Grid Displays
Cloudera Machine Learning supports built-in grid displays of DataFrames across several languages.
Python
Using DataFrames with the pandas package requires per-session
        activation:
import pandas as pd
pd.DataFrame(data=[range(1,100)])
      For PySpark DataFrames, use pandas and run
          df.toPandas() on a PySpark DataFrame. This will bring
        the DataFrame into local memory as a pandas DataFrame. 
R
In R, DataFrames will display as grids by default. For example, to view the Iris data set, you would just use:
irisSimilar to PySpark, bringing Sparklyr data into local memory with
          
as.data.frame will output a grid
        display.sparkly_df %>% as.data.frame
      Scala
Calling the display() function on an existing
        dataframe will trigger a collect, much like df.show(). 
val df = sc.parallelize(1 to 100).toDF()
display(df)