
Cloudera Runtime 7.0.0

Managing Data Storage
Date published: 2019-08-22
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/


Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.



Cloudera Runtime | Contents | iii

Contents

Optimizing data storage...........................................................................................5
Erasure coding overview...................................................................................................................................... 5

Understanding erasure coding policies.....................................................................................................5
Comparing replication and erasure coding.............................................................................................. 6
Prerequisites for enabling erasure coding................................................................................................ 9
Limitations of erasure coding...................................................................................................................9
Using erasure coding for existing data.................................................................................................... 9
Using erasure coding for new data.......................................................................................................... 9
Advanced erasure coding configuration.................................................................................................10
Erasure coding CLI command................................................................................................................10
Erasure coding examples........................................................................................................................11

Increasing storage capacity with HDFS compression........................................................................................14
Enable GZipCodec as the default compression codec...........................................................................14
Use GZipCodec with a one-time job..................................................................................................... 15

Setting HDFS quotas.......................................................................................................................................... 15
Set quotas using Cloudera Manager...................................................................................................... 15

Configuring heterogeneous storage in HDFS.................................................................................................... 16
Set up a storage policy for HDFS..........................................................................................................16
Set up SSD storage using Cloudera Manager........................................................................................17

Balancing data across an HDFS cluster.............................................................................................................17
Why HDFS data becomes unbalanced...................................................................................................17
Configurations and CLI options for the HDFS Balancer...................................................................... 18
Configuring and running the HDFS balancer using Cloudera Manager................................................22
Cluster balancing algorithm....................................................................................................................24
Exit statuses for the HDFS Balancer..................................................................................................... 25

Optimizing performance........................................................................................ 26
Improving performance with centralized cache management............................................................................26

Benefits of centralized cache management in HDFS............................................................................ 26
Use cases for centralized cache management........................................................................................ 26
Centralized cache management architecture.......................................................................................... 26
Caching terminology...............................................................................................................................27
Properties for configuring centralized caching...................................................................................... 28
Commands for using cache pools and directives...................................................................................30

Customizing HDFS.............................................................................................................................................33
Customize the HDFS home directory.................................................................................................... 33
Properties to set the size of the NameNode edits directory...................................................................34

Optimizing NameNode disk space with Hadoop archives................................................................................ 34
Overview of Hadoop archives................................................................................................................34
Hadoop archive components.................................................................................................................. 34
Create a Hadoop archive........................................................................................................................ 35
List files in Hadoop archives................................................................................................................. 36
Format for using Hadoop archives with MapReduce............................................................................ 36

Detecting slow DataNodes................................................................................................................................. 37
Enable detection of slow DataNodes..................................................................................................... 37

Allocating DataNode memory as storage.......................................................................................................... 37
HDFS storage types................................................................................................................................38
LAZY_PERSIST memory storage policy..............................................................................................38



Configure DataNode memory as storage............................................................................................... 38
Improving performance with short-circuit local reads.......................................................................................39

Prerequisites for configuring short-ciruit local reads.............................................................................39
Properties for configuring short-circuit local reads on HDFS............................................................... 39

Using DistCp to copy files..................................................................................... 42
Using DistCp.......................................................................................................................................................42
Update and overwrite......................................................................................................................................... 42
DistCp and security settings...............................................................................................................................44
Secure-to-secure: Kerberos principal name....................................................................................................... 44
Secure-to-secure: ResourceManager mapping rules.......................................................................................... 44
DistCp between HA clusters.............................................................................................................................. 45
Using DistCp with Amazon S3..........................................................................................................................47

Using a credential provider to secure S3 credentials.............................................................................47
Examples of DistCp commands using the S3 protocol and hidden credentials.....................................48

DistCp additional considerations........................................................................................................................49

APIs for accessing HDFS.......................................................................................50
Set up WebHDFS on a secure cluster............................................................................................................... 50

Using HttpFS to provide access to HDFS............................................................ 51
Add the HttpFS role........................................................................................................................................... 51
Using Load Balancer with HttpFS.....................................................................................................................51

Data storage metrics...............................................................................................52
Using JMX for accessing HDFS metrics...........................................................................................................52
Configure the G1GC garbage collector............................................................................................................. 53

Recommended settings for G1GC..........................................................................................................53
Switching from CMS to G1GC..............................................................................................................53

HDFS Metrics..........................................................................................................54



Cloudera Runtime Optimizing data storage

Optimizing data storage

You can consider the following options to optimize data storage in HDFS clusters: increasing storage space through
erasure coding, using codecs for compressing data, and balancing data across an HDFS cluster.

Erasure coding overview
Data durability describes how resilient data is to loss. When data is stored in HDFS, CDP provides two options for
data durability. You can use replication, which HDFS was originally built on, or Erasure Coding (EC).

Note:  The comparisons between EC and replication use a replication factor of 3 (three copies of data are
maintained) since that is the default.

Replication

HDFS creates two copies of data, resulting in three total instances of data. These copies are stored
on separate DataNodes to guard against data loss when a node is unreachable. When the data stored
on a node is lost or inaccessible, it is replicated from one of the other nodes to a new node so that
there are always multiple copies. The number of replications is configurable, but the default is three.
Cloudera recommends keeping the replication factor to at least three when you have three or more
DataNodes. A lower replication factor leads to a situation where the data is more vulnerable to
DataNode failures since there are fewer copies of data spread out across fewer DataNodes..

When data is written to an HDFS cluster that uses replication, additional copies of the data are
automatically created. No additional steps are required.

Replication supports all data processing engines that CDP supports.

Erasure Coding (EC)

EC is an alternative to replication. When an HDFS cluster uses EC, no additional direct copies of
the data are generated. Instead, data is striped into blocks and encoded to generate parity blocks.
If there are any missing or corrupt blocks, HDFS uses the remaining data and parity blocks to
reconstruct the missing pieces in the background. This process provides a similar level of data
durability to 3x replication but at a lower storage cost.

Additionally, EC is applied when data is written. This means that to use EC, you must first create a
directory and configure it for EC. Then, you can either replicate existing data or write new data into
this directory.

EC supports the following data processing engines:

• Hive
• MapReduce
• Spark

With both data durability schemes, replication and EC, recovery happens in the background and requires no direct
input from a user.

HDFS clusters can be configured with a single data durability scheme (3x replication or EC), or with a hybrid data
durability scheme where EC enabled directories co-exist on a cluster with other directories that are protected with the
traditional 3x replication model. This decision should be based on the temperature of the data (how often the data is
accessed) stored in HDFS. Hot data, data that is accessed frequently, should use replication. Cold data, data that is
accessed less frequently, can take advantage of EC's storage savings.

Understanding erasure coding policies
The EC policy determines how data is encoded and decoded. An EC policy is made up of the following parts: codec-
number of data blocks-number of parity blocks-cell size.

5



Cloudera Runtime Optimizing data storage

• Codec: The erasure codec that the policy uses. CDP currently supports Reed-Solomon (RS).
• Number of Data Blocks: The number of data blocks per stripe. The higher this number, the more nodes that need

to be read when accessing data because HDFS attempts to distribute the blocks evenly across DataNodes.
• Number of Parity Blocks: The number of parity blocks per stripe. Even if a file does not use up all the data blocks

available to it, the number of parity blocks will always be the total number listed in the policy.
• Cell Size: The size of one basic unit of striped data.

For example, a RS-6-3-1024k policy has the following attributes:

• Codec: Reed-Solomon
• Number of Data Blocks: 6
• Number of Parity Blocks: 3
• Cell Size: 1024k

The sum of the number of data blocks and parity blocks is the data-stripe width. When you make hardware plans
for your cluster, the number of racks should at least equal the stripe width in order for the data to be resistant to rack
failures.

The following image compares the data durability and storage efficiency of different RS codecs and replication:

Storage efficiency is the ratio of data blocks to total blocks as represented by the following formula: data blocks /
(data blocks + parity blocks)

Comparing replication and erasure coding
You must consider factors such as data temperature, i/o cost, storage cost, and file size when comparing replication
and erasure coding.
Data Temperature

6



Cloudera Runtime Optimizing data storage

Data temperature refers to how often data is accessed. EC works best with cold data that is accessed
and modified infrequently. There is no data locality, and all reads are remote. Replication is more
suitable for hot data, data that is accessed and modified frequently because data locality is a part of
replication.

I/O Cost

EC has higher I/O costs than replication for the following reasons:

• EC spreads data across nodes and racks, which means reading and writing data comes at a
higher network cost.

• A parity block is generated when data is written, thus impacting write speed. This can be slower
than writing to a file when the replication factor is one but is faster than writing two or more
replicas.

• If data is missing or corrupt, a DataNode reads the remaining data and parity blocks in order to
reconstruct the data. This process requires CPU and network resources.

Cloudera recommends at least a 10 GB network connection if you want to use EC.

Storage Cost

EC has a lower storage overhead than replication because multiple copies of data are not
maintained. Instead, a number of parity blocks are generated based on the EC policy. For the same
amount of data, EC will store fewer blocks than 3x replication in most cases. For example with a
Reed-Solomon (6,3), HDFS stores three parity blocks for each set of 6 data blocks. With replication,
HDFS stores 12 replica blocks for every six data blocks, the original block and three replicas. The
case where 3x replication requires fewer blocks is when data is stored in small files.

File Size

Erasure coding works best with larger files. The total number of blocks is determined by data blocks
+ parity blocks, which is the data-stripe width discussed earlier.

128 MB is the default block size. With RS (6,3), each block group can hold up to (128 MB * 6) =
768 MB of data. Inside each block group, there will be 9 total blocks, 6 data blocks, each holding
up to 128 MB, and 3 parity blocks. This is why EC works best with larger files. For a chunk of
data less than the block size, replication writes one data block to three DataNodes; EC, on the other
hand, still needs to stripe the data to data blocks and calculate parity blocks. This leads to a situation
where erasure coded files will generate more blocks than replication because of the parity blocks
required. The bytes/blocks ratio is worse for small files which increases the memory usage of the
NameNode.

The following two figures show how replication (with a replication factor of 3) compares to EC
based on the number of blocks relative to file size.

For very small files of sizes smaller than the value of data blocks * cell size (in case of RS(6, 3) it
is (6 * 1) MB), the number of actual data blocks is less than the data blocks defined by the erasure
coding policy, though the number of parity blocks is always the same. For example, in the case
of RS(6,3) with a cell size of 1 MB, a 1MB file consists of one data block, rather than six, but it
still has three parity blocks. A 1MB file would therefore require four block objects in total. If 3x
replication were used, the same file would require only three block objects.

7



Cloudera Runtime Optimizing data storage

As shown in the following figure, the RS(6,3) EC policy ensures that the number of data blocks
continues to remain less than that used by 3x replication for larger file sizes.

Supported Engines

Replication supports all data processing engines that CDP supports.

EC supports the following data processing engines: Hive, MapReduce, and Spark.

Unsupported Features

The XOR codec for EC is not supported. Additionally, certain HDFS functions are not supported
with EC: hflush, hsync, concat, setReplication, truncate and append. For more information, see
Erasure Coding Limitations. and HDFS Erasure Coding Limitations.

8

http://hadoop.apache.org/docs/r3.1.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html#Limitations
https://www.google.com/url?q=http://hadoop.apache.org/docs/r3.1.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html%23Limitations&sa=D&ust=1540336643546000&usg=AFQjCNHLlY0JF5H9U70NyzReCefyMKT-rA


Cloudera Runtime Optimizing data storage

Prerequisites for enabling erasure coding
Before enabling erasure coding on your data, you must consider various factors such as the type of policy to use, the
type of data, and the rack or node requirements.

• Note the limitations for EC.
• Determine which EC policy you want to use:
• Determine if you want to use EC for existing data or new data. If you want to use EC for existing data, you need

to replicate that data with distcp or BDR.
• Verify that your cluster setup meets the rack and node requirements.

Limitations of erasure coding
The limitations of erasure coding include non-support of XOR codecs and certain HDFS functions.

EC does not support the following:

• XOR codecs
• Certain HDFS functions: hflush, hsync, concat, setReplication, truncate and append. For more information, see

Erasure Coding Limitations.

Using erasure coding for existing data
You must set a supported EC policy for a directory and copy the existing data to the directory.

Procedure

1. Create a new directory or choose an existing directory.

2. View the supported EC policies.

hdfs ec -listPolicies

3. Enable a supported EC policy.

hdfs ec -enablePolicy -policy <POLICY>

4. Set the EC policy for the directory you want to use.

hdfs ec -setPolicy -path <DIRECTORY> [-policy <POLICYNAME>]

• path. Required. Specify the HDFS directory you want to apply the EC policy to.
• policy. Optional. The EC policy you want to use for the directory you specified. If you do not provide this

parameter, the EC policy you specified in the Default Policy when Setting Erasure Coding setting from
Cloudera Manager is used.

5. Copy the data to the directory you set an EC policy for.

You can use the distcp tool or Cloudera Manager's Backup and Disaster Recovery process.

Using erasure coding for new data
You must create a new directory and then set a supported EC policy for the directory.

Procedure

1. Create a new directory or choose an existing directory.

2. View the supported EC policies.

hdfs ec -listPolicies

9

http://hadoop.apache.org/docs/r3.1.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html#Limitations


Cloudera Runtime Optimizing data storage

3. Enable a supported EC policy.

hdfs ec -enablePolicy -policy <POLICY>

4. Set the EC policy for the directory you want to use.

hdfs ec -setPolicy -path <DIRECTORY> [-policy <POLICYNAME>]

• path. Required. Specify the HDFS directory you want to apply the EC policy to.
• policy. Optional. The EC policy you want to use for the directory you specified. If you do not provide this

parameter, the EC policy you specified in the Fallback Erasure Coding Policy setting from Cloudera Manager
is used.

5. Set the destination for the data to the directory you enabled EC for. No action beyond that is required.

When data is written to the directory, it will be erasure coded based on the policy you set.

Advanced erasure coding configuration
You can customize the behavior of EC through a combination of the hdfs  ec subcommand and the Cloudera Manager
Admin Console.

About this task

This procedure provides information about configuring certain properties for EC with the Cloudera Manager Admin
Console.

For information about the hdfs ec see Erasure coding CLI command on page 10.

Procedure

1. Select Clusters and choose the HDFS cluster you want to configure.

2. Navigate to the Configuration tab and select the Erasure Coding category.

3. Configure the advanced EC properties.

• DataNode Striped Read Timeout: The timeout for striped reads during background data reconstruction in
milliseconds.

• DataNode Striped Read Threads: The number of threads that a DataNode can use during background data
reconstruction.

• Erasure Coding Reconstruction Weight: The relative weight of resources used by EC for data recovery. The
number of blocks that must be read is based on the EC policy used. For example, RS-6-3-1024k requires six
blocks to be read. Replication only requires one block to be read. Higher values result in fewer reconstruction
tasks being able to run concurrently. The number of blocks required to be read to recover data is multiplied
by this weight to determine the total weight of the recovery task. The total weight of the recovery task counts
against the limit set with the dfs.namenode.replication.max-streams property.

• Fallback Erasure Coding Policy: The fallback Erasure Coding policy that HDFS uses if no policy is specified
when you run the -setPolicy command.

Note:  You must disable erasure coding in small clusters to prevent potential data loss. If the cluster
falls back to an Erasure Coding policy value that requires a greater number of DataNodes or racks
than available, this situation could result in a potential data loss. As a result, the Erasure Coding Policy
Verification Test returns "Concerning" health. To prevent the issue, set the value of the fallback
Erasure Coding policy to No Default Erasure Coding Policy. In addition, you must disable all the
erasure coding policies that are enabled on the cluster.

Erasure coding CLI command
Use the hdfs ec command to set erasure coding policies on directories.

hdfs ec [generic options]

10



Cloudera Runtime Optimizing data storage

     [-setPolicy -path <path> [-policy <policyName>] [-replicate]]
     [-getPolicy -path <path>]
     [-unsetPolicy -path <path>]
     [-listPolicies]
     [-addPolicies -policyFile <file>]
     [-listCodecs]
     [-removePolicy -policy <policyName>]
     [-enablePolicy -policy <policyName>]
     [-disablePolicy -policy <policyName>]
     [-help [cmd ...]]

Options:

• [-setPolicy [-p <policyName>] <path>]: Sets an EC policy on a directory at the specified path. The following EC
policies are supported: RS-3-2-1024k (Reed-Solomon with 3 data blocks, 2 parity blocks and 1024 KB cell size),
RS-6-3-1024k, RS-LEGACY-6-3-1024k, and XOR-2-1-1024k.

<path>: A directory in HDFS. This is a mandatory parameter. Setting a policy only affects newly created files, and
does not affect existing files.

<policyName>: The EC policy to be used for files under the specified directory. This is an optional parameter,
specified using the -p flag. If no policy is specified, the system default Erasure Coding policy is used. The default
policy is RS-6-3-1024k.

• -replicate: Forces a directory to use the default 3x replication scheme.

Note:  You cannot specify -replicate and -policy       <policyName> at the same time. Both the arguments
are optional.

• -getPolicy -path <path>: Gets details of the EC policy of a file or directory for the specified path.
• [-unsetPolicy -path <path>]: Removes an EC policy already set by a setPolicy on a directory. This option does not

work on a directory that inherits the EC policy from a parent directory. If you run this option on a directory that
does not have an explicit policy set, no error is returned.

• [-addPolicies -policyFile <file>]: Adds a list of EC policies. HDFS allows you to add 64 policies in total, with the
policy ID in the range of 64 to 127. Adding policies fails if there are already 64 policies.

• [-listCodecs]: Lists all the supported EC erasure coding codecs and coders in the system.
• [-removePolicy -policy <policyName>]: Removes an EC policy.
• [-enablePolicy -policy <policyName>]: Enables an EC policy.
• [-disablePolicy -policy <policyName>]: Disables an EC policy.
• [-help]: Displays help for a given command, or for all commands if none is specified.

Erasure coding background recovery work on the DataNodes can be tuned using the following configuration
parameters in hdfs-site.xml.

• dfs.datanode.ec.reconstruction.stripedread.timeout.millis: Timeout for striped reads. Default value is 5000 ms.
• dfs.datanode.ec.reconstruction.threads: Number of threads used by the DataNode for the background recovery

task. The default value is 8 threads.
• dfs.datanode.ec.reconstruction.stripedread.buffer.size: Buffer size for reader service. Default value is 64 KB.
• dfs.datanode.ec.reconstruction.xmits.weight: The relative weight of xmits used by the EC background recovery

task when compared to replicated block recovery. The default value is 0.5.

If the parameter is set to 0, the EC task always has one xmit. The xmits of an erasure coding recovery task are
calculated as the maximum value between the number of read streams and the number of write streams. For
example, if an EC recovery task needs to read from six nodes and write to two nodes, the xmit value is max(6, 2)
* 0.5 = 3.

Erasure coding examples
You can use the hdfs ec command with its various options to set erasure coding policies on directories.

11



Cloudera Runtime Optimizing data storage

Viewing the list of erasure coding policies

The following example shows how you can view the list of available erasure coding policies:

hdfs ec -listPolicies
Erasure Coding Policies:
ErasureCodingPolicy=[Name=RS-10-4-1024k, Schema=[ECSchema=[Codec=rs,
 numDataUnits=10, numParityUnits=4]], CellSize=1048576, Id=5], State=DISABLED
ErasureCodingPolicy=[Name=RS-3-2-1024k, Schema=[ECSchema=[Codec=rs,
 numDataUnits=3, numParityUnits=2]], CellSize=1048576, Id=2], State=DISABLED
ErasureCodingPolicy=[Name=RS-6-3-1024k, Schema=[ECSchema=[Codec=rs,
 numDataUnits=6, numParityUnits=3]], CellSize=1048576, Id=1], State=ENABLED
ErasureCodingPolicy=[Name=RS-LEGACY-6-3-1024k, Schema=[ECSchema=[Codec=rs-
legacy, numDataUnits=6, numParityUnits=3]], CellSize=1048576, Id=3],
 State=DISABLED
ErasureCodingPolicy=[Name=XOR-2-1-1024k, Schema=[ECSchema=[Codec=xor,
 numDataUnits=2, numParityUnits=1]], CellSize=1048576, Id=4], State=DISABLED

Enabling an erasure coding policy

In the previous example, the list of erasure coding policies indicates that RS-6-3-1024k is already enabled. If
required, you can enable additional policies as mentioned in the following example:

hdfs ec -enablePolicy -policy RS-3-2-1024k
Erasure coding policy RS-3-2-1024k is enabled

Setting an erasure coding policy

The following example shows how you can set the erasure coding policy RS-6-3-1024k on a particular directory:

hdfs ec -setPolicy -path /data/dir1 -policy RS-6-3-1024k
Set erasure coding policy RS-6-3-1024k on /data/dir1

To confirm whether the specified directory has the erasure coding policy applied, run the hdfs ec -getPolicy
command:

hdfs ec -getPolicy -path /data/dir1
RS-6-3-1024k

Checking the block status on an erasure-coded directory

After enabling erasure coding on a directory, you can check the block status by running the hdfs fsck command. The
following example output shows the status of the erasure-coded blocks:

hdfs fsck /data/dir1
.
.
.
Erasure Coded Block Groups:
Total size: 434424 B
Total files: 1
Total block groups (validated): 1 (avg. block group size 434424 B)
Minimally erasure-coded block groups: 1 (100.0 %)
Over-erasure-coded block groups: 0 (0.0 %)
Under-erasure-coded block groups: 0 (0.0 %)
Unsatisfactory placement block groups: 0 (0.0 %)
Average block group size: 4.0
Missing block groups: 0
Corrupt block groups: 0
Missing internal blocks: 0 (0.0 %)
FSCK ended at Fri Mar 21 19:39:11 UTC 2018 in 1 milliseconds

12



Cloudera Runtime Optimizing data storage

The filesystem under path '/data/dir1' is HEALTHY

Changing the erasure coding policy

You can use the hdfs ec setPolicy command to change the erasure coding policy applied on a particular directory.

hdfs ec -setPolicy -path /data/dir1 -policy RS-3-2-1024k
Set erasure coding policy RS-3-2-1024k on /data/dir1

You can check the check the block status after applying the new policy. The following example output shows the
status of the erasure-coded blocks for a directory that has the RS-3-2-1024k policy:

hdfs fsck /data/dir1
.
.
.
Erasure Coded Block Groups:
Total size: 68644 B
Total files: 2
Total block groups (validated): 2 (avg. block group size 34322 B)
Minimally erasure-coded block groups: 2 (100.0 %)
Over-erasure-coded block groups: 0 (0.0 %)
Under-erasure-coded block groups: 0 (0.0 %)
Unsatisfactory placement block groups: 0 (0.0 %)
Average block group size: 2.5
Missing block groups:  0
Corrupt block groups:  0
Missing internal blocks: 0 (0.0 %)
FSCK ended at Mon Apr 09 10:11:06 UTC 2018 in 3 milliseconds

The filesystem under path '/data/dir1' is HEALTHY

You can apply the default 3x replication policy and check the block status as specified in the following examples:

hdfs ec -setPolicy -path /data/dir1 -replicate
Set erasure coding policy replication on /tmp/data1/
Warning: setting erasure coding policy on a non-empty directory will not
 automatically convert existing files to replication

hdfs fsck /data/dir1
.
.
.
Erasure Coded Block Groups:
Total size: 34322 B
Total files: 1
Total block groups (validated): 1 (avg. block group size 34322 B)
Minimally erasure-coded block groups: 1 (100.0 %)
Over-erasure-coded block groups: 0 (0.0 %)
Under-erasure-coded block groups: 0 (0.0 %)
Unsatisfactory placement block groups: 0 (0.0 %)
Average block group size: 2.0
Missing block groups:  0
Corrupt block groups:  0
Missing internal blocks: 0 (0.0 %)
FSCK ended at Tue Apr 10 04:34:14 UTC 2018 in 2 milliseconds

The filesystem under path '/data/dir1' is HEALTHY

13



Cloudera Runtime Optimizing data storage

Increasing storage capacity with HDFS compression
Linux supports GzipCodec, DefaultCodec, BZip2Codec, LzoCodec, and SnappyCodec. Typically, GzipCodec is used
for HDFS compression.

To configure data compression, you can either enable a data compression codec, for example, GZipCodec, as the
default or use the codec from the command line with a one-time job.

Enable GZipCodec as the default compression codec
For the MapReduce framework, update relevant properties in core-site.xml and mapred-site.xml to enable GZipCodec
as the default compression codec.

Procedure

1. Edit the core-site.xml file on the NameNode host machine.

<property>
  <name>io.compression.codecs</name>
  <value>org.apache.hadoop.io.compress.GzipCodec,
    org.apache.hadoop.io.compress.DefaultCodec,com.hadoop.compression.lzo.
    LzoCodec,org.apache.hadoop.io.compress.SnappyCodec</value>
  <description>A list of the compression codec classes that can be used
    for compression/decompression.</description>
</property>

2. Edit the mapred-site.xml file on the JobTracker host machine.

<property>
  <name>mapreduce.map.output.compress</name>
  <value>true</value>
</property>

<property>  
  <name>mapreduce.map.output.compress.codec</name>
  <value>org.apache.hadoop.io.compress.GzipCodec</value> 
</property> 

<property> 
  <name>mapreduce.output.fileoutputformat.compress.type</name> 
  <value>BLOCK</value>
</property>

3. Enable the following two configuration parameters to enable job output compression. Edit the mapred-site.xml file
on the Resource Manager host machine.

<property> 
  <name>mapreduce.output.fileoutputformat.compress</name>
  <value>true</value> 
</property> 

<property> 
  <name>mapreduce.output.fileoutputformat.compress.codec</name>
  <value>org.apache.hadoop.io.compress.GzipCodec</value> 
</property>

4. Restart the cluster.

14



Cloudera Runtime Optimizing data storage

Use GZipCodec with a one-time job
You can configure GZipcodec to compress the output of a MapReduce job.

Procedure

To use GzipCodec with a one-time only job, add the options to configure compression for the MapReduce job and
configure GZipCodec for the output of the job.

hadoop jar hadoop-examples-1.1.0-SNAPSHOT.jar sort sbr"-Dmapred.compress.map
.output=true" 
sbr"-Dmapred.map.output.compression.codec=org.apache.hadoop.io.compress.G
zipCodec"
sbr "-Dmapred.output.compress=true" 
sbr"-Dmapred.output.compression.codec=org.apache.hadoop.io.compress.GzipC
odec"sbr -outKey org.apache.hadoop.io.Textsbr 
-outValue org.apache.hadoop.io.Text input output

Setting HDFS quotas
As an administrator, you can set up HDFS quotas for the number of file and directory names used and the amount of
space used by directories.

Considerations for working with HDFS quotas

• The quotas for names and the quotas for space are independent of each other.
• You cannot create more files and directories if their creation would cause the quotas to exceed.
• Block allocation fails if the quota prevents a full block from being written.
• If you are using replication, each replica of a block counts against the quota.

File count limits

• The file count quota is a limit on the number of file and directory names in the directory configured.
• A directory counts against its own quota. Therefore, a quota value of 1 forces the directory to remain empty.
• File counts are based on the intended replication factor for the files. Changing the replication factor for a file will

increase or decrease the corresponding quota values.

Disk space limits

• The space quota is a hard limit on the number of bytes used by files in the tree rooted at the directory being
configured.

• Each replica of a block counts against the quota.
• The disk space quota calculation takes replication into account. Therefore, the calculation uses the replicated size

of each file and not the user-facing size.
• The disk space quota calculation includes open files (that are being written) and files that already written.
• Block allocations for files being written fail if the quota does not allow a full block to be written.

Related Information
HDFS Quotas Guide

Set up a storage policy for HDFS

Set quotas using Cloudera Manager
You can use set file count or space quotas using Cloudera Manager. You must have administrator privileges to set the
quotas.

15

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsQuotaAdminGuide.html


Cloudera Runtime Optimizing data storage

Procedure

1. From the HDFS service page, select the File Browser tab.

2. Browse the file system to find the directory for which you want to set quotas.

3. Click the directory name so that it appears in the gray panel above the listing of its contents and in the detail
section to the right of the File Browser table.

4. Click the Edit Quota button for the directory.

A Manage Quota pop-up displays, where you can set file count or disk space limits for the directory you have
selected.

5. When you have set the limits you want, click OK.

Configuring heterogeneous storage in HDFS
A variety of storage types are supported with HDFS. You can choose which storage type to assign to each DataNode
Data Directory. Specifying a storage type allows you to optimize your data usage and lower your costs, based on your
data usage frequency.

Each DataNode in a cluster is configured with a set of data directories. You can configure each data directory with a
storage type. The storage policy dictates which storage types to use when storing the file or directory.

Some reasons to consider using different types of storage are as follows:

• You have datasets with temporal locality (for example, time-series data). The latest data can be loaded initially
into SSD for improved performance, then migrated out to disk as it ages.

• You need to move cold data to denser archival storage because the data will rarely be accessed and archival
storage is much cheaper. This could be done with simple age-out policies: for example, moving data older than six
months to archival storage.

Set up a storage policy for HDFS
You can use Cloudera Manager to set up storage policy on a DataNode data directory.

Procedure

1. Check the HDFS Service Advanced Configuration Snippet (Safety Valve) for hdfs-site.xml to be sure that       dfs
.storage.policy.enabled has not been changed from its default value of true.

2. Specify the storage types for each DataNode Data Directory that is not a standard disk, by adding the storage type
in brackets at the beginning of the directory path.

For example:

[SSD]/dfs/dn1
[DISK]/dfs/dn2
[ARCHIVE]/dfs/dn3

3. Open a terminal session on any HDFS host and run the hdfs storagepolicies -setStoragePolicy
command for each path on which you want to set a storage policy.

hdfs storagepolicies -setStoragePolicy -path <path> -policy <policy>
path_to_file_or_directory -policy policy_name

16



Cloudera Runtime Optimizing data storage

4. To move the data to the appropriate storage based on the current storage policy, use the mover utility, from any
HDFS host.

Use mover -h to get a list of available options. To migrate all data at once (this may take a long time), you can
set the path to /.

hdfs mover -p <path>

Note:  Quotas are enforced at the time you set the storage policy or when writing the file, not when quotas
are changed. The Mover tool does not recognize quota violations. It only verifies that a file is stored on the
storage types specified in its policy.

Related Information
Setting HDFS quotas

Set up SSD storage using Cloudera Manager
You can use Cloudera Manager to set up SSD storage for your data directories.

Procedure

1. Set up your cluster normally, but customize your DataNodes with the [ssd] prefix for data directories.

Adding [ssd] can also be done after initial setup (which requires an extra HDFS restart).

2. Stop HBase.

3. Using the HDFS client, move /hbase to /hbase_backup.

4. Re-create /hbase using the Cloudera Manager command in the HBase service (this ensures that proper permissions
are used).

5. Using the HDFS client, set the storage policy for /hbase to be SSD only.

6. Use the DistCp to copy /hbase_backup to /hbase.

hadoop distcp /hbase_backup /hbase

7. Start HBase.

Balancing data across an HDFS cluster
The HDFS Balancer is a tool for balancing the data across the storage devices of a HDFS cluster.

You can also specify the source DataNodes, to free up the spaces in particular DataNodes. You can use a block
distribution application to pin its block replicas to particular DataNodes so that the pinned replicas are not moved for
cluster balancing.

Why HDFS data becomes unbalanced
Factors such as addition of DataNodes, block allocation in HDFS, and behavior of the client application can lead to
the data stored in HDFS clusters becoming unbalanced.

Addition of DataNodes

When new DataNodes are added to a cluster, newly created blocks are written to these DataNodes from time to time.
The existing blocks are not moved to them without using the HDFS Balancer.

Behavior of the client application

In some cases, a client application might not write data uniformly across the DataNode machines. A client application
might be skewed in writing data, and might always write to some particular machines but not others. HBase is an
example of such a client application. In other cases, the client application is not skewed by design, for example,
MapReduce or YARN jobs.

17



Cloudera Runtime Optimizing data storage

The data is skewed so that some of the jobs write significantly more data than others. When a Datanode receives the
data directly from the client, it stores a copy to its local storage for preserving data locality. The DataNodes receiving
more data generally have higher storage utilization.

Block allocation in HDFS

HDFS uses a constraint satisfaction algorithm to allocate file blocks. Once the constraints are satisfied, HDFS
allocates a block by randomly selecting a storage device from the candidate set uniformly. For large clusters, the
blocks are essentially allocated randomly in a uniform distribution, provided that the client applications write data
to HDFS uniformly across the DataNode machines. Uniform random allocation might not result in a uniform data
distribution because of randomness. This is generally not a problem when the cluster has sufficient space. The
problem becomes serious when the cluster is nearly full.

Configurations and CLI options for the HDFS Balancer
You can configure the HDFS Balancer by changing various configuration options or by using the command line.

Properties for configuring the Balancer
Depending on your requirements, you can configure various properties for the HDFS Balancer.

dfs.datanode.balance.max.concurrent.moves

Limits the maximum number of concurrent block moves that a DataNode is allowed for balancing
the cluster. If you set this configuration in a DataNode, the DataNode throws an exception when
the limit is exceeded. If you set this configuration in the HDFS Balancer, the HDFS Balancer
schedules concurrent block movements within the specified limit. The DataNode setting and the
HDFS Balancer setting can be different. As both settings impose a restriction, an effective setting is
the minimum of them.

It is recommended that you set this to the highest possible value in DataNodes and adjust the
runtime value in the HDFS Balancer to gain the flexibility. The default value is 100.

You can reconfigure without DataNode restart. Follow these steps to reconfigure a DataNode:

1. Change the value of DFS.DATANODE.BALANCE.MAX.CONCURRENT.MOVES from the
Configuration tab of the HDFS service from Cloudera Manager.

2. Refresh the cluster.

You can use the default value of 100 as the maximum number of concurrent block moves in most
of the situations. If you want to set it to a lower value, you can consider a value between 25 and 50.
The recommended maximum value for this parameter is 200.

dfs.datanode.balance.bandwidthPerSec

Limits the bandwidth in each DataNode using for balancing the cluster. Changing this configuration
does not require restarting DataNodes.

The default is 100 MB/s.

dfs.balancer.moverThreads

Limits the number of total concurrent moves for balancing in the entire cluster. Set this property to
the number of threads in the HDFS Balancer for moving blocks. Each block move requires a thread.

The default is 1000.

dfs.balancer.max-size-to-move

With each iteration, the HDFS Balancer chooses DataNodes in pairs and moves data between the
DataNode pairs. Limits the maximum size of data that the HDFS Balancer moves between a chosen
DataNode pair. If you increase this configuration when the network and disk are not saturated,
increases the data transfer between the DataNode pair in each iteration while the duration of an
iteration remains about the same.

18



Cloudera Runtime Optimizing data storage

The default is 10GB.

dfs.balancer.getBlocks.size

Specifies the total data size of the block list returned by a getBlocks(..).

When the HDFS Balancer moves a certain amount of data between source and destination
DataNodes, it repeatedly invokes the getBlocks(..)       rpc to the Namenode to get lists of blocks
from the source DataNode until the required amount of data is scheduled.

The default is 2GB.

dfs.balancer.getBlocks.min-block-size

Specifies the minimum block size for the blocks used to balance the cluster.

The default is 10MB.

Note:  If the majority of files in the cluster have block size smaller than 10MB, then
set a lower value for this parameter, because the HDFS Balancer might not be able to
find enough blocks greater than this size to move.

dfs.datanode.block-pinning.enabled

Specifies if block-pinning is enabled. When you create a file, a user application can specify a list
of favorable DataNodes by way of the file creation API in DistributedFileSystem. The NameNode
uses its best effort, allocating blocks to the favorable DataNodes. If dfs.datanode.block-pinning.e
nabled is set to true, if a block replica is written to a favorable DataNode, it is “pinned” to that
DataNode. The pinned replicas are not moved for cluster balancing to keep them stored in the
specified favorable DataNodes. This feature is useful for block distribution aware user applications
such as HBase.

The default is false.

Balancer commands
You can use various command line options with the hdfs balancer command to work with the HDFS Balancer.

Balancing policy, threshold, and blockpools
[-policy <policy>]

Specifies which policy to use to determine if a cluster is balanced.

The two supported policies are blockpool and datanode. Setting the policy to blockpool means that
the cluster is balanced if each pool in each node is balanced while datanode means that a cluster is
balanced if each DataNode is balanced.

The default policy is datanode.

[-threshold <threshold>]

Specifies a number in [1.0, 100.0] representing the acceptable threshold of the percentage of storage
capacity so that storage utilization outside the average +/- the threshold is considered as over/under
utilized.

The default threshold is 10.0.

[-blockpools <comma-separated list of blockpool ids>]

Specifies a list of block pools on which the HDFS Balancer runs. If the list is empty, the HDFS
Balancer runs on all existing block pools.

The default value is an empty list.

Include and exclude lists
[-include [-f <hosts-file> | <comma-separated list of hosts>]]

19



Cloudera Runtime Optimizing data storage

When the include list is non-empty, only the DataNodes specified in the list are balanced by the
HDFS Balancer. An empty include list means including all the DataNodes in the cluster. The default
value is an empty list.

[-exclude [-f <hosts-file> | <comma-separated list of hosts>]]

The DataNodes specified in the exclude list are excluded so that the HDFS Balancer does not
balance those DataNodes. An empty exclude list means that no DataNodes are excluded. When a
DataNode is specified in both in the include list and the exclude list, the DataNode is excluded. The
default value is an empty list.

Idle-iterations and run during upgrade
[-idleiterations <idleiterations>]

Specifies the number of consecutive iterations in which no blocks have been moved before the
HDFS Balancer terminates with the NO_MOVE_PROGRESS exit status.

Specify -1 for infinite iterations. The default is 5.

[-runDuringUpgrade]

If specified, the HDFS Balancer runs even if there is an ongoing HDFS upgrade. If not specified,
the HDFS Balancer terminates with the UNFINALIZED_UPGRADE exit status.

When there is no ongoing upgrade, this option has no effect. It is usually not desirable to run HDFS
Balancer during upgrade. To support rollback, blocks being deleted from HDFS are moved to the
internal trash directory in DataNodes and not actually deleted. Running the HDFS Balancer during
upgrading cannot reduce the usage of any DataNode storage.

Source DataNodes
[-source [-f <hosts-file> | <comma-separated list of hosts>]]

Specifies the source DataNode list. The HDFS Balancer selects blocks to move from only the
specified DataNodes. When the list is empty, all the DataNodes are chosen as a source. The option
can be used to free up the space of some particular DataNodes in the cluster. Without the -source
option, the HDFS Balancer can be inefficient in some cases.

The default value is an empty list.

The following table shows an example, where the average utilization is 25% so that D2 is within the
10% threshold. It is unnecessary to move any blocks from or to D2. Without specifying the source
nodes, HDFS Balancer first moves blocks from D2 to D3, D4 and D5, since they are under the same
rack, and then moves blocks from D1 to D2, D3, D4 and D5. By specifying D1 as the source node,
HDFS Balancer directly moves blocks from D1 to D3, D4 and D5.

Table 1: Example of utilization movement

Datanodes (with the same
capacity)

Utilization Rack

D1 95% A

D2 30% B

D3, D4, and D5 0% B

Recommended configurations for the Balancer
The HDFS Balancer can run in either Background or Fast modes. Depending on the mode in which you want the
Balancer to run, you can set various properties to recommended values.

Background and fast modes

20



Cloudera Runtime Optimizing data storage

HDFS Balancer runs as a background process. The cluster serves other jobs and applications at the
same time.

Fast Mode

HDFS Balancer runs at maximum (fast) speed.

Table 2: DataNode configuration properties

Property Default Background Mode Fast Mode

dfs.datanode.balance.-

max.concurrent.moves

5 4 x (# of disks) 4 x (# of disks)

dfs.datanode.balance.-

max.bandwidthPerSec

1048576 (1 MB) use default 10737418240 (10 GB)

Table 3: Balancer configuration properties

Property Default Background Mode Fast Mode

dfs.datanode.balance.-

max.concurrent.moves

5 # of disks 4 x (# of disks)

dfs.balancer.-

moverThreads

1000 use default 20,000

dfs.balancer.-

max-size-to-move

10737418240 (10 GB) 1073741824 (1GB) 107374182400 (100 GB)

dfs.balancer.-

getBlocks.min-block-size

10485760 (10 MB) use default 104857600 (100 MB)

Troubleshooting tip

When the block report length exceeds the configured limit, you might receive the following exception in the
NameNode logs:

java.io.IOException: Requested data length 141557760 is longer than maximum 
configured RPC length 134217728

Causes

When there are too many blocks in one or more Datanodes, for example in the range of several
millions or 10M+, it leads to a large size of block report from those particular Datanodes, and the
block report length exceeds the default value of 128M. In that case the NameNode only receives a
part of block report instead of the entire bock report as the block report gets truncated at the default
configured length of 128M. Since the HDFS Balancer receives block information from NameNode,
with wrong information of block number the balancer might not move the blocks from the Datanode
with the above issue.

Solutions

Increase the value of ipc.maximum.data.length to 256M or above the reported data length from the
above exception, so that the NameNode can receive a large size of block report. The balancer would
then be able to progress further.

Note:  If the above mentioned exception is sustained in the NameNode logs for a
prolonged period of time, then the property modification would be required regardless
of whether the balancer needs to be run or not and even for normal and correct HDFS
operations.

21



Cloudera Runtime Optimizing data storage

Configuring and running the HDFS balancer using Cloudera Manager
Learn how to run HDFS Balancer by using Cloudera Manager. You configure the balancer threshold, concurrent
moves, and block size. Then you run the HDFS Balancer. You also learn about recommended values for the HDFS
Balancer.

In Cloudera Manager, the HDFS balancer utility is implemented by the Balancer role. The Balancer role usually
shows a health of None on the HDFS Instances tab because it does not run continuously.

The Balancer role is normally added (by default) when the HDFS service is installed. If it has not been added, you
must add a Balancer role to rebalance HDFS and to see the Rebalance action.

Configuring the balancer threshold
Learn how to configure the Balancer Threshold property, before using HDFS Balancer feature.

About this task

The Balancer has a default threshold of 10%, which ensures that disk usage on each DataNode differs from the
overall usage in the cluster by no more than 10%. For example, if overall usage across all the DataNodes in the cluster
is 40% of the cluster's total disk-storage capacity, the script ensures that DataNode disk usage is between 30% and
50% of the DataNode disk-storage capacity. To change the threshold, perform the following steps:

Procedure

1. Got to the HDFS service in Cloudera Manager.

2. Select the Configuration tab.

3. Select  Scope  Balancer .

4. Select  Category  Main .

5. Set the Rebalancing Threshold property.

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.
For more information, see Modifying Configuration Properties Using Cloudera Manager.

6. Enter a reason for change, and then click Save Changes.

Configuring concurrent moves
Learn how to configure concurrent moves for the DataNode and Balancer to prevent the balancer from taking too
many resources from the DataNode and interfering with normal cluster operations.

About this task

The property dfs.datanode.balance.max.concurrent.moves sets the maximum number of threads used by the DataNode
balancer for pending moves. It is a throttling mechanism to prevent the balancer from taking too many resources
from the DataNode and interfering with normal cluster operations. Increasing the value allows the balancing process
to complete more quickly. Decreasing the value allows rebalancing to complete more slowly, but is less likely to
compete for resources with other tasks on the DataNode. To use this property, you need to set the value on both the
DataNode and the Balancer.

Procedure

1. Configure concurrent moves on the DataNode.

a) Go to the HDFS service.
b) Select the Configuration tab.
c) Search for DataNode Advanced Configuration Snippet (Safety Valve) for hdfs-site.xml.
d) Add the following code to the configuration field, for example, setting the value to 50.

<property>
  <name>dfs.datanode.balance.max.concurrent.moves</name>
  <value>50</value>

22

https://docs.cloudera.com/cloudera-manager/7.0.0/configuring-clusters/topics/cm-modify-configuration.html


Cloudera Runtime Optimizing data storage

</property>

e) Click Save Changes.
f) Restart the DataNode.

2. Configure concurrent moves on the Balancer.

a) Go to the HDFS service.
b) Select the Configuration tab.
c) Search for Balancer Advanced Configuration Snippet (Safety Valve) for hdfs-site.xml.
d) Add the following code to the configuration field, for example, setting the value to 50.

<property>
  <name>dfs.datanode.balance.max.concurrent.moves</name>
  <value>50</value>
</property>

e) Click Save Changes.

Recommended configurations for the balancer
Depending on whether you want the HDFS Balancer to run in the background or at maximum speed, you can
configure the values of certain properties through safety valves.

Property Values for Running the Balancer in the
Background

Value for Running the Balancer at
Maximum Speed

DataNode

dfs.datanode.balance.bandwidthPerSec 10 MB 10 GB

Balancer

dfs.balancer.moverThreads 1000 20000

dfs.balancer.max-size-to-move 10 GB 100 GB

dfs.balancer.getBlocks.min-block-size 10 MB 100 MB

Running the balancer
Learn how to run the HDFS Balancer.

Procedure

1. Go to the HDFS service.

2. Ensure that the service has a Balancer role.

3. Select  Actions  Rebalance .

4. Click Rebalance to confirm.

If you see a Finished status, the Balancer ran successfully.

Configuring block size
Learn how to configure the block metadata batch size and minimum block size for HDFS.

About this task
The Block Metadata Batch Size property configures the amount of block metadata that gets retrieved. The Minimum 
Block     Size property configures the smallest block to consider for moving. Tuning these properties can improve
performance during balancing.

Procedure

1. In the Cloudera Manager Admin Console, select  Clusters  <HDFS cluster> .

2. Select the Configuration tab.

23



Cloudera Runtime Optimizing data storage

3. Search for the following properties:

• Block Metadata Batch Size (dfs.balancer.getBlocks.size)
• Minimum Block Size (dfs.balancer.getBlocks.min-block-size)

4. Set the values for each, and click Save Changes.

Cluster balancing algorithm
The HDFS Balancer runs in iterations. Each iteration contains the following four steps: storage group classification,
storage group pairing, block move scheduling, and block move execution.

Storage group classification
The HDFS Balancer first invokes the getLiveDatanodeStorageReport rpc to the Namenode to the storage
report for all the storages in all Datanodes. The storage report contains storage utilization information such as
capacity, dfs used space, remaining space, and so forth, for each storage in each DataNode.

A Datanode can contain multiple storages and the storages can have different storage types. A storage group Gi,T is
defined to be the group of all the storages with the same storage type T in Datanode i. For example, Gi,DISK is the
storage group of all the DISK storages in Datanode i. For each storage type T in each DataNode i, HDFS Balancer
computes Storage Group Utilization (%)

Ui,T = 100% (storage group used space)/(storage group capacity),

and Average Utilization (%)

Uavg,T = 100% * (sum of all used spaces)/(sum of all capacities).

Let # be the threshold parameter (default is 10%) and GI,T be the storage group with storage type T in DataNode I.

 
                    Over-Utilized:       {Gi,T :  Uavg,T + # < Ui,T},
Average + Threshold -----------------------------------------------------
----------------------
                    Above-Average: {Gi,T :  Uavg,T < Ui,T <= Uavg,T + #},
Average -----------------------------------------------------------------
----------------------
                    Below-Average: {Gi,T :  Uavg,T - # <= Ui,T <= Uavg,T},
Average - Threshold -----------------------------------------------------
----------------------
                    Under-Utilized:      {Gi,T :  Ui,T < Uavg,T - # }.

A storage group is over-utilized or under-utilized if its utilization is larger or smaller than the difference between the
average and the threshold. A storage group is above-average or below-average if its utilization is larger or smaller
than average but within the threshold.

If there are no over-utilized storages and no under-utilized storages, the cluster is said to be balanced. The HDFS
Balancer terminates with a SUCCESS state. Otherwise, it continues with storage group pairing.

Storage group pairing
The HDFS Balancer selects over-utilized or above-average storage as source storage, and under-utilized or below-
average storage as target storage. It pairs a source storage group with a target storage group (source # target) in a
priority order depending on whether or not the source and the target storage reside in the same rack.

The Balancer uses the following priority orders for pairing storage groups from the source and the target.

• Same-Rack (where the source and the target storage reside in the same rack)

Over-Utilized # Under-Utilize

Over-Utilized # Below-Average

Above-Average # Under-Utilized

24



Cloudera Runtime Optimizing data storage

• Any (where the source and target storage do not reside in the same rack)

Over-Utilized # Under-Utilized

Over-Utilized # Below-Average

Above-Average # Under-Utilized

Block move scheduling
For each source-target pair, the HDFS Balancer chooses block replicas from the source storage groups and schedules
block moves.

A block replica in a source DataNode is a good candidate if it satisfies all of the following conditions:

• The storage type of the block replica in the source DataNode is the same as the target storage type.
• The storage type of the block replica is not already scheduled.
• The target does not already have the same block replica.
• The number of racks of the block is not reduced after the move.

Logically, the HDFS Balancer schedules a block replica to be “moved” from a source storage group to a target
storage group. In practice, a block usually has multiple replicas. The block move can be done by first copying the
replica from a proxy, which can be any storage group containing one of the replicas of the block, to the target storage
group, and then deleting the replica in the source storage group.

After a candidate block in the source DataNode is specified, the HDFS Balancer selects a storage group containing
the same replica as the proxy. The HDFS Balancer selects the closest storage group as the proxy in order to minimize
the network traffic.

When it is impossible to schedule a move, the HDFS Balancer terminates with a NO_MOVE_BLOCK exit status.

Block move execution
The HDFS Balancer dispatches a scheduled block move by invoking the DataTransferProtocol.replaceBlock(..)
method to the target DataNode.

The Balancer specifies the proxy, and the source as delete-hint in the method call. The target DataNode copies
the replica directly from the proxy to its local storage. When the copying process has been completed, the target
DataNode reports the new replica to the NameNode with the delete-hint. NameNode uses delete-hint to delete the
extra replica, that is, delete the replica stored in the source.

After all block moves are dispatched, the HDFS Balancer waits until all the moves are completed. Then, the HDFS
Balancer continues running a new iteration and repeats all of the steps. If the scheduled moves fail for 5 consecutive
iterations, the HDFS Balancer terminates with a NO_MOVE_PROGRESS exit status.

Exit statuses for the HDFS Balancer
The HDFS Balancer concludes a cluster balancing operation with a specific exit status that indicates whether the
operation succeeded or failed, with supporting reasons.

Table 4: Exit statuses for the HDFS balancer

Status Value Description

SUCCESS 0 The cluster is balanced. There are no over
or under-utilized storages, with regard to the
specified threshold.

ALREADY_RUNNING -1 Another HDFS Balancer is running.

NO_MOVE_BLOCK -2 The HDFS Balancer is not able to schedule a
move.

NO_MOVE_PROGRESS -3 All of the scheduled moves have failed for 5
consecutive iterations.

IO_EXCEPTION -4 An IOException occurred.

25



Cloudera Runtime Optimizing performance

Status Value Description

ILLEGAL_ARGUMENTS -5 An illegal argument in the command or
configuration occurred.

INTERUPTED -6 The HDFS Balancer process was interrupted.

UNFINALIZED_UPGRADE -7 The cluster is being upgraded.

Optimizing performance

You can consider the following options to optimize the performance of an HDFS cluster: swapping disk drives on
a DataNode, caching data, configuring rack awareness, customizing HDFS, optimizing NameNode disk space with
Hadoop archives, identifying slow DataNodes and improving them, optimizing small write operations by using
DataNode memory as storage, and implementing short-circuit reads.

Improving performance with centralized cache management
Centralized cache management enables you to specify paths to directories that are cached by HDFS, thereby
improving performance for applications that repeatedly access the same data.

Centralized cache management in HDFS is an explicit caching mechanism. The NameNode communicates with
DataNodes that have the required data blocks available on disk, and instructs the DataNodes to cache the blocks in
off-heap caches.

Benefits of centralized cache management in HDFS
Centralized cache management in HDFS offers many significant advantages such as explicit pinning, querying cached
blocks for task placement, and improving cluster memory utilization.

• Explicit pinning prevents frequently used data from being evicted from memory. This is particularly important
when the size of the working set exceeds the size of main memory, which is common for many HDFS workloads.

• Because DataNode caches are managed by the NameNode, applications can query the set of cached block
locations when making task placement decisions. Co-locating a task with a cached block replica improves read
performance.

• When a block has been cached by a DataNode, clients can use a more efficient zero-copy read API. Since
checksum verification of cached data is done once by the DataNode, clients can incur essentially zero overhead
when using this new API.

• Centralized caching can improve overall cluster memory utilization. When relying on the operating system buffer
cache on each DataNode, repeated reads of a block will result in all n replicas of the block being pulled into the
buffer cache. With centralized cache management, you can explicitly pin only m of the n replicas, thereby saving
n-m memory.

Use cases for centralized cache management
Centralized cache management is useful for files that are accessed repeatedly and for mixed workloads that have
performance SLAs.

• Files that are accessed repeatedly: For example, a small fact table in Hive that is often used for joins is a good
candidate for caching. Conversely, caching the input of a once-yearly reporting query is probably less useful,
since the historical data might only be read once.

• Mixed workloads with performance SLAs: Caching the working set of a high priority workload ensures that it
does not compete with low priority workloads for disk I/O.

Centralized cache management architecture
In a centralized cache management, the NameNode is responsible for coordinating all of the DataNode off-heap
caches in the cluster. The NameNode periodically receives a cache report from each DataNode. The cache report

26



Cloudera Runtime Optimizing performance

describes all of the blocks cached on the DataNode. The NameNode manages DataNode caches by piggy-backing
cache and uncache commands on the DataNode heartbeat.

The following figure illustrates the centralized cached management architecture.

The NameNode queries its set of cache directives to determine which paths should be cached. Cache directives
are persistently stored in the fsimage and edit logs, and can be added, removed, and modified through Java and
command-line APIs. The NameNode also stores a set of cache pools, which are administrative entities used to group
cache directives together for resource management, and to enforce permissions.

The NameNode periodically re-scans the namespace and active cache directives to determine which blocks need to be
cached or uncached, and assigns caching work to DataNodes. Re-scans can also be triggered by user actions such as
adding or removing a cache directive or removing a cache pool.

Cache blocks that are under construction, corrupt, or otherwise incomplete are not cached. If a Cache directive covers
a symlink, the symlink target is not cached.

Caching can only be applied to directories and files.

Related Information
Caching terminology

Caching terminology
A cache directive defines the path to cache while a cache pool manages groups of cache directives.

Cache directive

Defines the path to be cached. Paths can point either directories or files. Directories are cached non-recursively,
meaning only files in the first-level listing of the directory will be cached.

27



Cloudera Runtime Optimizing performance

Cache directives also specify additional parameters, such as the cache replication factor and expiration time. The
replication factor specifies the number of block replicas to cache. If multiple cache directives refer to the same file,
the maximum cache replication factor is applied.

The expiration time is specified on the command line as a time-to-live (TTL), which represents a relative expiration
time in the future. After a cache directive expires, it is no longer taken into consideration by the NameNode when
making caching decisions.

Cache pool

An administrative entity that manages groups of cache cirectives. Cache pools have UNIX-like permissions that
restrict which users and groups have access to the pool. Write permissions allow users to add and remove cache
directives to the pool. Read permissions allow users to list the Cache Directives in a pool, as well as additional
metadata. Execute permissions are unused.

Cache pools are also used for resource management. Cache pools can enforce a maximum memory limit, which
restricts the aggregate number of bytes that can be cached by directives in the pool. Normally, the sum of the pool
limits will approximately equal the amount of aggregate memory reserved for HDFS caching on the cluster. Cache
pools also track a number of statistics to help cluster users track what is currently cached, and to determine what else
should be cached.

Cache pools can also enforce a maximum time-to-live. This restricts the maximum expiration time of directives being
added to the pool.

Related Information
Centralized cache management architecture

Properties for configuring centralized caching
You must enable JNI to use centralized caching. In addition, you must configure various properties and consider the
locked memory limit for configuring centralized caching.

Native libraries

In order to lock block files into memory, the DataNode relies on native JNI code found in libhadoop.so. Be sure to
enable JNI if you are using HDFS centralized cache management.

Configuration properties

Configuration properties for centralized caching are specified in the hdfs-site.xml file.

Required properties

Only the following property is required:

• dfs.datanode.max.locked.memory This property determines the maximum amount of memory (in bytes) that a
DataNode will use for caching. The "locked-in-memory size" ulimit (ulimit -l) of the DataNode user also needs
to be increased to exceed this parameter (for more details, see the following section on ). When setting this value,
remember that you will need space in memory for other things as well, such as the DataNode and application JVM
heaps, and the operating system page cache. Example:

<property>
  <name>dfs.datanode.max.locked.memory</name>
  <value>268435456</value>
</property>

Optional properties

The following properties are not required, but can be specified for tuning.

28



Cloudera Runtime Optimizing performance

• dfs.namenode.path.based.cache.refresh.interval.ms The NameNode will use this value as the number of
milliseconds between subsequent cache path re-scans. By default, this parameter is set to 300000, which is five
minutes. Example:

<property>
  <name>dfs.namenode.path.based.cache.refresh.interval.ms</name>
  <value>300000</value>
</property>

• dfs.time.between.resending.caching.directives.ms The NameNode will use this value as the number of
milliseconds between resending caching directives. Example:

<property>
  <name>dfs.time.between.resending.caching.directives.ms</name>
  <value>300000</value>
</property>

• dfs.datanode.fsdatasetcache.max.threads.per.volume The DataNode will use this value as the maximum number of
threads per volume to use for caching new data. By default, this parameter is set to 4. Example:

<property>
  <name>dfs.datanode.fsdatasetcache.max.threads.per.volume</name>
  <value>4</value>
</property>

• dfs.cachereport.intervalMsec The DataNode will use this value as the number of milliseconds between sending
a full report of its cache state to the NameNode. By default, this parameter is set to 10000, which is 10 seconds.
Example:

<property>
  <name>dfs.cachereport.intervalMsec</name>
  <value>10000</value>
</property>

• dfs.namenode.path.based.cache.block.map.allocation.percent The percentage of the Java heap that will be
allocated to the cached blocks map. The cached blocks map is a hash map that uses chained hashing. Smaller
maps may be accessed more slowly if the number of cached blocks is large. Larger maps will consume more
memory. The default value is 0.25 percent. Example:

<property>
  <name>dfs.namenode.path.based.cache.block.map.allocation.percent</name>
  <value>0.25</value>
</property>

OS limits

If you get the error "Cannot start datanode because the configured max locked memory size...is more than the
datanode's available RLIMIT_MEMLOCK ulimit," this means that the operating system is imposing a lower limit on
the amount of memory that you can lock than what you have configured. To fix this, you must adjust the ulimit     -
l value that the DataNode runs with. This value is usually configured in /etc/security/limits.conf, but this may vary
depending on what operating system and distribution you are using.

You have correctly configured this value when you can run ulimit - l from the shell and get back either a higher value
than what you have configured or the string "unlimited", which indicates that there is no limit. Typically, ulimit     -l
returns the memory lock limit in kilobytes (KB), but dfs.datanode.max.locked.memory must be specified in bytes.

For example, if the value of dfs.datanode.max.locked.memory is set to 128000 bytes:

<property>

29



Cloudera Runtime Optimizing performance

  <name>dfs.datanode.max.locked.memory</name>
  <value>128000</value>
</property>

Set the memlock (max locked-in-memory address space) to a slightly higher value. For example, to set memlock to
130 KB (130,000 bytes) for the hdfs user, you would add the following line to /etc/security/limits.conf.

hdfs - memlock 130

Commands for using cache pools and directives
You can use the Command-Line Interface (CLI) to create, modify, and list cache pools and cache directives using the
hdfs cacheadmin subcommand.

Cache Directives are identified by a unique, non-repeating, 64-bit integer ID. IDs will not be reused even if a Cache
Directive is removed.

Cache Pools are identified by a unique string name.

You must first create a Cache Pool, and then add Cache Directives to the Cache Pool.

Cache Pool Commands

• addPool -- Adds a new Cache Pool.

Usage:

hdfs cacheadmin -addPool <name> [-owner <owner>] [-group <group>] 
[-mode <mode>] [-limit <limit>] [-maxTtl <maxTtl>]

Options:

Table 5: Cache Pool Add Options

Option Description

<name> The name of the pool.

<owner> The user name of the owner of the pool. Defaults to the current user.

<group> The group that the pool is assigned to. Defaults to the primary group
name of the current user.

<mode> The UNIX-style permissions assigned to the pool. Permissions are
specified in octal (e.g. 0755). Pool permissions are set to 0755 by
default.

<limit> The maximum number of bytes that can be cached by directives in
the pool, in aggregate. By default, no limit is set.

<maxTtl> The maximum allowed time-to-live for directives being added to the
pool. This can be specified in seconds, minutes, hours, and days (e.g.
120s, 30m, 4h, 2d). Valid units are [smhd]. By default, no maximum
is set. A value of "never" specifies that there is no limit.

• modifyPool -- Modifies the metadata of an existing Cache Pool.

Usage:

hdfs cacheadmin -modifyPool <name> [-owner <owner>] [-group <group>] 

30



Cloudera Runtime Optimizing performance

[-mode <mode>] [-limit <limit>] [-maxTtl <maxTtl>]

Options:

Table 6: Cache Pool Modify Options

Option Description

<name> The name of the pool to modify.

<owner> The user name of the owner of the pool.

<group> The group that the pool is assigned to.

<mode> The UNIX-style permissions assigned to the pool. Permissions are
specified in octal (e.g. 0755).

<limit> The maximum number of bytes that can be cached by directives in
the pool, in aggregate.

<maxTtl> The maximum allowed time-to-live for directives being added to the
pool. This can be specified in seconds, minutes, hours, and days (e.g.
120s, 30m, 4h, 2d). Valid units are [smdh]. By default, no maximum
is set. A value of "never" specifies that there is no limit.

• removePool -- Removes a Cache Pool. This command also "un-caches" paths that are associated with the pool.

Usage:

hdfs cacheadmin -removePool <name>

Options:

Table 7: Cache Pool Remove Options

Option Description

<name> The name of the Cache Pool to remove.

• listPools -- Displays information about one or more Cache Pools, such as name, owner, group, permissions, and so
on.

Usage:

hdfs cacheadmin -listPools [-stats] [<name>]

Options:

Table 8: Cache Pools List Options

Option Description

-stats Displays additional Cache Pool statistics.

<name> If specified, lists only the named Cache Pool.

31



Cloudera Runtime Optimizing performance

• help -- Displays detailed information about a command.

Usage:

hdfs cacheadmin -help <command-name>

Options:

Table 9: Cache Pool Help Options

Option Description

<command-name Displays detailed information for the specified command name. If
no command name is specified, detailed help is displayed for all
commands.

Cache Directive Commands

• addDirective -- Adds a new Cache Directive.

Usage:

hdfs cacheadmin -addDirective -path <path> -pool <pool-name> [-force] 
[-replication <replication>] [-ttl <time-to-live>]

Options:

Table 10: Cache Pool Add Directive Options

Option Description

<path> The path to the cache directory or file.

<pool-name> The Cache Pool to which the Cache Directive will be added. You
must have Write permission for the Cache Pool in order to add new
directives.

-force Skips checking of the Cache Pool resource limits.

<replication> The cache replication factor to use. Default setting is 1.

<time-to-live> How long the directive is valid. This can be specified in minutes,
hours and days (e.g. 30m, 4h, 2d). Valid units are [smdh]. A value
of "never" indicates a directive that never expires. If unspecified, the
directive never expires.

• removeDirective -- Removes a Cache Directive.

Usage:

hdfs cacheadmin -removeDirective <id>

Options:

Table 11: Cache Pool Remove Directive Options

Option Description

<id> The ID of the Cache Directive to remove. You must have Write
permission for the pool that the directive belongs to in order to
remove it. You can use the -listDirectives command to display a list
of Cache Directive IDs.

32



Cloudera Runtime Optimizing performance

• removeDirectives -- Removes all of the Cache Directives in a specified path.

Usage:

hdfs cacheadmin -removeDirectives <path>

Options:

Table 12: Cache Pool Remove Directives Options

Option Description

<path> The path of the Cache Directives to remove. You must have Write
permission for the pool that the directives belong to in order to
remove them. You can use the -listDirectives command to display a
list of Cache Directives.

• listDirectives -- Returns a list of Cache Directives.

Usage:

hdfs cacheadmin -listDirectives [-stats] [-path <path>] [-pool <pool>]

Options:

Table 13: Cache Pools List Directives Options

Option Description

<path> Lists only the Cache Directives in the specified path. If there is
a Cache Directive in the <path> that belongs to a Cache Pool for
which you do not have Read access, it will not be listed.

<pool> Lists on the Cache Directives in the specified Cache Pool.

-stats Lists path-based Cache Directive statistics.

Customizing HDFS
You can use the dfs.user.home.base.dir property to customize the HDFS home directory. In addition, you can
configure properties to control the size of the directory that holds the NameNode edits directory.

Customize the HDFS home directory
By default, the HDFS home directory is set to /user/<user_name>. Use the dfs.user.home.base.dir property to
customize the HDFS home directory.

Procedure

In hdfs-site.xml file, set the value of the dfs.user.home.base.dir property.

<property>
  <name>dfs.user.home.dir.prefix</name>
  <value>/user</value>
  <description>Base directory of user home.</description>
</property>

In the example, <value> is the path to the new home directory.

33



Cloudera Runtime Optimizing performance

Properties to set the size of the NameNode edits directory
You can configure the dfs.namenode.num.checkpoints.retained and dfs.namenode.num.extra.edits.retained properties
to control the size of the directory that holds the NameNode edits directory.

• dfs.namenode.num.checkpoints.retained: The number of image checkpoint files that are retained in storage
directories. All edit logs necessary to recover an up-to-date namespace from the oldest retained checkpoint are
also retained.

• dfs.namenode.num.extra.edits.retained: The number of extra transactions that should be retained beyond what is
minimally necessary for a NameNode restart. This can be useful for audit purposes, or for an HA setup where a
remote Standby Node may have been offline for some time and require a longer backlog of retained edits in order
to start again.

Optimizing NameNode disk space with Hadoop archives
Hadoop Archives (HAR) are special format archives that efficiently pack small files into HDFS blocks.

The Hadoop Distributed File System (HDFS) is designed to store and process large data sets, but HDFS can be less
efficient when storing a large number of small files. When there are many small files stored in HDFS, these small
files occupy a large portion of the namespace. As a result, disk space is under-utilized because of the namespace
limitation.

Hadoop Archives (HAR) can be used to address the namespace limitations associated with storing many small files.
A Hadoop Archive packs small files into HDFS blocks more efficiently, thereby reducing NameNode memory usage
while still allowing transparent access to files. Hadoop Archives are also compatible with MapReduce, allowing
transparent access to the original files by MapReduce jobs.

Overview of Hadoop archives
Storing a large number of small files in HDFS leads to inefficient utilization of space – the namespace is overutilized
while the disk space might be underutilized. Hadoop Archives (HAR) address this limitation by efficiently packing
small files into large files without impacting the file access.

The Hadoop Distributed File System (HDFS) is designed to store and process large (terabytes) data sets. For example,
a large production cluster may have 14 PB of disk space and store 60 million files.

However, storing a large number of small files in HDFS is inefficient. A file is generally considered to be "small"
when its size is substantially less than the HDFS block size. Files and blocks are name objects in HDFS, meaning that
they occupy namespace (space on the NameNode). The namespace capacity of the system is therefore limited by the
physical memory of the NameNode.

When there are many small files stored in the system, these small files occupy a large portion of the namespace. As
a consequence, the disk space is underutilized because of the namespace limitation. In one real-world example, a
production cluster had 57 million files less than 256 MB in size, with each of these files taking up one block on the
NameNode. These small files used up 95% of the namespace but occupied only 30% of the cluster disk space.

Hadoop Archives (HAR) can be used to address the namespace limitations associated with storing many small files.
HAR packs a number of small files into large files so that the original files can be accessed transparently (without
expanding the files).

HAR increases the scalability of the system by reducing the namespace usage and decreasing the operation load in the
NameNode. This improvement is orthogonal to memory optimization in the NameNode and distributing namespace
management across multiple NameNodes.

Hadoop Archive is also compatible with MapReduce — it allows parallel access to the original files by MapReduce
jobs.

Hadoop archive components
You can use the Hadoop archiving tool to create Hadoop Archives (HAR). The Hadoop Archive is integrated with
the Hadoop file system interface. Files in a HAR are exposed transparently to users. File data in a HAR is stored in
multipart files, which are indexed to retain the original separation of data.

34



Cloudera Runtime Optimizing performance

Hadoop archiving tool

Hadoop Archives can be created using the Hadoop archiving tool. The archiving tool uses MapReduce to efficiently
create Hadoop Archives in parallel. The tool can be invoked using the command:

hadoop archive -archiveName name -p <parent> <src>* <dest>

A list of files is generated by traversing the source directories recursively, and then the list is split into map task
inputs. Each map task creates a part file (about 2 GB, configurable) from a subset of the source files and outputs the
metadata. Finally, a reduce task collects metadata and generates the index files.

HAR file system

Most archival systems, such as tar, are tools for archiving and de-archiving. Generally, they do not fit into the actual
file system layer and hence are not transparent to the application writer in that the archives must be expanded before
use.

The Hadoop Archive is integrated with the Hadoop file system interface. The HarFileSystem implements the FileSyst
em interface and provides access via the har:// scheme. This exposes the archived files and directory tree structures
transparently to users. Files in a HAR can be accessed directly without expanding them.

For example, if we have the following command to copy an HDFS file to a local directory:

hdfs dfs –get hdfs://namenode/foo/file-1 localdir

Suppose a Hadoop Archive bar.har is created from the foo directory. With the HAR, the command to copy the
original file becomes:

hdfs dfs –get har://namenode/bar.har/foo/file-1 localdir

Users only need to change the URI paths. Alternatively, users may choose to create a symbolic link (from hdfs
://namenode/foo to har://namenode/bar.har/foo in the example above), and then even the URIs do not need to be
changed. In either case, HarFileSystem will be invoked automatically to provide access to the files in the HAR.
Because of this transparent layer, HAR is compatible with the Hadoop APIs, MapReduce, the FS shell command-line
interface, and higher-level applications such as Pig, Zebra, Streaming, Pipes, and DistCp.

HAR format data model

The Hadoop Archive data format has the following layout:

foo.har/_masterindex //stores hashes and offsets
foo.har/_index //stores file statuses
foo.har/part-[1..n] //stores actual file data

The file data is stored in multipart files, which are indexed in order to retain the original separation of data. Moreover,
the file parts can be accessed in parallel by MapReduce programs. The index files also record the original directory
tree structures and file status.

Create a Hadoop archive
Use the hadoop archive command to invoke the Hadoop archiving tool.

Procedure

Run the hadoop archive command by specifying the archive name to create, the parent directory relative to the
archive location, the source files to archive, and the destination archive location.

hadoop archive -archiveName name -p <parent> <src>* <dest>

The archive name must have a .har extension

35



Cloudera Runtime Optimizing performance

Note:

• Archiving does not delete the source files. If you want to delete the input files after creating an archive to
reduce namespace, you must manually delete the source files.

• Although the hadoop archive command can be run from the host file system, the archive file is
created in the HDFS file system from directories that exist in HDFS. If you reference a directory on the
host file system and not HDFS, the system displays the following error:

The resolved paths set is empty. Please check whether the srcPaths e
xist, where srcPaths
 = [</directory/path>] 

Example

Consider the following example of archiving two files:

hadoop archive -archiveName foo.har -p /user/hadoop dir1 dir2 /user/zoo

This example creates an archive using /user/hadoop as the relative archive directory. The directories /user/hadoop/dir1
and /user/hadoop/dir2 will be archived in the /user/zoo/foo.har archive.

List files in Hadoop archives
Use the hdfs dfs -ls command to list files in Hadoop archives.

Procedure

Run the hdfs dfs -ls command by specifying the archive directory location.
To specify the directories in an archive directory foo.har located in /usr/zoo, run the following command:

hdfs dfs -ls har:///user/zoo/foo.har/

Assuming the archive directory foo.har contains two directories dir1 and dir2, the command returns the following

har:///user/zoo/foo.har/dir1
har:///user/zoo/foo.har/dir2

Note:

Consider an archive created using the following command:

hadoop archive -archiveName foo.har -p /user/ hadoop/dir1 hadoop/dir2 /
user/zoo

If you list the files of the archive created in the preceding command, the command returns the following:

har:///user/zoo/foo.har/hadoop
har:///user/zoo/foo.har/hadoop/dir1
har:///user/zoo/foo.har/hadoop/dir2

Note that the modified parent argument causes the files to be archived relative to /user/.

Format for using Hadoop archives with MapReduce
To use Hadoop Archives with MapReduce, you must reference files differently than you would with the default file
system. If you have a Hadoop Archive stored in HDFS in /user/zoo/foo.har, you must specify the input directory as
har:///user/zoo/foo.har to use it as a MapReduce input.

Because Hadoop Archives are exposed as a file system, MapReduce can use all of the logical input files in Hadoop
Archives as input.

36



Cloudera Runtime Optimizing performance

Detecting slow DataNodes
Slow DataNodes in an HDFS cluster can negatively impact the cluster performance. Therefore, HDFS provides a
mechanism to detect and report slow DataNodes that have a negative impact on the performance of the cluster.

HDFS is designed to detect and recover from complete failure of DataNodes:

• There is no single point of failure.
• Automatic NameNode failover takes only a few seconds.
• Because data replication can be massively parallelized in large clusters, recovery from DataNode loss occurs

within minutes.
• Most jobs are not affected by DataNode failures.

However, partial failures can negatively affect the performance of running DataNodes:

• Slow network connection due to a failing or misconfigured adapter.
• Bad OS or JVM settings that affect service performance.
• Slow hard disk.
• Bad disk controller.

Slow DataNodes can have a significant impact on cluster performance. A slow DataNode may continue sending
heartbeats successfully, and the NameNode will keep redirecting clients to slow DataNodes. HDFS DataNode
monitoring provides detection and reporting of slow DataNodes that negatively affect cluster performance.

Enable detection of slow DataNodes
When slow DataNode detection is enabled, DataNodes collect latency statistics on their peers during write pipelines,
and use periodic outlier detection to determine slow peers. The NameNode aggregates reports from all DataNodes and
flags potentially slow nodes. Slow DataNode detection is disabled by default.

Procedure

1. To enable slow DataNode detection, set the value of the dfs.datanode.peer.stats.enabled property to true in hdfs-sit
e.xml.

<property>
  <name>dfs.datanode.peer.stats.enabled</name>
  <value>true</value>
</property>

2. Access the slow DataNode statistics either from the NameNode JMX page at http://<namenode_host>:50070/jmx
or from the DataNode JMX page at http://<datanode_host>:50075/jmx.
In the following JMX output example, the time unit is milliseconds, and the peer DataNodes are healthy because
the latencies are in milliseconds:

"name" : "Hadoop:service=DataNode,name=DataNodeInfo",
"modelerType" : "org.apache.hadoop.hdfs.server.datanode.DataNode",    "Sen
dPacketDownstreamAvgInfo" : "{        
        \"[192.168.7.202:50075]RollingAvgTime\" : 1.4476967370441458,
        \"[192.168.7.201:50075]RollingAvgTime\" : 1.5569170444798432
}"

Allocating DataNode memory as storage
HDFS supports efficient writes of large data sets to durable storage, and also provides reliable access to the data. This
works well for batch jobs that write large amounts of persistent data. Emerging classes of applications are driving use

37



Cloudera Runtime Optimizing performance

cases for writing smaller amounts of temporary data. Using DataNode memory as storage addresses the use case of
applications that want to write relatively small amounts of intermediate data sets with low latency.

Writing block data to memory reduces durability, as data can be lost due to process restart before it is saved to disk.
HDFS attempts to save replica data to disk in a timely manner to reduce the window of possible data loss.

DataNode memory is referenced using the RAM_DISK storage type and the LAZY_PERSIST storage policy.

HDFS storage types
The storage type identifies the underlying storage media.

HDFS supports the following storage types:

• ARCHIVE - Archival storage is for very dense storage and is useful for rarely accessed data. This storage type is
typically cheaper per TB than normal hard disks.

• DISK - Hard disk drives are relatively inexpensive and provide sequential I/O performance. This is the default
storage type.

• SSD - Solid state drives are useful for storing hot data and I/O-intensive applications.
• RAM_DISK - This special in-memory storage type is used to accelerate low-durability, single-replica writes.

When you add the DataNode Data Directory, you can specify which type of storage it uses, by prefixing the path with
the storage type, in brackets. If you do not specify a storage type, it is assumed to be DISK.

LAZY_PERSIST memory storage policy
Use the LAZY_PERSIST storage policy to store data blocks on the configured DataNode memory.

For LAZY_PERSIST, the first replica is stored on RAM_DISK (DataNode memory), and the remaining replicas are
stored on DISK. The fallback storage for both creation and replication is DISK.

The following table summarizes these replication policies:

Policy ID Policy Name Block Placement (for n
replicas)

Fallback storage for
creation

Fallback storage for
replication

15 LAZY_PERSIST RAM_DISK: 1, DISK:n-1 DISK DISK

Configure DataNode memory as storage
Configuring memory on a DataNode as storage requires you to shut down the particular DataNode, set RAM_DISK
as the storage type, set the LAZY_PERSIST storage policy to store data, and then start the DataNode.

Procedure

1. Shut down the DataNode.

2. Use required mount commands to allocate a certain portion of the DataNode memory as storage.
The following example shows how you can allocate 2GB memory for use by HDFS.

sudo mkdir -p /mnt/hdfsramdisk
sudo mount -t tmpfs -o size=2048m tmpfs /mnt/hdfsramdisk
sudo mkdir -p /usr/lib/hadoop-hdfs

3. Assign the RAM_DISK storage type to ensure that HDFS can assign data to the DataNode memory configured as
storage.

To specify the DataNode as RAM_DISK storage, insert [RAM_DISK] at the beginning of the local file system
mount path and add it to the dfs.name.dir property in hdfs-default.xml.

The following example shows the updated mount path values for dfs.datanode.data.dir

<property>

38



Cloudera Runtime Optimizing performance

  <name>dfs.datanode.data.dir</name>
  <value>file:///grid/3/aa/hdfs/data/,[RAM_DISK]file:///mnt/hdfsramdisk/</
value>
</property>

4. Set the LAZY_PERSIST storage policy to store data on the configured DataNode memory.
The following example shows how you can use the hdfs dfsadmin -getStoragepolicy command to
configure the LAZY_PERSIST storage policy:

hdfs dfsadmin -getStoragePolicy /memory1 LAZY_PERSIST 

Note:  When you update a storage policy setting on a file or directory, the new policy is not automatically
enforced. You must use the HDFS mover data migration tool to actually move blocks as specified by the
new storage policy.

5. Start the DataNode.

6. Use the HDFS mover tool to move data blocks according to the specified storage policy.

The HDFS mover data migration tool scans the specified files in HDFS and verifies if the block placement
satisfies the storage policy. For the blocks that violate the storage policy, the tool moves the replicas to a different
storage type in order to fulfill the storage policy requirements.

Improving performance with short-circuit local reads
In HDFS, reads normally go through the DataNode. Thus, when a client asks the DataNode to read a file, the
DataNode reads that file off of the disk and sends the data to the client over a TCP socket. "Short-circuit" reads
bypass the DataNode, allowing the client to read the file directly. This is only possible in cases where the client is co-
located with the data. Short-circuit reads provide a substantial performance boost to many applications.

Prerequisites for configuring short-ciruit local reads
To configure short-circuit local reads, you must enable libhadoop.so.

See the Native Libraries Guide for details on enabling this library.

Related Information
Native Libraries Guide

Properties for configuring short-circuit local reads on HDFS
To configure short-circuit local reads, you must add various properties to the hdfs-site.xml file. Short-circuit local
reads must be configured on both the DataNode and the client.

Property Name Property Value Description

dfs.client.read.shortcircuit true Set this to true to enable short-circuit local
reads.

39

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/NativeLibraries.html


Cloudera Runtime Optimizing performance

Property Name Property Value Description

dfs.domain.socket.path /var/lib/hadoop-hdfs/ dn_socket The path to the domain socket. Short-circuit
reads make use of a UNIX domain socket.
This is a special path in the file system
that allows the client and the DataNodes to
communicate. You will need to set a path to
this socket. The DataNode needs to be able to
create this path. On the other hand, it should
not be possible for any user except the hdfs
user or root to create this path. For this reason,
paths under /var/run or /var/lib are often used.

In the file system that allows the client and the
DataNodes to communicate. You will need to
set a path to this socket. The DataNode needs
to be able to create this path. On the other
hand, it should not be possible for any user
except the hdfs user or root to create this path.
For this reason, paths under /var/run or /var/lib
are often used.

dfs.client.domain.socket.data.traffic false This property controls whether or not normal
data traffic will be passed through the UNIX
domain socket. It is recommended that you set
the value of this property to false.

Abnormal data traffic will be passed through
the UNIX domain socket.

dfs.client.use.legacy.blockreader.local false Setting this value to false specifies that the
new version (based on HDFS-347) of the
short-circuit reader is used. Setting this value
to true would mean that the legacy short-
circuit reader would be used.

dfs.datanode.hdfs-blocks-metadata.enabled true Boolean which enables back-end DataNode-
side support for the experimental

DistributedFileSystem#getFile

VBlockStorageLocationsAPI.

dfs.client.file-block-storage-locations.timeout 60 Timeout (in seconds) for the parallel RPCs
made in

DistributedFileSystem

#getFileBlockStorageLocations().

This property is deprecated but is still
supported for backward

compatibility

dfs.client.file-block-storage-locations.timeout.
millis

60000 Timeout (in milliseconds) for the parallel
RPCs made in

DistributedFileSystem

#getFileBlockStorageLocations().

This property replaces

dfs.client.file-block-storage-locations.timeout,

and offers a finer level of granularity.

dfs.client.read.shortcircuit.skip.checksum false If this configuration parameter is set, short-
circuit local reads will skip checksums.
This is normally not recommended, but it
may be useful for special setups. You might
consider using this if you are doing your own
checksumming outside of HDFS.

40



Cloudera Runtime Optimizing performance

Property Name Property Value Description

dfs.client.read.shortcircuit.streams.cache.size 256 The DFSClient maintains a cache of recently
opened file descriptors. This parameter
controls the size of that cache. Setting this
higher will use more file descriptors, but
potentially provide better performance on
workloads involving many seeks.

dfs.client.read.shortcircuit.streams.cache.expir
y.ms

300000 This controls the minimum amount of time (in
milliseconds) file descriptors need to sit in the
client cache context before they can be closed
for being inactive for too long.

The XML for these entries:

<configuration>
<property>
  <name>dfs.client.read.shortcircuit</name>
  <value>true</value>
</property>
 
<property>
  <name>dfs.domain.socket.path</name>
  <value>/var/lib/hadoop-hdfs/dn_socket</value>
</property>
 
<property>
  <name>dfs.client.domain.socket.data.traffic</name>
  <value>false</value>
</property>
 
<property>
  <name>dfs.client.use.legacy.blockreader.local</name>
  <value>false</value>
</property>
 
<property>
  <name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
  <value>true</value>
</property>
 
<property>
  <name>dfs.client.file-block-storage-locations.timeout.millis</name>
  <value>60000</value>
</property>
 
<property>
  <name>dfs.client.read.shortcircuit.skip.checksum</name>
  <value>false</value>
</property>
 
<property>
  <name>dfs.client.read.shortcircuit.streams.cache.size</name>
  <value>256</value>
</property>
 
<property>
  <name>dfs.client.read.shortcircuit.streams.cache.expiry.ms</name>
  <value>300000</value>
</property>

</configuration>

41



Cloudera Runtime Using DistCp to copy files

Using DistCp to copy files

Hadoop DistCp (distributed copy) can be used to copy data between CDP clusters (and also within a CDP cluster).

DistCp uses MapReduce to implement its distribution, error handling, and reporting. It expands a list of files and
directories into map tasks, each of which copies a partition of the files specified in the source list.

Using DistCp
Use DistCp to copy files between various clusters.

The most common use of DistCp is an inter-cluster copy:

hadoop distcp hdfs://nn1:8020/source hdfs://nn2:8020/destination 

Where hdfs://nn1:8020/source is the data source, and hdfs://nn2:8020/ destination is the destination. This will expand
the name space under /source on NameNode "nn1" into a temporary file, partition its contents among a set of map
tasks, and start copying from "nn1" to "nn2". Note that DistCp requires absolute paths.

You can also specify multiple source directories:

hadoop distcp hdfs://nn1:8020/source/a hdfs://nn1:8020/source/b hdfs:// nn2:
8020/destination

Or specify multiple source directories from a file with the -f option:

hadoop distcp -f hdfs://nn1:8020/srclist hdfs://nn2:8020/destination

Where srclist contains:

hdfs://nn1:8020/source/a
hdfs://nn1:8020/source/b

Distcp with HFTP

After a copy, you should generate and cross-check a listing of the source and destination to verify that the copy was
truly successful. Since DistCp employs both Map/Reduce and the FileSystem API, issues in or between any of these
three could adversely and silently affect the copy. Some have had success running with -update enabled to perform a
second pass, but users should be acquainted with its semantics before attempting this.

It is also worth noting that if another client is still writing to a source file, the copy will likely fail. Attempting to
overwrite a file being written at the destination should also fail on HDFS. If a source file is (re)moved before it is
copied, the copy will fail with a FileNotFound exception.

Update and overwrite
Use the -update option to copy files from a source when they do not exist at the target. Use the -overwrite function to
overwrite the target files even if the content is the same.

The DistCp -update option is used to copy files from a source that does not exist at the target, or that has different
contents. The DistCp -overwrite option overwrites target files even if they exist at the source, or if they have the same
contents.

The -update and -overwrite options warrant further discussion, since their handling of source-paths varies from the
defaults in a very subtle manner.

42



Cloudera Runtime Using DistCp to copy files

Consider a copy from /source/first/ and /source/second/ to /target/, where the source paths have the following
contents:

hdfs://nn1:8020/source/first/1
hdfs://nn1:8020/source/first/2
hdfs://nn1:8020/source/second/10
hdfs://nn1:8020/source/second/20

When DistCp is invoked without -update or -overwrite, the DistCp defaults would create directories first/ and seco
nd/, under /target. Thus:

distcp hdfs://nn1:8020/source/first hdfs://nn1:8020/source/second hdfs://nn2
:8020/target

would yield the following contents in /target:

hdfs://nn2:8020/target/first/1
hdfs://nn2:8020/target/first/2
hdfs://nn2:8020/target/second/10
hdfs://nn2:8020/target/second/20

When either -update or -overwrite is specified, the contents of the source directories are copied to the target, and not
the source directories themselves. Thus:

distcp -update hdfs://nn1:8020/source/first hdfs://nn1:8020/source/second hd
fs://nn2:8020/target

would yield the following contents in /target:

hdfs://nn2:8020/target/1
hdfs://nn2:8020/target/2
hdfs://nn2:8020/target/10
hdfs://nn2:8020/target/20

By extension, if both source folders contained a file with the same name ("0", for example), then both sources would
map an entry to /target/0 at the destination. Rather than permit this conflict, DistCp will abort.

Now, consider the following copy operation:

distcp hdfs://nn1:8020/source/first hdfs://nn1:8020/source/second hdfs://nn2
:8020/target

With sources/sizes:

hdfs://nn1:8020/source/first/1 32
hdfs://nn1:8020/source/first/2 32
hdfs://nn1:8020/source/second/10 64
hdfs://nn1:8020/source/second/20 32

And destination/sizes:

hdfs://nn2:8020/target/1 32
hdfs://nn2:8020/target/10 32
hdfs://nn2:8020/target/20 64

Will effect:

hdfs://nn2:8020/target/1 32
hdfs://nn2:8020/target/2 32
hdfs://nn2:8020/target/10 64

43



Cloudera Runtime Using DistCp to copy files

hdfs://nn2:8020/target/20 32

1 is skipped because the file-length and contents match. 2 is copied because it does not exist at the target. 10 and 20
are overwritten because the contents don’t match the source.

If the -update option is used, 1 is overwritten as well.

DistCp and security settings
Security settings dictate whether DistCp should be run on the source cluster or the destination cluster.

The general rule-of-thumb is that if one cluster is secure and the other is not secure, DistCp should be run from the
secure cluster -- otherwise there may be security- related issues.

When copying data from a secure cluster to an non-secure cluster, the following configuration setting is required for
the DistCp client:

<property>
 <name>ipc.client.fallback-to-simple-auth-allowed</name>
 <value>true</value>
</property>

When copying data from a secure cluster to a secure cluster, the following configuration setting is required in the core
-site.xml file:

<property>
    <name>hadoop.security.auth_to_local</name>
    <value></value>
    <description>Maps kerberos principals to local user names</description>
</property> 

Secure-to-secure: Kerberos principal name
Assign the same principle name to applicable NameNodes in the source and destination clusters.

distcp hdfs://cdp-secure hdfs://cdp-secure One issue here is that the SASL RPC client requires that the remote
server’s Kerberos principal must match the server principal in its own configuration. Therefore, the same principal
name must be assigned to the applicable NameNodes in the source and the destination cluster. For example, if the
Kerberos principal name of the NameNode in the source cluster is nn/host1@realm, the Kerberos principal name of
the NameNode in destination cluster must be nn/host2@realm, rather than nn2/host2@realm, for example.

Secure-to-secure: ResourceManager mapping rules
When copying between two CDP secure clusters, further ResourceManager (RM) configuration is required if the two
clusters have different realms.

In order for DistCP to succeed, the same RM mapping rule must be used in both clusters.

For example, if secure Cluster 1 has the following RM mapping rule:

<property>
    <name>hadoop.security.auth_to_local</name>
    <value>
      RULE:[2:$1@$0](rm@.*SEC1.SUP1.COM)s/.*/yarn/
      DEFAULT
    </value>
</property>

44



Cloudera Runtime Using DistCp to copy files

And secure Cluster 2 has the following RM mapping rule:

<property>
    <name>hadoop.security.auth_to_local</name>
    <value>
      RULE:[2:$1@$0](rm@.*BA.YISEC3.COM)s/.*/yarn/
      DEFAULT
    </value>
</property>

The DistCp job from Cluster 1 to Cluster 2 will fail because Cluster 2 cannot resolve the RM principle of Cluster 1
correctly to the yarn user, because the RM mapping rule in Cluster 2 is different than the RM mapping rule in Cluster
1.

The solution is to use the same RM mapping rule in both Cluster 1 and Cluster 2:

<property>
    <name>hadoop.security.auth_to_local</name>
    <value>
      RULE:[2:$1@$0](rm@.*SEC1.SUP1.COM)s/.*/yarn/
      RULE:[2:$1@$0](rm@.*BA.YISEC3.COM)s/.*/yarn/
      DEFAULT
   </value>
 </property>

DistCp between HA clusters
To copy data between HA clusters, use the dfs.internal.nameservices property in the hdfs-site.xml file to explicitly
specify the name services belonging to the local cluster, while continuing to use the dfs.nameservices property to
specify all of the name services in the local and remote clusters.

About this task

Use the following steps to copy data between HA clusters:

Edit the HDFS Client Advanced Configuration Snippet (Safety Valve) for   hdfs-site.xml for both cluster A and
cluster B:

Procedure

1. Open the Cloudera Manager Admin Console.

2. Go to the HDFS service.

3. Click the Configuration tab.

4. Select  Scope  Gateway .

5. Select  Category  Advanced .

45



Cloudera Runtime Using DistCp to copy files

6. Search for HDFS Client Advanced Configuration Snippet (Safety Valve) for    hdfs-site.xml, and add the various
properties as specified:

a) Add both name services to dfs.nameservices = HAA, HAB
b) Add the dfs.internal.nameservices property:

• In cluster A:

dfs.internal.nameservices = HAA
• In cluster B:

dfs.internal.nameservices = HAB
c) Add dfs.ha.namenodes.<nameservice> to both clusters:

• In cluster A

dfs.ha.namenodes.HAB = nn1,nn2
• In cluster B

dfs.ha.namenodes.HAA = nn1,nn2
d) Add the dfs.namenode.rpc-address.<cluster>.<nn> property:

• In Cluster A:

dfs.namenode.rpc-address.HAB.nn1 = <NN1_fqdn>:8020

dfs.namenode.rpc-address.HAB.nn2 = <NN2_fqdn>:8020
• In Cluster B:

dfs.namenode.rpc-address.HAA.nn1 = <NN1_fqdn>:8020

dfs.namenode.rpc-address.HAA.nn2 = <NN2_fqdn>:8020
e) Add the following properties to enable distcp over WebHDFS and secure WebHDFS:

• In Cluster A:

dfs.namenode.http-address.HAB.nn1 = <NN1_fqdn>:50070

dfs.namenode.http-address.HAB.nn2 = <NN2_fqdn>:50070

dfs.namenode.https-address.HAB.nn1 = <NN1_fqdn>:50470

dfs.namenode.https-address.HAB.nn2 = <NN2_fqdn>:50470
• In Cluster B:

dfs.namenode.http-address.HAA.nn1 = <NN1_fqdn>:50070

dfs.namenode.http-address.HAA.nn2 = <NN2_fqdn>:50070

dfs.namenode.https-address.HAA.nn1 = <NN1_fqdn>:50470

dfs.namenode.https-address.HAA.nn2 = <NN2_fqdn>:50470
f) Add the dfs.client.failover.proxy.provider.<cluster> property:

• In cluster A:

dfs.client.failover.proxy.provider. HAB =      org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFail
overProxyProvider

• In cluster B:

dfs.client.failover.proxy.provider. HAA =      org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFail
overProxyProvider

g) Restart the HDFS service, then run the distcp command using the NameService. For example:

hadoop distcp hdfs://HAA/tmp/testDistcp hdfs://HAB/tmp/

46



Cloudera Runtime Using DistCp to copy files

Using DistCp with Amazon S3
You can copy HDFS files to and from an Amazon S3 instance. You must provision an S3 bucket using Amazon Web
Services and obtain the access key and secret key.

You can pass these credentials on the distcp command line, or you can reference a credential store to "hide" sensitive
credentials so that they do not appear in the console output, configuration files, or log files.

Amazon S3 block and native filesystems are supported with the s3a:// protocol.

Example of an Amazon S3 Block Filesystem URI: s3a://BUCKET_NAME/path/to/file

S3 credentials can be provided in a configuration file (for example, core-site.xml):

<property>
    <name>fs.s3a.access.key</name>
    <value>...</value>
</property>
<property>
    <name>fs.s3a.secret.key</name>
    <value>...</value>
</property>

You can also enter the configurations in the Advanced Configuration Snippet for core-site.xml, which allows
Cloudera Manager to manage this configuration.

You can also provide the credentials on the command line:

hadoop distcp -Dfs.s3a.access.key=... -Dfs.s3a.secret.key=... s3a://

For example:

hadoop distcp -Dfs.s3a.access.key=myAccessKey -Dfs.s3a.secret.key=mySecretKe
y /user/hdfs/mydata s3a://myBucket/mydata_backup

Important:  Entering secrets on the command line is inherently insecure. These secrets may be accessed in
log files and other artifacts. Cloudera recommends that you use a credential provider to store secrets.

Note:  Using the -diff option with the distcp command requires a Distributed FileSystem on both the source
and destination and is not supported when using distcp to copy data to or from Amazon S3.

Using a credential provider to secure S3 credentials
You can run the distcp command without having to enter the access key and secret key on the command line. This
prevents these credentials from being exposed in console output, log files, configuration files, and other artifacts.

About this task

Running the distcp command in this way requires that you provision a credential store to securely store the access key
and secret key. The credential store file is saved in HDFS.

Note:  Using a Credential Provider does not work with MapReduce v1 (MRV1).

Procedure

1. Provision the credentials by running the following commands:

hadoop credential create fs.s3a.access.key -value ACCESS_KEY -provider j
ceks://hdfs/PATH_TO_CREDENTIAL_STORE_FILE

47



Cloudera Runtime Using DistCp to copy files

hadoop credential create fs.s3a.secret.key -value SECRET_KEY -provider j
ceks://hdfs/PATH_TO_CREDENTIAL_STORE_FILE

For example:

hadoop credential create fs.s3a.access.key -value foobar -provider jceks
://hdfs/user/alice/home/keystores/aws.jceks
hadoop credential create fs.s3a.secret.key -value barfoo -provider jceks
://hdfs/user/alice/home/keystores/aws.jceks

You can omit the -value option and its value and the command will prompt the user to enter the value.

For more details on the hadoop credential command, see Credential Management (Apache Software Foundation).

Note:  If you configure the hadoop.security.credential.provider.path property to jceks://hdfs/path_to_cre
dential_store_file, ZKFC might fail to start and NameNodes might remain in standby state. So, Cloudera
recommends not to add or change this property in Cloudera Manager.

2. Copy the contents of the /etc/hadoop/conf directory to a working directory.

3. Add the following to the core-site.xml file in the working directory:

<property>
<name>hadoop.security.credential.provider.path</name>
<value>jceks://hdfs/PATH_TO_CREDENTIAL_STORE_FILE</value>
</property>

4. Set the HADOOP_CONF_DIR environment variable to the location of the working directory:

export HADOOP_CONF_DIR=PATH_TO_WORKING_DIRECTORY

What to do next

After completing these steps, you can run the distcp command using the following syntax:

hadoop distcp SOURCE_PATH s3a://DESTINATION_PATH

You can also reference the credential store on the command line, without having to enter it in a copy of the core-sit
e.xml file. You also do not need to set a value for HADOOP_CONF_DIR. Use the following syntax:

hadoop distcp SOURCE_PATH s3a://BUCKET_NAME/DESTINATION_PATH
-Dhadoop.security.credential.provider.path=jceks://
hdfsPATH_TO_CREDENTIAL_STORE_FILE

Examples of DistCp commands using the S3 protocol and hidden credentials
You can various distcp command options to copy files between your CDP clusters and Amazon S3.
Copying files to Amazon S3

hadoop distcp /user/hdfs/mydata s3a://myBucket/mydata_backup

Copying files from Amazon S3

hadoop distcp s3a://myBucket/mydata_backup //user/hdfs/mydata

Copying files to Amazon S3 using the -filters option to exclude specified source files

You specify a file name with the -filters option. The referenced file contains regular expressions,
one per line, that define file name patterns to exclude from the distcp job. The pattern specified
in the regular expression should match the fully-qualified path of the intended files, including the

48

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CredentialProviderAPI.html#Credential_Management


Cloudera Runtime Using DistCp to copy files

scheme (hdfs, webhdfs, s3a, etc.). For example, the following are valid expressions for excluding
files:

hdfs://x.y.z:8020/a/b/c
webhdfs://x.y.z:50070/a/b/c
s3a://bucket/a/b/c

Reference the file containing the filter expressions using -filters option. For example:

hadoop distcp -filters /user/joe/myFilters /user/hdfs/mydata s
3a://myBucket/mydata_backup

Contents of the sample myFilters file:

.*foo.*

.*/bar/.*
hdfs://x.y.z:8020/tmp/.*
hdfs://x.y.z:8020/tmp1/file1

The regular expressions in the myFilters exclude the following files:

• .*foo.* – excludes paths that contain the string "foo".
• .*/bar/.* – excludes paths that include a directory named bar.
• hdfs://x.y.z:8020/tmp/.* – excludes all files in the /tmp directory.
• hdfs://x.y.z:8020/tmp1/file1 – excludes the file /tmp1/file1.

Copying files to Amazon S3 with the -overwrite option.

The -overwrite option overwrites destination files that already exist.

hadoop distcp -overwrite /user/hdfs/mydata  s3a://user/mydata_ba
ckup

For more information about the -filters, -overwrite, and other options, see DistCp Guide: Command Line Options
(Apache Software Foundation).

DistCp additional considerations
DistCp provides a strategy to “dynamically” size maps, allowing faster DataNodes to copy more bytes than slower
nodes.

Map Sizing

By default, DistCp makes an attempt to size each map comparably so that each copies roughly the same number of
bytes. Note that files are the finest level of granularity, so increasing the number of simultaneous copiers (i.e. maps)
may not always increase the number of simultaneous copies nor the overall throughput.

Using the dynamic strategy (explained in the Architecture), rather than assigning a fixed set of source files to each
map task, files are instead split into several sets. The number of sets exceeds the number of maps, usually by a factor
of 2-3. Each map picks up and c opies all files listed in a chunk. When a chunk is exhausted, a new chunk is acquired
and processed, until no more chunks remain.

By not assigning a source path to a fixed map, faster map tasks (i.e. DataNodes) are able to consume more chunks
-- and thus copy more data -- than slower nodes. While this distribution is not uniform, it is fair with regard to each
mapper’s capacity.

The dynamic strategy provides superior performance under most conditions.

Tuning the number of maps to the size of the source and destination clusters, the size of the copy, and the available
bandwidth is recommended for long-running and regularly run jobs.

49

https://hadoop.apache.org/docs/current/hadoop-distcp/DistCp.html#Command_Line_Options
https://hadoop.apache.org/docs/current/hadoop-distcp/DistCp.html#Command_Line_Options


Cloudera Runtime APIs for accessing HDFS

Copying Between Major Versions of HDFS

For copying between two different versions of Hadoop, you can usually use WebHDFS.

MapReduce and Other Side-Effects

As mentioned previously, should a map fail to copy one of its inputs, there will be several side-effects.

• Unless -overwrite is specified, files successfully copied by a previous map will be marked as “skipped” on a re-
execution.

• If a map fails mapreduce.map.maxattempts times, the remaining map tasks will be killed (unless -i is set).
• If mapreduce.map.speculative is set final and true, the result of the copy is undefined.

APIs for accessing HDFS

Use the WebHDFS REST API to access an HDFS cluster from applications external to the cluster. WebHDFS
supports all HDFS user operations including reading files, writing to files, making directories, changing permissions
and renaming. In addition, WebHDFS uses Kerberos and delegation tokens for authenticating users.

Set up WebHDFS on a secure cluster
Setting up WebHDFS on a secure cluster requires you to update certain properties on hdfs-site.xml, create an HTTP
service user principal, create a keytab for the principal, and verify the association of the principal and keytab with the
correct HTTP service.

Procedure

1. Create an HTTP service user principal.

kadmin: addprinc -randkey HTTP/$<Fully_Qualified_Domain_Name>@$<Realm_Na
me>.COM

where:

• Fully_Qualified_Domain_Name: Host where the NameNode is deployed.
• Realm_Name: Name of your Kerberos realm.

2. Create a keytab file for the HTTP principal.

kadmin: xst -norandkey -k /etc/security/spnego.service.keytab HTTP/$<Ful
ly_Qualified_Domain_Name>

3. Verify that the keytab file and the principal are associated with the correct service.

klist –k -t /etc/security/spnego.service.keytab

4. Add the dfs.web.authentication.kerberos.principal and dfs.web.authentication.kerberos.keytab properties to hdfs-
site.xml.

<property>
  <name>dfs.web.authentication.kerberos.principal</name>
  <value>HTTP/$<Fully_Qualified_Domain_Name>@$<Realm_Name>.COM</value>
</property>
<property>
  <name>dfs.web.authentication.kerberos.keytab</name>
  <value>/etc/security/spnego.service.keytab</value>
</property>

50



Cloudera Runtime Using HttpFS to provide access to HDFS

5. Restart the NameNode and the DataNodes.

Using HttpFS to provide access to HDFS

Apache Hadoop HttpFS is a service that provides HTTP access to HDFS. HttpFS has a REST HTTP API supporting
all HDFS filesystem operations (both read and write).

Common HttpFS use cases are:

• Read and write data in HDFS using HTTP utilities (such as curl or wget) and HTTP libraries from languages other
than Java (such as Perl).

• Transfer data between HDFS clusters running different versions of Hadoop (overcoming RPC versioning issues),
for example using Hadoop DistCp.

• Accessing WebHDFS using the NameNode Web UI port (default port 9870). Access to all data hosts in the cluster
is required, because WebHDFS redirects clients to the DataNode port (default port 9864). If the cluster is behind a
firewall, and you use WebHDFS to read and write data to HDFS, then Cloudera recommends you use the HttpFS
server. The HttpFS server acts as a gateway. It is the only system that is allowed to send and receive data through
the firewall.

HttpFS supports Hadoop pseudo-authentication, HTTP SPNEGO Kerberos, and additional authentication
mechanisms using a plugin API. HttpFS also supports Hadoop proxy user functionality.

The webhdfs client file system implementation can access HttpFS using the Hadoop filesystem command (hadoop fs),
by using Hadoop DistCp, and from Java applications using the Hadoop file system Java API.

The HttpFS HTTP REST API is interoperable with the WebHDFS REST HTTP API.

Add the HttpFS role
You can use Clouder Manager to add the HttpFS role.

1. Go to the HDFS service.
2. Click the Instances tab.
3. Click Add Role Instances.
4. Click the text box below the HttpFS field. The Select Hosts dialog box displays.
5. Select the host on which to run the role and click OK.
6. Click Continue.
7. Check the checkbox next to the HttpFS role and select  Actions for Selected Start .

Using Load Balancer with HttpFS
Configure the HttpFS Service to work with the load balancer that you configured for the service.

1. In the Cloudera Manager Admin Console, navigate to  Cluster <HDFS service> .
2. On the Configuration tab, search for the following property:

HttpFS Load Balancer

3. Enter the hostname and port for the load balancer in the following format:

<HOSTNAME>:<PORT>

4. Save the changes.

51



Cloudera Runtime Data storage metrics

Note:  When you set this property, Cloudera Manager regenerates the keytabs for HttpFS roles. The principal
in these keytabs contains the load balancer hostname. If there is a Hue service that depends on this HDFS
service, the Hue service has the option to use the load balancer as its HDFS Web Interface Role.

Data storage metrics

Use Java Management Extensions (JMX) APIs to collect the metrics exposed by the various HDFS daemons.

You can use various HDFS metrics to understand the state of your cluster.

Using JMX for accessing HDFS metrics
You can access HDFS metrics over Java Management Extensions (JMX) through either the web interface of an HDFS
daemon or by directly accessing the JMX remote agent.

Using the HDFS daemon web interface

You can access JMX metrics through the web interface of an HDFS daemon. This is the recommended method.

For example, use the following command format to access the NameNode JMX:

curl -i http://localhost:50070/jmx

You can use the qry parameter to fetch only a particular key:

curl -i http://localhost:50070/jmx?qry=Hadoop:service=NameNode,name=NameNode
Info

Directly accessing the JMX remote agent

This method requires that the JMX remote agent is enabled with a JVM option when starting HDFS services.

For example, the following JVM options in hadoop-env.sh are used to enable the JMX remote agent for the
NameNode. It listens on port 8004 with SSL disabled. The user name and password are saved in the mxremote.pas
sword file.

export HADOOP_NAMENODE_OPTS="-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.password.file=$HADOOP_CONF_DIR/jmxremote.pass
word
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.port=8004 $HADOOP_NAMENODE_OPTS"

See the Oracle Java SE documentation for more information about the related settings.

You can also use the jmxquery tool to retrieve information through JMX.

Hadoop has a built-in JMX query tool, jmxget. For example:

hdfs jmxget -server localhost -port 8004 -service NameNode

Note:  jmxget requires that authentication be disabled, as it does not accept a user name and password.

Using JMX can be challenging for operations personnel who are not familiar with JMX setup, especially JMX with
SSL and firewall tunnelling. Therefore, we recommend that you collect JMX information through the web interface
of HDFS daemons rather than directly accessing the JMX remote agent.

52



Cloudera Runtime Data storage metrics

Related Information
JMX Query

Monitoring and Management Using JMX Query

Configure the G1GC garbage collector
You must follow certain recommendations when switching from the currently used Concurrent Mark Sweep (CMS)
GC to G1GC.

Recommended settings for G1GC
The recommended settings for configuring Garbage First Garbage Collector (G1GC) include allocating more Java
heap space when compared to the Concurrent Mark Sweep (CMS) GC, and setting specific values for properties such
as MaxGCPauseMillis and ParallelGCThreads.

The following NameNode settings are recommended for G1GC in a large cluster:

• Approximately 10% more Java heap space (-XX:Xms and -XX:Xmx) should be allocated to the NameNode, as
compared to CMS setup.

Note:  Do not configure G1GC if the NameNode heap size is greater than 64 GB.

• For large clusters (>50M files), MaxGCPauseMillis should be set to 4000.
• You should set ParallelGCThreads to 20 (default for a 32-core machine), as opposed to 8 for CMS.
• Other G1GC parameters should be left set to their default values.

Related Information
Switching from CMS to G1GC

Switching from CMS to G1GC
To move from Concurrent Mark Sweep (CMS) GC to Garbage First (G1) GC, you must update the HADOOP_N
AMENODE_OPTS settings in hadoop-env.sh.

Procedure

On the Ambari dashboard, select  HDFS > Configs > Advanced > Advanced hadoop-env.

Make the following changes to the HADOOP_NAMENODE_OPTS settings:

• Replace -XX:+UseConcMarkSweepGC with -XX:+UseG1GC
• Remove -XX:+UseCMSInitiatingOccupancyOnly and -XX:CMSInitiatingOccupancyFraction=####
• Remove -XX:NewSize=#### and -XX:MaxNewSize=####
• (Optional) Add -XX:MaxGCPauseMillis=####
• (Optional) Add -XX:InitiatingHeapOccupancyPercent=####
• (Optional) Add -XX:ParallelGCThreads=####, if not present.

The default value of this parameter is set to the number of logical processors (up to a value of 8). For more than
eight logical processors, the default value is set to 5/8th the number of logical processors.

Related Information
Recommended settings for G1GC

53

https://github.com/dgildeh/jmxquery
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html


Cloudera Runtime HDFS Metrics

HDFS Metrics

Many aggregate metrics are available in addition to base metrics. If an entity type has parents defined, you can
formulate all possible aggregate metrics using the formula base_metric_across_parents.

In addition, metrics for aggregate totals can be formed by adding the prefix total_ to the front of the metric name.

Use the type-ahead feature in the Cloudera Manager chart browser to find the exact aggregate metric name, in case
the plural form does not end in "s".

For example, the following metric names may be valid for HDFS:

• alerts_rate_across_clusters
• total_alerts_rate_across_clusters

Some metrics, such as alerts_rate, apply to nearly every metric context. Others only apply to a certain service or role.

Metric Name Description Unit Parents

alerts_rate The number of alerts. events per second cluster

block_capacity The block capacity of the NameNode blocks cluster

blocks_total Blocks total blocks cluster

blocks_with_corrupt_replicas Blocks with corrupt replicas blocks cluster

canary_duration Duration of the last or currently running
canary job

ms cluster

cm_time_since_last_fsimage_fetch Time since last FsImage was fetched by
Cloudera Reports Manager

seconds cluster

cm_time_since_last_fsimage_index Time since last FsImage was indexed By
Cloudera Reports Manager

seconds cluster

dfs_capacity Total configured HDFS storage capacity bytes cluster

dfs_capacity_used Storage space used by HDFS files bytes cluster

dfs_capacity_used_non_hdfs Storage space used by non-HDFS files bytes cluster

events_critical_rate The number of critical events. events per second cluster

events_important_rate The number of important events. events per second cluster

events_informational_rate The number of informational events. events per second cluster

excess_blocks The total number of excess blocks blocks cluster

expired_heartbeats The number of expired heartbeats heartbeats cluster

files_total The number of files and directories in the
HDFS

files cluster

health_bad_rate Percentage of Time with Bad Health seconds per second cluster

health_concerning_rate Percentage of Time with Concerning Health seconds per second cluster

health_disabled_rate Percentage of Time with Disabled Health seconds per second cluster

health_good_rate Percentage of Time with Good Health seconds per second cluster

health_unknown_rate Percentage of Time with Unknown Health seconds per second cluster

missing_blocks Missing blocks blocks cluster

pending_deletion_blocks The number of replicas pending deletion. replicas cluster

pending_replication_blocks The number of blocks with replication pending blocks cluster

scheduled_replication_blocks The number of blocks with replication
currently scheduled

blocks cluster

54



Cloudera Runtime HDFS Metrics

Metric Name Description Unit Parents

under_replicated_blocks Under-replicated blocks blocks cluster

xceivers Transceivers transceivers cluster

55


	Contents
	Optimizing data storage
	Erasure coding overview
	Understanding erasure coding policies
	Comparing replication and erasure coding
	Prerequisites for enabling erasure coding
	Limitations of erasure coding
	Using erasure coding for existing data
	Using erasure coding for new data
	Advanced erasure coding configuration
	Erasure coding CLI command
	Erasure coding examples

	Increasing storage capacity with HDFS compression
	Enable GZipCodec as the default compression codec
	Use GZipCodec with a one-time job

	Setting HDFS quotas
	Set quotas using Cloudera Manager

	Configuring heterogeneous storage in HDFS
	Set up a storage policy for HDFS
	Set up SSD storage using Cloudera Manager

	Balancing data across an HDFS cluster
	Why HDFS data becomes unbalanced
	Configurations and CLI options for the HDFS Balancer
	Properties for configuring the Balancer
	Balancer commands
	Recommended configurations for the Balancer

	Configuring and running the HDFS balancer using Cloudera Manager
	Configuring the balancer threshold
	Configuring concurrent moves
	Recommended configurations for the balancer
	Running the balancer
	Configuring block size

	Cluster balancing algorithm
	Storage group classification
	Storage group pairing
	Block move scheduling
	Block move execution

	Exit statuses for the HDFS Balancer


	Optimizing performance
	Improving performance with centralized cache management
	Benefits of centralized cache management in HDFS
	Use cases for centralized cache management
	Centralized cache management architecture
	Caching terminology
	Properties for configuring centralized caching
	Commands for using cache pools and directives

	Customizing HDFS
	Customize the HDFS home directory
	Properties to set the size of the NameNode edits directory

	Optimizing NameNode disk space with Hadoop archives
	Overview of Hadoop archives
	Hadoop archive components
	Create a Hadoop archive
	List files in Hadoop archives
	Format for using Hadoop archives with MapReduce

	Detecting slow DataNodes
	Enable detection of slow DataNodes

	Allocating DataNode memory as storage
	HDFS storage types
	LAZY_PERSIST memory storage policy
	Configure DataNode memory as storage

	Improving performance with short-circuit local reads
	Prerequisites for configuring short-ciruit local reads
	Properties for configuring short-circuit local reads on HDFS


	Using DistCp to copy files
	Using DistCp
	Update and overwrite
	DistCp and security settings
	Secure-to-secure: Kerberos principal name
	Secure-to-secure: ResourceManager mapping rules
	DistCp between HA clusters
	Using DistCp with Amazon S3
	Using a credential provider to secure S3 credentials
	Examples of DistCp commands using the S3 protocol and hidden credentials

	DistCp additional considerations

	APIs for accessing HDFS
	Set up WebHDFS on a secure cluster

	Using HttpFS to provide access to HDFS
	Add the HttpFS role
	Using Load Balancer with HttpFS

	Data storage metrics
	Using JMX for accessing HDFS metrics
	Configure the G1GC garbage collector
	Recommended settings for G1GC
	Switching from CMS to G1GC


	HDFS Metrics

