -find hdfs:///user/$USER/solrloadtest/twitter/tweets \
 -type f \
 -name 'sample-statuses*.gz' \
 -mmin -1000000 \
 -size -100000000c \
 -size +1000000c \
| sudo -u hdfs hadoop \
 --config /etc/hadoop/conf.cloudera.mapreduce1 \
 jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool \
 --libjars /path/to/kite-morphlines-twitter-0.10.0.jar \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --log4j src/test/resources/log4j.properties \
 --morphline-file
../search-core/src/test/resources/test-morphlines/tutorialReadJsonTestTweets.conf \
 --solr-home-dir src/test/resources/solr/minimr \
 --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
 --shards 100 \
 --input-list -

Go live by merging resulting index shards into a live Solr cluster
(explicitly specify Solr URLs - for a SolrCloud cluster see next example):
sudo -u hdfs hadoop \
 --config /etc/hadoop/conf.cloudera.mapreduce1 \
 jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --log4j src/test/resources/log4j.properties \
 --morphline-file
../search-core/src/test/resources/test-morphlines/tutorialReadAvroContainer.conf \
 --solr-home-dir src/test/resources/solr/minimr \
 --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
 --shard-url http://solr001.mycompany.com:8983/solr/collection1 \
 --shard-url http://solr002.mycompany.com:8983/solr/collection1 \
 --go-live \
 hdfs:///user/foo/indir

Go live by merging resulting index shards into a live SolrCloud cluster
(discover shards and Solr URLs through ZooKeeper):
sudo -u hdfs hadoop \
 --config /etc/hadoop/conf.cloudera.mapreduce1 \
 jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --log4j src/test/resources/log4j.properties \
 --morphline-file
../search-core/src/test/resources/test-morphlines/tutorialReadAvroContainer.conf \
 --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
 --zk-host zk01.mycompany.com:2181/solr \
 --collection collection1 \
 --go-live \
 hdfs:///user/foo/indir

108 | Cloudera Search

Indexing Data Using Cloudera Search

MapReduce on Yarn - Pass custom JVM arguments (including a custom tmp directory)
HADOOP_CLIENT_OPTS='-DmaxConnectionsPerHost=10000 -DmaxConnections=10000
-Djava.io.tmpdir=/my/tmp/dir/'; \
sudo -u hdfs hadoop \
 --config /etc/hadoop/conf.cloudera.mapreduce1 \
 jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool \
 -D 'mapreduce.map.java.opts=-DmaxConnectionsPerHost=10000 -DmaxConnections=10000' \
 -D 'mapreduce.reduce.java.opts=-DmaxConnectionsPerHost=10000 -DmaxConnections=10000'
 \
 --log4j src/test/resources/log4j.properties \
 --morphline-file
../search-core/src/test/resources/test-morphlines/tutorialReadAvroContainer.conf \
 --solr-home-dir src/test/resources/solr/minimr \
 --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
 --shards 1 \
 hdfs:///user/$USER/test-documents/sample-statuses-20120906-141433.avro

Lily HBase Batch Indexing for Cloudera Search

With Cloudera Search, you can batch index HBase tables using the Lily HBase batch indexerMapReduce job, also known
as HBaseMapReduceIndexerTool. This batch indexing does not require:

• HBase replication
• The Lily HBase Indexer Service
• Registering a Lily HBase Indexer configuration with the Lily HBase Indexer Service

The indexer supports flexible, custom, application-specific rules to extract, transform, and load HBase data into Solr.
Solr search results can containcolumnFamily:qualifier links back to the data stored in HBase. Thisway, applications
can use the search result set to directly access matching raw HBase cells.

The following procedures demonstrate creating a small HBase table and using the HBaseMapReduceIndexerTool to
index the table into a collection:

Important: Do not use the Lily HBase Batch Indexer during a rolling upgrade. The indexer requires
all replicas be hosted on the sameHBase version. If an indexing job is running during a rolling upgrade,
different nodes may be running pre- and post-upgrade versions of HBase.

Populating an HBase Table

After configuring and starting your system, create an HBase table and add rows to it. For example:

hbase shell

hbase(main):002:0> create 'sample_table', {NAME => 'data'}
hbase(main):002:0> put 'sample_table', 'row1', 'data', 'value'
hbase(main):001:0> put 'sample_table', 'row2', 'data', 'value2'

Creating a Collection in Cloudera Search

A collection in Search used for HBase indexingmust have a Solr schema that accommodates the types of HBase column
families and qualifiers that are being indexed. To begin, consider adding the all-inclusive data field to a default schema.
Once you decide on a schema, create a collection using commands similar to the following:

solrctl instancedir --generate $HOME/hbase_collection_config
Edit $HOME/hbase_collection_config/conf/schema.xml as needed
If you are using Sentry for authorization, copy solrconfig.xml.secure to solrconfig.xml
 as follows: ##
cp $HOME/hbase_collection_config/conf/solrconfig.xml.secure
$HOME/hbase_collection_config/conf/solrconfig.xml ##
solrctl instancedir --create hbase_collection_config $HOME/hbase_collection_config
solrctl collection --create hbase_collection -s <numShards> -c hbase_collection_config

Cloudera Search | 109

Indexing Data Using Cloudera Search

Creating a Lily HBase Indexer Configuration File

Configure individual Lily HBase Indexers using the hbase-indexer command-line utility. Typically, there is one Lily
HBase Indexer configuration file for each HBase table, but there can be as many Lily HBase Indexer configuration files
as there are tables, column families, and corresponding collections in Search. Each Lily HBase Indexer configuration is
defined in an XML file, such as morphline-hbase-mapper.xml.

An indexer configuration XML file must refer to the MorphlineResultToSolrMapper implementation and point to
the location of a Morphline configuration file, as shown in the following morphline-hbase-mapper.xml indexer
configuration file. For Cloudera Manager managed environments, set morphlineFile to the relative path
morphlines.conf. For unmanaged environments, specify the absolute path to a morphlines.conf file that exists
on the Lily HBase Indexer host. Make sure the file is readable by the HBase system user (hbase by default).

cat $HOME/morphline-hbase-mapper.xml

<?xml version="1.0"?>
<indexer table="sample_table"
mapper="com.ngdata.hbaseindexer.morphline.MorphlineResultToSolrMapper">

 <!-- The relative or absolute path on the local file system to the
 morphline configuration file. -->
 <!-- Use relative path "morphlines.conf" for morphlines managed by
 Cloudera Manager -->
 <param name="morphlineFile" value="/path/to/morphlines.conf"/>

 <!-- The optional morphlineId identifies a morphline if there are multiple
 morphlines in morphlines.conf -->
 <!-- <param name="morphlineId" value="morphline1"/> -->

</indexer>

The Lily HBase Indexer configuration file also supports the standard attributes of any HBase Lily Indexer on the top-level
<indexer> element: table, mapping-type, read-row, mapper, unique-key-formatter, unique-key-field,
row-field, column-family-field, and table-family-field. It does not support the <field> element and
<extract> elements.

Creating a Morphline Configuration File

After creating an indexer configuration XML file, you can configure morphline ETL transformation commands in a
morphlines.conf configuration file. The morphlines.conf configuration file can contain any number ofmorphline
commands. Typically, anextractHBaseCells command is the first command. ThereadAvroContainerorreadAvro
morphline commands are often used to extract Avro data from the HBase byte array. This configuration file can be
shared among different applications that use morphlines.

If you are using Cloudera Manager, the morphlines.conf file is edited within Cloudera Manager (Key-Value Store
Indexer service > Configuration > Category >Morphlines >Morphlines File).

For unmanaged environments, create the morphlines.conf file on the Lily HBase Indexer host:

cat /etc/hbase-solr/conf/morphlines.conf

morphlines : [
 {
 id : morphline1
 importCommands : ["org.kitesdk.morphline.**", "com.ngdata.**"]

 commands : [
 {
 extractHBaseCells {
 mappings : [
 {
 inputColumn : "data:*"
 outputField : "data"
 type : string
 source : value
 }

110 | Cloudera Search

Indexing Data Using Cloudera Search

https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#table
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#mapping-type
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#read-row
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#mapper
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#unique-key-formatter
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#unique-key-field
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#row-field
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#column-family-field
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#table-family-field

 #{
 # inputColumn : "data:item"
 # outputField : "_attachment_body"
 # type : "byte[]"
 # source : value
 #}
]
 }
 }

 #for avro use with type : "byte[]" in extractHBaseCells mapping above
 #{ readAvroContainer {} }
 #{
 # extractAvroPaths {
 # paths : {
 # data : /user_name
 # }
 # }
 #}

 { logTrace { format : "output record: {}", args : ["@{}"] } }
]
 }
]

Note: To function properly, the morphline must not contain a loadSolr command. The Lily HBase
Indexer must load documents into Solr, instead the morphline itself.

Understanding the extractHBaseCellsMorphline Command

The extractHBaseCellsmorphline command extracts cells from an HBase result and transforms the values into a
SolrInputDocument. The command consists of an array of zero or more mapping specifications.

Each mapping has:

• The inputColumn parameter, which specifies the data from HBase for populating a field in Solr. It has the form
of a column family name and qualifier, separated by a colon. The qualifier portion can end in an asterisk, which
is interpreted as a wildcard. In this case, all matching column-family and qualifier expressions are used. The
following are examples of valid inputColumn values:

– mycolumnfamily:myqualifier

– mycolumnfamily:my*

– mycolumnfamily:*

• The outputField parameter specifies the morphline record field to which to add output values. The morphline
record field is also known as the Solr document field. Example: first_name.

• Dynamic output fields are enabled by the outputField parameter ending with a wildcard (*). For example:

inputColumn : "mycolumnfamily:*"
outputField : "belongs_to_*"

In this case, if you make these puts in HBase:

put 'table_name' , 'row1' , 'mycolumnfamily:1' , 'foo'
put 'table_name' , 'row1' , 'mycolumnfamily:9' , 'bar'

Then the fields of the Solr document are as follows:

belongs_to_1 : foo
belongs_to_9 : bar

• The type parameter defines the data type of the content in HBase. All input data is stored in HBase as byte arrays,
but all content in Solr is indexed as text, so a method for converting byte arrays to the actual data type is required.
The type parameter can be the name of a type that is supported by

Cloudera Search | 111

Indexing Data Using Cloudera Search

org.apache.hadoop.hbase.util.Bytes.to* (which currently includesbyte[],int,long,string,boolean,
float, double, short, and bigdecimal). Use type byte[] to pass the byte array through to the morphline
without conversion.

– type:byte[] copies the byte array unmodified into the record output field

– type:int converts with org.apache.hadoop.hbase.util.Bytes.toInt

– type:long converts with org.apache.hadoop.hbase.util.Bytes.toLong

– type:string converts with org.apache.hadoop.hbase.util.Bytes.toString

– type:boolean converts with org.apache.hadoop.hbase.util.Bytes.toBoolean

– type:float converts with org.apache.hadoop.hbase.util.Bytes.toFloat

– type:double converts with org.apache.hadoop.hbase.util.Bytes.toDouble

– type:short converts with org.apache.hadoop.hbase.util.Bytes.toShort

– type:bigdecimal converts with org.apache.hadoop.hbase.util.Bytes.toBigDecimal

Alternatively, the type parameter can be the name of a Java class that implements the
com.ngdata.hbaseindexer.parse.ByteArrayValueMapper interface.

HBase data formatting does not alwaysmatchwhat is specified byorg.apache.hadoop.hbase.util.Bytes.*.
For example, this can occur with data of type float or double. You can enable indexing of such HBase data by
converting the data. There are various ways to do so, including:

• Using Java morphline command to parse input data, converting it to the expected output. For example:

{
 imports : "import java.util.*;" code: """ // manipulate the contents of a record field

 String stringAmount = (String) record.getFirstValue("amount");
 Double dbl = Double.parseDouble(stringAmount); record.replaceValues("amount",dbl);
 return child.process(record); // pass record to next command in chain """
}

• Creating table fields with binary format and then using types such as double or float in a morphline.conf.
You could create a table in HBase for storing doubles using commands similar to:

CREATE TABLE sample_lily_hbase (id string, amount double, ts timestamp)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ('hbase.columns.mapping' = ':key,ti:amount#b,ti:ts,')
TBLPROPERTIES ('hbase.table.name' = 'sample_lily');

• The source parameter determines which portion of an HBase KeyValue is used as indexing input. Valid choices
are value or qualifier. When value is specified, the HBase cell value is used as input for indexing. When
qualifier is specified, then the HBase column qualifier is used as input for indexing. The default is value.

Running HBaseMapReduceIndexerTool

Important: In CDH 6, you must run the indexer tool with the following command-line argument:

-D 'mapreduce.job.user.classpath.first=true'

Running the tool without this argument triggers the following error:

ERROR [main] org.apache.hadoop.mapred.YarnChild: Error running child :
 java.lang.NoSuchMethodError:
com.codahale.metrics.MetricRegistry.meter(Ljava/lang/String;Lcom/codahale/metrics/MetricRegistry$MetricSupplier;)Lcom/codahale/metrics/Meter;

HBaseMapReduceIndexerTool is a MapReduce batch job driver that takes input data from an HBase table, creates Solr
index shards, and writes the indexes to HDFS in a flexible, scalable, and fault-tolerant manner. It also supports merging
the output shards into a set of live customer-facing Solr servers in SolrCloud.

112 | Cloudera Search

Indexing Data Using Cloudera Search

Important: Merging output shards into live customer-facing Solr servers can only be completed if all
replicas are online.

Run the command as follows:

• For package-based deployments:

hadoop --config /etc/hadoop/conf \
jar /usr/lib/hbase-solr/tools/hbase-indexer-mr-*-job.jar \
--conf /etc/hbase/conf/hbase-site.xml -Dmapreduce.map.java.opts="-Xmx512m" \
-Dmapreduce.reduce.java.opts="-Xmx512m" \
--hbase-indexer-file $HOME/morphline-hbase-mapper.xml \
--zk-host 127.0.0.1/solr --collection hbase-collection1 \
--go-live --log4j src/test/resources/log4j.properties

• For parcel-based deployments:

hadoop --config /etc/hadoop/conf \
jar /opt/cloudera/parcels/CDH/lib/hbase-solr/tools/hbase-indexer-mr-*-job.jar \
--conf /etc/hbase/conf/hbase-site.xml -Dmapreduce.map.java.opts="-Xmx512m" \
-Dmapreduce.reduce.java.opts="-Xmx512m" \
--hbase-indexer-file $HOME/morphline-hbase-mapper.xml \
--zk-host 127.0.0.1/solr --collection hbase-collection1 \
--go-live --log4j src/test/resources/log4j.properties

Note: For development purposes, use the--dry-runoption to run in localmode andprint documents
to stdout, instead of loading them to Solr. Using this option causes the morphline to run in the client
processwithout submitting a job toMapReduce. Running in the client process provides quicker results
during early trial and debug sessions.

To print diagnostic information, such as the content of records as they pass through morphline
commands, enable TRACE log level diagnostics by adding the following to your log4j.properties
file:

log4j.logger.org.kitesdk.morphline=TRACE
log4j.logger.com.ngdata=TRACE

The log4j.properties file can be passed using the --log4j command-line option.

To invoke the command-line help in a default parcels installation, use:

hadoop jar /opt/cloudera/parcels/CDH/jars/hbase-indexer-mr-*-job.jar --help

To invoke the command-line help in a default packages installation, use:

hadoop jar /usr/lib/hbase-solr/tools/hbase-indexer-mr-*-job.jar --help

The full command line usage help is as follows:

usage: hadoop [GenericOptions]... jar hbase-indexer-mr-*-job.jar
 [--hbase-indexer-zk STRING] [--hbase-indexer-name STRING]
 [--hbase-indexer-file FILE]
 [--hbase-indexer-component-factory STRING]
 [--hbase-table-name STRING] [--hbase-start-row BINARYSTRING]
 [--hbase-end-row BINARYSTRING] [--hbase-start-time STRING]
 [--hbase-end-time STRING] [--hbase-timestamp-format STRING]
 [--zk-host STRING] [--go-live] [--collection STRING]
 [--go-live-min-replication-factor INTEGER]
 [--go-live-threads INTEGER] [--help] [--output-dir HDFS_URI]
 [--overwrite-output-dir] [--morphline-file FILE]
 [--morphline-id STRING] [--solr-home-dir DIR]

Cloudera Search | 113

Indexing Data Using Cloudera Search

 [--update-conflict-resolver FQCN] [--reducers INTEGER]
 [--max-segments INTEGER] [--fair-scheduler-pool STRING] [--dry-run]
 [--log4j FILE] [--verbose] [--clear-index] [--show-non-solr-cloud]

MapReduce batch job driver that takes input data from an HBase table and
creates Solr index shards and writes the indexes into HDFS, in a flexible,
scalable, and fault-tolerant manner. It also supports merging the output
shards into a set of live customer-facing Solr servers in SolrCloud.
Optionally, documents can be sent directly from the mapper tasks to
SolrCloud, which is a much less scalable approach but enables updating
existing documents in SolrCloud. The program proceeds in one or multiple
consecutive MapReduce-based phases, as follows:

1) Mapper phase: This (parallel) phase scans over the input HBase table,
extracts the relevant content, and transforms it into SolrInputDocuments.
If run as a mapper-only job, this phase also writes the SolrInputDocuments
directly to a live SolrCloud cluster. The conversion from HBase records
into Solr documents is performed via a hbase-indexer configuration and
typically based on a morphline.

2) Reducer phase: This (parallel) phase loads the mapper's
SolrInputDocuments into one EmbeddedSolrClient per reducer. Each such
reducer and Solr server can be seen as a (micro) shard. The Solr servers
store their data in HDFS.

3) Mapper-only merge phase: This (parallel) phase merges the set of
reducer shards into the number of Solr shards expected by the user, using
a mapper-only job. This phase is omitted if the number of shards is
already equal to the number of shards expected by the user

4) Go-live phase: This optional (parallel) phase merges the output shards
of the previous phase into a set of live customer-facing Solr servers in
SolrCloud. If this phase is omitted you can explicitly point each Solr
server to one of the HDFS output shard directories

Fault Tolerance: Mapper and reducer task attempts are retried on failure
per the standard MapReduce semantics. On program startup all data in the --
output-dir is deleted if that output directory already exists and --
overwrite-output-dir is specified. This means that if the whole job fails
you can retry simply by rerunning the program again using the same
arguments.

HBase Indexer parameters:
 Parameters for specifying the HBase indexer definition and/or where it
 should be loaded from.

 --hbase-indexer-zk STRING
 The address of the ZooKeeper ensemble from which
 to fetch the indexer definition named --hbase-
 indexer-name. Format is: a list of comma
 separated host:port pairs, each corresponding to
 a zk server. Example: '127.0.0.1:2181,127.0.0.1:
 2182,127.0.0.1:2183'
 --hbase-indexer-name STRING
 The name of the indexer configuration to fetch
 from the ZooKeeper ensemble specified with --
 hbase-indexer-zk. Example: myIndexer
 --hbase-indexer-file FILE
 Relative or absolute path to a local HBase
 indexer XML configuration file. If supplied, this
 overrides --hbase-indexer-zk and --hbase-indexer-
 name. Example: /path/to/morphline-hbase-mapper.xml
 --hbase-indexer-component-factory STRING
 Classname of the hbase indexer component factory.

HBase scan parameters:
 Parameters for specifying what data is included while reading from HBase.

 --hbase-table-name STRING
 Optional name of the HBase table containing the
 records to be indexed. If supplied, this
 overrides the value from the --hbase-indexer-*
 options. Example: myTable

114 | Cloudera Search

Indexing Data Using Cloudera Search

 --hbase-start-row BINARYSTRING
 Binary string representation of start row from
 which to start indexing (inclusive). The format
 of the supplied row key should use two-digit hex
 values prefixed by \x for non-ascii characters (e.
 g. 'row\x00'). The semantics of this argument are
 the same as those for the HBase Scan#setStartRow
 method. The default is to include the first row
 of the table. Example: AAAA
 --hbase-end-row BINARYSTRING
 Binary string representation of end row prefix at
 which to stop indexing (exclusive). See the
 description of --hbase-start-row for more
 information. The default is to include the last
 row of the table. Example: CCCC
 --hbase-start-time STRING
 Earliest timestamp (inclusive) in time range of
 HBase cells to be included for indexing. The
 default is to include all cells. Example: 0
 --hbase-end-time STRING
 Latest timestamp (exclusive) of HBase cells to be
 included for indexing. The default is to include
 all cells. Example: 123456789
 --hbase-timestamp-format STRING
 Timestamp format to be used to interpret --hbase-
 start-time and --hbase-end-time. This is a java.
 text.SimpleDateFormat compliant format (see http:
 //docs.oracle.
 com/javase/8/docs/api/java/text/SimpleDateFormat.
 html). If this parameter is omitted then the
 timestamps are interpreted as number of
 milliseconds since the standard epoch (Unix
 time). Example: yyyy-MM-dd'T'HH:mm:ss.SSSZ

Solr cluster arguments:
 Arguments that provide information about your Solr cluster.

 --zk-host STRING The address of a ZooKeeper ensemble being used by
 a SolrCloud cluster. This ZooKeeper ensemble will
 be examined to determine the number of output
 shards to create as well as the Solr URLs to
 merge the output shards into when using the --go-
 live option. Requires that you also pass the --
 collection to merge the shards into.

 The --zk-host option implements the same
 partitioning semantics as the standard SolrCloud
 Near-Real-Time (NRT) API. This enables to mix
 batch updates from MapReduce ingestion with
 updates from standard Solr NRT ingestion on the
 same SolrCloud cluster, using identical unique
 document keys.

 Format is: a list of comma separated host:port
 pairs, each corresponding to a zk server.
 Example: '127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:
 2183' If the optional chroot suffix is used the
 example would look like: '127.0.0.1:2181/solr,
 127.0.0.1:2182/solr,127.0.0.1:2183/solr' where
 the client would be rooted at '/solr' and all
 paths would be relative to this root - i.e.
 getting/setting/etc... '/foo/bar' would result in
 operations being run on '/solr/foo/bar' (from the
 server perspective).

 If --solr-home-dir is not specified, the Solr
 home directory for the collection will be
 downloaded from this ZooKeeper ensemble.

Go live arguments:
 Arguments for merging the shards that are built into a live Solr
 cluster. Also see the Cluster arguments.

Cloudera Search | 115

Indexing Data Using Cloudera Search

 --go-live Allows you to optionally merge the final index
 shards into a live Solr cluster after they are
 built. You can pass the ZooKeeper address with --
 zk-host and the relevant cluster information will
 be auto detected. (default: false)
 --collection STRING The SolrCloud collection to merge shards into
 when using --go-live and --zk-host. Example:
 collection1
 --go-live-min-replication-factor INTEGER
 The minimum number of SolrCloud replicas to
 successfully merge any final index shard into.
 The go-live job phase attempts to merge final
 index shards into all SolrCloud replicas. Some of
 these merge operations may fail, for example if
 some SolrCloud servers are down. This option
 enables indexing jobs to succeed even if some
 such merge operations fail on SolrCloud
 followers. Successful merge operations into all
 leaders are always required for job success,
 regardless of the value of --go-live-min-
 replication-factor. -1 indicates require
 successful merge operations into all replicas. 1
 indicates require successful merge operations
 only into leader replicas. (default: -1)
 --go-live-threads INTEGER
 Tuning knob that indicates the maximum number of
 live merges to run in parallel at one time.
 (default: 1000)

Optional arguments:
 --help, -help, -h Show this help message and exit
 --output-dir HDFS_URI HDFS directory to write Solr indexes to. Inside
 there one output directory per shard will be
 generated. Example: hdfs://c2202.mycompany.
 com/user/$USER/test
 --overwrite-output-dir
 Overwrite the directory specified by --output-dir
 if it already exists. Using this parameter will
 result in the output directory being recursively
 deleted at job startup. (default: false)
 --morphline-file FILE Relative or absolute path to a local config file
 that contains one or more morphlines. The file
 must be UTF-8 encoded. The file will be uploaded
 to each MR task. If supplied, this overrides the
 value from the --hbase-indexer-* options.
 Example: /path/to/morphlines.conf
 --morphline-id STRING The identifier of the morphline that shall be
 executed within the morphline config file, e.g.
 specified by --morphline-file. If the --morphline-
 id option is ommitted the first (i.e. top-most)
 morphline within the config file is used. If
 supplied, this overrides the value from the --
 hbase-indexer-* options. Example: morphline1
 --solr-home-dir DIR Optional relative or absolute path to a local dir
 containing Solr conf/ dir and in particular
 conf/solrconfig.xml and optionally also lib/ dir.
 This directory will be uploaded to each MR task.
 Example: src/test/resources/solr/minimr
 --update-conflict-resolver FQCN
 Fully qualified class name of a Java class that
 implements the UpdateConflictResolver interface.
 This enables deduplication and ordering of a
 series of document updates for the same unique
 document key. For example, a MapReduce batch job
 might index multiple files in the same job where
 some of the files contain old and new versions of
 the very same document, using the same unique
 document key.
 Typically, implementations of this interface
 forbid collisions by throwing an exception, or
 ignore all but the most recent document version,
 or, in the general case, order colliding updates
 ascending from least recent to most recent

116 | Cloudera Search

Indexing Data Using Cloudera Search

 (partial) update. The caller of this interface (i.
 e. the Hadoop Reducer) will then apply the
 updates to Solr in the order returned by the
 orderUpdates() method.
 The default
 RetainMostRecentUpdateConflictResolver
 implementation ignores all but the most recent
 document version, based on a configurable numeric
 Solr field, which defaults to the
 file_last_modified timestamp (default: org.apache.
 solr.hadoop.dedup.
 RetainMostRecentUpdateConflictResolver)
 --reducers INTEGER Tuning knob that indicates the number of reducers
 to index into. 0 indicates that no reducers
 should be used, and documents should be sent
 directly from the mapper tasks to live Solr
 servers. -1 indicates use all reduce slots
 available on the cluster. -2 indicates use one
 reducer per output shard, which disables the
 mtree merge MR algorithm. The mtree merge MR
 algorithm improves scalability by spreading load
 (in particular CPU load) among a number of
 parallel reducers that can be much larger than
 the number of solr shards expected by the user.
 It can be seen as an extension of concurrent
 lucene merges and tiered lucene merges to the
 clustered case. The subsequent mapper-only phase
 merges the output of said large number of
 reducers to the number of shards expected by the
 user, again by utilizing more available
 parallelism on the cluster. (default: -1)
 --max-segments INTEGER
 Tuning knob that indicates the maximum number of
 segments to be contained on output in the index
 of each reducer shard. After a reducer has built
 its output index it applies a merge policy to
 merge segments until there are <= maxSegments
 lucene segments left in this index. Merging
 segments involves reading and rewriting all data
 in all these segment files, potentially multiple
 times, which is very I/O intensive and time
 consuming. However, an index with fewer segments
 can later be merged faster, and it can later be
 queried faster once deployed to a live Solr
 serving shard. Set maxSegments to 1 to optimize
 the index for low query latency. In a nutshell, a
 small maxSegments value trades indexing latency
 for subsequently improved query latency. This can
 be a reasonable trade-off for batch indexing
 systems. (default: 1)
 --dry-run Run in local mode and print documents to stdout
 instead of loading them into Solr. This executes
 the morphline in the client process (without
 submitting a job to MR) for quicker turnaround
 during early trial & debug sessions. (default:
 false)
 --log4j FILE Relative or absolute path to a log4j.properties
 config file on the local file system. This file
 will be uploaded to each MR task. Example:
 /path/to/log4j.properties
 --verbose, -v Turn on verbose output. (default: false)
 --clear-index Will attempt to delete all entries in a solr
 index before starting batch build. This is not
 transactional so if the build fails the index
 will be empty. (default: false)
 --show-non-solr-cloud Also show options for Non-SolrCloud mode as part
 of --help. (default: false)

Generic options supported are:
 --conf <configuration file>
 specify an application configuration file
 -D <property=value> define a value for a given property
-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides

Cloudera Search | 117

Indexing Data Using Cloudera Search

'fs.defaultFS' property from configurations.
 --jt <local|resourcemanager:port>
 specify a ResourceManager
 --files <file1,...> specify a comma-separated list of files to be
 copied to the map reduce cluster
 --libjars <jar1,...> specify a comma-separated list of jar files to be
 included in the classpath
 --archives <archive1,...>
 specify a comma-separated list of archives to be
 unarchived on the compute machines

The general command line syntax is:
command [genericOptions] [commandOptions]

Examples:

(Re)index a table in GoLive mode based on a local indexer config file
hadoop --config /etc/hadoop/conf \
 jar hbase-indexer-mr-*-job.jar \
 --conf /etc/hbase/conf/hbase-site.xml \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --hbase-indexer-file indexer.xml \
 --zk-host 127.0.0.1/solr \
 --collection collection1 \
 --go-live \
 --log4j src/test/resources/log4j.properties

(Re)index a table in GoLive mode using a local morphline-based indexer config file
Also include extra library jar file containing JSON tweet Java parser:
hadoop --config /etc/hadoop/conf \
 jar hbase-indexer-mr-*-job.jar \
 --conf /etc/hbase/conf/hbase-site.xml \
 --libjars /path/to/kite-morphlines-twitter-0.10.0.jar \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --hbase-indexer-file src/test/resources/morphline_indexer_without_zk.xml \
 --zk-host 127.0.0.1/solr \
 --collection collection1 \
 --go-live \
 --morphline-file src/test/resources/morphlines.conf \
 --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
 --overwrite-output-dir \
 --log4j src/test/resources/log4j.properties

(Re)index a table in GoLive mode
hadoop --config /etc/hadoop/conf \
 jar hbase-indexer-mr-*-job.jar \
 --conf /etc/hbase/conf/hbase-site.xml \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --hbase-indexer-file indexer.xml \
 --zk-host 127.0.0.1/solr \
 --collection collection1 \
 --go-live \
 --log4j src/test/resources/log4j.properties

(Re)index a table with direct writes to SolrCloud
hadoop --config /etc/hadoop/conf \
 jar hbase-indexer-mr-*-job.jar \
 --conf /etc/hbase/conf/hbase-site.xml \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --hbase-indexer-file indexer.xml \
 --zk-host 127.0.0.1/solr \
 --collection collection1 \
 --reducers 0 \
 --log4j src/test/resources/log4j.properties

(Re)index a table based on a indexer config stored in ZK
hadoop --config /etc/hadoop/conf \
 jar hbase-indexer-mr-*-job.jar \
 --conf /etc/hbase/conf/hbase-site.xml \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --hbase-indexer-zk zk01 \
 --hbase-indexer-name docindexer \
 --go-live \

118 | Cloudera Search

Indexing Data Using Cloudera Search

 --log4j src/test/resources/log4j.properties

MapReduce on Yarn - Pass custom JVM arguments
HADOOP_CLIENT_OPTS='-DmaxConnectionsPerHost=10000 -DmaxConnections=10000'; \
hadoop --config /etc/hadoop/conf \
 jar hbase-indexer-mr-*-job.jar \
 --conf /etc/hbase/conf/hbase-site.xml \
 -D 'mapreduce.map.java.opts=-DmaxConnectionsPerHost=10000 -DmaxConnections=10000' \
 -D 'mapreduce.reduce.java.opts=-DmaxConnectionsPerHost=10000 -DmaxConnections=10000'
 \
 --hbase-indexer-zk zk01 \
 --hbase-indexer-name docindexer \
 --go-live \
 --log4j src/test/resources/log4j.properties

Using --go-live with SSL or Kerberos

The go-live phase of the indexer jobs sends a MERGEINDEXES request from the indexer client (the node from which
the MR job was submitted) to the live Solr servers. If the Solr server has SSL enabled, you need to ensure that the
indexer client trusts the certificate presented by the Solr server(s), otherwise you get an
SSLPeerUnverifiedException.

1. Specify the location of the trust store by setting the following HADOOP_OPTS variable before launching the indexer
job:

HADOOP_OPTS="-Djavax.net.ssl.trustStore=/etc/cdep-ssl-conf/CA_STANDARD/truststore.jks
"

2. If the Solr servers have Kerberos authentication enabled, you need to ensure that the indexer client can authenticate
via Kerberos to the Solr servers. For this, you need to create a Java Authentication and Authorization Service
configuration (JAAS) file locally on the node where the indexing job is launched:

• If you are authenticating using kinit to obtain credentials, you can configure the client to use your credential
cache by creating a jaas.conf file with the following contents:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=false
 useTicketCache=true
 principal="<user>@EXAMPLE.COM";
 };

Replace <user> with your username, and EXAMPLE.COM with your Kerberos realm.
• If you want the client application to authenticate using a keytab, modify jaas-client.conf as follows:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/path/to/user.keytab"
 storeKey=true
 useTicketCache=false
 principal="<user>@EXAMPLE.COM";
};

Replace /path/to/user.keytab with the keytab file you want to use and <user>@EXAMPLE.COM with
the principal in the keytab. If you are using a service principal that includes the hostname, make sure that it
is included in the jaas.conf file (for example, solr/solr01.example.com@EXAMPLE.COM).

3. If you are using a ticket cache, you need to do a kinit to acquire a ticket for the configured principal before
launching the indexer.

4. Specify the authentication configuration in the HADOOP_OPTS environment variable:

Cloudera Search | 119

Indexing Data Using Cloudera Search

• For package-based installations:

HADOOP_OPTS="-Djava.security.auth.login.config=jaas.conf
-Djavax.net.ssl.trustStore=/etc/cdep-ssl-conf/CA_STANDARD/truststore.jks" \
hadoop --config /etc/hadoop/conf \
jar /usr/lib/hbase-solr/tools/hbase-indexer-mr-*-job.jar \
--conf /etc/hbase/conf/hbase-site.xml -Dmapreduce.map.java.opts="-Xmx512m"
-Dmapreduce.reduce.java.opts="-Xmx512m" \
--hbase-indexer-file /home/systest/hbasetest/morphline-hbase-mapper.xml \
--zk-host 127.0.0.1/solr \
--collection hbase-collection1 \
--go-live --log4j src/test/resources/log4j.properties

• For parcel-based installations:

HADOOP_OPTS="-Djava.security.auth.login.config=jaas.conf
-Djavax.net.ssl.trustStore=/etc/cdep-ssl-conf/CA_STANDARD/truststore.jks" \
hadoop --config /etc/hadoop/conf \
jar /opt/cloudera/parcels/CDH/lib/hbase-solr/tools/hbase-indexer-mr-*-job.jar \
--conf /etc/hbase/conf/hbase-site.xml -Dmapreduce.map.java.opts="-Xmx512m"
-Dmapreduce.reduce.java.opts="-Xmx512m" \
--hbase-indexer-file /home/systest/hbasetest/morphline-hbase-mapper.xml \
--zk-host 127.0.0.1/solr \
--collection hbase-collection1 \
--go-live --log4j src/test/resources/log4j.properties

Note:

Communication to Solr servers is only occurring in the go-live phase, not from the MapReduce
jobs. Therefore it is enough to place the jaas.conf and the SSL trust store on the node from
which the indexer client is started as it will be the one which communicates to Solr.

Understanding --go-live and HDFS ACLs

When run with a reduce phase, as opposed to as a mapper-only job, the indexer creates an offline index on HDFS in
the output directory specified by the --output-dir parameter. If the --go-live parameter is specified, Solr merges
the resulting offline index into the live running service. Thus, the Solr service must have read access to the contents
of the output directory in order to complete the --go-live step. If --overwrite-output-dir is specified, the
indexer deletes and recreates any existing output directory; in an environment with restrictive permissions, such as
one with an HDFS umask of 077, the Solr user may not be able to read the contents of the newly created directory. To
address this issue, the indexer automatically applies theHDFS ACLs to enable Solr to read the output directory contents.
These ACLs are only applied if HDFS ACLs are enabled on theHDFSNameNode. Formore information, seeHDFS Extended
ACLs.

The indexer onlymakes ACL updates to the output directory and its contents. If the output directory's parent directories
do not include the execute permission, the Solr service cannot access the output directory. Solr must have execute
permissions from standard permissions or ACLs on the parent directories of the output directory.

120 | Cloudera Search

Indexing Data Using Cloudera Search

Cloudera Search Frequently Asked Questions

This section includes answers to questions commonly asked about Search for CDH. Questions are divided into the
following categories:

General
The following are general questions about Cloudera Search and the answers to those questions.

What is Cloudera Search?

Cloudera Search is Apache Solr integrated with CDH, including Apache Lucene, Apache SolrCloud, Apache Flume,
Apache Tika, and ApacheHadoopMapReduce andHDFS. Cloudera Search also includes valuable integrations thatmake
searching more scalable, easy to use, and optimized for both near-real-time and batch-oriented indexing. These
integrations include ClouderaMorphlines, a customizable transformation chain that simplifies loading any type of data
into Cloudera Search.

What is the difference between Lucene and Solr?

Lucene is a low-level search library that is accessed by a Java API. Solr is a search server that runs in a servlet container
and provides structure and convenience around the underlying Lucene library.

What is Apache Tika?

The Apache Tika toolkit detects and extracts metadata and structured text content from various documents using
existing parser libraries.

How does Cloudera Search relate to web search?

Traditional web search engines crawl web pages on the Internet for content to index. Cloudera Search indexes files
and data that are stored in HDFS and HBase. To make web data available through Cloudera Search, it needs to be
downloaded and stored in Cloudera Enterprise.

How does Cloudera Search relate to enterprise search?

Enterprise search connects with different backends (such as RDBMS and filesystems) and indexes data in all those
systems. Cloudera Search is intended as a full-text search capability for data in CDH. Cloudera Search is a tool added
to the Cloudera data processing platform and does not aim to be a stand-alone search solution, but rather a user-friendly
interface to explore data in Hadoop and HBase.

How does Cloudera Search relate to custom search applications?

Custom and specialized search applications are an excellent complement to the Cloudera data-processing platform.
Cloudera Search is not designed to be a custom application for niche vertical markets. However, Cloudera Search does
include a simple search GUI through a plug-in application for Hue. The Hue plug-in application is based on the Solr API
and allows for easy exploration, along with all of the other Hadoop frontend applications in Hue.

Which Solr Server should I send my queries to?

Any Solr Server can accept and process client connections.

Do Search security features use Kerberos?

Yes, Cloudera Search includes support for Kerberos authentication. Search continues to use simple authentication with
the anonymous user as the default configuration, but Search now supports changing the authentication scheme to

Cloudera Search | 121

Cloudera Search Frequently Asked Questions

http://lucene.apache.org/solr/
http://www.cloudera.com/products.html

Kerberos. All required packages are installed during the installation or upgrade process. Additional configuration is
required before Kerberos is available in your environment.

Can I restrict access to collections?

Yes, Cloudera Search supports Apache Sentry for authorization. For more information, see Configuring Sentry
Authorization for Cloudera Search.

Do I need to configure Sentry restrictions for each access mode, such as for the admin console and for
the command line?

Sentry restrictions are consistently applied regardless of the way users attempt to complete actions. For example,
restricting access to data in a collection consistently restricts that access, whether queries come from the command
line, from a browser, or through the admin console.

Does Search support indexing data stored in JSON files and objects?

Yes, you can use the readJson and extractJsonPathsmorphline commands that are included with the CDK to
access JSON data and files. For more information, see cdk-morphlines-json.

How can I set up Cloudera Search so that results include links back to the source that contains the result?

You can use stored results fields to create links back to source documents. For information on data types, including
the option to set results fields as stored, see the Solr Wiki page on SchemaXml.

For example, with MapReduceIndexerTool you can take advantage of fields such as file_path. See
MapReduceIndexerTool Metadata on page 103 for more information. The output from the MapReduceIndexerTool
includes file path information that can be used to construct links to source documents.

If you use the Hue UI, you can link to data in HDFS by inserting links of the form:

Download

Why do I get an error “no field name specified in query and no default specified via 'df' param" when I
query a Schemaless collection?

Schemaless collections initially have no default or df setting. As a result, simple searches that might succeed on
non-Schemaless collections may fail on Schemaless collections.

When a user submits a search, it must be clear which field Cloudera Search should query. A default field, or df, is often
specified in solrconfig.xml, and when this is the case, users can submit queries that do not specify fields. In such
situations, Solr uses the df value.

When a new collection is created in Schemaless mode, there are initially no fields defined, so no field can be chosen
as the df field. As a result, when query request handlers do not specify a df, errors can result. This issue can be
addressed in several ways:

• Queries can specify any valid field name on which to search. In such a case, no df is required.
• Queries can specify a default field using the df parameter. In such a case, the df is specified in the query.
• You can uncomment the df section of the generated schemaless solrconfig.xml file and set the df parameter

to the desired field. In such a case, all subsequent queries can use the df field in solrconfig.xml if no field or
df value is specified.

Performance and Fail Over
The following are questions about performance and fail over in Cloudera Search and the answers to those questions.

122 | Cloudera Search

Cloudera Search Frequently Asked Questions

http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#readJson
http://wiki.apache.org/solr/SchemaXml#Data_Types
http://gethue.com/tutorial-search-hadoop-in-hue/

How large of an index does Cloudera Search support per search server?

This question includes toomany variables to provide a single answer. Typically, a server can host from 10 to 300million
documents, with the underlying index as large as hundreds of gigabytes. To determine a reasonablemaximumdocument
quantity and index size for servers in your deployment, prototype with realistic data and queries.

What is the response time latency I can expect?

Many factors affect how quickly responses are returned. Some factors that contribute to latency include whether the
system is also completing indexing, the type of fields you are searching, whether the search results require aggregation,
and whether there are sufficient resources for your search services.

With appropriately-sized hardware, if the query results are found inmemory, theymay be returnedwithinmilliseconds.
Conversely, complex queries requiring results aggregation over huge indexes may take a few seconds.

The time between when Search begins to work on indexing new data and when that data can be queried can be as
short as a few seconds, depending on your configuration.

This high performance is supported by custom caching optimizations that Cloudera has added to the Solr/HDFS
integration. These optimizations allow for rapid read and writes of files in HDFS, performing at or above the speeds of
stand-alone Solr reading and writing from local disk.

How does Cloudera Search performance compare to Apache Solr?

Assuming the same number of documents, size, hardware, and so on, with similar memory cache available, query
performance is comparable. This is due to caching implemented by Cloudera Search. After the cache is warmed, the
code paths for both Apache Solr and Cloudera Search are the same. You might see some performance degradation
with cache misses when Cloudera Search must read from disk (HDFS), but that is mitigated somewhat by the HDFS
block cache.

What happens when a write to the Lucene indexer fails?

Cloudera Search provides two configurable, highly available, and fault-tolerant data ingestion schemes: near real-time
ingestion using the Flume Solr Sink and MapReduce-based batch ingestion using the MapReduceIndexerTool. These
approaches are discussed in more detail in Search High Availability.

What hardware or configuration changes can I make to improve Search performance?

Search performance can be constrained by CPU limits. If you're seeing bottlenecks, consider allocating more CPU to
Search.

Where should I deploy Solr Servers?

Cloudera recommends running them on DataNodes for locality. You can run a Solr Server on each DataNode, or a
subset of DataNodes. Do not run Solr on any master nodes, such as NameNodes. Solr does not have a master server
process. All Solr servers are the same. For more information, see Recommended Cluster Hosts and Role Distribution.

What happens if a host running a Solr Server process fails?

Cloudera Search uses the HDFS client API. Read and write requests for HDFS blocks will be automatically redirected as
appropriate. If the failed or decommissioned host runs a DataNode process, any HDFS blocks on that host are
re-replicated according to your HDFS configuration.

How is performance affected if the Solr Server is running on a node with no local data?

Because of the caching capabilities in Solr, performance impact is negligible.

Are there settings that can help avoid out of memory (OOM) errors during data ingestion?

A data ingestion pipeline can be made up of many connected segments, each of which may need to be evaluated for
sufficient resources. A common limiting factor is the relatively small default amount of permgen memory allocated to

Cloudera Search | 123

Cloudera Search Frequently Asked Questions

the flume JVM. Allocating additional memory to the Flume JVM may help avoid OOM errors. For example, for JVM
settings for Flume, the following settings are often sufficient:

-Xmx2048m -XX:MaxPermSize=256M

How can I redistribute shards across a cluster?

You can move shards between hosts using the process described in Migrating Solr Replicas on page 64.

Can I adjust replication levels?

For information on adjusting replication levels, see Replication Settings. Do not adjust HDFS replication settings for
Solr in most cases.

How do I manage resources for Cloudera Search and other components on the same cluster?

You can use cgroups to allocate resources among your cluster components.

Schema Management
The following are questions about schema management in Cloudera Search and the answers to those questions.

If my schema changes, will I need to re-index all of my data and files?

When you change the schema, Cloudera recommends re-indexing. For example, if you add a new field to the index,
apply the new field to all index entries through re-indexing. Re-indexing is required in such a case because existing
documents do not yet have the field. Cloudera Search includes a MapReduce batch-indexing solution for re-indexing
and a GoLive feature that assures updated indexes are dynamically served.

While you should typically re-index after adding a new field, this is not necessary if the new field applies only to new
documents or data. This is because, were indexing to be completed, existing documents would still have no data for
the field, making the effort unnecessary.

For schema changes that only apply to queries, re-indexing is not necessary.

Can I extract fields based on regular expressions or rules?

Cloudera Search supports limited regular expressions in Search queries. For details, see Lucene Regular Expressions.

On data ingestion, Cloudera Search supports easy and powerful extraction of fields based on regular expressions. For
example the grokmorphline command supports field extraction using regular expressions.

Cloudera Search also includes support for rule directed ETLwith an extensible rule engine, in the formof the tryRules
morphline command.

Can I use nested schemas?

Cloudera Search supports nesting documents in this release. To learn about schemas with nested documents and their
limitations, see Indexing Nested Documents.

What is Apache Avro and how can I use an Avro schema for more flexible schema evolution?

To learn more about Avro and Avro schemas, see the Avro Overview page and the Avro Specification page.

To see examples of how to implement inheritance, backwards compatibility, and polymorphism with Avro, see this
InfoQ article.

124 | Cloudera Search

Cloudera Search Frequently Asked Questions

http://lucene.apache.org/core/4_0_0/core/org/apache/lucene/util/automaton/RegExp.html
https://lucene.apache.org/solr/guide/7_4/uploading-data-with-index-handlers.html#nested-child-documents
http://avro.apache.org/docs/1.4.1/index.html
http://avro.apache.org/docs/current/spec.html
http://www.infoq.com/articles/ApacheAvro

Supportability
The following are questions about supportability in Cloudera Search and the answers to those questions.

Does Cloudera Search support multiple languages?

Cloudera Search supports approximately 30 languages, includingmostWestern European languages, as well as Chinese,
Japanese, and Korean.

Which file formats does Cloudera Search support for indexing? Does it support searching images?

Cloudera Search uses the Apache Tika library for indexing many standard document formats. In addition, Cloudera
Search supports indexing and searching Avro files and a wide variety of other file types such as log files, Hadoop
Sequence Files, and CSV files. You can add support for indexing custom file formats using amorphline commandplug-in.

Cloudera Search | 125

Cloudera Search Frequently Asked Questions

http://tika.apache.org/1.3/formats.html

Troubleshooting Cloudera Search

After installing and deploying Cloudera Search, use the information in this section to troubleshoot problems.

Troubleshooting

The following table contains some common troubleshooting techniques.

Note: In the URLs in the following table, you must replace entries such as <server:port> with values from your
environment. The port defaults value is 8983, but see /etc/default/solr or
/opt/cloudera/parcels/CDH-*/etc/default/solr for the port if you are in doubt.

RecommendationExplanationSymptom

Examine Solr log. By default, the log can be found at
/var/log/solr/solr.out.

VariedAll

Ensure users attempting to access the UI are granted the
QUERY privilege. For more information, see Configuring
Sentry Authorization for Cloudera Search.

If no privileges are granted, no access
is possible. For example, accessing the
Solr Admin UI requires the QUERY
privilege. If no users are granted the

The Solr Admin UI
is unavailable

QUERY privilege, no access to the Solr
Admin UI is possible.

Browse to http://server:port/solr to see if the server
responds. Check that cores are present. Check the contents
of cores to ensure that numDocs is more than 0.

Server may not be runningNo documents
found

Browsing http://server:port/solr/[collection
name]/select?q=*:*&wt=json&indent=true should

Core may not have documentsNo documents
found

show numFound, which is near the top, to be more than
0.

Ensure your application is using commons-codec 1.7 or
higher. Alternatively, use httpclient 4.2.5 instead of

This may be a version compatibility
issue. Httpclient 4.2.3, which ships
with solrj in Search 1.x, has a

The secure Solr
Server fails to
respond to Solrj
requests, but

version 4.2.3 in your application. Version 4.2.3 behaves
correctly with earlier versions of commons-codec.dependency on commons-codec 1.7.

If an earlier version ofother clients such
as curl can commons-codec is on the classpath,
communicate
successfully

httpclientmay be unable to
communicate using Kerberos.

Dynamic Solr Analysis

Any JMX-aware application can query Solr for information and display results dynamically. For example, Zabbix, Nagios,
and many others have been used successfully. When completing Static Solr Log Analysis, many of the items related to
extracting data from the log files can be seen from querying Solr, at least the last value (as opposed to the history
which is available from the log file). These are often useful for status boards. In general, anything available from the
Solr admin page can be requested on a live basis from Solr. Some possibilities include:

• numDocs/maxDoc per core. This can be important since the difference between these numbers indicates the
number of deleted documents in the index. Deleted documents take up disk space andmemory. If these numbers
vary greatly, this may be a rare case where optimizing is advisable.

• Cache statistics, including:

– Hit ratios

126 | Cloudera Search

Troubleshooting Cloudera Search

– Autowarm times
– Evictions

• Almost anything available on the admin page. Note that drilling down into the “schema browser” can be expensive.

Other Troubleshooting Information

Since the use cases for Solr and search vary, there is no single solution for all cases. That said, here are some common
challenges that many Search users have encountered:

• Testing with unrealistic data sets. For example, a users may test a prototype that uses faceting, grouping, sorting,
and complex schemas against a small data set. When this same system is used to load of real data, performance
issues occur. Using realistic data and use-cases is essential to getting accurate results.

• If the scenario seems to be that the system is slow to ingest data, consider:

– Upstream speed. If you have a SolrJ program pumping data to your cluster and ingesting documents at a rate
of 100 docs/second, the gating factor may be upstream speed. To test for limitations due to upstream speed,
comment out only the code that sends thedata to the server (for example,SolrHttpServer.add(doclist))
and time the program. If you see a throughput bump of less than around 10%, this may indicate that your
system is spending most or all of the time getting the data from the system-of-record.

– This may require pre-processing.
– Indexing with a single thread from the client. ConcurrentUpdateSolrServer can use multiple threads to

avoid I/O waits.
– Too-frequent commits. This was historically an attempt to get NRT processing, but with SolrCloud hard

commits this should be quite rare.
– The complexity of the analysis chain. Note that this is rarely the core issue. A simple test is to change the

schema definitions to use trivial analysis chains and then measure performance.
– When the simple approaches fail to identify an issue, consider using profilers.

Cloudera Search Configuration and Log Files
Cloudera Search (powered by Apache Solr) configuration is managed using Cloudera Manager. You can view log files
on the individual Solr server or using Cloudera Manager.

Viewing and Modifying Cloudera Search Configuration

To view and edit configuration parameters for the Solr service in Cloudera Manager:

1. Go to Solr service > Configuration.
2. Use the SCOPE and CATEGORY filters to restrict the displayed configuration parameters. You can also enter text

in the Search field to dynamically filter configuration parameters.
3. After making changes, enter a Reason for change, and click Save Changes.
4. Restart the Solr service (Solr service > Actions > Restart) and any dependent services.

Viewing and Modifying Log Levels for Cloudera Search and Related Services

You can view and modify log levels for Search and related services (such as Apache Flume, Apache HBase, and so on)
by:

1. Go to the service configuration page. For example: Solr service > Configuration
2. Select the CATEGORY > Logs filter.
3. Modify the logging threshold for the service roles. Available options (in descending verbosity) are:

• TRACE
• DEBUG
• INFO
• WARN

Cloudera Search | 127

Troubleshooting Cloudera Search

• ERROR
• FATAL

4. Enter a Reason for change, and then click Save Changes to commit the changes.
5. Restart the service. For example: Solr service > Actions > Restart

You can also restart dependent services using the Restart Stale Services wizard.

Cloudera Search Log Files

Cloudera Search has several log files, stored on each Solr Server host. See the following for log file locations and a brief
description of each. The referenced configuration parameters can be viewed or modified as described in Viewing and
Modifying Cloudera Search Configuration on page 127:

• /var/log/solr/ - Parent directory for most Search logs.

– audit/ - Audit log directory, specified by the Audit Log Directory configuration parameter.
– stacks/ - Directory containing period stack dumps, if Stacks Collection Enabled is checked. The directory

name can be changed by setting the Stacks Collection Directory parameter.
– solr-cmf-SOLR-1-SOLR_SERVER-hostname.example.com.log.out - Solr server log file. The SOLR-1

and hostname.example.com portion varies depending on your environment. The log default log level is INFO,
and is controlled by the Solr Server Logging Threshold parameter for Solr Server roles, and the Gateway
Logging Threshold parameter for Gateway roles.

– solr_gc_log.* - Java garbage collection (GC) logs for the Solr Server process.

• /var/run/cloudera-scm-agent/process/<process_dir_id>-solr-SOLR_SERVER/ - Configuration
directory for the currently running Solr Server role.

Warning: Do not modify any of the files in this directory. These files are automatically generated
by Cloudera Manager. To modify any configuration parameters, use Cloudera Manager.

The <process_dir_id> portion changes each time the Solr Server is restarted. To identify the current or most
recent directory, list the /var/run/cloudera-scm-agent/process/*solr* directories sorted by time in
reverse as follows:

sudo ls -ltrd /var/run/cloudera-scm-agent/process/*solr*

The entry at the bottom is the current or most recent process directory.

– logs/ - Log directory containing the stderr and stdout logs for the Solr Server process.

Identifying Problems in Your Cloudera Search Deployment
To investigate your Cloudera Search deployment for performance problems or misconfigurations, inspect the log files,
schema files, and the actual index for issues. If possible, connect to the live Solr instance while watching log files so
you can compare the schema with the index. For example, the schema and the index can be out of sync in situations
where the schema is changed, but the index was never rebuilt. See the following list for some common issues and
what you can do about them:

• A high number or proportion of 0-match queries. This indicates that the user-facing part of the application is
making it easy for users to enter queries for which there are no matches. In Cloudera Search, given the size of the
data, this should be an extremely rare event.

• Queries that match an excessive number of documents. All documents that match a query have to be scored, and
the cost of scoring a query goes up as the number of hits increases. Examine any frequent queries that match
millions of documents. An exception to this case is “constant score queries”. Queries, such as those of the form
":" bypass the scoring process entirely.

128 | Cloudera Search

Troubleshooting Cloudera Search

• Overly complex queries. Defining what constitutes overly complex queries is difficult to do, but a very general rule
is that queries over 1024 characters in length are likely to be overly complex.

• High autowarm times. Autowarming is the process of filling caches. Some queries are run before a new searcher
serves the first live user request. This keeps the first few users from having to wait. Autowarming can take many
seconds or can be instantaneous. Excessive autowarm times often indicate excessively generous autowarm
parameters. Excessive autowarming usually has limited benefit, with longer runs effectively being wasted work.

– Cache autowarm. Each Solr cache has an autowarm parameter. You can usually set this value to an upper
limit of 128 and tune from there.

– FirstSearcher/NewSearcher. The solrconfig.xml file contains queries that can be fired when a new
searcher is opened (the index is updated) andwhen the server is first started. Particularly for firstSearcher,
it can be valuable to have a query that sorts relevant fields.

Note: The aforementioned flags are available from solrconfig.xml

• Exceptions. The Solr log file contains a record of all exceptions thrown. Some exceptions, such as exceptions
resulting from invalid query syntax are benign, but others, such as Out Of Memory, require attention.

• Excessively large caches. The size of caches such as the filter cache are bounded bymaxDoc/8. Having, for instance,
a filterCache with 10,000 entries is likely to result in Out Of Memory errors. Large caches occurring in cases where
there are many documents to index is normal and expected.

• Caches with low hit ratios, particularly filterCache. Each cache takes up some space, consuming resources. There
are several caches, each with its own hit rate.

– filterCache. This cache should have a relatively high hit ratio, typically around 80%.
– queryResultCache. This is primarily used for paging so it can have a very low hit ratio. Each entry is quite

small as it is basically composed of the raw query as a string for a key and perhaps 20-40 ints. While useful,
unless users are experiencing paging, this requires relatively little attention.

– documentCache. This cache is a bit tricky. It’s used to cache the document data (stored fields) so various
components in a request handler don’t have to re-read the data from the disk. It’s an open question how
useful it is when using MMapDirectory to access the index.

• Very deep paging. Users seldom go beyond the first page and very rarely to go through 100 pages of results. A
&start=<pick your number> query indicates unusual usage that should be identified. Deep paging may
indicate some agent is completing scraping.

Note: Solr is not built to return full result sets no matter how deep. If returning the full result
set is required, explore alternatives to paging through the entire result set.

• Range queries should work on trie fields. Trie fields (numeric types) store extra information in the index to aid
in range queries. If range queries are used, it’s almost always a good idea to be using trie fields.

• fq clauses that use bare NOW. fq clauses are kept in a cache. The cache is a map from the fq clause to the
documents in your collection that satisfy that clause. Using bare NOW clauses virtually guarantees that the entry
in the filter cache is not be re-used.

• Multiple simultaneous searchers warming. This is an indication that there are excessively frequent commits or
that autowarming is taking too long. This usually indicates a misunderstanding of when you should issue commits,
often to simulate Near Real Time (NRT) processing or an indexing client is improperly completing commits. With
NRT, commits should be quite rare, and having more than one simultaneous autowarm should not happen.

• Stored fields that are never returned (fl= clauses). Examining the queries for fl= and correlating that with the
schema can tell if stored fields that are not used are specified. This mostly wastes disk space. And fl=* can make
this ambiguous. Nevertheless, it’s worth examining.

• Indexed fields that are never searched. This is the opposite of the case where stored fields are never returned.
This is more important in that this has real RAM consequences. Examine the request handlers for “edismax” style
parsers to be certain that indexed fields are not used.

Cloudera Search | 129

Troubleshooting Cloudera Search

• Queried but not analyzed fields. It’s rare for a field to be queried but not analyzed in any way. Usually this is only
valuable for “string” type fields which are suitable for machine-entered data, such as part numbers chosen from
a pick-list. Data that is not analyzed should not be used for anything that humans enter.

• String fields. String fields are completely unanalyzed. Unfortunately, some people confuse string with Java’s
String type and use them for text that should be tokenized. The general expectation is that string fields should
be used sparingly. More than just a few string fields indicates a design flaw.

• Whenever the schema is changed, re-index the entire data set. Solr uses the schema to set expectations about
the index. When schemas are changed, there’s no attempt to retrofit the changes to documents that are currently
indexed, but any new documents are indexed with the new schema definition. So old and new documents can
have the same field stored in vastly different formats (for example, String and TrieDate) making your index
inconsistent. This can be detected by examining the raw index.

• Query stats can be extracted from the logs. Statistics can be monitored on live systems, but it is more common
to have log files. Here are some of the statistics you can gather:

– Longest running queries
– 0-length queries
– average/mean/min/max query times
– You can get a sense of the effects of commits on the subsequent queries over some interval (time or number

of queries) to see if commits are the cause of intermittent slowdowns

• Too-frequent commits have historically been the cause of unsatisfactory performance. This is not so important
with NRT processing, but it is valuable to consider.

• Optimizing an index, which could improve search performance before, is much less necessary now. Anecdotal
evidence indicates optimizingmay help in some cases, but the general recommendation is to useexpungeDeletes,
instead of committing.

– Modern Lucene code doeswhatoptimize used to do to remove deleted data from the indexwhen segments
are merged. Think of this process as a background optimize. Note that merge policies based on segment size
can make this characterization inaccurate.

– It still may make sense to optimize a read-only index.
– Optimize is now renamed forceMerge.

Solr Query Returns no Documents when Executed with a Non-Privileged User
With a default secure collection configuration, you might have noticed that even if your user has the full set of Sentry
privileges to access a particular collection, there are no documents returned for queries executed by the user, but
executing the same query with the Solr superuser (solr by default) gives the expected results.

Why this Happens:

Starting with CDH 6, the default secure templates for solrconfig.xml, in addition to the collection level security,
also enable the Solr document level security. For more information, see Providing Document-Level Security Using
Sentry. You can verify this by looking at the solrconfig.xml of your collection and verifying whether it has the
QueryDocAuthorizationComponent enabled:

<searchComponent name="queryDocAuthorization"
class="org.apache.solr.handler.component.QueryDocAuthorizationComponent" >
 <!-- Set to true to enabled document-level authorization -->

<bool name="enabled">true</bool>
 <!-- Field where the auth tokens are stored in the document -->
 <str name="sentryAuthField">sentry_auth</str>
 <!-- Auth token defined to allow any role to access the document.
 Uncomment to enable. -->
 <!--<str name="allRolesToken">*</str>-->
 </searchComponent>

This article uses an example with a hypothetical systest user, belonging to a group which has the my_role Sentry
role assigned, granting access to the collection 'myTestCollection'.

130 | Cloudera Search

Troubleshooting Cloudera Search

If you add a document to 'myTestCollection' as the systest user:

kinit systest

curl -k --negotiate -u : -X POST
'https://mysolrserver-1.example.com:8985/solr/myTestCollection/update?wt=json' -H
'content-type: application/json' -d '[{"id":"1","title":"My document without access
token defined"}]'

The add operation is successful, but whenever you query the collection, this document is not returned among search
results.

Note: If you execute the queries using the solr user, which is a superuser for Solr, no authorization
checks will be done, therefore all documents matching the query will be returned.

What to Do:

You may choose one of the following options to make the queries working as expected:

• Leave the document level security enabled, and whenever inserting a document, specify the role that will be able
to query that document.

• Leave document level security enabled, and also enable the All Roles Token.
• Disable document level security and rely only on collection level security.

Leaving the Document Level Security Enabled, and Specifying the Role Able to Query a Document at Insertion

You may opt for leaving document level security enabled and specifying the role that will be able to query a given
document at insertion time.

When document level security is enabled, each document stores a field which specifies the roles that are able to query
that particular document. In the default configuration this field is called sentry_auth. If you add a new document
to this Solr collection where the sentry_auth field of this document has the value 'my_role', only the users who
have the Sentry role 'my_role' will get this document returned in any search results.

kinit systest

curl -k --negotiate -u : -X POST
'https://mysolrserver-1.example.com:8985/solr/myTestCollection/update?wt=json' -H
'content-type: application/json' -d '[{"id":"19","title":"My document accessible by
my_role", "sentry_auth":"my_role"}]'

Since the systest user in the example is in a group which has the role my_role, the recently added document is
successfully retrieved:

curl -k --negotiate -u :
"https://mysolrserver-1.example.com:8985/solr/myTestCollection/select?q=:"

{
 "responseHeader":{
 "zkConnected":true,
 "status":0,
 "QTime":18,
 "params":{
 "q":"*:*",
 "doAs":"systest"}},
 "response":{"numFound":1,"start":0,"docs":[
 {
 "id":"19",

Cloudera Search | 131

Troubleshooting Cloudera Search

 "title":["My document accessible by myrole"],
 "_version_":1616957635311960064}]
 }}

Leaving Document Level Security Enabled and Enabling the All Roles Token

The document level security feature also allows defining a token (called the allRolesToken) which allows any role
to access a particular document which has this token in the sentryAuthField specified. If in the solrconfig.xml
file you uncomment the line<str name="allRolesToken">*</str> it results in all Sentry roles being able to query
all documents that are submitted with the sentry_auth field value set to *.

<searchComponent name="queryDocAuthorization"
class="org.apache.solr.handler.component.QueryDocAuthorizationComponent" >
 <!-- Set to true to enabled document-level authorization -->
 <bool name="enabled">true</bool>
 <!-- Field where the auth tokens are stored in the document -->
 <str name="sentryAuthField">sentry_auth</str>

<!-- Auth token defined to allow any role to access the document.
 Uncomment to enable. -->
 <!--<str name="allRolesToken">*</str>-->
 </searchComponent>

This option enables you to specify for individual documents that all users can access them, regardless of roles.

1. Modify the solrconfig.xml of your collection and uncomment: <str name="allRolesToken">*</str>
2. After updating the solrconfig.xml, do a reload operation on the collection (In this example: solrctl

collection --reload myTestCollection).
3. You can now add a document with setting the sentry_auth field to the defined allRolesToken (*):

kinit systest

curl -k --negotiate -u : -X POST
'https://mysolrserver-1.example.com:8985/solr/myTestCollection/update?wt=json' -H
'content-type: application/json' -d '[{"id":"20","title":"My document with allRolesToken",
"sentry_auth":"*"}]'

Do a query with the systest user:

kinit systest

curl -k --negotiate -u :
"https://mysolrserver-1.example.com:8985/solr/myTestCollection/select?q=:"

It returns two documents (id 19 had the sentry_auth set to my_role which is the Sentry role associated with the
systest user and id 20 which has sentry_auth set to * which is 'any roles')

"response":{"numFound":2,"start":0,"docs":[
 {
 "id":"19",
 "title":["My document accessible by myrole"],
 "_version_":1616957635311960064},
 {
 "id":"20",
 "title":["My document with allRolesToken"],
 "_version_":1616958682453508096}]

132 | Cloudera Search

Troubleshooting Cloudera Search

Disabling Document Level Security and Relying Only on Collection Level Security

This option means that whoever has a Sentry role giving access to a collection will be able to access all documents in
that collection. To implement this option:

1. Locate the following entry in solrconfig.xml:

<searchComponent name="queryDocAuthorization"
class="org.apache.solr.handler.component.QueryDocAuthorizationComponent" >

2. Change

<bool name="enabled">true</bool>

to

<bool name="enabled">false</bool>

3. Update the instance configuration. Update and reload the collection configuration.

Repeat the query and it returns all documents in the collection (The document with id 1 did not have a value for the
sentry_auth field, meaning that no one was able to query it, however you have disabled document level security
and use collection level security only, so the systest user who has access to the collection will now get all documents
in that collection):

kinit systest

curl -k --negotiate -u :
"https://mysolrserver-1.example.com:8985/solr/myTestCollection/select?q=:"

{
 "responseHeader":{
 "zkConnected":true,
 "status":0,
 "QTime":7,
 "params":{
 "q":"*:*",
 "doAs":"systest"}},
 "response":{"numFound":3,"start":0,"docs":[
 {
 "id":"1",
 "title":"My document without access token defined",
 "_version_":1616949033619685376},
 {
 "id":"19",
 "title":"My document accessible by myrole",
 "_version_":1616957635311960064},
 {
 "id":"20",
 "title":"My document with allRolesToken",
 "_version_":1616958682453508096}]
 }}

Cloudera Search | 133

Troubleshooting Cloudera Search

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting frommechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to thatWork or DerivativeWorks thereof, that is intentionally submitted to Licensor for inclusion in theWork
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving theWork, but excluding communication that is conspicuouslymarked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whoma Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare DerivativeWorks of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license tomake, havemade,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

134 | Cloudera

Appendix: Apache License, Version 2.0

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within theWork constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the DerivativeWorks; or, within a display generated by the DerivativeWorks, if andwherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure ormalfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

Cloudera | 135

Appendix: Apache License, Version 2.0

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

136 | Cloudera

Appendix: Apache License, Version 2.0

	Table of Contents
	Cloudera Search Overview
	How Cloudera Search Works
	Understanding Cloudera Search
	Cloudera Search and Other Cloudera Components
	Cloudera Search Architecture
	Cloudera Search Configuration Files

	Cloudera Search Tasks and Processes
	Ingestion
	Indexing
	Querying

	Cloudera Search Tutorial
	Validating the Cloudera Search Deployment
	Configuring Sentry for Test Collection
	Creating a Test Collection
	Indexing Sample Data
	Querying Sample Data
	Next Steps

	Preparing to Index Sample Tweets with Cloudera Search
	Configuring Sentry for Tweet Collection
	Create a Collection for Tweets
	Copy Sample Tweets to HDFS

	Using MapReduce Batch Indexing to Index Sample Tweets
	Batch Indexing into Online Solr Servers Using GoLive
	Batch Indexing into Offline Solr Shards

	Near Real Time (NRT) Indexing Tweets Using Flume
	Install Flume
	Sentry Configuration for NRT Indexing Using Flume
	Copy Configuration Template Files
	Configuring the Flume Solr Sink
	Configuring Flume Solr Sink to Access the Twitter Public Stream
	Starting the Flume Agent
	Indexing a File Containing Tweets with Flume HTTPSource
	Indexing a File Containing Tweets with Flume SpoolDirectorySource

	Using Hue with Cloudera Search
	Search User Interface in Hue

	Deployment Planning for Cloudera Search
	Choosing Where to Deploy the Cloudera Search Processes
	Guidelines for Deploying Cloudera Search
	Schemaless Mode Overview and Best Practices

	Deploying Cloudera Search
	Installing and Starting ZooKeeper Server
	Initializing Solr
	Generating Collection Configuration
	Creating Collections
	Using Search through a Proxy for High Availability
	Overview of Proxy Usage and Load Balancing for Search
	Special Proxy Considerations for Clusters Using Kerberos

	Using Custom JAR Files with Search
	Cloudera Search Security
	Enable Kerberos Authentication in Cloudera Search

	Managing Cloudera Search
	Managing Cloudera Search Configuration
	Managing Configuration Using Configs or Instance Directories
	Managing Configs
	Managing Instance Directories
	Securing Configs with ZooKeeper ACLs and Sentry

	Config Templates
	Updating the Schema in a Solr Collection

	Managing Collections in Cloudera Search
	Creating a Solr Collection
	Viewing Existing Solr Collections
	Deleting All Documents in a Solr Collection
	Backing Up and Restoring Solr Collections
	Deleting a Solr Collection

	solrctl Reference
	Example solrctl Usage
	Using solrctl with an HTTP proxy
	Creating Replicas of Existing Shards
	Converting Instance Directories to Configs
	Configuring Sentry for a Collection

	Migrating Solr Replicas
	Backing Up and Restoring Cloudera Search
	Prerequisites
	Sentry Configuration
	Backing Up a Solr Collection
	Restoring a Solr Collection
	Cloudera Search Backup and Restore Command Reference

	Extracting, Transforming, and Loading Data With Cloudera Morphlines
	Example Morphline Usage

	Indexing Data Using Cloudera Search
	Near Real Time Indexing Using Cloudera Search
	Near Real Time Indexing Using Flume
	Flume MorphlineSolrSink Configuration Options
	Flume MorphlineInterceptor Configuration Options
	Flume Solr UUIDInterceptor Configuration Options
	Flume Solr BlobHandler Configuration Options
	Flume Solr BlobDeserializer Configuration Options

	Lily HBase Near Real Time Indexing for Cloudera Search
	Enabling Cluster-wide HBase Replication
	Adding the Lily HBase Indexer Service
	Configure HBase Dependency for Lily HBase NRT Indexer Service
	Configuring Lily HBase Indexer Security
	Starting the Lily HBase NRT Indexer Service
	Using the Lily HBase NRT Indexer Service
	Enabling Replication on HBase Column Families
	Creating a Collection in Cloudera Search
	Creating a Lily HBase Indexer Configuration File
	Creating a Morphline Configuration File
	Understanding the extractHBaseCells Morphline Command
	Registering a Lily HBase Indexer Configuration with the Lily HBase Indexer Service
	Verifying that Indexing Works
	Using the Indexer HTTP Interface
	Configuring Lily HBase Indexer Security

	Configuring Lily HBase Indexer Security
	Configuring Lily HBase Indexer Service to Use Kerberos Authentication
	Configuring the Lily HBase Indexer Service to Use the Sentry Service
	Configuring the Lily HBase Indexer Service to Use Sentry Policy Files
	Managing Sentry Permissions for the Lily HBase Indexer
	Migrating HBase Indexer Sentry Policy Files to the Sentry Service

	Batch Indexing Using Cloudera Search
	Spark Indexing
	MapReduce Indexing
	MapReduceIndexerTool
	MapReduceIndexerTool Input Splits
	MapReduceIndexerTool Metadata
	MapReduceIndexerTool Usage Syntax

	Lily HBase Batch Indexing for Cloudera Search
	Populating an HBase Table
	Creating a Collection in Cloudera Search
	Creating a Lily HBase Indexer Configuration File
	Creating a Morphline Configuration File
	Understanding the extractHBaseCells Morphline Command
	Running HBaseMapReduceIndexerTool
	Using --go-live with SSL or Kerberos
	Understanding --go-live and HDFS ACLs

	Cloudera Search Frequently Asked Questions
	General
	What is Cloudera Search?
	What is the difference between Lucene and Solr?
	What is Apache Tika?
	How does Cloudera Search relate to web search?
	How does Cloudera Search relate to enterprise search?
	How does Cloudera Search relate to custom search applications?
	Which Solr Server should I send my queries to?
	Do Search security features use Kerberos?
	Can I restrict access to collections?
	Do I need to configure Sentry restrictions for each access mode, such as for the admin console and for the command line?
	Does Search support indexing data stored in JSON files and objects?
	How can I set up Cloudera Search so that results include links back to the source that contains the result?
	Why do I get an error “no field name specified in query and no default specified via 'df' param" when I query a Schemaless collection?

	Performance and Fail Over
	How large of an index does Cloudera Search support per search server?
	What is the response time latency I can expect?
	How does Cloudera Search performance compare to Apache Solr?
	What happens when a write to the Lucene indexer fails?
	What hardware or configuration changes can I make to improve Search performance?
	Where should I deploy Solr Servers?
	What happens if a host running a Solr Server process fails?
	How is performance affected if the Solr Server is running on a node with no local data?
	Are there settings that can help avoid out of memory (OOM) errors during data ingestion?
	How can I redistribute shards across a cluster?
	Can I adjust replication levels?
	How do I manage resources for Cloudera Search and other components on the same cluster?

	Schema Management
	If my schema changes, will I need to re-index all of my data and files?
	Can I extract fields based on regular expressions or rules?
	Can I use nested schemas?
	What is Apache Avro and how can I use an Avro schema for more flexible schema evolution?

	Supportability
	Does Cloudera Search support multiple languages?
	Which file formats does Cloudera Search support for indexing? Does it support searching images?

	Troubleshooting Cloudera Search
	Cloudera Search Configuration and Log Files
	Viewing and Modifying Cloudera Search Configuration
	Viewing and Modifying Log Levels for Cloudera Search and Related Services
	Cloudera Search Log Files

	Identifying Problems in Your Cloudera Search Deployment
	Solr Query Returns no Documents when Executed with a Non-Privileged User

	Appendix: Apache License, Version 2.0

