
Machine Learning 1.5.0

Using GPUs for Cloudera Machine Learning
Projects
Date published: 2020-07-16
Date modified: 2023-01-31

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Machine Learning | Contents | iii

Contents

Using GPUs for Cloudera Machine Learning projects...4

Using GPUs with Legacy Engines...4
Custom CUDA-capable Engine Image.. 4
Site Admins: Add the Custom CUDA Engine to your Cloudera Machine Learning Deployment...................... 6
Project Admins: Enable the CUDA Engine for your Project.. 6
Testing GPU Setup... 6

Machine Learning Using GPUs for Cloudera Machine Learning projects

Using GPUs for Cloudera Machine Learning projects

A GPU is a specialized processor that can be used to accelerate highly parallelized computationally-intensive
workloads. Because of their computational power, GPUs have been found to be particularly well-suited to deep
learning workloads. Ideally, CPUs and GPUs should be used in tandem for data engineering and data science
workloads. A typical machine learning workflow involves data preparation, model training, model scoring, and
model fitting. You can use existing general-purpose CPUs for each stage of the workflow, and optionally accelerate
the math-intensive steps with the selective application of special-purpose GPUs. For example, GPUs allow you to
accelerate model fitting using frameworks such as Tensorflow, PyTorch, and Keras.

By enabling GPU support, data scientists can share GPU resources available on Cloudera Machine Learning
workspaces. Users can request a specific number of GPU instances, up to the total number available, which are then
allocated to the running session or job for the duration of the run.

For information on installing your GPUs, see CDP Private Cloud Data Services Installation Software Requirements,
below.

Enabling GPUs on ML Workspaces

Note: Nvidia GPU Edition comes with CUDA 11.1 preinstalled.

If you are using a Legacy Engine, to enable GPU usage on Cloudera Machine Learning, select GPUs when you
are provisioning the workspace. If your existing workspace does not have GPUs provisioned, contact your ML
administrator to provision a new one for you. For instructions, see Provisioning ML Workspaces.

Related Information
CDP Private Cloud Data Services Software Requirements

Provision an ML Workspace

Custom CUDA-capable Engine Image

Site Admins: Add the Custom CUDA Engine to your Cloudera Machine Learning Deployment

Project Admins: Enable the CUDA Engine for your Project

Testing GPU Setup

GPU node setup

Using GPUs with Legacy Engines

To use GPUs with legacy engines, you must create a custom CUDA-capable engine image.

Custom CUDA-capable Engine Image

Note: Before proceeding with creating a custom CUDA-capable engine, the Administrator needs to install
the Nvidia plugin.

The base engine image (docker.repository.cloudera.com/CML/engine:<version>) that ships with Cloudera Machine
Learning will need to be extended with CUDA libraries to make it possible to use GPUs in jobs and sessions.

The following sample Dockerfile illustrates an engine on top of which machine learning frameworks such as
Tensorflow and PyTorch can be used. This Dockerfile uses a deep learning library from NVIDIA called NVIDIA
CUDA Deep Neural Network (cuDNN). For detailed information about compatibility between NVIDIA driver
versions and CUDA, refer the cuDNN installation guide (prerequisites).

4

https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Deep_learning
https://www.tensorflow.org/
http://pytorch.org/
https://keras.io/
https://docs.cloudera.com/cdp-private-cloud-data-services/1.5.0/installation-ecs/topics/cdppvc-installation-ecs-software-requirements.html
https://docs.cloudera.com/machine-learning/1.5.0/workspaces-privatecloud/topics/ml-pvc-provision-ml-workspace.html
https://docs.cloudera.com/machine-learning/1.5.0/private-cloud-requirements/topics/ml-gpu-node-setup.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/openshift/contents.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/openshift/contents.html
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html

Machine Learning Using GPUs with Legacy Engines

When creating the Dockerfile for the custom image, you must delete the Cloudera repository that is inaccessible
because of the paywall by running the following:

RUN rm /etc/apt/sources.list.d/*

Make sure you also check with the machine learning framework that you intend to use in order to know which version
of cuDNN is needed. As an example, Tensorflow's NVIDIA hardware and software requirements for GPU support are
listed in the Tensorflow documentation here. Additionally, the Tensorflow version compatibility matrix for CUDA
and cuDNN is documented here.

The following sample Dockerfile uses NVIDIA's official Dockerfiles for CUDA and cuDNN images.

cuda.Dockerfile

FROM docker.repository.cloudera.com/cloudera/cdsw/engine:14-cml-2021.05-1

RUN rm /etc/apt/sources.list.d/*
RUN apt-get update && apt-get install -y --no-install-recommends \
gnupg2 curl ca-certificates && \
curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu18
04/x86_64/7fa2af80.pub | apt-key add - && \
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu180
4/x86_64 /" > /etc/apt/sources.list.d/cuda.list && \
echo "deb https://developer.download.nvidia.com/compute/machine-learning/re
pos/ubuntu1804/x86_64 /" > /etc/apt/sources.list.d/nvidia-ml.list && \
apt-get purge --autoremove -y curl && \
rm -rf /var/lib/apt/lists/*

ENV CUDA_VERSION 10.1.243
LABEL com.nvidia.cuda.version="${CUDA_VERSION}"

ENV CUDA_PKG_VERSION 10-1=$CUDA_VERSION-1
RUN apt-get update && apt-get install -y --no-install-recommends \
cuda-cudart-$CUDA_PKG_VERSION && \
cuda-libraries-$CUDA_PKG_VERSION && \
ln -s cuda-10.1 /usr/local/cuda && \
rm -rf /var/lib/apt/lists/*

RUN echo "/usr/local/cuda/lib64" >> /etc/ld.so.conf.d/cuda.conf && \
ldconfig

RUN echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf && \
echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf

ENV PATH /usr/local/nvidia/bin:/usr/local/cuda/bin:${PATH}
ENV LD_LIBRARY_PATH /usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/loca
l/cuda-10.2/targets/x86_64-linux/lib/

RUN echo "deb http://developer.download.nvidia.com/compute/machine-learning/
repos/ubuntu1604/x86_64 /" > /etc/apt/sources.list.d/nvidia-ml.list

ENV CUDNN_VERSION 7.6.5.32
LABEL com.nvidia.cudnn.version="${CUDNN_VERSION}"

RUN apt-get update && apt-get install -y --no-install-recommends \
libcudnn7=$CUDNN_VERSION-1+cuda10.1 && \
apt-mark hold libcudnn7 && \
rm -rf /var/lib/apt/lists/*

5

https://www.tensorflow.org/install/gpu
https://www.tensorflow.org/install/source#gpu
https://hub.docker.com/r/nvidia/cuda/

Machine Learning Using GPUs with Legacy Engines

Use the following example command to build the custom engine image using the cuda.Dockerfile command:

docker build --network host -t <company-registry>/CML-cuda:13 . -f cuda.Dock
erfile

Push this new engine image to a public Docker registry so that it can be made available for Cloudera Machine
Learning workloads. For example:

docker push <company-registry>/CML-cuda:13

Site Admins: Add the Custom CUDA Engine to your Cloudera Machine
Learning Deployment

After you create a custom CUDA-capable engine image, you must add the new engine to Cloudera Machine
Learning.

About this task

You must have the Site Administrator role to perform this task.

Procedure

1. Sign in to Cloudera Machine Learning.

2. Click Admin.

3. Go to the Engines tab.

4. Under Engine Images, add the custom CUDA-capable engine image created in the previous step.

This allows project administrators across the deployment to start using this engine in their jobs and sessions.

5. Site administrators can also set a limit on the maximum number of GPUs that can be allocated per session or job.
From the Maximum GPUs per Session/Job dropdown, select the maximum number of GPUs that can be used by
an engine.

6. Click Update.

Project Admins: Enable the CUDA Engine for your Project
You can make the CUDA-capable engine the default engine for workloads within a particular project.

Before you begin
You must be a Project administrator to specify the default engine used for workloads within a particular project.

Procedure

1. Navigate to your project's Overview page.

2. Click Settings.

3. Go to the Engines tab.

4. Under Engine Image, select the CUDA-capable engine image from the dropdown.

Testing GPU Setup
Use these code samples to test that your GPU setup works with several common deep learning libraries. The specific
versions of libraries depend on the particular GPU used and the GPU driver version. You can use this testing for GPU
setup using Legacy Engines.

6

Machine Learning Using GPUs with Legacy Engines

1. Go to a project that is using the CUDA engine and click Open Workbench.
2. Launch a new session with GPUs.
3. Run the following command in the workbench command prompt to verify that the driver was installed correctly:

! /usr/bin/nvidia-smi

4. Use any of the following code samples to confirm that the new engine works with common deep learning
libraries.

PyTorch

!pip3 install torch==1.4.0
from torch import cuda
assert cuda.is_available()
assert cuda.device_count() > 0
print(cuda.get_device_name(cuda.current_device()))

Note: The PyTorch installation requires at least 4 GB of memory.

Tensorflow

!pip3 install tensorflow-gpu==2.1.0
from tensorflow.python.client import device_lib
assert 'GPU' in str(device_lib.list_local_devices())
device_lib.list_local_devices()

Keras

!pip3 install keras
from keras import backend
assert len(backend.tensorflow_backend._get_available_gpus()) > 0
print(backend.tensorflow_backend._get_available_gpus())

7

	Contents
	Using GPUs for Cloudera Machine Learning projects
	Using GPUs with Legacy Engines
	Custom CUDA-capable Engine Image
	Site Admins: Add the Custom CUDA Engine to your Cloudera Machine Learning Deployment
	Project Admins: Enable the CUDA Engine for your Project
	Testing GPU Setup

