
Cloudera Runtime 7.0.0

Accessing Apache HBase
Date published: 2019-08-21
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

HBase Shell overview... 4

Virtual machine options for HBase Shell...4

Script with HBase Shell... 4

Use HBase command-line utilities.. 5

Use the Java API.. 11

Use the Apache Thrift Proxy API.. 11

Use the Hue HBase app... 12

Cloudera Runtime HBase Shell overview

HBase Shell overview

You can use the HBase Shell from the command line interface to communicate with HBase.

In CDP, you need to SSH into an HBase node before you can use the HBase Shell. For example, to SSH into an
HBase node with the IP address 10.10.10.10, you must use the command:

ssh <USERNAME>@10.10.10.10

Note: You must use your IPA password for authentication.

After you have started HBase, you can access the database in an interactive way by using the HBase Shell, which is
a command interpreter for HBase which is written in Ruby. Always run HBase administrative commands such as the
HBase Shell, hbck, or bulk-load commands as the HBase user (typically hbase).

hbase shell

You can use the following commands to get started with the HBase shell:

• To get help and to see all available commands, use the help command.
• To get help on a specific command, use help "command". For example:

hbase> help "create"

• To remove an attribute from a table or column family or reset it to its default value, set its value to nil. For
example, use the following command to remove the KEEP_DELETED_CELLS attribute from the f1 column of
the users table:

hbase> alter 'users', { NAME => 'f1', KEEP_DELETED_CELLS => nil }

• To exit the HBase Shell, type quit.

Virtual machine options for HBase Shell

You can set variables for the virtual machine running HBase Shell, by using the HBASE_SHELL_OPTS environment
variable. This example sets several options in the virtual machine.

This example sets several options in the virtual machine.

$ HBASE_SHELL_OPTS="-verbose:gc -XX:+PrintGCApplicationStoppedTime -XX:+Prin
tGCDateStamps
 -XX:+PrintGCDetails -Xloggc:$HBASE_HOME/logs/gc-hbase.log" ./bin/hbase
 shell

Script with HBase Shell

You can use HBase shell in your scripts. You can also write Ruby scripts for use with HBase Shell. Example Ruby
scripts are included in the hbase-examples/src/main/ruby/ directory.

4

Cloudera Runtime Use HBase command-line utilities

The non-interactive mode allows you to use HBase Shell in scripts, and allow the script to access the exit status of the
HBase Shell commands. To invoke non-interactive mode, use the -n or --non-interactive switch. This small example
script shows how to use HBase Shell in a Bash script.

#!/bin/bash
echo 'list' | hbase shell -n
status=$?
if [$status -ne 0]; then
 echo "The command may have failed."
fi

Successful HBase Shell commands return an exit status of 0. However, an exit status other than 0 does not necessarily
indicate a failure, but should be interpreted as unknown. For example, a command may succeed, but while waiting
for the response, the client may lose connectivity. In that case, the client has no way to know the outcome of the
command. In the case of a non-zero exit status, your script should check to be sure the command actually failed
before taking further action.

You can use the get_splits command, which returns the split points for a given table:

hbase> get_splits 't2'
Total number of splits = 5

=> ["", "10", "20", "30", "40"]

Use HBase command-line utilities

Besides the HBase Shell, HBase includes several other command-line utilities, which are available in the hbase/bin/
directory of each HBase host. This topic provides basic usage instructions for the most commonly used utilities.

PerformanceEvaluation

The PerformanceEvaluation utility allows you to run several preconfigured tests on your cluster and reports its
performance. To run the PerformanceEvaluation tool, use the bin/hbase pecommand.

$ hbase pe

Usage: java org.apache.hadoop.hbase.PerformanceEvaluation \
 <OPTIONS> [-D<property=value>]* <command> <nclients>

Options:
 nomapred Run multiple clients using threads (rather than use mapred
uce)
 rows Rows each client runs. Default: One million
 size Total size in GiB. Mutually exclusive with --rows. Default:
 1.0.
 sampleRate Execute test on a sample of total rows. Only supported by r
andomRead.
 Default: 1.0
 traceRate Enable HTrace spans. Initiate tracing every N rows. Defaul
t: 0
 table Alternate table name. Default: 'TestTable'
 multiGet If >0, when doing RandomRead, perform multiple gets instead
 of single
 gets.
 Default: 0
 compress Compression type to use (GZ, LZO, ...). Default: 'NONE'
 flushCommits Used to determine if the test should flush the table. Defau
lt: false
 writeToWAL Set writeToWAL on puts. Default: True

5

Cloudera Runtime Use HBase command-line utilities

 autoFlush Set autoFlush on htable. Default: False
 oneCon all the threads share the same connection. Default: False
 presplit Create presplit table. Recommended for accurate perf analy
sis (see
 guide). Default: disabled
 inmemory Tries to keep the HFiles of the CF inmemory as far as possi
ble. Not
 guaranteed that reads are always served from memory. Defa
ult: false
 usetags Writes tags along with KVs. Use with HFile V3. Default:
false
 numoftags Specify the no of tags that would be needed. This works o
nly if usetags
 is true.
 filterAll Helps to filter out all the rows on the server side there
by not returning
 anything back to the client. Helps to check the server si
de performance.
 Uses FilterAllFilter internally.
 latency Set to report operation latencies. Default: False
 bloomFilter Bloom filter type, one of [NONE, ROW, ROWCOL]
 valueSize Pass value size to use: Default: 1024
 valueRandom Set if we should vary value size between 0 and 'valueSiz
e'; set on read
 for stats on size: Default: Not set.
 valueZipf Set if we should vary value size between 0 and 'valueSize'
 in zipf form:
 Default: Not set.
 period Report every 'period' rows: Default: opts.perClientRunRo
ws / 10
 multiGet Batch gets together into groups of N. Only supported by ran
domRead.
 Default: disabled
 addColumns Adds columns to scans/gets explicitly. Default: true
 replicas Enable region replica testing. Defaults: 1.
 splitPolicy Specify a custom RegionSplitPolicy for the table.
 randomSleep Do a random sleep before each get between 0 and entered v
alue. Defaults: 0
 columns Columns to write per row. Default: 1
 caching Scan caching to use. Default: 30

 Note: -D properties will be applied to the conf used.
 For example:
 -Dmapreduce.output.fileoutputformat.compress=true
 -Dmapreduce.task.timeout=60000
Command:
 append Append on each row; clients overlap on keyspace so some c
oncurrent
 operations
 checkAndDelete CheckAndDelete on each row; clients overlap on keyspace so
 some concurrent
 operations
 checkAndMutate CheckAndMutate on each row; clients overlap on keyspace so
 some concurrent
 operations
 checkAndPut CheckAndPut on each row; clients overlap on keyspace so s
ome concurrent
 operations
 filterScan Run scan test using a filter to find a specific row based
 on it's value
 (make sure to use --rows=20)
 increment Increment on each row; clients overlap on keyspace so some
 concurrent
 operations

6

Cloudera Runtime Use HBase command-line utilities

 randomRead Run random read test
 randomSeekScan Run random seek and scan 100 test
 randomWrite Run random write test
 scan Run scan test (read every row)
 scanRange10 Run random seek scan with both start and stop row (max 10
rows)
 scanRange100 Run random seek scan with both start and stop row (max 100
 rows)
 scanRange1000 Run random seek scan with both start and stop row (max 1000
 rows)
 scanRange10000 Run random seek scan with both start and stop row (max 1
0000 rows)
 sequentialRead Run sequential read test
 sequentialWrite Run sequential write test
Args:
 nclients Integer. Required. Total number of clients (and HRegionS
ervers)
 running: 1 <= value <= 500
Examples:
 To run a single client doing the default 1M sequentialWrites:
 $ bin/hbase org.apache.hadoop.hbase.PerformanceEvaluation sequentialWrite 1
 To run 10 clients doing increments over ten rows:
 $ bin/hbase org.apache.hadoop.hbase.PerformanceEvaluation --rows=10 --noma
pred increment 10

LoadTestTool

The LoadTestTool utility load-tests your cluster by performing writes, updates, or reads on it. To run the LoadTest
Tool, use the bin/hbase ltt command. To print general usage information, use the -h option.

$ bin/hbase ltt -h

Options:
 -batchupdate Whether to use batch as opposed to separate
 updates for every column
 in a row
 -bloom <arg> Bloom filter type, one of [NONE, ROW, ROWC
OL]
 -compression <arg> Compression type, one of [LZO, GZ, NONE, SN
APPY, LZ4]
 -data_block_encoding <arg> Encoding algorithm (e.g. prefix compress
ion) to use for data blocks
 in the test column family, one of
 [NONE, PREFIX, DIFF, FAST_DIFF, PREFIX_T
REE].
 -deferredlogflush Enable deferred log flush.
 -encryption <arg> Enables transparent encryption on the test
 table, one of [AES]
 -families <arg> The name of the column families to use se
parated by comma
 -generator <arg> The class which generates load for the too
l. Any args for this class
 can be passed as colon separated after c
lass name
 -h,--help Show usage
 -in_memory Tries to keep the HFiles of the CF inmemory
 as far as possible. Not
 guaranteed that reads are always served fro
m inmemory
 -init_only Initialize the test table only, don't do
 any loading

7

Cloudera Runtime Use HBase command-line utilities

 -key_window <arg> The 'key window' to maintain between reads
 and writes for concurrent
 write/read workload. The default is 0.
 -max_read_errors <arg> The maximum number of read errors to tol
erate before terminating all
 reader threads. The default is 10.
 -mob_threshold <arg> Desired cell size to exceed in bytes that
will use the MOB write path
 -multiget_batchsize <arg> Whether to use multi-gets as opposed to sep
arate gets for every
 column in a row
 -multiput Whether to use multi-puts as opposed to s
eparate puts for every
 column in a row
 -num_keys <arg> The number of keys to read/write
 -num_regions_per_server <arg> Desired number of regions per region serv
er. Defaults to 5.
 -num_tables <arg> A positive integer number. When a number n
 is specified, load test tool
 will load n table parallely. -tn parameter
value becomes table name prefix.
 Each table name is in format <tn>_1...<tn>
_n
 -read <arg> <verify_percent>[:<#threads=20>]
 -reader <arg> The class for executing the read requests
 -region_replica_id <arg> Region replica id to do the reads from
 -region_replication <arg> Desired number of replicas per region
 -regions_per_server <arg> A positive integer number. When a number n
 is specified, load test tool
 will create the test table with n regions p
er server
 -skip_init Skip the initialization; assume test table
 already exists
 -start_key <arg> The first key to read/write (a 0-based ind
ex). The default value is 0.
 -tn <arg> The name of the table to read or write
 -update <arg> <update_percent>[:<#threads=20>][:<#whether
 to ignore nonce collisions=0>]
 -updater <arg> The class for executing the update requests
 -write <arg> <avg_cols_per_key>:<avg_data_size>[:<#thr
eads=20>]
 -writer <arg> The class for executing the write requests
 -zk <arg> ZK quorum as comma-separated host names w
ithout port numbers
 -zk_root <arg> name of parent znode in zookeeper

wal

The wal utility prints information about the contents of a specified WAL file. To get a list of all WAL files, use the
HDFS command hadoop fs -ls -R /hbase/WALs. To run the wal utility, use the bin/hbase wal command. Run it
without options to get usage information.

hbase wal
usage: WAL <filename...> [-h] [-j] [-p] [-r <arg>] [-s <arg>] [-w <arg>]
 -h,--help Output help message
 -j,--json Output JSON
 -p,--printvals Print values
 -r,--region <arg> Region to filter by. Pass encoded region name; e.g.
 '9192caead6a5a20acb4454ffbc79fa14'
 -s,--sequence <arg> Sequence to filter by. Pass sequence number.
 -w,--row <arg> Row to filter by. Pass row name.

8

Cloudera Runtime Use HBase command-line utilities

hfile

The hfile utility prints diagnostic information about a specified hfile, such as block headers or statistics. To get a
list of all hfiles, use the HDFS command hadoop fs -ls -R /hbase/data. To run the hfile utility, use the bin/hbase hf
ilecommand. Run it without options to get usage information.

$ hbase hfile

usage: HFile [-a] [-b] [-e] [-f <arg> | -r <arg>] [-h] [-i] [-k] [-m] [-p]
 [-s] [-v] [-w <arg>]
 -a,--checkfamily Enable family check
 -b,--printblocks Print block index meta data
 -e,--printkey Print keys
 -f,--file <arg> File to scan. Pass full-path; e.g.
 hdfs://a:9000/hbase/hbase:meta/12/34
 -h,--printblockheaders Print block headers for each block.
 -i,--checkMobIntegrity Print all cells whose mob files are missing
 -k,--checkrow Enable row order check; looks for out-of-order
 keys
 -m,--printmeta Print meta data of file
 -p,--printkv Print key/value pairs
 -r,--region <arg> Region to scan. Pass region name; e.g.
 'hbase:meta,,1'
 -s,--stats Print statistics
 -v,--verbose Verbose output; emits file and meta data
 delimiters
 -w,--seekToRow <arg> Seek to this row and print all the kvs for this
 row only

hbck

The hbck utility checks and optionally repairs errors in HFiles.

Warning: Running hbck with any of the -fix or -repair commands is dangerous and can lead to data loss.
Contact Cloudera support before running it.

To run hbck, use the bin/hbase hbck command. Run it with the -h option to get more usage information.

NOTE: As of HBase version 2.0, the hbck tool is significantly changed.
In general, all Read-Only options are supported and can be be used
safely. Most -fix/ -repair options are NOT supported. Please see usage
below for details on which options are not supported.

Usage: fsck [opts] {only tables}
 where [opts] are:
 -help Display help options (this)
 -details Display full report of all regions.
 -timelag <timeInSeconds> Process only regions that have not experienced
 any metadata updates in the last <timeInSeconds> seconds.
 -sleepBeforeRerun <timeInSeconds> Sleep this many seconds before checking
 if the fix worked if run with -fix
 -summary Print only summary of the tables and status.
 -metaonly Only check the state of the hbase:meta table.
 -sidelineDir <hdfs://> HDFS path to backup existing meta.
 -boundaries Verify that regions boundaries are the same between META and
 store files.
 -exclusive Abort if another hbck is exclusive or fixing.

 Datafile Repair options: (expert features, use with caution!)

9

Cloudera Runtime Use HBase command-line utilities

 -checkCorruptHFiles Check all Hfiles by opening them to make sure the
y are valid
 -sidelineCorruptHFiles Quarantine corrupted HFiles. implies -checkCorru
ptHFiles

 Replication options
 -fixReplication Deletes replication queues for removed peers

 Metadata Repair options supported as of version 2.0: (expert features, use
 with caution!)
 -fixVersionFile Try to fix missing hbase.version file in hdfs.
 -fixReferenceFiles Try to offline lingering reference store files
 -fixHFileLinks Try to offline lingering HFileLinks
 -noHdfsChecking Don't load/check region info from HDFS. Assumes hbas
e:meta region info is good. Won't check/fix any HDFS issue, e.g. hole, orpha
n, or overlap
 -ignorePreCheckPermission ignore filesystem permission pre-check

NOTE: Following options are NOT supported as of HBase version 2.0+.
 UNSUPPORTED Metadata Repair options: (expert features, use with caution!)
 -fix Try to fix region assignments. This is for backwards
compatiblity
 -fixAssignments Try to fix region assignments. Replaces the old -fix
 -fixMeta Try to fix meta problems. This assumes HDFS region inf
o is good.
 -fixHdfsHoles Try to fix region holes in hdfs.
 -fixHdfsOrphans Try to fix region dirs with no .regioninfo file in hdfs
 -fixTableOrphans Try to fix table dirs with no .tableinfo file in hdfs
 (online mode only)
 -fixHdfsOverlaps Try to fix region overlaps in hdfs.
 -maxMerge <n> When fixing region overlaps, allow at most <n> regions
 to merge. (n=5 by default)
 -sidelineBigOverlaps When fixing region overlaps, allow to sideline big
overlaps
 -maxOverlapsToSideline <n> When fixing region overlaps, allow at most <
n> regions to sideline per group. (n=2 by default)
 -fixSplitParents Try to force offline split parents to be online.
 -removeParents Try to offline and sideline lingering parents and keep
 daughter regions.
 -fixEmptyMetaCells Try to fix hbase:meta entries not referencing any
region (empty REGIONINFO_QUALIFIER rows)

 UNSUPPORTED Metadata Repair shortcuts
 -repair Shortcut for -fixAssignments -fixMeta -fixHdfsHoles -
fixHdfsOrphans -fixHdfsOverlaps -fixVersionFile -sidelineBigOverlaps -fixRef
erenceFiles-fixHFileLinks
 -repairHoles Shortcut for -fixAssignments -fixMeta -fixHdfsHoles

clean

After you have finished using a test or proof-of-concept cluster, the hbase clean utility can remove all HBase-related
data from ZooKeeper and HDFS.

Warning: The hbase clean command destroys data. Do not run it on production clusters, or unless you are
absolutely sure you want to destroy the data.

To run the hbase clean utility, use the bin/hbase clean command. Run it with no options for usage information.

$ bin/hbase clean

Usage: hbase clean (--cleanZk|--cleanHdfs|--cleanAll)
Options:

10

Cloudera Runtime Use the Java API

 --cleanZk cleans hbase related data from zookeeper.
 --cleanHdfs cleans hbase related data from hdfs.
 --cleanAll cleans hbase related data from both zookeeper and hdfs.

Use the Java API

The Java API is the most common mechanism for getting data into HBase, through Put operations. The Thrift and
REST APIs, as well as the HBase Shell, use the Java API.

The following simple example ouses the Java API to put data into an HBase table. The Java API traverses the entire
write path and can cause compactions and region splits, which can adversely affect performance.

...
 HTable table = null;
 try {
 table = myCode.createTable(tableName, fam);
 int i = 1;
 List<Put> puts = new ArrayList<Put>();
 for (String labelExp : labelExps) {
 Put put = new Put(Bytes.toBytes("row" + i));
 put.add(fam, qual, HConstants.LATEST_TIMESTAMP, value);
 puts.add(put);
 i++;
 }
 table.put(puts);
 } finally {
 if (table != null) {
 table.flushCommits();
 }
 }
...

Use the Apache Thrift Proxy API

The Apache Thrift library provides cross-language client-server remote procedure calls (RPCs), using Thrift bindings.

A Thrift binding is client code generated by the Apache Thrift Compiler for a target language (such as Python)
that allows communication between the Thrift server and clients using that client code. HBase includes an Apache
Thrift Proxy API, which allows you to write HBase applications in Python, C, C++, or another language that Thrift
supports. The Thrift Proxy API is slower than the Java API and may have fewer features. T use the Thrift Proxy API,
you need to configure and run the HBase Thrift server on your cluster. You also need to install the Apache Thrift
compiler on your development system.

After the Thrift server is configured and running, generate Thrift bindings for the language of your choice, using an
IDL file. A HBase IDL file named HBase.thrift is included as part of HBase. After generating the bindings, copy the
Thrift libraries for your language into the same directory as the generated bindings. In the following Python example,
these libraries provide the thrift.transport and thrift.protocol libraries. These commands show how you might generate
the Thrift bindings for Python and copy the libraries on a Linux system.

mkdir HBaseThrift
cd HBaseThrift/
thrift -gen py /path/to/Hbase.thrift
mv gen-py/* .
rm -rf gen-py/
mkdir thrift
cp -rp ~/Downloads/thrift-0.9.0/lib/py/src/* ./thrift/

11

http://thrift.apache.org/docs/install/
http://thrift.apache.org/docs/install/

Cloudera Runtime Use the Hue HBase app

The following example shows a simple Python application using the Thrift Proxy API.

from thrift.transport import TSocket
from thrift.protocol import TBinaryProtocol
from thrift.transport import TTransport
from hbase import Hbase

Connect to HBase Thrift server
transport = TTransport.TBufferedTransport(TSocket.TSocket(host, port))
protocol = TBinaryProtocol.TBinaryProtocolAccelerated(transport)

Create and open the client connection
client = Hbase.Client(protocol)
transport.open()

Modify a single row
mutations = [Hbase.Mutation(
 column='columnfamily:columndescriptor', value='columnvalue')]
client.mutateRow('tablename', 'rowkey', mutations)
Modify a batch of rows
Create a list of mutations per work of Shakespeare
mutationsbatch = []

for line in myDataFile:
 rowkey = username + "-" + filename + "-" + str(linenumber).zfill(6)
 mutations = [
 Hbase.Mutation(column=messagecolumncf, value=line.strip()),
 Hbase.Mutation(column=linenumbercolumncf, value=encode(linenu
mber)),
 Hbase.Mutation(column=usernamecolumncf, value=username)
]

 mutationsbatch.append(Hbase.BatchMutation(row=rowkey,mutations=mut
ations))

Run the mutations for all the lines in myDataFile
client.mutateRows(tablename, mutationsbatch)

transport.close()

The Thrift Proxy API does not support writing to HBase clusters that are secured using Kerberos.

Related Information
Using the HBase Thrift Interface, Part 1

Using the HBase Thrift Interface, Part 2

Use the Hue HBase app

Hue includes an HBase App that allows you to interact with HBase through a Thrift proxy server.

Because Hue sits between the Thrift server and the client, the Thrift server assumes that all HBase operations come
from the hue user and not the client. To ensure that users in Hue are only allowed to perform HBase operations
assigned to their own credentials, and not those of the hue user, you must enable HBase impersonation. For more
information about the how to enable doAs Impersonation for the HBase Browser Application, see Enabling the HBase
Browser Application with doAs Impersonation.

12

http://blog.cloudera.com/blog/2013/09/how-to-use-the-hbase-thrift-interface-part-1/
http://blog.cloudera.com/blog/2013/12/how-to-use-the-hbase-thrift-interface-part-2-insertinggetting-rows/

	Contents
	HBase Shell overview
	Virtual machine options for HBase Shell
	Script with HBase Shell
	Use HBase command-line utilities
	Use the Java API
	Use the Apache Thrift Proxy API
	Use the Hue HBase app

