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Enabling model metrics

Metrics are used to track the performance of the models. When you enable model metrics while creating a workspace,
the metrics are stored in a scalable metrics store. You can track individual model predictions and analyze metrics
using custom code.

About this task

Procedure

1. Go to Cloudera Machine Learning and click Provision Workspace on the top-right corner.

2. Enter the workspace name and other details.

3. Click Advanced Options.

4. Select Enable Model Metrics.

If you want to connect to an external (custom) Postgres database, then specify the details in the additional optional
arguments that are displayed. If you do not specify these details, a managed Postgres database will be used to store
the metrics.

Tracking model metrics without deploying a model

Cloudera recommends that you develop and test model metrics in a workbench session before actually deploying the
model. This workflow avoids the need to rebuild and redeploy a model to test every change.

Metrics tracked in this way are stored in a local, in-memory datastore instead of the metrics database, and are
forgotten when the session exits. You can access these metrics in the same session using the regular metrics API in
the cdsw.py file.

The following example demonstrates how to track metrics locally within a session, and use the read_metrics function
to read the metrics in the same session by querying by the time window.

To try this feature in the local development mode, use the following files from the Python template project:

• use_model_metrics.py
• predict_with_metrics.py

The predict function from the predict_with_metrics.py file shown in the following example is similar to the function
with the same name in the predict.py file. It takes input and returns output, and can be deployed as a model.
But unlike the function in the predict.py file, the predict function from the predict_with_metrics.py file tracks
mathematical metrics. These metrics can include information such as input, output, feature values, convergence
metrics, and error estimates. In this simple example, only input and output are tracked. The function is equipped to
track metrics by applying the decorator cdsw.model_metrics.

@cdsw.model_metrics
def predict(args):
  # Track the input.
  cdsw.track_metric("input", args)

  # If this model involved features, ie transformations of the
  # raw input, they could be tracked as well.
  # cdsw.track_metric("feature_vars", {"a":1,"b":23})

  petal_length = float(args.get('petal_length'))
  result = model.predict([[petal_length]])
  # Track the output.
  cdsw.track_metric("predict_result", result[0][0])
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  return result[0][0]

You can directly call this function in a workbench session, as shown in the following example:

predict(
{"petal_length": 3}
)

You can fetch the metrics from the local, in-memory datastore by using the regular metrics API. To fetch the metrics,
set the dev keyword argument to True in the use_model_metrics.py file. You can query the metrics by model, model
build, or model deployment using the variables cdsw.dev_model_crn and cdsw.dev_model_build_crn or   cdsw.dev
_model_deploy_crn respectively.

For example:

end_timestamp_ms=int(round(time.time() * 1000))
cdsw.read_metrics(model_deployment_crn=cdsw.dev_model_deployment_crn,
start_timestamp_ms=0,
end_timestamp_ms=end_timestamp_ms,
dev=True)

where CRN denotes Cloudera Resource Name, which is a unique identifier from CDP, analogous to Amazon's ARN.

Tracking metrics for deployed models

When you have finished developing your metrics tracking code and the code that consumes the metrics, simply
deploy the predict function from predict_with_metrics.py as a model. No code changes are necessary.

Calls to read_metrics, track_delayed_metrics, and track_aggregate_metrics need to be changed to take the CRN of the
deployed model, build or deployment. These CRNs can be found in the model’s Overview page.

Calls to the call_model function also requires the model’s access key (model_access_key in use_model_metrics.py)
from the model’s Settings page. If authentication has been enabled for the model (the default), a model API key for
the user (model_api_token in use_model_metrics.py) is also required. This can be obtained from the user's Settings
page.
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