
Cloudera Runtime 7.0.0

Configuring Apache HBase
Date published: 2019-08-21
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Use DNS with HBase..5

Use the Network Time Protocol (NTP) with HBase... 5

Configure the graceful shutdown timeout property... 5

Configure the HBase Thrift Server Role... 6

Setting User Limits for HBase.. 6
Configure ulimit for HBase using Cloudera Manager...6
Configure ulimit for HBase using the Command Line... 7
Configure ulimit using Pluggable Authentication Modules using the Command Line....................................... 7

Use dfs.datanode.max.transfer.threads with Hbase.. 8

Configure encryption in HBase...8

Using Hedged Reads...9
Enable hedged reads for HBase... 9
Monitor the performance of hedged reads...9

Understanding HBase Garbage Collection.. 10
Configure HBase garbage collection..10
Disable the BoundedByteBufferPool... 10

Configure the HBase Canary.. 11

Using HBase Blocksize... 12
Configure the blocksize for a column family.. 12
Monitor blocksize metrics.. 13

Configuring HBase BlockCache..13
Contents of the BlockCache...13
Size the BlockCache...14
Decide to use the BucketCache... 14
About the Off-heap BucketCache.. 14

Off-heap BucketCache..15

BucketCache IO engine..17
Configure BucketCache IO engine.. 18
Configure the off-heap BucketCache using Cloudera Manager.. 18
Configure the off-heap BucketCache using the command line... 19

Cache eviction priorities...20
Bypass the BlockCache.. 20
Monitor the BlockCache...20

Using HBase Scanner Heartbeat...21
Configure the scanner heartbeat using Cloudera Manager.. 21

Limiting the Speed of Compactions... 21
Configure the compaction speed using Cloudera Manager... 22

Enable HBase indexing.. 23

Using HBase Coprocessors.. 23
Add a custom coprocessor... 23
Disable loading of coprocessors...24

Configuring HBase MultiWAL... 24
Configuring MultiWAL support using Cloudera Manager..24

Configuring the Storage Policy for the Write-Ahead Log (WAL).....................25
Configure the storage policy for WALs using Cloudera Manager..25
Configure the storage policy for WALs using the Command Line...25

Using RegionServer Grouping.. 26
Enable RegionServer grouping using Cloudera Manager..26
Configure RegionServer grouping..27
Monitor RegionServer grouping...27
Remove a RegionServer from RegionServer grouping... 27
Enable ACL for RegionServer grouping... 27
Best practices when using RegionServer grouping... 28
Disable RegionServer grouping..28

Optimizing HBase I/O..29
HBase I/O components...29

Advanced configuration for write-heavy workloads...31

Cloudera Runtime Use DNS with HBase

Use DNS with HBase

You must configure DNS to resolve RegionServer and Master hostnames in your cluster. HBase uses the local
hostname to report its IP address. Both forward and reverse DNS resolving works.

About this task

You must configure a few parameters in the hbase-site.xml to use DNS with HBase.

Procedure

If your server has multiple interfaces, HBase uses the interface that the primary hostname resolves to, and you must
ensure that the cluster configuration is consistent and every host has the same network interface configuration. If this
is your use case:

• Set hbase.regionserver.dns.interface in the hbase-site.xml file to indicate the primary interface.

If you want to use a different DNS name server than the system-wide default.

• Set hbase.regionserver.dns.nameserver in the hbase-site.xml file to a different DNS name server.

Use the Network Time Protocol (NTP) with HBase

Ensure that that the clocks on all the cluster members are sychronized for your cluster to function correctly. You must
configure NTP to synchronize the clock.

About this task
The clocks on cluster members must be synchronized for your cluster to function correctly. Some skew is tolerable,
but excessive skew could generate odd behaviors.

Using NTP and DNS ensures that you won’t run into odd behaviors when one node A thinks that the time is
tomorrow and node B thinks it’s yesterday. You will also prevent situations where the master node tells node C to
serve a region but node C doesn’t know its own name and doesn’t answer.

Procedure

1. Run NTP or another clock synchronization mechanism on your cluster.

2. Verify that the system time is sychronized across your cluster nodes.

What to do next
For more information about NTP, see the NTP website

Configure the graceful shutdown timeout property

You must configure this property to allow enough time for a graceful shutdown of a RegionServer. A graceful
shutdown of an HBase RegionServer allows the regions hosted by that RegionServer to be moved to other
RegionServers before stopping the RegionServer.

About this task
This timeout only affects a graceful shutdown of the entire HBase service, not individual RegionServers. Therefore,
if you have a large cluster with many RegionServers, you should strongly consider increasing the timeout from its
default of 180 seconds.

5

http://www.ntp.org/

Cloudera Runtime Configure the HBase Thrift Server Role

Procedure

1. Go to the HBase service.

2. Click the Configuration tab.

3. Select Scope > HBASE-1 (Service Wide).

4. Use the Search box to search for the Graceful Shutdown Timeout property and edit the value.

5. Click Save Changes to save this setting.

Related Information
Graceful HBase Shutdown

Configure the HBase Thrift Server Role

You must configure the Thrift Server Role to access certain features such as the Hue HBase browser.

About this task
The Thrift Server role is not added by default when you install HBase, but it is required before you can use certain
other features such as the Hue HBase browser. To add the Thrift Server role:

Procedure

1. Go to the HBase service.

2. Click the Instances tab.

3. Click the Add Role Instances button.

4. Select the host(s) where you want to add the Thrift Server role (you only need one for Hue) and click Continue.
The Thrift Server role should appear in the instances list for the HBase server.

5. Select the Thrift Server role instance.

6. Select Actions for Selected > Start.

Setting User Limits for HBase

You must set user limits to avoid opening many files at the same time. Overloading many files at the same time leads
to failure and causes error messages.

Because HBase is a database, it opens many files at the same time. The default setting of 1024 for the maximum
number of open files on most Unix-like systems is insufficient. Any significant amount of loading will result in
failures and cause error message such as java.io.IOException...(Too many open files) to be logged in the HBase or
HDFS log files. For more information about this issue, see the Apache HBase Book. You may also notice errors such
as:

2010-04-06 03:04:37,542 INFO org.apache.hadoop.hdfs.DFSClient: Exception inc
reateBlockOutputStream java.io.EOFException
2010-04-06 03:04:37,542 INFO org.apache.hadoop.hdfs.DFSClient: Abandoning bl
ock blk_-6935524980745310745_1391901

Another setting you should configure is the number of processes a user is permitted to start. The default number of
processes is typically 1024. Consider raising this value if you experience OutOfMemoryException errors.

Configure ulimit for HBase using Cloudera Manager
You can use Cloudera Manager to configure ulimit.

6

https://docs.cloudera.com/runtime/7.0.0/managing-hbase/topics/hbase-graceful-shutdown.html
http://hbase.apache.org/book.html

Cloudera Runtime Setting User Limits for HBase

Procedure

1. Go to the HBase service.

2. Click the Configuration tab.

3. Select Scope Master or Scope RegionServer .

4. Locate the Maximum Process File Descriptors property or search for it by typing its name in the Search box.

5. Edit the property value.

6. Restart the role.

7. Restart the service.

Configure ulimit for HBase using the Command Line
Follow these command-line instructions to configure ulimit on systems that do not use Cloudera Manager.

About this task
Cloudera recommends increasing the maximum number of file handles to more than 10,000. Increasing the file
handles for the user running the HBase process is an operating system configuration, not an HBase configuration. A
common mistake is to increase the number of file handles for a particular user when HBase is running as a different
user. HBase prints the ulimit it is using on the first line in the logs. Make sure that it is correct.

Procedure

• To change the maximum number of open files for a user, use the ulimit -n command while logged in as that user.
• To set the maximum number of processes a user can start, use the ulimit -u command. You can also use the ulimit

command to set many other limits. For more information, see the online documentation for your operating system,
or the output of the man ulimit command.

• To make the changes persistent, add the command to the user's Bash initialization file (typically ~/.bash_profile
or ~/.bashrc). Alternatively, you can configure the settings in the Pluggable Authentication Module
(PAM) configuration files if your operating system uses PAM and includes the pam_limits.so shared library.

Configure ulimit using Pluggable Authentication Modules using the
Command Line

Follow these command-line instructions to configure ulimit using Pluggable Authentication Modules on systems that
do not use Cloudera Manager.

About this task
If you are using ulimit, you must make the following configuration changes:

Procedure

1. In the /etc/security/limits.conf file, add the following lines, adjusting the values as appropriate. This assumes that
your HDFS user is called hdfs and your HBase user is called hbase.

hdfs - nofile 32768
hdfs - nproc 2048
hbase - nofile 32768

7

Cloudera Runtime Use dfs.datanode.max.transfer.threads with Hbase

hbase - nproc 2048

Note:

• Only the root user can edit this file.
• If this change does not take effect, check other configuration files in the /etc/security/limits.d/ directory

for lines containing the hdfs or hbase user and the nofile value. Such entries may be overriding the
entries in /etc/security/limits.conf.

2. To apply the changes in /etc/security/limits.conf on Ubuntu and Debian systems, add the following line in the /etc
/pam.d/common-session file:

session required pam_limits.so

For more information on the ulimit command or per-user operating system limits, refer to the documentation for
your operating system.

Use dfs.datanode.max.transfer.threads with Hbase

You must configure the dfs.datanode.max.transfer.threads with HBase to specify the maximum number of files that a
DataNode can serve at any one time.

Procedure

• A Hadoop HDFS DataNode has an upper bound on the number of files that it can serve at any one time. The upper
bound is controlled by the dfs.datanode.max.transfer.threads property (the property is spelled in the code exactly
as shown here). Before loading, make sure you have configured the value for dfs.datanode.max.transfer.threads in
the conf/hdfs-site.xml file (by default found in /etc/hadoop/conf/hdfs-site.xml) to at least 4096 as shown here:

<property>
 <name>dfs.datanode.max.transfer.threads</name>
 <value>4096</value>
</property>

• Restart HDFS after changing the value for dfs.datanode.max.transfer.threads. If the value is not set to an
appropriate value, strange failures can occur and an error message about exceeding the number of transfer threads
will be added to the DataNode logs. Other error messages about missing blocks are also logged, such as:

06/12/14 20:10:31 INFO hdfs.DFSClient: Could not obtain block blk_XXXXXX
XXXXXXXXXXXXXXXX_YYYYYYYY from any node:
java.io.IOException: No live nodes contain current block. Will get new blo
ck locations from namenode and retry...

Note: The property dfs.datanode.max.transfer.threads is a HDFS 2 property which replaces the
deprecated property dfs.datanode.max.xcievers.

Configure encryption in HBase

You must encrypt the HBase root directory to ensure that you have an additional layer of protection in case the
HDFS filesystem is compromised. You can encrypt the HBase root directory within HDFS, using HDFS Transparent
Encryption.

8

Cloudera Runtime Using Hedged Reads

About this task
HBase stores all of its data under its root directory in HDFS configured in the hbase.rootdir. If you use this feature in
combination with bulk-loading of HFiles, you must configure hbase.bulkload.staging.dir to point to a location within
the same encryption zone as the HBase root directory. Otherwise, you may encounter errors such as:

org.apache.hadoop.ipc.RemoteException(java.io.IOException): /tmp/output/f/5
can't be moved into an encryption zone.

Procedure

• Enable HDFS encryption using the HDFS encryption wizard.
• Follow the instructions for setting up HDFS Transparent Encryption.
• Validate and verify that HDFS encryption is enabled and working.

For more information see, HDFS Transparent Encryption.

Using Hedged Reads

You can enable hedged reads if you want to increase the performance of a read operation from an HDFS block that
occasionally takes a long time. This feature helps in situations where a read occasionally takes a long time rather than
when there is a systemic problem.

If a read from an HDFS block is slow, the HDFS client starts up another parallel, 'hedged' read against a different
block replica. The result of whichever read returns first is used, and the outstanding read is cancelled. Hedged reads
can be enabled for HBase when the HFiles are stored in HDFS. This feature is disabled by default.

Enable hedged reads for HBase
You need to enable hedged read if a read operation from a HDFS block is slow.

About this task
The Thrift Server role is not added by default when you install HBase, but it is required before you can use certain
other features such as the Hue HBase browser. To add the Thrift Server role:

Procedure

1. Go to the HBase service.

2. Click the Configuration tab.

3. Select Scope > HBASE-1 (Service-Wide).

4. Select Category > Performance.

5. Configure the HDFS Hedged Read Threadpool Size and HDFS Hedged Read Delay Threshold properties. The
descriptions for each of these properties on the configuration pages provide more information.

6. Enter a Reason for change, and then click Save Changes to commit the changes.

Monitor the performance of hedged reads
You can monitor the performance of hedged reads using the following metrics provided by Hadoop when hedged
reads are enabled.

You can monitor the following properties:

• hedgedReadOps - the number of hedged reads that have occurred
• hedgeReadOpsWin - the number of times the hedged read returned faster than the original read

9

Cloudera Runtime Understanding HBase Garbage Collection

Understanding HBase Garbage Collection

You can configure garbage collection to free up the memory that is no longer referenced by Java objects.

Warning: Configuring the JVM garbage collection for HBase is an advanced operation. Incorrect
configuration can have major performance implications for your cluster. Test any configuration changes
carefully.

Garbage collection (memory cleanup) by the JVM can cause HBase clients to experience excessive latency.

To tune the garbage collection settings, you pass the relevant parameters to the JVM.

Example configuration values are not recommendations and should not be considered as such. This is not the
complete list of configuration options related to garbage collection. See the documentation for your JVM for details
on these settings.

• -XX:+UseG1GC: Use the 'G1' garbage collection algorithm. You can tune G1 garbage collection to provide a
consistent pause time, which benefits long-term running Java processes such as HBase, NameNode, Solr, and
ZooKeeper. For more information about tuning G1, see the Oracle documentation on tuning garbage collection.

• -XX:MaxGCPauseMillis=value: The garbage collection pause time. Set this to the maximum amount of latency
your cluster can tolerate while allowing as much garbage collection as possible. XX:+ParallelRefProcEnabled
Enable or disable parallel reference processing by using a + or - symbol before the parameter name.

• -XX:-ResizePLAB: Enable or disable resizing of Promotion Local Allocation Buffers (PLABs) by using a + or -
symbol before the parameter name.

• -XX:ParallelGCThreads=value: The number of parallel garbage collection threads to run concurrently.
• -XX:G1NewSizePercent=value: The percent of the heap to be used for garbage collection. If the value is too low,

garbage collection is ineffective. If the value is too high, not enough heap is available for other uses by HBase.

Related Information
Tuning Java Garbage Collection for HBase

Configure HBase garbage collection
You must configure garbage collection using Cloudera Manager.

About this task

Procedure

1. Go to the HBase service.

2. Click the Configuration tab.

3. Select Scope > RegionServer.

4. Select Category > Advanced.

5. Locate the Java Configuration Options for HBase RegionServer property or search for it by typing its name in the
Search box.

6. Add or modify JVM configuration options.

7. Enter a Reason for change, and then click Save Changes to commit the changes.

8. Restart the role.

Disable the BoundedByteBufferPool
HBase uses a BoundedByteBufferPool to avoid fragmenting the heap. You can disable BoundedByteBufferPool using
Cloudera Manager.

10

https://blog.cloudera.com/blog/2014/12/tuning-java-garbage-collection-for-hbase/

Cloudera Runtime Configure the HBase Canary

About this task

The G1 garbage collector reduces the need to avoid fragmenting the heap in some cases. If you use the G1 garbage
collector, you can disable the BoundedByteBufferPool in HBase. This can reduce the number of "old generation"
items that need to be collected. This configuration is experimental.

Procedure

1. Go to the HBase service.

2. Click the Configuration tab.

3. Select Scope > RegionServer.

4. Select Category > Advanced.

5. Locate the HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml property, or search
for it by typing its name in the Search box.

6. Add the following XML:

<property>
 <name>hbase.ipc.server.reservoir.enabled</name>
 <value>false</value>
</property>

7. Enter a Reason for change, and then click Save Changes to commit the changes.

8. Restart the service.

Configure the HBase Canary

The HBase canary is an optional service that you can configure to check periodically if a RegionServer is alive. The
HBase canary is disabled by default.

About this task
This canary is different from the Cloudera Service Monitoring canary and is provided by the HBase service. After
enabling the canary, you can configure several different thresholds and intervals relating to it, as well as exclude
certain tables from the canary checks. The canary works on Kerberos-enabled clusters if you have the HBase client
configured to use Kerberos.

Procedure

1. Go to the HBase service.

2. Click the Configuration tab.

3. Select Scope > HBase or HBase Service-Wide.

4. Select Category > Monitoring.

5. Locate the HBase Canary property or search for it by typing its name in the Search box. Several properties have
Canary in the property name.

6. Select the checkbox.

7. Review other HBase Canary properties to configure the specific behavior of the canary. To apply this
configuration property to other role groups as needed, edit the value for the appropriate role group.See Modifying
Configuration Properties Using Cloudera Manager.

8. Enter a Reason for change, and then click Save Changes to commit the changes.

9. Restart the role.

10. Restart the service.

11

Cloudera Runtime Using HBase Blocksize

Using HBase Blocksize

You must configure the HBase blocksize to set the smallest unit of data HBase can read from the column family's
HFiles.

HBase data is stored in one (after a major compaction) or more (possibly before a major compaction) HFiles per
column family per region. The blocksize determines:

• The blocksize for a given column family determines the smallest unit of data HBase can read from the column
family's HFiles.

• The basic unit of measure cached by a RegionServer in the BlockCache.

The default blocksize is 64 KB. The appropriate blocksize is dependent upon your data and usage patterns. Use the
following guidelines to tune the blocksize size, in combination with testing and benchmarking as appropriate.

Warning: The default blocksize is appropriate for a wide range of data usage patterns, and tuning the
blocksize is an advanced operation. The wrong configuration can negatively impact performance.

• Consider the average key/value size for the column family when tuning the blocksize. You can find the average
key/value size using the HFile utility:

$ hbase org.apache.hadoop.hbase.io.hfile.HFile -f /path/to/HFILE -m -v
...
Block index size as per heapsize: 296
reader=hdfs://srv1.example.com:9000/path/to/HFILE, \
compression=none, inMemory=false, \
firstKey=US6683275_20040127/mimetype:/1251853756871/Put, \
lastKey=US6684814_20040203/mimetype:/1251864683374/Put, \
avgKeyLen=37, avgValueLen=8, \
entries=1554, length=84447
...

• Consider the pattern of reads to the table or column family. For instance, if it is common to scan for 500 rows on
various parts of the table, performance might be increased if the blocksize is large enough to encompass 500-1000
rows, so that often, only one read operation on the HFile is required. If your typical scan size is only 3 rows,
returning 500-1000 rows would be overkill.

It is difficult to predict the size of a row before it is written, because the data will be compressed when it is written
to the HFile. Perform testing to determine the correct blocksize for your data.

Configure the blocksize for a column family
You can configure the blocksize of a column family at table creation or by disabling and altering an existing table.

About this task
These instructions are valid whether or not you use Cloudera Manager to manage your cluster.

To configure the blocksize for a column family:

Procedure

1. In the HBase shell, type:

hbase> create ‘test_table#,{NAME => ‘test_cf#, BLOCKSIZE => '262144'}
hbase> disable 'test_table'
hbase> alter 'test_table', {NAME => 'test_cf', BLOCKSIZE => '524288'}

12

Cloudera Runtime Configuring HBase BlockCache

hbase> enable 'test_table'

After changing the blocksize, the HFiles will be rewritten during the next major compaction.

2. To trigger a major compaction, issue the following command in HBase Shell:

hbase> major_compact 'test_table'

Depending on the size of the table, the major compaction can take some time and have a performance impact
while it is running.

Monitor blocksize metrics
You can view the blocksize metrics by monitoring the blockcache. To view the blocksize metrics, see the block_ca
che* entries in the RegionServer metrics.

Configuring HBase BlockCache

You can configure BlockCache in two different ways in HBase: the default on-heap LruBlockCache and the
BucketCache, which is usually off-heap.

If you have less than 20 GB of RAM available for use by HBase, consider tailoring the default on-heap BlockCache
implementation (LruBlockCache) for your cluster.

If you have more than 20 GB of RAM available, consider adding off-heap BlockCache (BucketCache).

In the default configuration, HBase uses a single on-heap cache. If you configure the off-heap BucketCache, the on-
heap cache is used for Bloom filters and indexes, and the off-heap BucketCache is used to cache data blocks. This is
called the Combined Blockcache configuration. The Combined BlockCache allows you to use a larger in-memory
cache while reducing the negative impact of garbage collection in the heap, because HBase manages the BucketCache
instead of relying on the garbage collector.

Contents of the BlockCache
In HBase, a block is a single unit of I/O. The block cache keeps data blocks resident in the memory after they are
read.

To size the BlockCache correctly, you need to understand what HBase places into it.

• Your data: Each time a Get or Scan operation occurs, the result is added to the BlockCache if it was not already
cached there. If you use the BucketCache, data blocks are always cached in the BucketCache.

• Row keys: When a value is loaded into the cache, its row key is also cached. This is one reason to make your row
keys as small as possible. A larger row key takes up more space in the cache.

• hbase:meta: The hbase:meta catalog table keeps track of which RegionServer is serving which regions. It can
consume several megabytes of cache if you have a large number of regions, and has in-memory access priority,
which means HBase attempts to keep it in the cache as long as possible.

• Indexes of HFiles: HBase stores its data in HDFS in a format called HFile. These HFiles contain indexes which
allow HBase to seek for data within them without needing to open the entire HFile. The size of an index is a factor
of the block size, the size of your row keys, and the amount of data you are storing. For big data sets, the size can
exceed 1 GB per RegionServer, although the entire index is unlikely to be in the cache at the same time. If you use
the BucketCache, indexes are always cached on-heap.

• Bloom filters: If you use Bloom filters, they are stored in the BlockCache. If you use the BucketCache, Bloom
filters are always cached on-heap.

The sum of the sizes of these objects is highly dependent on your usage patterns and the characteristics of your data.
For this reason, the HBase Web UI and Cloudera Manager each expose several metrics to help you size and tune the
BlockCache.

13

Cloudera Runtime Configuring HBase BlockCache

Size the BlockCache
When you use the LruBlockCache, the blocks needed to satisfy each read are cached, old blocks are evicted to make
room for new blocks using a Least-Recently-Used algorithm . Set the size of the BlockCache to satisfy your read
requirements.

The size cached objects for a given read may be significantly larger than the actual result of the read. For instance, if
HBase needs to scan through 20 HFile blocks to return a 100 byte result, and the HFile blocksize is 100 KB, the read
will add 20 * 100 KB to the LruBlockCache.

Because the LruBlockCache resides entirely within the Java heap, the amount of which is available to HBase and
what percentage of the heap is available to the LruBlockCache strongly impact performance. By default, the amount
of HBase heap reserved for LruBlockCache (hfile.block.cache.size) is .40, or 40%. To determine the amount of heap
available for the LruBlockCache, use the following formula. The 0.99 factor allows 1% of heap to be available as
a "working area" for evicting items from the cache. If you use the BucketCache, the on-heap LruBlockCache only
stores indexes and Bloom filters, and data blocks are cached in the off-heap BucketCache.

number of RegionServers * heap size * hfile.block.cache.size * 0.99

To tune the size of the LruBlockCache, you can add RegionServers or increase the total Java heap on a given
RegionServer to increase it, or you can tune hfile.block.cache.size to reduce it. Reducing it will cause cache evictions
to happen more often, but will reduce the time it takes to perform a cycle of garbage collection. Increasing the heap
will cause garbage collection to take longer but happen less frequently.

Decide to use the BucketCache
The BucketCache manages areas of memory called buckets for holding the cached blocks. You can use BucketCache
if any of the conditions listed in here are are true.

• If the result of a Get or Scan typically fits completely in the heap, the default configuration, which uses the on-
heap LruBlockCache, is the best choice, as the L2 cache will not provide much benefit. If the eviction rate is low,
garbage collection can be 50% less than that of the BucketCache, and throughput can be at least 20% higher.

• Otherwise, if your cache is experiencing a consistently high eviction rate, use the BucketCache, which causes
30-50% of the garbage collection of LruBlockCache when the eviction rate is high.

• BucketCache using file mode on solid-state disks has a better garbage-collection profile but lower throughput than
BucketCache using off-heap memory.

About the Off-heap BucketCache
If the BucketCache is enabled, it stores data blocks, leaving the on-heap cache free for storing indexes and Bloom
filters.

The physical location of the BucketCache storage can be either in memory (off-heap) or in a file stored in a fast disk.

• Off-heap: This is the default configuration.
• File-based: You can use the file-based storage mode to store the BucketCache on an SSD or FusionIO device,

You can configure a column family to keep its data blocks in the L1 cache instead of the BucketCache, using the
HColumnDescriptor.cacheDataInL1(true) method or by using the following syntax in HBase Shell:

hbase> alter 'myTable', CONFIGURATION => {CACHE_DATA_IN_L1 => 'true'}}

14

Cloudera Runtime Configuring HBase BlockCache

Off-heap BucketCache
If the BucketCache is enabled, it stores data blocks, leaving the on-heap cache free for storing indexes and Bloom
filters. The physical location of the BucketCache storage can be either in memory (off-heap) or in a file stored in a
fast disk.

• Off-heap: This is the default configuration.
• File-based: You can use the file-based storage mode to store the BucketCache on an SSD or FusionIO device,

You can configure a column family to keep its data blocks in the L1 cache instead of the BucketCache, using the
HColumnDescriptor.cacheDataInL1(true) method or by using the following syntax in HBase Shell:

hbase> alter 'myTable', CONFIGURATION => {CACHE_DATA_IN_L1 => 'true'}}

This table summaries the important configuration properties for the BucketCache. To configure the BucketCache. The
table is followed by three diagrams that show the impacts of different blockcache settings.

Table 1: BucketCache Configuration Properties

Property Default Description

hbase.bucketcache.combinedcache.enabled true When BucketCache is enabled, use it as a
L2 cache for LruBlockCache. If set to true,
indexes and Bloom filters are kept in the LruB
lockCache and the data blocks are kept in the
BucketCache.

hbase.bucketcache.ioengine none (BucketCache is disabled by default) Where to store the contents of the BucketCa
che. Its value can be offheap, file:PATH,
mmap:PATH or pmem:PATH where PATH
is the path to the file that host the file-based
cache.

hfile.block.cache.size 0.4 A float between 0.0 and 1.0. This factor
multiplied by the Java heap size is the size of
the L1 cache. In other words, the percentage of
the Java heap to use for the L1 cache.

hbase.bucketcache.size not set When using BucketCache, this is a float
that represents one of two different values,
depending on whether it is a floating-point
decimal less than 1.0 or an integer greater than
1.0.

• If less than 1.0, it represents a percentage
of total heap memory size to give to the
cache.

• If greater than 1.0, it represents the
capacity of the cache in megabytes

hbase.bucketcache.bucket.sizes 4, 8, 16, 32, 40, 48, 56, 64, 96, 128, 192, 256,
 384, 512 KB

A comma-separated list of sizes for buckets
for the BucketCache if you prefer to use
multiple sizes. The sizes should be multiples
of the default blocksize, ordered from smallest
to largest. The sizes you use will depend
on your data patterns. This parameter is
experimental.

-XX:MaxDirectMemorySize MaxDirectMemorySize = BucketCache + 1 A JVM option to configure the maximum
amount of direct memory available for the
JVM. It is automatically calculated and
configured based on the following formula:
MaxDirectMemorySize = BucketCache si
ze + 1 GB for other features using direct
memory, such as DFSClient. For example, if
the BucketCache size is 8 GB, it will be -XX:
MaxDirectMemorySize=9G.

Figure 1: Default LRUCache, L1 only block cache hbase.bucketcache.ioengine=NULL

15

Cloudera Runtime Configuring HBase BlockCache

1. 20% minimum reserved for operations and rpc call queues
2. hbase.regionserver.global.memstore.size: default is 0.4, which means 40%
3. hbase.regionserver.global.memstore.size + hfile.block.cache.size #0.80, which means 80%
4. hfile.block.cache.size: default is 0.4, which means 40%
5. slack reserved for HDFS SCR/NIO: number of open HFiles * hbase.dfs.client.read.shortcircuit.buffer.size, where

hbase.dfs.client.read.shortcircuit.buffer.size is set to 128k.

Figure 2: Default LRUCache, L1 only block cache hbase.bucketcache.ioengine=offheap

16

Cloudera Runtime Configuring HBase BlockCache

1. 20% minimum reserved for operations and rpc call queues
2. hbase.regionserver.global.memstore.size: default is 0.4, which means 40%
3. hbase.regionserver.global.memstore.size + hfile.block.cache.size #0.80, which means 80%
4. hfile.block.cache.size: default is 0.4 which means 40%
5. slack reserved for HDFS SCR/NIO: number of open HFiles * hbase.dfs.client.read.shortcircuit.buffer.size, where

hbase.dfs.client.read.shortcircuit.buffer.size is set to 128k.
6. hbase.bucketcache.size: default is 0.0

If hbase.bucketcache.size is float <1, it represents the percentage of total heap size.

If hbase.bucketcache.size is #1, it represents the absolute value in MB. It must be < HBASE_OFFHEAPSIZE

BucketCache IO engine
Use the hbase.bucketcache.ioengine parameter to define where to store the content of the BucketCache. Its value
can be offheap, file:PATH, mmap:PATH, pmem:PATH , or it can be empty. By default it is empty which means that
BucketCache is disabled.

17

Cloudera Runtime Configuring HBase BlockCache

You can set the following values in the hbase.bucketcache.ioengine parameter to define where to store the
BucketCache:

• offheap: When hbase.bucketcache.ioengine is set to offheap the content of the BucketCache is stored off-heap.
• file:PATH: When hbase.bucketcache.ioengine is set to file:PATH, the BucketCache uses file caching.
• mmap:PATH: When hbase.bucketcache.ioengine is set to mmap:PATH, the content of the BucketCache is stored

and accessed through memory mapping to a file under the specified path.
• pmem:PATH: When hbase.bucketcache.ioengine is set to pmem:PATH, BucketCache uses direct memory access

to and from a file on the specified path. The specified path must be under a volume that is mounted on a persistent
memory device that supports direct access to its own address space.

The advantage of the pmem engine over the mmap engine is that it supports large cache size. That is because
pmem allows for reads straight from the device address, which means in this mode no copy is created on DRAM.
Therefore, swapping due to DRAM free memory exhaustion is not an issue when large cache size is specified.
With devices currently available, the bucket cache size can be set to the order of hundreds of GBs or even a few
TBs.

When bucket cache size is set to larger than 256GB, the OS limit must be increased, which can be configured by
the max_map_count property. Make sure you have an extra 10% for other processes on the host that require the
use of memory mapping. This additional overhead depends on the load of processes running on the RS hosts. To
calculate the OS limit divide the block cache size in GB by 4 MB and then multiply it by 1.1: (block cache size in
 GB / 4 MB) * 1.1.

Configure BucketCache IO engine
You must configure the BucketCache IO engine using Cloudera Manager.

Set the value offheap and file:PATH

1. In Cloudera Manager select the HBase service and go to Configuration.
2. Search for BucketCache IOEngine and set it to the required value.

Set the value mmap:PATH and pmem:PATH

Important: These values can only be set using safety valves.

1. In Cloudera Manager select the HBase service and go to Configuration.
2. Search for RegionServer Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.
3. Click the plus icon.
4. Set the required value:

• Name: Add hbase.bucketcache.ioengine.
• Value: Add either mmap:PATH: or pmem:PATH.

Configure the off-heap BucketCache using Cloudera Manager
You can configure the off-heap BucketCache engine using Cloudera Manager.

Procedure

1. Go to the HBase service.

2. Click the Configuration tab.

3. Select the RegionServer scope and do the following:

a) Ensure that Enable Combined BucketCache is selected.
b) Set BucketCache IOEngine to offheap.
c) Update the value of BucketCache Size according to the required BucketCache size.

18

Cloudera Runtime Configuring HBase BlockCache

4. In the Region Server Environment Advanced Configuration Snippet (Safety Valve), edit the HBASE_REGION
SERVER_OPTS parameter: Add the JVM option $HBASE_REGIONSERVER_OPTS -XX:MaxDirectMe
morySize=<size>G, replacing <size> with a value not smaller than the aggregated heap size expressed as a
number of gigabytes + the off-heap BucketCache, expressed as a number of gigabytes + around 1GB used for
HDFS short circuit read. For example, if the off-heap BucketCache is 16GB and the heap size is 15GB, the total
value of MaxDirectMemorySize could be 32: -XX:MaxDirectMamorySize=32G

HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS -XX:MaxDirectMemorySiz
e=<size>G"

5. Optionally, when combined BucketCache is in use, you can decrease the heap size ratio allocated to the L1
BlockCache, and increase the Memstore size. The on-heap BlockCache only stores indexes and Bloom filters, the
actual data resides in the off-heap BucketCache. A larger Memstore is able to accommodate more write request
before flushing them to disks.

• Decrease HFile Block Cache Size to 0.3 or 0.2.
• Increase Maximum Size of All Memstores in RegionServer to 0.5 or 0.6 respectively.

6. Enter a Reason for change, and then click Save Changes to commit the changes.

7. Restart or rolling restart your RegionServers for the changes to take effect.

Configure the off-heap BucketCache using the command line
You can configure the off-heap BucketCache engine from the command-line interface.

About this task

Procedure

1. Configure the MaxDirectMemorySize option for the RegionServers JVMS. Add the JVM option $HBASE_R
EGIONSERVER_OPTS -XX:MaxDirectMemorySize=<size>G, replacing <size> with a value not smaller
than the aggregated heap size expressed as a number of gigabytes + the off-heap BucketCache, expressed as a
number of gigabytes + around 1GB used for HDFS short circuit read. For example, if the off-heap BucketCache is
16GB and the heap size is 15GB, the total value of MaxDirectMemorySize could be 32: -XX:MaxDirectMamoryS
ize=32G. This can be done adding the following line in hbase-env.sh:

HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS -XX:MaxDirectMemorySiz
e=<size>G"

2. Next, in the hbase-site.xml files on the RegionServers, configure the properties in BucketCache configuration
properties as appropriate, using the example below as a model.

<property>
 <name>hbase.bucketcache.combinedcache.enabled</name>
 <value>true</value>
</property>
<property>
 <name>hbase.bucketcache.ioengine</name>
 <value>offheap</value>
</property>
<property>
 <name>hbase.bucketcache.size</name>
 <value>8388608</value>
</property>
<property>
 <name>hfile.block.cache.size</name>
 <value>0.2</value>
</property>
<property>
 <name>hbase.regionserver.global.memstore.size</name>
 <value>0.6</value>

19

Cloudera Runtime Configuring HBase BlockCache

</property>

Optionally, when combined BucketCache is in use, you can decrease the heap size ratio allocated to the L1
BlockCache, and increase the Memstore size as it is done in the above example. The on-heap BlockCache only
stores indexes and Bloom filters, the actual data resides in the off-heap BucketCache. A larger Memstore is able to
accommodate more write request before flushing them to disks.

• Decrease hfile.block.cache.size to 0.3 or 0.2.
• Increase hbase.regionserver.global.memstore.size to 0.5 or 0.6 respectively.

3. Restart each RegionServer for the changes to take effect.

Cache eviction priorities
You must decide on the cache eviction priorities to allow for scan-resistance and in-memory column families.

Both the on-heap cache and the off-heap BucketCache use the same cache priority mechanism to decide which cache
objects to evict to make room for new objects. Three levels of block priority allow for scan-resistance and in-memory
column families. Objects evicted from the cache are subject to garbage collection.

• Single access priority: The first time a block is loaded from HDFS, that block is given single access priority,
which means that it will be part of the first group to be considered during evictions. Scanned blocks are more
likely to be evicted than blocks that are used more frequently.

• Multi access priority: If a block in the single access priority group is accessed again, that block is assigned multi
access priority, which moves it to the second group considered during evictions, and is therefore less likely to be
evicted.

• In-memory access priority: If the block belongs to a column family which is configured with the in-memory
configuration option, its priority is changed to in memory access priority, regardless of its access pattern. This
group is the last group considered during evictions, but is not guaranteed not to be evicted. Catalog tables are
configured with in-memory access priority.

To configure a column family for in-memory access, use the following syntax in HBase Shell:

hbase> alter 'myTable', 'myCF', CONFIGURATION => {IN_MEMORY => 'true'}

To use the Java API to configure a column family for in-memory access, use the HColumnDescriptor.setInMemor
y(true) method.

Bypass the BlockCache
You can bypass the BlockCache if the data needed for a specific but atypical operation does not all fit in memory.

For an atypical operation does not all fit in memory, using the BlockCache can be counter-productive because data
that you are still using may be evicted, or even if other data is not evicted, excess garbage collection can adversely
effect performance. For this type of operation, you may decide to bypass the BlockCache. To bypass the BlockCache
for a given Scan or Get, use the setCacheBlocks(false) method.

In addition, you can prevent a specific column family's contents from being cached, by setting its BLOCKCACHE
configuration to false. Use the following syntax in HBase Shell:

hbase> alter 'myTable', CONFIGURATION => {NAME => 'myCF', BLOCKCACHE => 'fal
se'}

Monitor the BlockCache
Cloudera Manager provides metrics to monitor the performance of the BlockCache, to assist you in tuning your
configuration.

20

Cloudera Runtime Using HBase Scanner Heartbeat

You can view further detail and graphs using the RegionServer UI. To access the RegionServer UI in Cloudera
Manager, go to the Cloudera Manager page for the host, click the RegionServer process, and click HBase
RegionServer Web UI.

If you do not use Cloudera Manager, access the BlockCache reports at http://regionServer_host:22102/rs-status#m
emoryStats, replacing regionServer_host with the hostname or IP address of your RegionServer.

Using HBase Scanner Heartbeat

A scanner heartbeat check enforces a time limit on the execution of scan RPC requests. This helps prevent scans from
taking too long and causing a timeout at the client.

When the server receives a scan RPC request, a time limit is calculated to be half of the smaller of two values: hbas
e.client.scanner.timeout.period and hbase.rpc.timeout (which both default to 60000 milliseconds, or one minute).
When the time limit is reached, the server returns the results it has accumulated up to that point. This result set may
be empty. If your usage pattern includes that scans will take longer than a minute, you can increase these values.

To make sure the timeout period is not too short, you can configure hbase.cells.scanned.per.heartbeat.check to a
minimum number of cells that must be scanned before a timeout check occurs. The default value is 10000. A smaller
value causes timeout checks to occur more often.

Configure the scanner heartbeat using Cloudera Manager
You can configure the HBase scanner heartbeat using Cloudera Manager.

Procedure

1. Go to the HBase service.

2. Click the Configuration tab.

3. Select HBase or HBase Service-Wide.

4. Locate the RPC Timeout property by typing its name in the Search box, and edit the property.

5. Locate the HBase RegionServer Lease Period property by typing its name in the Search box, and edit the property.

6. Enter a Reason for change, and then click Save Changes to commit the changes.

7. Restart the role.

8. Restart the service.

Limiting the Speed of Compactions

You can limit the speed at which HBase compactions run, by configuring hbase.regionserver.throughput.controller
and its related settings.

The default controller isorg.apache.hadoop.hbase.regionserver.throttle.PressureAwareCompactionThroughputContr
oller, which uses the following algorithm:

• If compaction pressure is greater than 1.0, there is no speed limitation.
• In off-peak hours, use a fixed throughput limitation, configured using hbase.hstore.compaction.throughput.offpe

ak, hbase.offpeak.start.hour, and hbase.offpeak.end.hour.
• In normal hours, the max throughput is tuned between hbase.hstore.compaction.throughput.higher.bound and hbas

e.hstore.compaction.throughput.lower.bound (which default to 20 MB/sec and 10 MB/sec respectively), using

21

Cloudera Runtime Limiting the Speed of Compactions

the following formula, where compactionPressure is between 0.0 and 1.0. The compactionPressure refers to the
number of store files that require compaction.

lower + (higher - lower) * compactionPressure

To disable compaction speed limits, set hbase.regionserver.throughput.controller to org.apache.hadoop.hbase.regionse
rver.throttle.NoLimitThroughputController.

Configure the compaction speed using Cloudera Manager

Procedure

1. Go to the HBase service.

2. Click the Configuration tab.

3. Select HBase or HBase Service-Wide.

4. Search for HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml. Paste the relevant
properties from the following example into the field and modify the values as needed:

<property>
 <name>hbase.hstore.compaction.throughput.higher.bound</name>
 <value>20971520</value>
 <description>The default is 20 MB/sec</description>
</property>
<property>
 <name>hbase.hstore.compaction.throughput.lower.bound</name>
 <value>10485760</value>
 <description>The default is 10 MB/sec</description>
</property>
<property>
 <name>hbase.hstore.compaction.throughput.offpeak</name>
 <value>9223372036854775807</value>
 <description>The default is Long.MAX_VALUE, which effectively means no l
imitation</description>
</property>
<property>
 <name>hbase.offpeak.start.hour</name>
 <value>20</value>
 <description>When to begin using off-peak compaction settings, expressed
 as an integer between 0 and 23.</description>
</property>
<property>
 <name>hbase.offpeak.end.hour</name>
 <value>6</value>
 <description>When to stop using off-peak compaction settings, expressed
 as an integer between 0 and 23.</description>
</property>
<property>
 <name>hbase.hstore.compaction.throughput.tune.period</name>
 <value>60000</value>
</property>

5. Enter a Reason for change, and then click Save Changes to commit the changes.

6. Restart the service.

22

Cloudera Runtime Enable HBase indexing

Enable HBase indexing

You can enable HBase indexing using Cloudera Manager.

Before you begin

HBase indexing is dependent on the Key-Value Store Indexer service.

Procedure

1. Go to the HBase service.

2. Select ScopeHBASE-1 (Service Wide)

3. Select CategoryBackup.

4. Select the Enable Replication and Enable Indexing properties.

5. Click Save Changes.

Using HBase Coprocessors

You can configure HBase coprocessors to run your own custom code. The HBase coprocessor framework provides a
way to extend HBase with custom functionality. Coprocessors provide a way to run server-level code against locally-
stored data.

Coprocessors are not designed to be used by end users of HBase, but by HBase developers who need to add
specialized functionality to HBase. One example of the use of coprocessors is pluggable compaction and scan
policies.

Related Information
Apache HBase blog: Coprocessor Introduction

Add a custom coprocessor
You can add a custom coprocessor to to extend HBase with custom functionality using Cloudera Manager.

About this task
To configure these properties in Cloudera Manager:

Procedure

1. Select the HBase service.

2. Click the Configuration tab.

3. Select Scope All .

4. Select Category All .

5. Type HBase Coprocessor in the Search box.

6. You can configure the values of the following properties:

• HBase Coprocessor Abort on Error (Service-Wide)
• HBase Coprocessor Master Classes (Master Default Group)
• HBase Coprocessor Region Classes (RegionServer Default Group)

7. Enter a Reason for change, and then click Save Changes to commit the changes.

23

https://blogs.apache.org/hbase/entry/coprocessor_introduction

Cloudera Runtime Configuring HBase MultiWAL

Disable loading of coprocessors
You can disable loading of coprocessors using Cloudera Manager.

About this task
Cloudera recommends against disabling loading of system coprocessors, because HBase security functionality is
implemented using system coprocessors. However, disabling loading of user coprocessors may be appropriate.

Procedure

1. Select the HBase service.

2. Click the Configuration tab.

3. Search for HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.

4. To disable loading of all coprocessors, add a new property with the name hbase.coprocessor.enabled and set its
value to false. Cloudera does not recommend this setting.

5. To disable loading of user coprocessors, add a new property with the name hbase.coprocessor.user.enabled and set
its value to false.

6. Enter a Reason for change, and then click Save Changes to commit the changes.

Configuring HBase MultiWAL

You can configure multiple write-ahead logs (MultiWAL) for HBase. If you do not configure MultiWAL, each region
on a RegionServer writes to the same WAL.

A busy RegionServer might host several regions, and each write to the WAL is serial because HDFS only supports
sequentially written files. This causes the WAL to negatively impact performance.

MultiWAL allows a RegionServer to write multiple WAL streams in parallel by using multiple pipelines in the
underlying HDFS instance, which increases total throughput during writes.

Note: In the current implementation of MultiWAL, incoming edits are partitioned by Region. Therefore,
throughput to a single Region is not increased.

To configure MultiWAL for a RegionServer, set the value of the property hbase.wal.provider to multiwal and restart
the RegionServer. To disable MultiWAL for a RegionServer, unset the property and restart the RegionServer.

RegionServers using the original WAL implementation and those using the MultiWAL implementation can each
handle recovery of either set of WALs, so a zero-downtime configuration update is possible through a rolling restart.

Configuring MultiWAL support using Cloudera Manager
You can configure MultiWAL using Cloudera Manager.

Procedure

1. Go to the HBase service.

2. Click the Configuration tab.

3. Select Scope RegionServer .

4. Select Category Main .

5. Set WAL Provider to MultiWAL.

6. Set the Per-RegionServer Number of WAL Pipelines to a value greater than 1.

7. Enter a Reason for change, and then click Save Changes to commit the changes.

24

Cloudera Runtime Configuring the Storage Policy for the Write-Ahead Log (WAL)

8. Restart the RegionServer roles.

Configuring the Storage Policy for the Write-Ahead Log
(WAL)

You can configure the preferred HDFS storage policy for HBase's write-ahead log (WAL) replicas. This feature
allows you to tune HBase's use of SSDs to your available resources and the demands of your workload.

These instructions assume that you have followed the instructions to configure storage directories for DataNodes,
and that your cluster has SSD storage available to HBase. If HDFS is not configured to use SSDs, these configuration
changes will have no effect on HBase. The following policies are available:

• NONE: no preference about where the replicas are written.
• ONE_SSD: place one replica on SSD storage and the remaining replicas in default storage. This allows you to

derive some benefit from SSD storage even if it is a scarce resource in your cluster.

Warning: ONE_SSD mode has not been thoroughly tested with HBase and is not recommended.

• ALL_SSD: place all replicas on SSD storage.

Configure the storage policy for WALs using Cloudera Manager
You can configure the preferred HDFS storage policy for HBase's write-ahead log (WAL) replicas using Cloudera
Manager.

Procedure

1. Go to the HBase service.

2. Click the Configuration tab.

3. Search for the property WAL HSM Storage Policy.

4. Select your desired storage policy.

5. Save your changes. Restart all HBase roles.

Results
Changes will take effect after the next major compaction.

Configure the storage policy for WALs using the Command Line
You can configure the preferred HDFS storage policy for HBase's write-ahead log (WAL) replicas using the
command line.

About this task

Important: Follow these command-line instructions on systems that do not use Cloudera Manager.

Procedure

• Paste the following XML into hbase-site.xml. Uncomment the <value> line that corresponds to your desired
storage policy.

<property>

25

Cloudera Runtime Using RegionServer Grouping

 <name>hbase.wal.storage.policy</name>
 <value>NONE</value>
 <!--<value>ONE_SSD</value>-->
 <!--<value>ALL_SSD</value>-->
</property>

Warning: ONE_SSD mode has not been thoroughly tested with HBase and is not recommended.

• Restart HBase. Changes will take effect for a given region during its next major compaction.

Using RegionServer Grouping

You can use RegionServer Grouping (rsgroup) to impose strict isolation between RegionServers by partitioning
RegionServers into distinct groups. You can use HBase Shell commands to define and manage RegionServer
Grouping.

You must first create an rsgroup before you can add RegionServers to it. Once you have created an rsgroup, you can
move your HBase tables into this rsgroup so that only the RegionServers in the same rsgroup can host the regions of
the table.

Note: RegionServers and tables can only belong to one rsgroup at a time. By default, all the tables and
RegionServers belong to the default rsgroup.

A custom balancer implementation tracks assignments per rsgroup and moves regions to the relevant RegionServers
in that rsgroup. The rsgroup information is stored in a regular HBase table, and a ZooKeeper-based read-only cache is
used at cluster bootstrap time.

Enable RegionServer grouping using Cloudera Manager
You must use Cloudera Manager to enable RegionServer Grouping before you can define and manage rsgroups.

Procedure

1. Go to the HBase service.

2. Click the Configuration tab.

3. Select Scope Master .

4. Locate the HBase Coprocessor Master Classes property or search for it by typing its name in the Search box.

5. Add the following property value: org.apache.hadoop.hbase.rsgroup.RSGroupAdminEndpoint.

6. Locate the Master Advanced Configuration Snippet (Safety Valve) for hbase-site.xml property or search for it by
typing its name in the Search box.

7. Click View as XML and add the following property:

<property>
 <name>hbase.master.loadbalancer.class</name>
 <value>org.apache.hadoop.hbase.rsgroup.RSGroupBasedLoadBalancer</value>
</property>

8. Enter a Reason for change, and then click Save Changes to commit the changes.

9. Restart the role.

10. Restart the service.

26

Cloudera Runtime Using RegionServer Grouping

Configure RegionServer grouping
When you add a new rsgroup, you are creating an rsgroup other than the default group.

About this task

To configure a rsgroup, in the HBase shell:

Procedure

1. Add an rsgroup: $hbase> add_rsgroup 'MYGROUP'.

2. Add RegionServers and tables to this rsgroup: $hbase> move_servers_tables_rsgroup ‘MYGROUP’,
 ['SERVER1:PORT','SERVER2:PORT'],['TABLE1','TABLE2'].

3. Run the balance_rsgroup command if the tables are slow to migrate to the group's dedicated server.

Note: The term rsgroup refers to servers in a cluster with only the hostname and port. It does not make
use of the HBase ServerName type identifying RegionServers (hostname + port + start time) to distinguish
RegionServer instances.

Monitor RegionServer grouping
You can monitor the status of the commands using the Tables tab on the HBase Master UI home page.

You can monitor the status of the commands using the Tables tab on the HBase Master UI home page. If you click on
a table name, you can see the RegionServers that are deployed.

You must manually align the RegionServers referenced in rsgroups with the actual state of nodes in the cluster that is
active and running.

Remove a RegionServer from RegionServer grouping
You can remove a RegionServer by moving it to the default rsgroup. Edits made using shell commands to all
rsgroups, except the default rsgroup, are persisted to the system hbase:rsgroup table. If an rsgroup references a
decommissioned RegionServer, then the rsgroup should be updated to undo the reference.

Procedure

1. Move the RegionServer to the default rsgroup using the command: $hbase> move_servers_rsgroup 'default',
['SERVER1:PORT'].

2. Check the list of RegionServers in your rsgourp to ensure that that the RegionServer is successfully removed
using the command: $hbase> get_rsgroup 'MYGROUP’

The default rsgroup's RegionServer list mirrors the current state of the cluster. If you shut down a RegionServer
that was part of the default rsgroup, and then run the get_rsgroup 'default' command to list its content in the
shell, the server is no longer listed. If you move the offline server from the non-default rsgroup to default, it will
not show in the default list; the server will just be removed from the list.

Enable ACL for RegionServer grouping
You need to be a Global Admin to manage rsgroups if authorization is enabled.

About this task
To enable ACL:

27

Cloudera Runtime Using RegionServer Grouping

Procedure

1. Add the following to the hbase-site.xml file:

<property>
 <name>hbase.security.authorization</name>
 <value>true</value>
<property>

2. Restart your HBase Master server.

Best practices when using RegionServer grouping
You must keep in mind the following best practices when using rsgroups.

• Isolate system tables: You can either have a system rsgroup where all the system tables are present or just leave
the system tables in default rsgroup and have all user-space tables in non-default rsgroups.

• Handle dead nodes: You can have a special rsgroup of dead or questionable nodes to help you keep them without
running until the nodes are repaired. Be careful when replacing dead nodes in an rsgroup, and ensure there are
enough live nodes before you start moving out the dead nodes. You can move the good live nodes first before
moving out the dead nodes.

If you have configured a table to be in a rsgroup, but all the RegionServers in that rsgroup die, the tables become
unavailable and you can no longer access those tables.

Disable RegionServer grouping
When you no longer require rsgroups, you can disable it for your cluster.

About this task

Removing RegionServer Grouping for a cluster on which it was enabled involves more steps in addition to removing
the relevant properties from hbase-site.xml. You must ensure that you clean the RegionServer grouping-related
metadata so that if the feature is re-enabled in the future, the old metadata will not affect the functioning of the
cluster.

To disable RegionServer Grouping:

Procedure

1. Move all the tables in non-default rsgroups to default RegionServer group.

#Reassigning table t1 from the non-default group - hbase shell
hbase> move_tables_rsgroup 'default',['T1']

2. Move all RegionServers in non-default rsgroups to default regionserver group.

#Reassigning all the servers in the non-default rsgroup to default - hbase
 shell
hbase> move_servers_rsgroup 'default',
['REGIONSERVER1:PORT','REGIONSERVER2:PORT','REGIONSERVER3:PORT']

3. Remove all non-default rsgroups. default rsgroup created implicitly does not have to be removed.

#removing non-default rsgroup - hbase shell
hbase> remove_rsgroup 'MYGROUP'

4. Remove the changes made in hbase-site.xml and restart the cluster.

28

Cloudera Runtime Optimizing HBase I/O

5. Drop the table hbase:rsgroup from HBase.

#Through hbase shell drop table hbase:rsgroup
hbase> disable 'hbase:rsgroup'
0 row(s) in 2.6270 seconds
hbase> drop 'hbase:rsgroup'
0 row(s) in 1.2730 seconds

6. Remove the znode rsgroup from the cluster ZooKeeper using zkCli.sh.

#From ZK remove the node /hbase/rsgroup through zkCli.sh
rmr /hbase/rsgroup

Optimizing HBase I/O

You can optimize HBase I/O using several ways. Two HBase key concepts that helps you in the process are
BlockCache and MemStore tuning.

The information in this section is oriented toward basic BlockCache and MemStore tuning. As such, it describes only
a subset of cache configuration options. HDP supports additional BlockCache and MemStore properties, as well as
other configurable performance optimizations such as remote procedure calls (RPCs), HFile block size settings, and
HFile compaction. For a complete list of configurable properties, see the hbase-default.xml source file in GitHub.

HBase I/O components
The concepts related to HBase file operations and memory (RAM) caching are HFile, Block, BlockCache, MemStore
and Write Ahead Log (WAL).

HBase Component Description

HFile An HFile contains table data, indexes over that data, and metadata
about the data.

Block An HBase block is the smallest unit of data that can be read from an
HFile. Each HFile consists of a series of blocks. (Note: an HBase
block is different from an HDFS block or other underlying file system
blocks.)

BlockCache BlockCache is the main HBase mechanism for low-latency random
read operations. BlockCache is one of two memory cache structures
maintained by HBase. When a block is read from HDFS, it is cached in
BlockCache. Frequent access to rows in a block cause the block to be
kept in cache, improving read performance.

MemStore MemStore ("memory store") is in-memory storage for a RegionServer.
MemStore is the second of two cache structures maintained by HBase.
MemStore improves write performance. It accumulates data until it
is full, and then writes ("flushes") the data to a new HFile on disk.
MemStore serves two purposes: it increases the total amount of data
written to disk in a single operation, and it retains recently written data
in memory for subsequent low-latency reads.

Write Ahead Log (WAL) The WAL is a log file that records all changes to data until the data
is successfully written to disk (MemStore is flushed). This protects
against data loss in the event of a failure before MemStore contents are
written to disk.

29

Cloudera Runtime Optimizing HBase I/O

HBase Read/Write Operations

BlockCache and MemStore reside in random-access memory (RAM). HFiles and the Write Ahead Log are persisted
to HDFS.

The following figure shows these simplified write and read paths:

• During write operations, HBase writes to WAL and MemStore. Data is flushed from MemStore to disk according
to size limits and flush interval.

• During read operations, HBase reads the block from BlockCache or MemStore if it is available in those caches.
Otherwise, it reads from disk and stores a copy in BlockCache.

By default, BlockCache resides in an area of RAM that is managed by the Java Virtual Machine (JVM) garbage
collector; this area of memory is known as on-heap memory or the JVM heap. The BlockCache implementation that
manages the on-heap cache is called LruBlockCache.

If you have stringent read latency requirements and you have more than 20 GB of RAM available on your servers
for use by HBase RegionServers, consider configuring BlockCache to use both on-heap and off-heap memory.
BucketCache is the off-heap memory equivalent to LruBlockCache in on-heap memory. Read latencies for
BucketCache tend to be less erratic than LruBlockCache for large cache loads because BucketCache (not JVM
garbage collection) manages block cache allocation. The MemStore always resides in the on-heap memory.

Figure 3: Relationship among Different BlockCache Implementations and MemStore

30

Cloudera Runtime Advanced configuration for write-heavy workloads

• Additional notes:
• BlockCache is enabled by default for all HBase tables.
• BlockCache is beneficial for both random and sequential read operations although it is of primary consideration

for random reads.
• All regions hosted by a RegionServer share the same BlockCache.
• You can turn BlockCache caching on or off per column family.

Advanced configuration for write-heavy workloads

HBase includes several advanced configuration parameters for adjusting the number of threads available to service
flushes and compactions in the presence of write-heavy workloads. Tuning these parameters incorrectly can severely
degrade performance and is not necessary for most HBase clusters. If you use Cloudera Manager, configure these
options using the HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml

hbase.hstore.flusher.count

The number of threads available to flush writes from memory to disk. Never increase hbase.hstore
.flusher.count to more of 50% of the number of disks available to HBase. For example, if you have
8 solid-state drives (SSDs), hbase.hstore.flusher.count should never exceed 4. This allows scanners
and compactions to proceed even in the presence of very high writes.

hbase.regionserver.thread.compaction.large and hbase.regionserver.thread.compaction.small

The number of threads available to handle small and large compactions, respectively. Never
increase either of these options to more than 50% of the number of disks available to HBase.

31

Cloudera Runtime Advanced configuration for write-heavy workloads

Ideally, hbase.regionserver.thread.compaction.small should be greater than or equal to hbase.region
server.thread.compaction.large, since the large compaction threads do more intense work and will
be in use longer for a given operation.

In addition to the above, if you use compression on some column families, more CPU will be used when flushing
these column families to disk during flushes or compaction. The impact on CPU usage depends on the size of the
flush or the amount of data to be decompressed and compressed during compactions.

32

	Contents
	Use DNS with HBase
	Use the Network Time Protocol (NTP) with HBase
	Configure the graceful shutdown timeout property
	Configure the HBase Thrift Server Role
	Setting User Limits for HBase
	Configure ulimit for HBase using Cloudera Manager
	Configure ulimit for HBase using the Command Line
	Configure ulimit using Pluggable Authentication Modules using the Command Line

	Use dfs.​data​node​.max​.tra​nsfe​r.th​reads with Hbase
	Configure encryption in HBase
	Using Hedged Reads
	Enable hedged reads for HBase
	Monitor the performance of hedged reads

	Understanding HBase Garbage Collection
	Configure HBase garbage collection
	Disable the Boun​dedB​yteB​uffe​rPool

	Configure the HBase Canary
	Using HBase Blocksize
	Configure the blocksize for a column family
	Monitor blocksize metrics

	Configuring HBase BlockCache
	Contents of the BlockCache
	Size the BlockCache
	Decide to use the BucketCache
	About the Off-heap BucketCache
	Off-heap BucketCache
	BucketCache IO engine
	Configure BucketCache IO engine
	Configure the off-heap BucketCache using Cloudera Manager
	Configure the off-heap BucketCache using the command line

	Cache eviction priorities
	Bypass the BlockCache
	Monitor the BlockCache

	Using HBase Scanner Heartbeat
	Configure the scanner heartbeat using Cloudera Manager

	Limiting the Speed of Compactions
	Configure the compaction speed using Cloudera Manager

	Enable HBase indexing
	Using HBase Coprocessors
	Add a custom coprocessor
	Disable loading of coprocessors

	Configuring HBase MultiWAL
	Configuring MultiWAL support using Cloudera Manager

	Configuring the Storage Policy for the Write-Ahead Log (WAL)
	Configure the storage policy for WALs using Cloudera Manager
	Configure the storage policy for WALs using the Command Line

	Using RegionServer Grouping
	Enable RegionServer grouping using Cloudera Manager
	Configure RegionServer grouping
	Monitor RegionServer grouping
	Remove a RegionServer from RegionServer grouping
	Enable ACL for RegionServer grouping
	Best practices when using RegionServer grouping
	Disable RegionServer grouping

	Optimizing HBase I/O
	HBase I/O components

	Advanced configuration for write-heavy workloads

