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Machine Learning Experiments with MLflow

Machine Learning requires experimenting with awide range of datasets, data preparation steps, and algorithms to
build amodel that maximizes atarget metric. Once you have built amodel, you also need to deploy it to a production
system, monitor its performance, and continuously retrain it on new data and compare it with alternative models.

CML letsyou train, reuse, and deploy models with any library, and package them into reproducible artifacts that other
data scientists can use.

CML packages the ML modelsin areusable, reproducible form so you can share it with other data scientists or
transfer it to production.

CML is compatible with the MLflow™ tracking API and makes use of the MLflow client library as the default method
to log experiments. Existing projects with existing experiments are still available and usable.

The functionality described in this document is for the new version of the Experiments feature, which replaces an
older version of the Experiments feature that could not be used from within Sessions. In Projects that have existing
Experiments created using the previous feature, you can continue to view these existing Experiments. New projects
use the new Experiments feature.

CML’ s experiment tracking features allow you to use the MLflow client library for logging parameters, code
versions, metrics, and output files when running your machine learning code. The MLflow library isavailablein
CML Sessions without you having to install it. CML also provides a Ul for later visualizing the results. MLflow
tracking lets you log and query experiments using the following logging functions:

E Note: CML currently supports only Python for experiment tracking.

« miflow.create_experiment() creates a new experiment and returnsits ID. Runs can be launched under the
experiment by passing the experiment 1D to miflow.start_run.

Cloudera recommends that you create an experiment to organize your runs. Y ou can also create experiments using
the Ul.

*  miflow.set_experiment() sets an experiment as active. If the experiment does not exist, mlflow.set_experiment
creates a new experiment. If you do not wish to use the set_experiment method, a default experiment is selected.

Cloudera recommends that you set the experiment using mlflow.set_experiment.

« miflow.start_run() returns the currently active run (if one exists), or starts a new run and returns a miflow.Activ
eRun object usable as a context manager for the current run. Y ou do not need to call start_run explicitly; caling
one of the logging functions with no active run automatically starts a new one.

« miflow.end_run() ends the currently active run, if any, taking an optional run status.

« miflow.active_run() returns amiflow.entities.Run object corresponding to the currently active run, if any.

Note: You cannot access currently-active run attributes (parameters, metrics, etc.) through the run
E returned by miflow.active run. In order to access such attributes, use the miflow.tracking.MIflowClient as
follows:

client = mflow tracking.MflowC ient()
data = client.get_run(mflow active_run().info.run_id).data

» miflow.log_param() logs a single key-value parameter in the currently active run. The key and value are both
strings. Use miflow.log_params() to log multiple parameters at once.




Machine Learning Running an Experiment using MLflow

* miflow.log_metric() logs a single key-value metric for the current run. The value must always be a number.
ML flow remembers the history of values for each metric. Use miflow.log_metrics() to log multiple metrics at
once.

Parameters:

* key - Metric name (string)

e value- Metric value (float). Note that some special values such as +/- Infinity may be replaced by other values
depending on the store. For example, the SQL Alchemy store replaces +/- Infinity with max / min float values.

e step - Metric step (int). Defaults to zero if unspecified.

Syntax - mlflow.log_metrics(metrics: Dict[str, float], step: Optional[int] = None) # None

« miflow.set tag() sets asingle key-value tag in the currently active run. The key and value are both strings. Use
miflow.set_tags() to set multiple tags at once.

« miflow.log_artifact() logsalocal file or directory as an artifact, optionally taking an artifact_path to place it within
the run’s artifact URI. Run artifacts can be organized into directories, so you can place the artifact in a directory
thisway.

» miflow.log_artifacts() logs all the filesin agiven directory as artifacts, again taking an optional artifact_path.

« miflow.get_artifact_uri() returns the URI that artifacts from the current run should be logged to.

For more information on MLflow APl commands used for tracking, see MLflow Tracking.

This topic walks you through a simple example to help you get started with Experiments in Cloudera Machine
Learning.

Best practice: It's useful to display two windows while creating runs for your experiments. one window displays the
Experiments tab and another displays the MLflow Session.

1. From your Project window, click New Experiment and create a new experiment. Keep this window open to return
to after you run your new session.

2. From your Project window, click New Session.

Create a new session using ML Runtimes. Experiment runs cannot be created from sessions using Legacy Engine.

4. Inyour Session window, import MLflow by running the following code: import miflow The ML Flow client
library isinstalled by default, but you must import it for each session.

5. Start arun and then specify the MLflow parameters, metrics, models and artifacts to be logged. Y ou can enter the
code in the command prompt or create a project. See CML Experiment Tracking through MLflow API for alist of
functions you can use.

w

For example:

w. set _experi nent (<experi nent _nane>)
w.start_run()
w. | og_paran("input", 5)
w. |l og_metric("score", 100)
open("data/features.txt", '"wW) as f:
f.wite(features)
Wites all files in "data" to root artifact uri/states
flow log_artifacts("data", artifact_path="states")
# Artifacts are stored in project directory under
/ hone/ cdsw/ . experi ment s/ <experinment id>/<run_id>/artifacts

— —h —h —h —h
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Machine Learning Visualizing Experiment Results

m fl ow. end_run() <

For information on using editors, see Using Editors for ML Runtimes.
6. Continue creating runs and tracking parameters, metrics, models, and artifacts as needed.
7. Toview your run information, display the Experiments window and select your experiment name. CML displays

the Runstable.
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8. Click the Refresh button on the Experiments window to display recently created runs
9. You can customize the Run table by clicking Columns, and selecting the columns you want to display.

Using Editors for ML Runtimes

After you create multiple runs, you can compare your results.
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Machine Learning Visualizing Experiment Results

1. Go to Experiments and click on your experiment name. CML displays the Runs table populated by all of the runs
for the experiment.

Experirment

Marn 171

[ ]

2. You can search your run information by using the search field at the top of the Run table.

Y ou can customize the Run table by clicking Columns, and selecting the columns you want to display.

4. You can display details for a specific run by clicking the start time for the run in the Run table. Y ou can add notes
for the run by clicking the Notesicon. Y ou can display the run metricsin a chart format by clicking the specific
metric under Metrics.

5. To compare the data from multiple runs, use the checkbox in the Run table to select the runs you want to compare.
Y ou can use the top checkbox to select all runsin the table. Alternatively, you can select runs using the spacebar
and arrow keys.

w




Machine Learning Using an MLflow Model ArtifactinaMode REST API

6. Click Compare. Alternatively, you can press Cmd/Ctrl + Enter. CML displays a separate window containing a
table titled Run Comparison and options for comparing your parameters and metrics.

Comparirg 3 Rura

Run Comparison (3)

This Run Comparison table lists all of the parameters and the most recent metric information from the runs you
selected. Parameters that have changed are highlighted

7. You can graphically display the Run metric data by clicking the metric namesin the Metrics section. If you
have asingle value for your metrics, it will display as a bar chart. If your run has multiple values, the metrics
comparison page displays the information with multiple steps, for example, over time. Y ou can choose how the
datais displayed:

« Time (Relative): graphs the time relative to the first metric logged, for each run.
* Time (Wall): graphs the absolute time each metric was logged.
« Step: graphs the values based on the cardinal order.
8. Below the Run Comparison table, you can choose how the Run information is displayed:

» Scatter Plot: Use the scatter plot to see patterns, outliers, and anomalies.

« Contour Plot: Contour plots can only be rendered when comparing a group of runs with three or more unique
metrics or parameters. Log more metrics or parameters to your runs to visualize them using the contour plot.

» Pardle Coordinates Plot: Choose the parameters and metrics you want displayed in the plot.

Y ou can use MLflow to create, deploy, and manage models as REST APIsto serve predictions

1. To create an MLflow model add the following information when you run an experiment:

mflow |og_artifacts ("output")




Machine Learning Using an MLflow Model ArtifactinaMode REST API

m f | ow. skl earn. | og_nodel (1 r, "nodel")
For example:

# The data set used in this exanple is fromhttp://archive.ics.uci.edu/ m/
dat aset s/ Wne+Qual ity

# P. Cortez, A Cerdeira, F. Alneida, T. Matos and J. Reis.

# Model i ng wi ne preferences by data mning from physi cochem cal properti
es. In Decision Support Systens, Elsevier, 47(4):547-553, 2009.

i mport os

i mport war ni ngs

i mport sys

i nport pandas as pd

i mport nunpy as np

fromsklearn.netrics inport mean_squared_error, nean_absolute error, r2_sc
ore

from skl earn. nodel _sel ection inport train_test split

from skl earn. linear_nodel inport El asticNet

fromurllib.parse inport url parse

i mport m flow

fromm fl ow nodel s inport infer_signature

i mport m flow skl earn

i mport | ogging

| oggi ng. basi cConfi g(| evel =l oggi ng. WARN)
| ogger = | oggi ng. get Logger (__nane__)

def eval netrics(actual, pred):

rmse = np.sqgrt(nean_squared_error(actual, pred))

mae = nmean_absol ute_error(actual, pred)

r2 =r2_score(actual, pred)

return rnse, mae, r?2
if nane_ =="_main__
war ni ngs. filterwarnings("ignore")
np. random seed( 40)

# Read the wine-quality csv file fromthe URL
csv_url = (
"https://raw. githubusercontent.conimflow m fl ow nmaster/tests/da
taset s/ w nequal ity-red. csv"
)
try:
data = pd.read_csv(csv_url, sep=";")
except Exception as e:
| ogger . excepti on(
"Unabl e to downl oad training & test CSV, check your internet
connection. Error: %", e

)

# Split the data into training and test sets. (0.75, 0.25) split.
train, test = train_test_split(data)

# The predicted colum is "quality"” which is a scalar from[3, 9]
train_x = train.drop(["quality"], axis=1)

test x = test.drop(["quality"], axis=1)

train_y = train[["quality"]]

test y =test[["quality"]]

al pha = float(sys.argv[1l]) if len(sys.argv) > 1 else 0.5
1 ratio = float(sys.argv[2]) if len(sys.argv) > 2 else 0.5




Machine Learning Using an MLflow Model ArtifactinaMode REST API

with mflow start_run():
Ir = ElasticNet(al pha=al pha, |1 ratio=l1 ratio, random state=42)
Ir.fit(train_x, train_y)

predicted qualities = Ir.predict(test_x)

(rnse, nme, r2) = eval _netrics(test_y, predicted qualities)

print("El asticnet nodel (alpha={:f}, 11 ratio={:f}):".fornmat(al
pha, |1 ratio))

print(" RVBE: 9%" % rnse)

print(" ME 9" % nae)

print(" R2: %" %r2)

m fl ow. | og_paran("al pha", al pha)
mflow |og paran("l1 ratio", |1 ratio)
mflow | og_metric("rnse”, rnse)
mflow log nmetric("r2", r2)

m flow | og_netric("nae", nae)

predictions = Ir.predict(train_x)
signature = infer_signature(train_x, predictions)
m f | ow. skl earn. | og_nodel (I r, "nodel", signature=signature, regist

ered_nodel _nanme="t est nodel ")

In this example we are training a machine learning model using linear regression to predict wine quality. This
script creates the MLflow model artifact and logsit to the model directory: /home/cdsw/.experiments/<experim
ent_id>/<run_id>/artifactsmodels

2. Toview the model, navigate to the Experiments page and select your experiment name. CML displays the Runs
page and lists all of your current runs.

3. Click therun from step 1 that created the MLflow model. CML displays the Runs detail page

10



Machine Learning Deploying an MLflow model asa CML Model REST API

4. Click Artifactsto display alist of all thelogged artifacts for the run.

Add T
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5. Click model. CML displays the MLflow information you use to create predictions for your experiment.

In the future, you will be able to register models to aModel Registry and then deploy Model REST APIswith those
models. Today, these models can be deployed using the following manual process instead

1. Navigateto your project. Note that models are always created within the context of a project.
2. Click Open Workbench and launch a new Python 3 session.

3. Create anew file within the project if one does not already exist: cdsw-build.sh This file defines the function that
will be called when the model is run and will contain the MLflow prediction information.

4. Add the following information to the cdsw-build.sh file: pip3 install sklearn miflow pandas
5. For non-Python template projects and old projects check the following.

a. Check to make sure you have a .gitignorefile. If you do not have thefile, add it.
b. Add the following information to the .gitignore file: !.experiments

For new projects using a Python template, thisis aready present.
6. Create aPython fileto call your model artifact using a Python function. For example:

» Filename: mlpredict.py
» Function: predict

7. Copy the MLflow modél file path from the Make Predictions panein the Artifacts section of the Experiments/Run
details page and load it in the Python file. This creates a Python function which accepts a dictionary of the input
variables and converts these to a Pandas data frame, and returns the model prediction. For example:

i mport mflow

11
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Deploying an MLflow model asa CML Model REST API

i nport pandas as pd
| ogged_nodel =

"/ hone/ cdsw/ . experi nment s/ 7gqwz- | 620- d7v6- 1922/ gl ma- oqxb-szc7-c8hf/a

rtifacts/nodel'
def predict(args):

# Load nodel as a PyFuncMbdel .
data = args.get('input')

| oaded_nodel = nl flow pyfunc.| oad_nodel (|1 ogged_nodel )

# Predi ct on a Pandas Dat aFr ane.

return | oaded _nodel . pr edi ct ( pd. Dat aFr ane( dat a) )

Note: In practice, do not assume that users calling the model will provide input in the correct format or

enter good values. Always perform input validation.

8. Deploy the predict function to a REST endpoint.

a.

b
C.
d

Go to the project Overview page
. Click Models New Modd .
Give the model a Name and Description
. Enter details about the model that you want to build. In this case:

File: mlpredict.py
Function: predict
Example Input:

"input":

[7.4, 0.7, O, 1.9, 0.076, 11, 34, 0.9978,
3.51, 0.56, 9.4]

]

}

Example outpuit:

[
5.575822297312952

12



Machine Learning Deploying an MLflow model asaCML Model REST API

Filbe *
mipredictpy
Function *
predic

Example Input @
{“wnput™:[[7.4.8.7,0,7.9,8.876,11,34,8, 9976, 3.51,0.56,9.4]] §

Example Output &
[
5.57502229731 2952
1

| g P .

e. Select the resources needed to run this model, including any replicas for load balancing.

Note: Thelist of options here is specific to the default engine you have specified in your Project
IE Settings: ML Runtimes or Legacy Engines. Engines allow kernel selection, while ML Runtimes
alow Editor, Kernel, Variant, and Version selection. Resource Profile list is applicable for both ML
Runtimes and Legacy Engines.
f. Click Deploy Model.
9. Click on the model to go to its Overview page.
10. Click Builds to track realtime progress as the model is built and deployed. This process essentially creates a
Docker container where the model will live and serve requests.

Sdd Two Mumbers Besicing

T e b AT Builds Kortinering

T Bt
pdd_numBars. py £ myihard mEmbreen Jun & ZONE, S84 B4

Step 2008 EMTRYFTOINT rode fappimode]-ront ime imodel-eereer, |8

= Fennang in SAHEIAT 130825

11. Once the model has been deployed, go back to the model Overview page and use the Test Model widget to make
sure the model works as expected. If you entered example input when creating the model, the Input field will be
pre-popul ated with those values.

13
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12. Click Test. The result returned includes the output response from the model, as well asthe ID of the replica that
served the request.

Model response times depend largely on your model code. That is, how long it takes the model function to
perform the computation needed to return a prediction. It is worth noting that model replicas can only process one
reguest at atime. Concurrent requests will be queued until the model can process them.

Automatic logging allows you to log metrics, parameters, and models without the need for an explicit log statement.
Y ou can perform autologging two ways:

1. Call miflow.autolog() before your training code. Thiswill enable autologging for each supported library you have
installed as soon as you import it.

2. Uselibrary-specific autolog calls for each library you usein your code. See below for examples.

For more information about the libraries supported by autologging, see Automatic Logging.

Experiments are associated with the project ID, so permissions are inherited from the project. If you want to allow a
colleague to view the experiments of a project, you should give them Viewer (or higher) access to the project.

CML hasthe following known issues and limitations with experiments and MLflow.

e CML currently supports only Python for experiment tracking.

« Experiment runs cannot be created from MLFlow on sessions using Legacy Engine. Instead, create a session using
an ML Runtime.

e Theversion column in the runstable is empty for every run. In afuture release, thiswill show a git commit shafor
projects using git.

» Thereis currently no mechanism for registering amodel to aModel Registry. In afuture release, you will be able
to register modelsto a Model Registry and then deploy Model REST APIs with those models.

« Browsing an empty experiment will display a spinner that doesn’t go away.

« Running an experiment from the workbench (from the dropdown menu) refersto legacy experiments and should
not be used going forward.

» Tag/Metrics/Parameter columns that were previously hidden on the runs table will be remembered, but CML
won't remember hiding any of the other columns (date, version, user, etc.)

« Admins can not browse all experiments. They can only see their experiments on the global Experiment page.

» Performance issues may arise when browsing the run details of arun with alot of metric results, or when
comparing alot of runs.

* Runs can not be deleted or archived.

Thisisan example of how MLflow transformers can be supported in Cloudera Machine Learning.

14
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Machine Learning ML flow transformers

E Note: Thisisan experimental feature.

This example shows how to implement a translation workflow using a translation model.

1. Savethefollowing asafile, for example, named miflowtest.py.

#!pip3 install torch transforners torchvision tensorflow

i mport mflow

frommfl ow nodel s i nport infer_signature

frommflow transforners inport generate_signature_out put
fromtransforners inport pipeline

en_to _de = pipeline("translation_en_to_de")

data = "M.flow is great!"”
out put = generate_signature_output(en_to_de, data)
#signature = infer_signature(data, output)

with mflow start_run() as run:

m f 1 ow. t ransforners. | og_nodel (
transforners_nodel =en_t o_de,

artifact _path="english_to german_transl ator",
i nput _exanpl e=dat a,

regi st ered_nodel _nanme="ent odetransl ator™,

nmodel _uri = f"runs:/{run.info.run_id}/english to german_translator"
| oaded = ml fl ow. pyfunc. | oad nodel (nodel _uri)

print (| oaded. predi ct (data))

2. Inthe Model Registry page, find the entodetranslator model. Deploy the model.
3. Make arequest using the following payload:

"dataframe_split": {
"colums": |
Ildat a.II

1,
"data": |

"Mflowis great!"”

]
]
}
}

4. Inasession, run the miflowtest.py file. It should print the following output.

print (| oaded. predi ct(data))
["Mflowist groRBartig!']

B Note: For more information, see miflow.transformers.

15
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