Cloudera Runtime 7.0.0

Managing and Allocating Cluster Resources
using Capacity Scheduler

Date published: 2019-08-21
Date modified:

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Cluster Management with Capacity Scheduler..........cocoveiieiiniin e, 4
Using scheduling tO allOCAE FESOUICES...........ceiieirieieiereetereet ettt sttt sttt e eb e e b e b se s saene s 4
Y ARN 1€SOUICE @llOCAHION.ccueeeeeieiiiieeie sttt sttt ae s sresbesaese e tenbese e e e nee e e e eneeneeneens 4

USE CPU SCREAUITNG. ¢ttt bbbt bbbt 4
Configure CPU scheduling and iSOI@tiON.ccoieiiieiieiriesee s 5

Limit CPU USB0E WIth COrOUDS.......cueiieuirieiirieertet sttt sttt st sttt ettt et et 5
Allocating Resour ces with Capacity Scheduler...........ccoevviiieiin i, 18
CapaCity SCNEOUIET OVEIVIEW.....cveeeeeceeeeeeeeee ettt st st e e e se e s s aeeaeebesbesee st e teseessentense e eneenenneeneerennen 18
Enable the CapaCity SCHEAUIEN..........couceeeecce ettt s s e e e e e e e e eneens 18
SEL U QUEUES.ceuteeeieteeeeesteeeesteesee st estesseestesseestesseeteesseseessenseenseaseenesaaeeneesaeeseesseeseenneesseensesennsenseensenseensennnanss 19
Hierarchical QUEUE CharaCteriSliCS........cuuviiiiiiiiiesises st et e e e sttt s e e e sae e e e eneene e 20
Scheduling AMONG QUEUES.........ccueiueieeeeeeetesese e s e steste e steseeseesee e e e esessessessesaesaessesteseessensensensensesensen 20
Control access t0 QUEUES WIth ACLS.....cucieieeeeieere ettt e e sa e e st sesaesbesbesaestetesaensenseneennenens 20
Define queue MappiNg POIICIES......cciiiiiiiiiie e stes et re et e ee ettt ee et te s e e e e e e e e eseeseeseesestesaesnenreneenes 21
Configure queue mapping for users and groups to SPECITIC QUEUES........ccovevvereeeeeereeeeesesesesese e 21
Configure queue mapping for users and groups to queues with the same name...........ccccceevveeveveveenen. 22
Configure queue mapping to use the user name from the application tag.........cccceevveveeenieninienienienniens 23
Enable override of default qUEUE MAPPINGS.......ccoviiiere e et sre e ae e e e e e ese e ereas 23
Manage cluster CapaCity With QUEUES..........cccceciriie sttt sttt e e e e e e e eneeneeneenens 24
= 0 10T UL o] 1 =SS 25
Resource distribution WOIKFIOW...........ccciiiiiiiieerse sttt sttt sbe e 27
Resource distribution WOrkflow eXample...........cooiieiiiiieiecece e e 27
S C TS g 100 OSSOSO 28
PN o0 1= 0 g I =S = Y7 (0] 30
Set flexible SChedUIING POIICIES.......cvoiieeecec et st et sa e e e e e e e e neenenneens 30
Examples of FIFO and Fair Sharing POlICIES........cceoviieiriresece st see e sre e s 30
Configure queue Ordering POIICIES.......civiiierereereeeeeee e s e e e e e e e e se e e eseeresresnesreneenes 31

Best practices for ordering POIICIES......c.ovcieirececece et se e ens 31

Start AN0 SEOP GUEUES......c.veieeeeieeeeeeeetese st stes e saestesteseessessesseseseeseeseaseesessessesbesteseessanseseensenansesseesensessessensessessens 32
= = 10 o 1= 1 o TN 1T 4T £ 32
Tz o LI 1= 0T o) 33
Preemption WOPKIIOW.........couceccececee e sttt e e e e eneenenne e 33
(010110 0 TT=TN 1= o) i1 o) o P 34
Enable priority SCHEAUIING.......ccoviieiie et st sa e e s e eaeste s aesresbestesaensentessensenennnennenens 35
Configure ACLS for appliCation PriOMTIES.......cceieiireiereeieeie et r e e ae e e e e e e e e e eseesesneenens 36
Enable iNtra-QUEUE PrEQIMPLION.......c..ii st se e e e ae st te e e st e besteseene e te e eneesenseeneesesresaenrenses 36
Properties for configuring intra-qUEUE PreeMPLiON.........ccueveieeeeire s see e e e re e s 37
Intra-Queue preemption based on application Prioriti€s........cccouevriieieienenesie s 37

Intra-Queue preemption based 0N USEr [IMItS.......cccviiveieicieccesee e e 39

Cloudera Runtime Cluster Management with Capacity Scheduler

Y ou can manage resources for the applications running on your cluster by allocating resources through scheduling,
limiting CPU usage by configuring cgroups, and partitioning the cluster into subclusters using node labels.

Y ou can alocate CPU, and memory among users and groups in a Hadoop cluster. Y ou can use scheduling to allocate
the best possible nodes for application containers.

The CapacityScheduler is responsible for scheduling. The CapacityScheduler is used to run Hadoop applications as a
shared, multi-tenant cluster in an operator-friendly manner while maximizing the throughput and the utilization of the
cluster.

The ResourceCalculator is part of the Y ARN CapacityScheduler. If you have only one type of resource, typicaly a
CPU virtua core (vcore), use the DefaultResourceCalculator. If you have multiple resource types, use the Dominant
ResourceCalculator.

Configure CPU scheduling and isolation

Y ou can manage your cluster capacity using the Capacity Scheduler in YARN. Y ou can use the Capacity Scheduler's
DefaultResourceCal culator or the DominantResourceCal culator to allocate available resources.

The fundamental unit of scheduling in YARN is the queue. The capacity of each queue specifies the percentage of
cluster resources available for applications submitted to the queue. Y ou can set up queuesin ahierarchy that reflects
the database structure, resource requirements, and access restrictions required by the organizations, groups, and
individuals who use the cluster resources.

Y ou can use the default resource calculator when you want the resource calculator to consider only the available
memory for resource calculation. When you use the default resource cal culator (DefaultResourceCal culator),
resources are allocated based on the available memory.

If you have multiple resource types, use the dominant resource calculator (DominantResourceCal culator) to enable
CPU and memory scheduling. The dominant resource calculator is based on the Dominant Resource Fairness (DRF)
model of resource alocation. DRF is designed to fairly distribute CPU, and memory resources among different types
of processes in amixed-workload cluster.

For example, if User A runs CPU-heavy tasks and User B runs memory-heavy tasks, the DRF allocates more CPU
and less memory to the tasks run by User A, and allocates less CPU and more memory to the tasks run by User B. In
asingle resource case, in which all jobs are requesting the same resources, the DRF reduces to max-min fairness for
that resource.

Cgroups with CPU scheduling helps you effectively manage mixed workloads.

Note: Y ou should use CPU scheduling only in a Linux environment, because there is no isolation mechanism
IE (cgroups equivalent) for Windows.

MapReduce jobs only

If you primarily run MapReduce jobs on your cluster, enabling CPU scheduling does not change performance much.
The dominant resource for MapReduce is memory, so the DRF scheduler continues to balance MapReduce jobsin
amanner similar to the default resource calculator. In the case of a single resource, the DRF reduces to max-min
fairness for that resource.

Cloudera Runtime Cluster Management with Capacity Scheduler

Mixed workloads

An example of amixed workload is a cluster that runs both MapReduce and Storm on Y ARN. MapReduce is not
CPU-constrained, but Storm on YARN is; its containers require more CPU than memory. Asyou add Storm jobs
along with MapReduce jobs, the DRF scheduler tries to balance memory and CPU resources, but you might see some
performance degradation in as aresult. As you add more CPU-intensive Storm jobs, individual jobs start to take
longer to run as the cluster CPU resources are consumed.

To solve this problem, you can use cgroups along with CPU scheduling. Using cgroups provides isolation for CPU-
intensive processes such as Storm on Y ARN, thereby enabling you to predictably plan and constrain the CPU-
intensive Storm containers.

Y ou can also use node labels in conjunction with CPU scheduling and cgroups to restrict Storm on YARN jobsto a
subset of cluster nodes.

Y ou can configure CPU scheduling on your cluster to allocate the best possible nodes having the required CPU
resources for application containers.

In Cloudera Manager, select the YARN service.

Click the Configuration tab.

Search for Resource Calculator Class.

Select the org.apache.hadoop.yarn.util .resource.DominantResourceCal culator option.

Search for yarn.nodemanager.resource.cpu-vcores and set the number of vcores to match the number of physical
CPU cores on the NodeManager host by providing the number of physical cores.

o w DR

Enable cgroups along with CPU scheduling. Cgroups is used as the isolation mechanism for CPU processes.

With cgroups strict enforcement activated, each CPU process receives only the resources it requests. Without
cgroups activated, the DRF scheduler attempts to balance the load, but unpredictable behavior may occur. For more
information, see Enable cgroups.

Using scheduling to allocate resources
Using GPU on YARN
Limit CPU usage with Cgroups

Y ou can use cgroupsto limit CPU usage in a Hadoop Cluster.

Y ou can use cgroups to isolate CPU-heavy processes in a Hadoop cluster. If you are using CPU Scheduling, you
should also use cgroups to constrain and manage CPU processes. If you are not using CPU Scheduling, do not enable
cgroups.

When you enable CPU Scheduling, queues are still used to allocate cluster resources, but both CPU and memory
are taken into consideration using a scheduler that utilizes Dominant Resource Fairness (DRF). In the DRF model,
resource allocation takes into account the dominant resource required by a process. CPU-heavy processes (such as
Storm-on-Y ARN) receive more CPU and less memory. Memory-heavy processes (such as MapReduce) receive
more memory and less CPU. The DRF scheduler is designed to fairly distribute memory and CPU resources among
different types of processesin amixed- workload cluster.

Cgroups compliments CPU Scheduling by providing CPU resource isolation. It enables you to set limits on the
amount of CPU resources granted to individual Y ARN containers, and also lets you set alimit on the total amount of
CPU resources used by YARN processes.

https://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/UsingGpus.html

Cloudera Runtime Cluster Management with Capacity Scheduler

Cgroups represents one aspect of Y ARN resource management capabilities that includes CPU Scheduling, node
labels, archival storage, and memory as storage. If CPU Scheduling is used, cgroups should be used along with it to
constrain and manage CPU processes.

Configure CPU scheduling and isolation

Y ou can enable CPU Scheduling to enable cgroups. Y ou must configure certain propertiesin yarn-site.xml on the
ResourceManager and NodeManager hosts to enable cgroups.

cgroupsisalinux kernel feature. cgroups is supported on the following Linux operating systems:

+ Cent0S6.9,7.3
« RHELG6.9,73
e SUSE12

* Ubuntu 16

At thistime there is no cgroups equivaent for Windows. cgroups are not enabled by default on CDP. cgroups require
that the CDP cluster be Kerberos enabled.

i Important:

The yarn.nodemanager.linux-contai ner-executor.cgroups.mount property must be set to false. Setting this
value to true is not currently supported.

Enable cgroups

The following commands must be run on every reboot of the NodeManager hosts to set up the cgroup hierarchy. Note
that operating systems use different mount points for the cgroup interface. Replace /sys/fs/cgroup with your operating
system equivalent.

nkdir -p /sys/fs/cgroup/cpu/yarn

chown -R yarn /sys/fs/cgroup/cpu/yarn
nkdir -p /sys/fs/cgroup/ menory/yarn

chown -R yarn /sys/fs/cgroup/ menory/yarn
nkdir -p /sys/fs/cgroup/blkiol/yarn

chown -R yarn /sys/fs/cgroup/blkio/yarn
nkdir -p /sys/fs/cgroup/net_cls/yarn
chown -R yarn /sys/fs/cgroup/net_cls/yarn
nmkdir -p /sys/fs/cgroup/devices/yarn
chown -R yarn /sys/fs/cgroup/ devi ces/yarn

In Cloudera Manager, select the Y ARN service.
Click the Configuration tab.

Search for Always Use Linux Container Executor and select Y ARN-1 (Service-Wide) option.

Search for NodeManager Advanced Configuration and set the below property in the NodeManager Advanced
Configuration Snippet (Safety Valve) for yarn-site.xml field.

> w DN

Nane: vyarn. nodemanager. | i nux-contai ner-executor. group
Val ue: hadoop

5. Search for CGroups and select Y ARN-1 (Service-Wide) option in the Use CGroups for Resource Management
field.

6. Search for CGroups Hierarchy and set the NodeManager Default Group value to /hadoop-yarn.

Cloudera Runtime Cluster Management with Capacity Scheduler

7. Search for NodeManager Advanced Configuration and set the below property in the NodeManager Advanced
Configuration Snippet (Safety Valve) for yarn-site.xml field.

Name: yarn. nodenanager . | i nux- cont ai ner - execut or. cgr oups. nount
Val ue: fal se

Nane: vyarn. nodenmanager. | i nux-contai ner-executor. cgroups. nount - path
Val ue: /sys/fs/cgroup

8. (Optional) Set the percentage of CPU to be used by YARN. Search for Containers CPU Limit and set the valuein
the Containers CPU Limit Percentage field.

Set the percentage of CPU that can be allocated for Y ARN containers. In most cases, the default value of 100%
should be used. If you have another process that needs to run on a node that also requires CPU resources, you can
lower the percentage of CPU allocated to YARN to free up resources for the other process.

9. (Optional) Set flexible or strict CPU limits. Search for Strict CGroup Resource Usage and select the
NodeManager Default Group field.

CPU jobs are constrained with CPU scheduling and cgroups enabled, but by default these are flexible limits. If
spare CPU cycles are available, containers are allowed to exceed the CPU limits set for them. With flexible limits,
the amount of CPU resources available for containers to use can vary based on cluster usage -- the amount of CPU
available in the cluster at any given time.

Y ou can use cgroups to set strict limits on CPU usage. When strict limits are enabled, each process receives only
the amount of CPU resources it requests. With strict limits, a CPU process will receive the same amount of cluster
resources every timeit runs.

Strict limits are not enabled (set to false) by default.

Note: Irrespective of whether this property istrue or false, at no point will total container CPU usage
B exceed the limit set in yarn.nodemanager.resource.percentage-physi cal-cpu-limit.

Note: CPU resource isolation leverages advanced features in the Linux kernel. At thistime, setting

IE yarn.nodemanager.linux-contai ner-executor.cgroups.stri ct-resource-usage to true is not recommended due
to known kernel panics. In addition, with some kernels, setting yarn.nodemanager.resource.percentage-
physical-cpu-limit to avalue less than 100 can result in kernel panics. If you require either of these
features, you must perform scale testing to determine if the in-use kernel and workloads are stable. Asa
starting point, Linux kernel version 4.8.1 works with these features. However, testing the features with the
desired workloads is very important.

Y ou can use strict cgroups CPU limits to constrain CPU processes in mixed workload clusters.

One example of amixed workload is a cluster that runs both MapReduce and Storm-on-Y ARN. MapReduce is not
CPU-constrained (MapReduce containers do not ask for much CPU). Storm-on-Y ARN is CPU-constrained: its
containers ask for more CPU than memory. Asyou start adding Storm jobs along with MapReduce jobs, the DRF
scheduler attempts to balance memory and CPU resources, but as more CPU-intensive Storm jobs are added, they
may begin to take up the mgjority of the cluster CPU resources.

Y ou can use cgroups along with CPU scheduling to help manage mixed workloads. cgroups provide isolation for
CPU-heavy processes such as Storm-on-Y ARN, thereby enabling you to predictably plan and constrain the CPU-
intensive Storm containers.

When you enable strict cgroup CPU limits, each resource gets only what it asks for, even if there is extra CPU
available. Thisis useful for scenarios involving charge-backs or strict SLA enforcement, where you always need to
know exactly what percentage or CPU is being used.

Also, enabling strict CPU limits would make job performance predictable, whereas without setting strict limits a
CPU-intensive job would run faster when the cluster was not under heavy use, but slower when more jobs were
running in the cluster. Strict CPU limits would therefore al so be useful for benchmarking.

Cloudera Runtime Cluster Management with Capacity Scheduler

Y ou can also use node labels in conjunction with cgroups and CPU scheduling to restrict Storm-on-Y ARN jobsto a
subset of cluster nodes.

If you are using cgroups and want more information on CPU performance, you can review the statistics available in
the /cgroup/cpulyarn/cpu.stét file.

Y ou can use Node labels to partition a cluster into sub-clusters so that jobs run on nodes with specific characteristics.

Y ou can use Node labels to run YARN applications on cluster nodes that have a specified node label. Node labels can
be set as exclusive or shareable:

» exclusive-- Accessis restricted to applications running in queues associated with the node label.
» sharable-- If idle capacity is available on the labeled node, resources are shared with all applicationsin the
cluster.

The fundamental unit of scheduling in YARN is the queue. The capacity of each queue specifies the percentage of
cluster resources that are available for applications submitted to the queue. Queues can be set up in a hierarchy that
reflects the resource requirements and access restrictions required by the various organizations, groups, and users that
utilize cluster resources.

Node labels enable you partition a cluster into sub-clusters so that jobs can be run on nodes with specific
characteristics. For example, you can use node labels to run memory-intensive jobs only on nodes with alarger
amount of RAM. Node labels can be assigned to cluster nodes, and specified as exclusive or shareable. Y ou can then
associate node labels with capacity scheduler queues. Each node can have only one node label.

Exclusive Node Labels

When a queue is associated with one or more exclusive node labels, all applications submitted by the queue have
exclusive access to nodes with those labels.

Cloudera Runtime Cluster Management with Capacity Scheduler

C
P.

Idle capacity
IS not shared

Exclusive Node Labels

Shareable Node Labels

When a queue is associated with one or more shareable (non-exclusive) node labels, all applications submitted by
the queue get first priority on nodes with those labels. If idle capacity is available on the labeled nodes, resources
are shared with other non-labeled applications in the cluster. Non-labeled applications will be preempted if labeled
applications request new resources on the labeled nodes.

Cloudera Runtime Cluster Management with Capacity Scheduler

Q"-"- ~ R Idle capacity

™~ ™ is shared
~, ~

Non-exclusive Node Labels

Queues without Node Labels

If no node label is assigned to a queue, the applications submitted by the queue can run on any node without a node
label, and on nodes with shareable node labelsif idle resources are available.

Preemption

L abeled applications that request |abeled resources preempt non-labeled applications on labeled nodes. If alabeled
resource is not explicitly requested, the normal rules of preemption apply. Non-labeled applications cannot preempt
|abeled applications running on labeled nodes.

10

Cloudera Runtime Cluster Management with Capacity Scheduler

Y ou can configure node labels on a cluster by making configuration changes on the Y ARN ResourceManager host.

To enable Node Labels on a cluster, make the following configuration changes on the Y ARN ResourceManager host.
1. Create alLabel Directory in HDFS
Use the following commands to create a"node-labels’ directory in which to store the Node Labelsin HDFS.

sudo su hdfs

hadoop fs -nkdir -p /yarn/node-I abel s
hadoop fs -chown -R yarn:yarn /yarn
hadoop fs -chnod -R 700 /yarn

-chmod -R 700 specifies that only the yarn user can access the "node-labels’ directory.

Y ou can then use the following command to confirm that the directory was created in HDFS.
hadoop fs -1s /yarn

The new node label directory should appear in the list returned by the following command. The owner should be
yarn, and the permission should be drwx.

Found 1 itemns
dr wx------ - yarn yarn 0 2014-11-24 13:09 /yarn/ node-| abel s

Use the following commands to create a/user/<user_name> directory that isrequired by the distributed shell.

hadoop fs -nkdir -p /user/<user_name>
hadoop fs -chown -R yarn:yarn /user/<user_nane>
hadoop fs -chnod -R 700 /user/<user_nanme>

In Cloudera Manager, select the Y ARN service.

Click the Configuration tab.

Search for YARN Service Advanced Configuration.

In YARN Service Advanced Configuration Snippet (Safety Valve) for yarn-sitexml add the following:

akrcwn

« Set the following property to enable Node Labels:

Name: yarn. node-| abel s. enabl ed
Val ue: true

» Set thefollowing property to reference the HDFS node label directory

Nane: yarn.node-| abels.fs-store.root-dir
Val ue: hdfs://:/

For example,

Nane: yarn.node-| abel s.fs-store.root-dir
Val ue: hdfs://node-1. exanpl e. com 8020/ yar n/ node- | abel s/

6. Start or Restart the YARN ResourceManager.

11

Cloudera Runtime Cluster Management with Capacity Scheduler

Use the following command format to add Node Labels. Y ou should run these commands as the yarn user. Node
labels must be added before they can be assigned to nodes and associated with queues.

sudo su yarn
yarn rmadni n -addToCd ust er NodeLabel s "<l abel 1>(excl usi ve=<true| fal se>), <l ab
el 2>(excl usi ve=<true|fal se>)"

B Note:
If exclusiveis not specified, the default valueis true.

For example, the following commands add the node label "x" as exclusive, and "y" as shareable (non-exclusive).

sudo su yarn
yarn rmadni n -addTod ust er NodeLabel s "x(excl usi ve=true), y(excl usi ve=fal se)"

Y ou can use the yarn cluster --list-node-labels command to confirm that Node L abels have been added:

[root @ode-1 /]# yarn cluster --1list-node-I|abels

15/07/11 13:55:43 INFO inpl.TinelineCientlnpl: Tinmeline service address: h
ttp://node-1. exanpl e. com 8188/ ws/v1l/timeline/

15/07/11 13:55:43 I NFO client.RWroxy: Connecting to ResourceManager at no
de- 1. exanpl e. conf 240. 0. 0. 10: 8032

Node Labels: <x:exclusivity=true>, <y:exclusivity=fal se>

Y ou can use the following command format to remove Node Labels:

yarn rmadmi n -renoveFronC ust er NodeLabel s "<l abel 1>, <l abel 2>"

E Note:
Y ou cannot remove a node label if it is associated with a queue.

Use the following command format to add or replace node label assignments on cluster nodes:

yarn rmadni n -repl aceLabel sOnNode "<nodel>: <port >=<I| abel 1> <node2>: <port >=<I
abel 2>"

For example, the following commands assign node label "x" to "node-1.example.com", and node label "y" to
"node-2.example.com”.

sudo su yarn
yarn rnmadmi n -repl aceLabel sOnNode "node- 1. exanpl e. conFx node- 2. exanpl e. conr

y"

Note:
IE Y ou can only assign one node label to each node. Also, if you do not specify a port, the node label change
will be applied to all NodeM anagers on the host.

To remove node label assignments from a node, use -replacel.abelsOnNode, but do not specify any labels. For
example, you would use the following commands to remove the "x" label from node-1.example.com:

sudo su yarn
yarn rmadni n -repl aceLabel sOnNode "node- 1. exanpl e. cont’

12

Cloudera Runtime Cluster Management with Capacity Scheduler

Associate Node Labels with Queues
Now that we have created Node Labels, we can associate them with queues in the capacity-scheduler.xml file.

Y ou must specify capacity on each node label of each queue, and also ensure that the sum of capacities of each
node-label of direct children of a parent queue at every level is equal to 100%. Node labels that a queue can access
(accessible Node Labels of a queue) must be the same as, or a subset of, the accessible Node L abels of its parent
queue.

Example:

Assume that a cluster has atotal of 8 nodes. The first 3 nodes (n1-n3) have node label=x, the next 3 nodes (n4-n6)
have node label=y, and the final 2 nodes (n7, n8) do not have any Node Labels. Each node can run 10 containers.

The queue hierarchy is as follows:

EmmE.y
A

smmsmsmnememneEetesscsssssmaaa,

Assume that queue “a” can access Node Labels“x” and *y”, and queue “b” can only access node label “y”. By
definition, nodes without labels can be accessed by all queues.

L
i
i
L
¥
P
P
]
|
n

Consider the following example label configuration for the queues:
capacity(a) = 40, capacity(a, label=x) = 100, capacity(a, |abel=y) = 50; capacity(b) = 60, capacity(b, label=y) = 50
This means that:

e Queue“a’ can access 40% of the resources on nodes without any labels, 100% of the resources on nodes with
label=x, and 50% of the resources on nodes with label=y.

* Queue“b” can access 60% of the resources on nodes without any labels, and 50% of the resources on nodes with
label=y.

Y ou can a'so see that for this configuration:

13

Cloudera Runtime Cluster Management with Capacity Scheduler

capacity(a) + capacity(b) = 100 capacity(a, label=x) + capacity(b, |abel=x) (b cannot access label=x, it is 0) = 100
capacity(a, label=y) + capacity(b, label=y) = 100

For child queues under the same parent queue, the sum of the capacity for each label should equal 100%.
Similarly, we can set the capacities of the child queues al, a2, and bl:

al and a2: capacity(a.al) = 40, capacity(a.al, label=x) =30, capacity(a.al, label=y) =50 capacity(a.a2) = 60,
capacity(a.a2, label=x) =70, capacity(a.a2, label=y) =50 b1: capacity(b.bl) = 100 capacity(b.bl, label=y) = 100

Y ou can seethat for the al and a2 configuration:

capacity(a.al) + capacity(a.a2) = 100 capacity(a.al, label=x) + capacity(a.a2, label=x) = 100 capacity(a.al, label=y) +
capacity(a.a2, label=y) = 100

How many resources can queue al access?

Resources on nodes without any labels; Resource = 20 (total containers that can be allocated on nodes without label,
in this case n7, n8) * 40% (a.capacity) * 40% (a.al.capacity) = 3.2 (containers)

Resources on nodes with |abel=x

Resource = 30 (total containers that can be allocated on nodes with label=x, in this case n1-n3) * 100% (a.label-
X.capacity) * 30% = 9 (containers)

To implement this example configuration, you would add the following properties in the capacity-scheduler.xml file.

Nanme: yarn. schedul er. capacity.root.queues
Value: a,b

Nanme: yarn. schedul er. capacity. root.accessi bl e-node-| abel s. x. capacity

Val ue: 100

Nanme: yarn. schedul er. capacity. root.accessi bl e-node-1abel s.y. capacity
Val ue: 100

<I-- configuration of queue-a -->

Nanme: yarn. schedul er. capacity.root. a.accessi bl e-node-1| abel s
Val ue: x,y

Nane: yarn.schedul er.capacity.root.a.capacity
Val ue: 40

Nanme: yarn. schedul er. capacity. root. a.accessi bl e-node-I abel s. x. capacity
Val ue: 100

Nane: yarn. schedul er. capacity. root. a.accessi bl e-node-| abel s.y. capacity
Val ue: 50

Nane: yarn. schedul er.capacity.root.a. queues
Val ue: al, a2
<I-- configuration of queue-b -->

Nanme: yarn. schedul er. capacity. root.b. accessi bl e- node-1 abel s
Val ue: vy

Nane: yarn.schedul er.capacity.root.b.capacity
Val ue: 60

Nanme: yarn. schedul er. capacity.root.b. accessi bl e-node-1abel s.y. capacity
Val ue: 50

14

Cloudera Runtime Cluster Management with Capacity Scheduler

Nanme: yarn. schedul er. capacity.root.b. queues

Val ue: bl

<l-- configuration of queue-a.al -->

Name: yarn. schedul er. capacity.root. a.al. accessi bl e-node- 1| abel s
Val ue: Xx,y

Nane: yarn. schedul er. capacity.root. a.al.capacity

Val ue: 40

Nanme: yarn. schedul er. capacity.root.a.al. accessi bl e-node-1| abel s. x. capacity
Val ue: 30

Nane: yarn. schedul er. capacity.root.a.al. accessi bl e-node-1abel s.y. capacity
Val ue: 50
<I-- configuration of queue-a.a2 -->

Nane: yarn. schedul er. capacity. root. a.a2.accessi bl e-node-| abel s
Val ue: X,y

Nanme: yarn. schedul er. capacity.root. a.a2.capacity

Val ue: 60

Nane: yarn. schedul er. capacity.root. a.a2.accessi bl e-node-1 abel s. x. capacity
Val ue: 70

Nanme: yarn. schedul er. capacity.root.a.a2. accessi bl e-node-1abel s.y. capacity
Val ue: 50

<l-- configuration of queue-b.bl -->

Nanme: yarn. schedul er. capacity.root.b. bl. accessi bl e-node-| abel s
Val ue: y

Nanme: yarn. schedul er. capacity.root.b. bl. capacity
Val ue: 100

Nane: yarn. schedul er. capacity.root.b.bl. accessi bl e-node-1abel s.y. capacity
Val ue: 100

After adding or updating queue node label propertiesin the capacity-scheduler.xml file, you must run the following
commands to refresh the queues:

sudo su yarn
yarn rnmadm n -refreshQueues

Y ou can use the following commands to view information about node labels.
o Listal running nodesin the cluster: yarn node -list
Example:
[root @ode-1 /]# yarn node -Iist

14/11/21 12:14:06 INFO inpl.Tinelinedientlnpl: Tineline service address:
http://node-1. exanpl e. com 8188/ ws/v1/timeline/

15

Cloudera Runtime

Cluster Management with Capacity Scheduler

14/11/21 12:14:07 INFO client. RWProxy: Connecting to ResourceManager at no
de- 1. exanpl e. conf 240. 0. 0. 10: 8032

Tot al Nodes: 3

Node- | d Node- St at e Node- Ht t p- Addr ess Nunber - of - Runni ng- Cont ai ners
node- 3. exanpl e. com 45454 RUNNI NG node- 3. exanpl e. com 50060 0
node- 1. exanpl e. com 45454 RUNNI NG node- 1. exanpl e. com 50060 0
node- 2. exanpl e. com 45454 RUNNI NG node- 2. exanpl e. com 50060 0

List all node labelsin the cluster: yarn cluster --list-node-labels
Example:
[root @ode-1 /]# yarn cluster --1list-node-I|abels

15/07/11 13:55:43 INFO inpl.Tinelinedientlnpl: Tineline service address:
http://node-1. exanpl e. com 8188/ ws/v1/timeline/

15/07/11 13:55:43 I NFO client. RWroxy: Connecting to ResourceManager at no

de- 1. exanpl e. conf 240. 0. 0. 10: 8032

Node Label s: <x:exclusivity=true>, <y:exclusivity=fal se>

List the status of a node (includes node labels): yarn node -status <Node_ID>
Example:

[root @ode-1 /]# yarn node -status node-1. exanpl e. com 45454
14/11/21 06:32:35 INFO inpl.Tinmelinedientlnpl: Tineline service address:
http://node- 1. exanpl e. com 8188/ ws/v1l/tineline/
14/ 11/ 21 06:32: 35 I NFO client. RWProxy: Connecting to ResourceManager at
node- 1. exanpl e. com 240. 0. 0. 10: 8032
Node Report :
Node-1d : node-1. exanpl e.com 45454
Rack : /default-rack
Node- State : RUNNI NG
Node- Ht t p- Address : node-1. exanpl e. com 50060
Last-Heal th-Update : Fri 21/ Nov/14 06: 32: 09: 473PST
Heal t h- Report
Containers : O
Menory- Used : OMB
Menory- Capacity : 1408MB
CPU-Used : O vcores
CPU- Capacity : 8 vcores
Node- Label s : x

Node labels are also displayed in the ResourceManager Ul on the Nodes and Scheduler pages.

If no node label is specified for a child queue, it inherits the node label setting of its parent queue. To specify achild
gueue with no node label, use a blank space for the value of the node label.

For example:

Name: yarn. schedul er. capacity.root.b. bl. accessi bl e-node- 1| abel s
Val ue:

Y ou can set a default node label on a queue. The default node label will be used if no label is specified when the job
is submitted.

For example, to set "x"as the default node label for queue "b1", you would add the following property in the capacity-
scheduler.xml file.

Nanme: yarn. schedul er. capacity.root.b. bl. def aul t-node- I abel - expressi on

16

Cloudera Runtime Cluster Management with Capacity Scheduler

Val ue: x

Y ou can use various methods to specify node |abels when submitting jobs.

e Set Node Labels when Submitting Jobs
Y ou can use the following methods to specify node labels when submitting jobs:

« ApplicationSubmissionContext.setNodel abel Expression(<node _|abel _expression>) -- sets the node |abel
expression for all containers of the application.

* ResourceRequest.setNodel abel Expression(<node_|abel_expression>) -- sets the node label expression for
individual resource requests. Thiswill override the node label expression set inApplicationSubmissionContext
.setNodel abel Expression(<node_label_expression>).

» Specify setAM ContainerResourceRequest.setNodel abel Expression in ApplicationSubmissionContext to
indicate the expected node label for the ApplicationMaster container.

Y ou can use one of these methods to specify anode label expression, and -queue to specify a queue, when you
submit YARN jobs using the distributed shell client. If the queue has alabel that satisfiesthe label expression,
it will run the job on the labeled node(s). If the label expression does not reference alabel associated with the
specified queue, the job will not run and an error will be returned. If no node label is specified, the job will run
only on nodes without a node label, and on nodes with shareable node |abelsif idle resources are available.

Note:
IE Y ou can only specify one node label in the .setNodel abel Expression methods.

For example, the following commands run asimple YARN distributed shell "sleep for along time" job. In this
example we are asking for more containers than the cluster can run so we can see which node the job runs on. We
are specifying that the job should run on queue "al", which our user has permission to run jobs on. We are also
using the -node_label _expression parameter to specify that the job will run on al nodes with label "x".

sudo su yarn

hadoop jar /opt/cl ouderal parcel s/ COH |i b/ hadoop- yar n/ hadoop-yar n-applic
ations-distributedshell.jar

-shell _command "sl eep 100" -jar /opt/clouderalparcel s/ CDH |i b/ hadoop-ya
rn/ hadoop- yar n- appl i cati ons-di stri but edshel | .jar

-num cont ai ners 30 -queue al -node_| abel _expression x

If we run this job on the example cluster we configured previously, containers are allocated on node-1, as this
node has been assigned node label "x", and queue "al" aso has node label "x":

The following commands run the same job that we specified for node label "x", but this time we will specify
queue "bl" rather than queue "al".

sudo su yarn

hadoop jar /opt/cl ouderal parcel s/ COH |i b/ hadoop- yar n/ hadoop-yar n-applic
ations-distributedshell.jar

-shell _command "sl eep 100000" -jar /opt/clouderal/parcels/CDH |i b/ hadoop-
yar n/ hadoop- yar n- appl i cati ons-di stri but edshel | .jar

-num cont ai ners 30 -queue bl -node_| abel _expression x

When we attempt to run this job on our example cluster, the job will fail with the following error message because
label "x" is not associated with queue "b1".

14/ 11/ 24 13:42:21 INFO di stributedshell.dient: Submitting application to
ASM

14/ 11/ 24 13:42:21 FATAL distributedshell.dient: Error running Cient

or g. apache. hadoop. yar n. excepti ons. | nval i dResour ceRequest Excepti on: Invalid
resource request, queue=bl doesn't

17

Cloudera Runtime Allocating Resources with Capacity Scheduler

have permi ssion to access all labels in resource request. |abel Expression
of resource request=x. Queue | abel s=y

« MapReduce Jobs and Node Labels

Currently you cannot specify a node label when submitting a MapReduce job. However, if you submit a
MapReduce job to a queue that has a default node label expression, the default node label will be applied to the
MapReduce job.

Using default node label expressions tends to constrain larger portions of the cluster, which at some point starts
to become counter-productive for jobs -- such as MapReduce jobs -- that benefit from the advantages offered by
distributed parallel processing.

The Capacity Scheduler enables multiple users and groups to share allocated cluster resources in a predictable and
timely manner.

Y ou can use the Capacity Scheduler to alocate shared cluster resources among users and groups.
The fundamental unit of scheduling in YARN is the queue. Each queue in the Capacity Scheduler has the following
properties:

e A short queue name.

e A full queue path name.

* A list of associated child-queues and applications.

» The guaranteed capacity of the queue.

« The maximum capacity of the queue.

e Alist of active users and their corresponding resource allocation limits.

* The state of the queue.

e Access contral lists (ACLS) governing access to the queue.

To enable the Capacity Scheduler using Cloudera Manager:

In Cloudera Manager, select the Y ARN service.

Click the Configuration tab.

Search for scheduler.

Find the Scheduler Class property.

Select org.apache.hadoop.yarn.server.resourcemanager.schedul er.capacity. Capacity Schedul er.
Click Save Changes.

Click the Stale Service Restart icon that is next to the Actions drop-down button to invoke the cluster restart
wizard.

8. Click Restart Stale Services.
9. Select Re-deploy client configuration.
10. Click Restart Now.

N o oM~ wbhPRE

18

Cloudera Runtime Allocating Resources with Capacity Scheduler

Capacity Scheduler queues can be set up in a hierarchy that reflects the database structure, resource requirements, and
access restrictions required by the various organizations, groups, and users that utilize cluster resources.

The fundamental unit of scheduling in YARN is a queue. The capacity of each queue specifies the percentage of
cluster resources that are available for applications submitted to the queue.

For example, suppose that a company has three organizations: Engineering, Support, and Marketing. The Engineering
organization has two sub-teams: Development and QA. The Support organization has two sub-teams. Training and
Services. And finaly, the Marketing organization is divided into Sales and Advertising. The following image shows
the queue hierarchy for this example:

L | L]

Each child queueistied to its parent queue with the yarn.schedul er.capacity.<queue-path>.queues configuration
property in the capacity-scheduler.xml file. The top-level "support”, "engineering”, and "marketing" queues would be
tied to the "root" queue.

To set the queues based on this example, perform the following:

In Cloudera Manager, select the Y ARN service.

Click the Configuration tab.

Search for scheduler.

In Capacity Scheduler Configuration Advanced Configuration Snippet (Safety Valve)add the following:

> w NP

e Add thefollowing values for the root queue:

Nanme: yarn. schedul er. capacity. root. queues
Val ue: support, engi neering, marketi ng
Description: The top-level queues bel ow root.

e Similarly, the children of the "support" queue would be defined as follows:

Nane: yarn. schedul er. capacity. support. queues
Val ue: training, services
Descri ption: child queues under support

* The children of the "engineering" queue would be defined as follows:

Nane: yarn. schedul er. capacity. engi neeri ng. queues
Val ue: devel opnent, ga
Description: child queues under engi neering

19

Cloudera Runtime Allocating Resources with Capacity Scheduler

« And the children of the "marketing" queue would be defined as follows:

Nane: yarn. schedul er. capacity. marketi ng. queues
Val ue: sal es, adverti sing
Description: child queues under marketing

Y ou must consider the various characteristics of the Capacity Scheduler hierarchical queues before setting them up.

e Therearetwo types of queues: parent queues and leaf queues.

» Parent queues enable the management of resources across organizations and sub- organizations. They can contain
more parent queues or leaf queues. They do not themselves accept any application submissions directly.

» Leaf queues are the queues that live under a parent queue and accept applications. Leaf queues do not have any
child queues, and therefore do not have any configuration property that ends with ".queues’.

« Thereisatop-level parent root queue that does not belong to any organization, but instead represents the cluster
itself.

« Using parent and leaf queues, administrators can specify capacity allocations for various organizations and sub-
organizations.

Hierarchical queues ensure that guaranteed resources are first shared among the sub-queues of an organization before
any remaining free resources are shared with queues belonging to other organizations. This enables each organization
to have control over the utilization of its guaranteed resources.

« Ateachlevel inthe hierarchy, every parent queue keeps the list of its child queues in a sorted manner based on
demand. The sorting of the queues is determined by the currently used fraction of each queue’ s capacity (or the
full-path queue names if the reserved capacity of any two queuesis equal).

» Theroot queue understands how the cluster capacity needs to be distributed among the first level of parent queues
and invokes scheduling on each of its child queues.

» Every parent queue appliesits capacity constraints to all of its child queues.

» Leaf queues hold thelist of active applications (potentially from multiple users) and schedules resourcesin a FIFO
(first-in, first-out) manner, while at the same time adhering to capacity limits specified for individual users.

Use Access-control lists (ACLSs) to control user and administrator to Capacity Scheduler queues.

Application submission can really only happen at the leaf queue level, but an ACL restriction set on a parent queue
will be applied to al of its descendant queues.

Note: To enable ACLs, you must set the value of the yarn.acl.enable property in yarn-sitexml to true. The
default value of this property isfalse.

In the Capacity Scheduler, ACLs are configured by granting queue accessto alist of users and groups with the acl_
submit_applications property. The format of the list is"user1,user2 groupl,group2” -- acomma-separated list of
users, followed by a space, followed by a comma-separated list of groups.

Note: The default value of acl_submit_applications for aroot queue is yarn, which means that only the
default yarn user can submit applicationsto that queue. Therefore, to provide specific users and groups with
access to the queue, you must explicitly set the value of acl_submit_applications to those users and groups.

The value of acl_submit_applications can also be set to "*" (asterisk) to allow access to all users and groups, or can
be set to " (space character) to block accessto all users and groups.

Asmentioned previously, ACL settings on a parent queue are applied to all of its descendant queues. Therefore, if the
parent queue uses the "*" (asterisk) value (or is not specified) to allow access to all users and groups, its child queues

20

Cloudera Runtime Allocating Resources with Capacity Scheduler

cannot restrict access. Similarly, before you can restrict access to a child queue, you must first set the parent queue to
""" (space character) to block accessto all users and groups.

For example, the following properties would set the root acl_submit_applications value to " (space character) to
block accessto all users and groups, and also restrict access to its child "support” queue to the users "sherlock” and
"pacioli" and the members of the "cfo-group” group:

Each child queueistied to its parent queue with the yarn.schedul er.capacity.<queue-path>.queues configuration
property in the capacity-scheduler.xml file. The top-level "support”, "engineering”, and "marketing” queues would be
tied to the "root" queue.

To set the ACLs based on this example, perform the following:

1. In Cloudera Manager, select the YARN service.

2. Click the Configuration tab.

3. Search for yarn-sitexml.

4. InYARN Service Advanced Configuration Snippet (Safety Valve) for yarn-sitexml field, add the following:

Nane: yarn. schedul er. capacity.root.acl_subnit_applications
Val ue:

Nanme: yarn. schedul er. capacity.root.support.acl_subnit_applications
Val ue: sherl ock, pacioli cfo-group

A separate ACL can be used to control the administration of queues at various levels. Queue administrators can
submit applications to the queue, kill applications in the queue, and obtain information about any application in the
gueue (whereas normal users are restricted from viewing al of the details of other users applications).

Administrator ACLs are configured with the acl_administer _queue property. ACLsfor this property are inherited
from the parent queue if not specified. For example, the following properties would set the root acl_administer_queue
valueto "" (space character) to block accessto al users and groups, and also grant administrator access to its child
"support” queue to the users "sherlock" and "pacioli" and the members of the "cfo- group™ group:

Administrators can define a default mapping policy to specify that applications submitted by users are automatically
submitted to queues.

With a default mapping policy, users are not required to specify the queue name when submitting their applications.
The default mapping policy can be configured to be overridden if the queue name is specified for the submitted
application.

Queue mapping is defined using a comma-separated list of mapping assignments. The order of the mapping
assignments list isimportant -- in cases where multiple mapping assignments are used, the Capacity Scheduler
processes the mapping assignmentsin left-to-right order to determine which mapping assignment to use first.

The Queue mapping assignment is defined using the yarn.schedul er.capacity.queue-mappings property in the capacity
-scheduler.xml file. Queue mapping assignments can be defined for auser (using "u") or for a group of users (using
"g"). Each mapping assignment type is described in the following sections.

Specify that all applications submitted by a specific user are submitted to a specific queue.

21

Cloudera Runtime Allocating Resources with Capacity Scheduler

* You can specify that all applications submitted by a specific user are submitted to a specific queue using the
following mapping assignment.

u: user 1: queueA

This defines a mapping assignment for applications submitted by the "userl" user to be submitted to queue
"queueA" by defaullt.

» To specify that al applications submitted by a specific group of users are submitted to a specific queue, use the
following mapping assignment:

g: groupl: queueB
This defines a mapping assignment for applications submitted by any user in the group "groupl” to be submitted
to queue "queueB" by default.
The Queue Mapping definition can consist of multiple assignments, in order of priority.
To configure queue mapping for users and groups to specific queues based on this example, perform the following:

1. In Cloudera Manager, select the YARN service.

2. Click the Configuration tab.

3. Search for scheduler.

4. In Capacity Scheduler Configuration Advanced Configuration Snippet (Safety Valve)add the following:

Nane: yarn. schedul er. capacity. queue- mappi ngs
Val ue: u: mari a: engi neering, g: webadm ns: webl og

In this example, there are two queue mapping assignments. The u:maria:engineering mapping will be respected
first, which means all applications submitted by the user "maria’ will be submitted to the "engineering" queue..
The g:webadmins:weblog mapping will be processed after the first mapping -- thus, even if user "maria" belongs
to the "webadmins" group, applications submitted by "maria" will still be submitted to the "engineering" queue.

Specify that all applications are submitted to the queue with the same name as a group.
» To specify that al applications are submitted to the queue with the same name as a group, use this mapping
assignment:
u: %user: %ri mary_group
Consider the following example configuration. On this cluster, there are two groups: "marketing" and
"engineering”. Each group has the following users:
In "marketing", there are 3 users. "angeld’, "rahul”, and "dmitry".
In "engineering", there are 2 users. "maria"’ and "greg".
<property>

<nanme>yar n. schedul er. capaci ty. queue- mappi ngs</ nane>
<val ue>u: Yuser: %ori mary_group</val ue>

22

Cloudera Runtime Allocating Resources with Capacity Scheduler

</ property>

With this queue mapping, any application submitted by members of the "marketing" group -- "angela’, "rahul",
or "dmitry" -- will be submitted to the "marketing" queue. Any application submitted by members of the
"engineering” group -- "maria" or "greg" -- will be submitted to the "engineering” queue.

To specify that all applications are submitted to the queue with the same name as a user, use this mapping
assignment:

u: %user: %ser

This requires that queues are set up with the same name as the users. With this queue mapping, applications
submitted by user "greg" will be submitted to the queue "greg"”.

Y ou can configure queue mapping to use the user name from the application tag instead of the proxy user who
submitted the job. For example, the runs Hive Queries submitted from HiveServer2 in the queue mapped from an end
user instead of a hive user.

In Cloudera Manager, select the Y ARN service.

Click the Configuration tab.

Search for scheduler.

In Capacity Scheduler Configuration Advanced Configuration Snippet (Safety Valve) add the following:

a. Enable the application-tag-based-placement property to enable application placement based on the user ID
passed using the application tags.

AW

Nanme: yarn.resourcenmanager. appli cati on-tag-based-pl acenent. enabl e

Val ue: true

Description: Set to "true" to enable application placenent based on the
user | D passed using the application tags. Wien it is enabled, it chec
ks for the userid=<userld> pattern and if found, the application will be
pl aced onto the found user's queue, if the original user has the requir
ed rights on the passed user's queue.

b. Add thelist of whitelist users who can use application tag based placement. The applications when the
submitting user is whitelisted, will be placed onto the queue defined in the yarn.schedul er.capacity.queue-ma
ppings property defined for the user from the application tag. If there is no user defined, the submitting user
will be used.

Nane: yarn.resourcenmanager. application-tag-based- pl acenent. user nane. whi t
elist

Val ue: <Hi ve process user(s)>

Description: Comma separated |ist of users who can use the application t
ag based pl acenent, if "yarn.resourcemanager. appli cation-tag-based-pl ace
ment . enabl e" i s enabl ed.

E Note: Check the Hive system user value(s) and add the value(s) to the allowlist:

1. In Cloudera Manager, navigateto Hive Configuration .
2. Search for System User.
3. Note down the value(s) set as process username(s), and add the value(s) to the allowlist.

Y ou can override default queue mappings and submit applications that are specified for queues, other than those
defined in the default queue mappings.

23

Cloudera Runtime Allocating Resources with Capacity Scheduler

To override default queue mapping to disabled (set to false) by default.

1. In Cloudera Manager, select the YARN service.

2. Click the Configuration tab.

3. Search for scheduler.

4. In Capacity Scheduler Configuration Advanced Configuration Snippet (Safety Valve) field, add the following:

Nane: yarn. schedul er. capacity. queue- mappi ngs-overri de. enabl e

Val ue: fal se

Description: If a queue mapping is present and override is set to true, it
will override the queue val ue specified by the user. This can be used b

y adm nistrators to place jobs in queues that are different than the one
specified by the user. The default is false - user can specify to a non-
defaul t queue.

To enable queue mapping override, set the property to true in the capacity-scheduler.xml file. In the following
example, queue mapping override has been enabled.

1. In Cloudera Manager, select the YARN service.

2. Click the Configuration tab.

3. Search for scheduler.

4. In Capacity Scheduler Configuration Advanced Configuration Snippet (Safety Valve) field, add the following:

Nane: yarn. schedul er. capacity. queue- mappi ngs
Val ue: u: mari a: engi neering, g: webadm ns: webl og

If user "maria’ explicitly submits an application to the "marketing” queue, the default queue assignment of
"engineering" is overridden, and the application is submitted to the "marketing" queue.

Y ou can manage your cluster capacity using queues to balance resource requirements of multiple applications from
various users.

Y ou can use the Capacity Scheduler to share cluster resources using FIFO (first-in, first-out) queues. YARN allows
you to configure queues to own afraction of the capacity of each cluster, and this specified queue capacity is fulfilled
dynamically from the available nodes.

Users can submit applicationsto different queues at multiple levelsin the queue hierarchy if the capacity is available
on the nodesin the cluster. Because total cluster capacity can vary, capacity configuration values are expressed using
percentages.

Y ou can specify the capacity property to alocate a floating-point percentage values of cluster capacity to a queue.
The following properties divide the cluster resources between the Engineering, Support, and Marketing organizations
ina6:1:3 ratio (60%, 10%, and 30%).

To specify the capacity property based on this example, add the following values for the root queue:

In Cloudera Manager, select the YARN service.

Click the Configuration tab.

Search for scheduler.

In Capacity Scheduler Configuration Advanced Configuration Snippet (Safety Valve)add the following:

A w DN

Nane: yarn. schedul er. capacity.root.engi neering.capacity

24

Cloudera Runtime

Allocating Resources with Capacity Scheduler

Val ue: 60

Nane: yarn. schedul er.capacity.root.support.capacity
Val ue: 10

Nane: yarn. schedul er. capacity.root. nmarketing.capacity
Val ue: 30

If you want the Engineering group to split its capacity between the Development and QA sub-teamsin a 1:4 ratio.
Y ou can set the following property values:

Nane: yarn. schedul er. capacity.root.engi neering. devel opnent. capacity
Val ue: 20

Nane: yarn. schedul er. capacity.root.engi neering.ga.capacity
Val ue: 80

If you want the Engineering, Support, and Marketing organizations to use a specified absolute value for each
resource type, you can set the following property values where the Engineering, Support, and Marketing queues
are each allocated 10 GB of memory and 12 vcores:

Nane: yarn. schedul er. capacity.root.engi neering.capacity
Val ue: [nenory=10240, vcor es=12]

Nane: yarn. schedul er. capacity.root.support.capacity
Val ue: [nmenory=10240, vcor es=12]

Nane: yarn. schedul er. capacity.root. marketing. capacity
Val ue: [nmenory=10240, vcor es=12]

B Note: The resource value of the parent queue is used if you do not provide a memory or avcore value.

If you want to enable resource elasticity, specify the maximum capacity as a floating-point percentage value of
resources allocated for a queue. Y ou have to set the maximum capacity to be higher than or equal to the absolute
capacity for each queue. Setting this value to -1 sets maximum capacity to 100%. In the following example, the
maximum capacity of the Engineering queue is set as 70%.

Nane: yarn. schedul er. capacity. root.engi neeri ng. maxi num capacity
Val ue: 70

For long-running applications and applications that required large containers, you must enable preemption for the
YARN queue priorities to be properly applied.

Even with preemption enabled, there are some use cases where applications might not have access to cluster resources
without setting priorities:

Long-running applications — Without setting priorities, long-running applications in queues that are under capacity
and with lower relative resource usage may not release cluster resources until they finish running.

Applications that require large containers — The issue with long-running applications is exacerbated for
applications that require large containers. With short-running applications, previous containers may eventually

25

Cloudera Runtime Allocating Resources with Capacity Scheduler

finish running and free cluster resources for applications with large containers. But with long-running servicesin
the cluster, the large containers may never get sufficiently large resources on any nodes.

e HiveLLAP—Hive LLAP (Low-Latency Analytical Processing) enables you to run Hive queries with low-latency
in near real-time. To ensure low-latency, you should set the priority of the queue used for LLAP to a higher
priority, especialy if your cluster includes long-running applications.

Note:

E To set the queue used for Hive LLAP, select Hive > Config > Settings on the Ambari dashboard, then
select a queue using the Interactive Query Queue drop-down. For more information, see the Hive
Performance Tuning guide.

For example, the following figure shows a 3-node cluster with long-running 20 GB containers. The LLAP daemons
reguire 90 GB of cluster resources, but preemption does not occur because the available queues are under capacity
with lower relative resource usage. With only 80 GB available on any of the nodes, LLAP must wait for the long-
running applicationsto finish before it can access cluster resources.

Prerequisites
Note:
E In order for YARN Queue Priorities to be applied, you must enable preemption.
To set the queue priority, perform the following:

Procedure

1. InCloudera Manager, select the YARN service.

26

Cloudera Runtime Allocating Resources with Capacity Scheduler

2. Click the Configuration tab.
3. Search for scheduler.
4. In Capacity Scheduler Configuration Advanced Configuration Snippet (Safety Valve)add the following:

Nanme: yarn. schedul er. capacity. <queue-path>.priority
Val ue: 2

All queues are set to a priority of 0 by default. Higher numbers indicate higher priority.

During scheduling, queues at any level in the hierarchy are sorted in the order of their current used capacity, and
available resources are distributed among them starting with queues that are currently the most under-served.

With respect to capacities alone, the resource scheduling has the following workflow:

» The more under-served a queue s, the higher the priority it receives during resource allocation. The most under-
served queue is the queue with the least ratio of used capacity as compared to the total cluster capacity.

* Theused capacity of any parent queue is defined as the aggregate sum of used capacity of all of its descendant
queues, recursively.

» Theused capacity of aleaf queue isthe amount of resources used by the allocated Containers of &l of the
applications running in that queue.

e Onceitisdecided to give a parent queue the currently available free resources, further scheduling is done
recursively to determine which child queue gets to use the resources -- based on the previously described concept
of used capacities.

» Further scheduling happens inside each leaf queue to allocate resources to applicationsin a FIFO order.

» Thisisaso dependent on locality, user level limits, and application limits.
* Once an application within aleaf queue is chosen, scheduling also happens within the application.
Applications may have different priorities of resource reguests.
« Toensure elagticity, capacity that is configured but not utilized by any queue dueto lack of demand is
automatically assigned to the queues that are in need of resources.

To understand the resource distribution workflow, consider the example of a 100-node cluster, each with 10 GB of
memory allocated for YARN containers, for atotal cluster capacity of 1000 GB (1 TB).

According to the previoudly described configuration, the Engineering organization is assigned 60% of the cluster
capacity, i.e., an absolute capacity of 600 GB. Similarly, the Support organization is assigned 100 GB, and the
Marketing organization gets 300 GB.

Under the Engineering organization, capacity is distributed between the Development team and the QA teaminaina
1:4 ratio. So Development gets 120 GB, and 480 GB is assigned to QA.

Now consider the following timeline of events:

 Initialy, the entire "engineering" queue is free with no applications running, while the "support" and "marketing"
queues are utilizing their full capacities.

» Users Sid and Hitesh first submit applications to the "development" leaf queue. Their applications are elastic and
can run with either all of the resources available in the cluster, or with a subset of cluster resources (depending
upon the state of the resource-usage).

« Even though the "development" queue is alocated 120 GB, Sid and Hitesh are each allowed to occupy 120
GB, for atotal of 240 GB.

« Thiscan happen despite the fact that the "devel opment” queue is configured to be run with a capacity of 120
GB. Capacity Scheduler allows elastic sharing of cluster resources for better utilization of available cluster

27

Cloudera Runtime Allocating Resources with Capacity Scheduler

resources. Since there are no other usersin the "engineering" queue, Sid and Hitesh are allowed to use the
available free resources.

e Next, users Jian, Zhijie and Xuan submit more applications to the "development" leaf queue. Even though eachis
restricted to 120 GB, the overall used capacity in the queue becomes 600 GB -- essentially taking over al of the
resources allocated to the "ga" leaf queue.

« User Gupta how submits an application to the "ga"' queue. With no free resources available in the cluster, his
application must wait.

» Given that the "development” queueis utilizing al of the available cluster resources, Gupta may or may not
be able to immediately get back the guaranteed capacity of his"ga' queue -- depending upon whether or not
preemption is enabled.

» Astheapplications of Sid, Hitesh, Jian, Zhijie, and Xuan finish running and resources become available, the
newly available Containers will be allocated to Gupta' s application.

Thiswill continue until the cluster stabilizes at the intended 1:4 resource usage ratio for the "development” and "ga"
queues.

From this example, you can see that it is possible for abusive users to submit applications continuously, and

thereby lock out other queues from resource allocation until Containers finish running or get preempted. To avoid
this scenario, Capacity Scheduler supports limits on the elastic growth of any queue. For example, to restrict the
"development” queue from monopolizing the "engineering" queue capacity, an administrator can set a the maximum-
capacity property.

To set the maximum- capacity property based on this example, perform the following:

1. In Cloudera Manager, select the YARN service.

2. Click the Configuration tab.

3. Search for scheduler.

4. In YARN Service Advanced Configuration Snippet (Safety Valve) for yarn-site.xml field, add the following:

Nane: yarn. schedul er. capacity. root.engi neering. devel opnent . maxi nrum capac
ity
Val ue: 40

Oncethisis set, users of the "development” queue can still go beyond their capacity of 120 GB, but they will not be
allocated any more than 40% of the "engineering” parent queue's capacity (i.e., 40% of 600 GB = 240 GB).

The capacity and maximum-capacity properties can be used to control sharing and elasticity across the organizations
and sub-organizations utilizing a Y ARN cluster. Administrators should balance these properties to avoid strict limits
that result in aloss of utilization, and to avoid excessive cross-organization sharing.

Capacity and maximum capacity settings can be dynamically changed at run-time using yarn rmadmin -refreshQue
ues.

Set aminimum percentage of resources allocated to each leaf queue user.

The minimum-user-limit-percent property can be used to set the minimum percentage of resources allocated to each
leaf queue user. For example, to enable equal sharing of the "services' leaf queue capacity among five users, you
would set the minimum-user-limit-percent property to 20%:

To set user limits based on this example, perform the following:

1. In Cloudera Manager, select the YARN service.
2. Click the Configuration tab.
3. Search for scheduler.

28

Cloudera Runtime Allocating Resources with Capacity Scheduler

4. In Capacity Scheduler Configuration Advanced Configuration Snippet (Safety Valve) field, add the following:

Name: yarn. schedul er. capacity.root. support.services.mni numuser-limt-p
ercent
Val ue: 20

This setting determines the minimum limit that any user’s share of the queue capacity can shrink to. Irrespective of
thislimit, any user can come into the queue and take more than his or her allocated share if there are idle resources
available.

The following table shows how the queue resources are adjusted as users submit jobs to a queue with a minimum-user
-limit-percent value of 20%:

yarn.scheduler.capacity, root. marketing. minimum-user-limit-parcent = 20

1 user submits jobs Sole user gets 100% of queue capacity.

2 users submit jobs Each user equally shares 50% of guews capacity,

3 users submit jobs Each user equally shares 33.33% of queus capacity.
4 usars submit jobs Each user equally shanss 25% of queue capacily.

5 users submit jobs Each user equally shares 20% of gueus capacity.

6™ user submits job | 6 user must wail for queus capadity 1o fres up

* Queue resources are adjusted in the same manner for a single user submitting multiple jobs in succession. If no
other users are requesting queue resources, the first job would receive 100% of the queue capacity. When the
user submits a second job, each job receives 50% of queue capacity. When the user submits a third job, each
job receives 33% of queue capacity. If a second user then submits ajob, each job would receive 25% of queue
capacity. When the number of jobs submitted by all usersreaches atotal of five, each job will receive 20%
of queue capacity, and subsequent users must wait for queue capacity to free up (assuming preemption is not
enabled).

» The Capacity Scheduler also manages resources for decreasing numbers of users. As users applications finish
running, other existing users with outstanding requirements begin to reclaim that share.

* Notethat despite this sharing among users, the FIFO application scheduling order of Capacity Scheduler does
not change. This guarantees that users cannot monopolize queues by submitting new applications continuously.
Applications (and thus the corresponding users) that are submitted first always get a higher priority than
applications that are submitted later.

Capacity Scheduler’ s leaf queues can also use the user-limit-factor property to control user resource allocations. This
property denotes the fraction of queue capacity that any single user can consume up to a maximum value, regardless
of whether or not there areidle resourcesin the cluster.

To set the maximum limit based on this example, perform the following:

1. In Cloudera Manager, select the YARN service.

2. Click the Configuration tab.

3. Search for scheduler.

4. In Capacity Scheduler Configuration Advanced Configuration Snippet (Safety Valve) field, add the following:

Nanme: yarn.schedul er. capacity.root.support.user-limt-factor
Val ue: 1

The default value of "1" means that any single user in the queue can at maximum only occupy the queue’s configured
capacity. This prevents users in a single queue from monopolizing resources across all queuesin acluster. Setting
the value to "2" would restrict the queue's users to twice the queue’s configured capacity. Setting it to avalue of 0.5
would restrict any user from using resources beyond half of the queue capacity.

These settings can also be dynamically changed at run-time using yarn rmadmin - refreshQueues.

29

Cloudera Runtime Allocating Resources with Capacity Scheduler

For aresource-intensive application, the Capacity Scheduler creates a reservation on a cluster node if the node's free
capacity can meet the particular application’'s requirements. This ensures that the resources are utilized only by that
particular application until the application reservation is fulfilled.

The Capacity Scheduler is responsible for matching free resources in the cluster with the resource requirements of
an application. Many times, a scheduling cycle occurs such that even though there are free resources on a node, they
are not sized large enough to satisfy the application waiting for aresource at the head of the queue. This typically
happens with high-memory applications whose resource demand for Containers is much larger than the typical
application running in the cluster. This mismatch can lead to starving these resource-intensive applications.

The Capacity Scheduler reservations feature addresses this issue as follows:

« When anode reportsin with afinished Container, the Capacity Scheduler selects an appropriate queue to utilize
the newly available resources based on capacity and maximum capacity settings.

« Within that selected queue, the Capacity Scheduler looks at the applicationsin a FIFO order along with the
user limits. Once a needy application is found, the Capacity Scheduler triesto seeif the requirements of that
application can be met by the node’ s free capacity.

» If thereis asize mismatch, the Capacity Scheduler immediately creates areservation on the node for the
application’ s required Container.

« Onceareservation is made for an application on a node, those resources are not used by the Capacity Scheduler
for any other queue, application, or Container until the application reservation is fulfilled.

« The node on which areservation is made reports back when enough Containers finish running such that the total
free capacity on the node now matches the reservation size. When that happens, the Capacity Scheduler marks the
reservation as fulfilled, removesit, and allocates a Container on the node.

* In some cases another node fulfills the resources required by the application, so the application no longer needs
the reserved capacity on the first node. In this situation, the reservation is simply cancelled.

To prevent the number of reservations from growing in an unbounded manner, and to avoid any potential scheduling
deadlocks, the Capacity Scheduler maintains only one active reservation at a time on each node.

Set FIFO (First-In, First-Out) or Fair scheduling policies in Capacity Scheduler depending on your reguirements.

The default ordering policy in Capacity Scheduler is FIFO (First-In, First-Out). FIFO generally works well for
predictable, recurring batch jobs, but sometimes not as well for on-demand or exploratory workloads. For these types
of jobs, Fair Sharing is often a better choice. Flexible scheduling policies enable you to assign FIFO or Fair ordering
polices for different types of workloads on a per-queue basis.

Both FIFO (First-In, First-Out) and Fair scheduling policies work differently in batch jobs and ad hoc jobs.
Batch Example

In this example, two queues have the same resources available. One uses the FIFO ordering policy, and the other uses
the Fair Sharing policy. A user submits three jobs to each queue one right after another, waiting just long enough for
each job to start. Thefirst job uses 6x the resource limit in the queue, the second 4x, and last 2x.

* Inthe FIFO queue, the 6x job would start and run to completion, then the 4x job would start and run to
completion, and then the 2x job. They would start and finish in the order 6x, 4x, 2x.

« IntheFair queue, the 6x job would start, then the 4x job, and then the 2x job. All three would run concurrently,
with each using 1/3 of the available application resources. They would typically finish in the following order: 2x,
4X, 6X.

Ad Hoc Plus Batch Example

30

Cloudera Runtime Allocating Resources with Capacity Scheduler

In this example, ajob using 10x the queue resources is running. After the job is halfway complete, the same user
starts a second job needing 1x the queue resources.

* Inthe FIFO queue, the 10x job will run until it no longer uses all queue resources (map phase complete, for
example), and then the 1x job will start.

* IntheFair queue, the 1x job will start, run, and complete as soon as possible — picking up resources from the 10x
job by attrition.

Y ou can configure the property for queue ordering policiesto fifo or fair in capacity-scheduler.xml.

Ordering policies are configured in capacity-scheduler.xml. To specify ordering policies on a per-queue basis, set the
following property to fifo or fair. The default setting is fifo.

In Cloudera Manager, select the YARN service.

Click the Configuration tab.

Search for scheduler.

In Capacity Scheduler Configuration Advanced Configuration Snippet (Safety Valve) add the following:

A w NP

Nane: yarn. schedul er. capacity. <queue- pat h>. orderi ng-policy
Val ue: fair

Y ou can use the following property to enable size-based weighting of resource allocation. When this property is
set to true, queue resources are assigned to individual applications based on their size, rather than providing an
equal share of queue resources to all applications regardliess of size. The default setting is false.

Nane: yarn. schedul er. capacity. <queue- pat h>
Val ue: true

Y ou must consider factors related to applications and resource availability in queues while configuring ordering
policies.

» Ordering policies are configured on a per-queue basis, with the default ordering policy set to FIFO. Fairness
isusually best for on-demand, interactive, or exploratory workloads, while FIFO can be more efficient for
predictable, recurring batch processing. Y ou should segregate these different types of workloads into queues
configured with the appropriate ordering policy.

« In queues supporting both large and small applications, large applications can potentially "starve" (not receive
sufficient resources). To avoid this scenario, use different queues for large and small jobs, or use size-based
weighting to reduce the natural tendency of the ordering logic to favor smaller applications.

« Usethe yarn.schedul er.capacity.<queue-path>.maximum-am-resource-percent property to restrict the number
of concurrent applications running in the queue to avoid a scenario in which too many applications are running
simultaneously. Limits on each queue are directly proportional to their queue capacities and user limits. This
property is specified as afloat, for example: 0.5 = 50%. The default setting is 10%. This property can be set for all
gueues using the yarn.schedul er.capacity.maximum-am-resource-percent property, and can also be overridden on
a per-queue basis using the yarn.schedul er.capacity.<queue-path>.maximum-am-resource-percent property.

31

Cloudera Runtime Allocating Resources with Capacity Scheduler

Queuesin YARN can be in two states: RUNNING or STOPPED. A RUNNING state indicates that a queue can
accept application submissions, and a STOPPED queue does not accept application submissions. The default state of
any configured queue is RUNNING.

In Capacity Scheduler, parent queues, leaf queues, and the root queue can all be stopped. For an application to be
accepted at any leaf queue, al the queuesin the hierarchy al the way up to the root queue must be running. This
means that if a parent queue is stopped, al of the descendant queues in that hierarchy are inactive, even if their own
stateis RUNNING.

The following example sets the value of the state property of the "support" queue to RUNNING:

In Cloudera Manager, select the YARN service.

Click the Configuration tab.

Search for scheduler.

In Capacity Scheduler Configuration Advanced Configuration Snippet (Safety Valve) add the following:

A w DN

Nane: yarn. schedul er. capacity.root.support.state
Val ue: RUNNI NG

Administrators can use the ability to stop and drain applicationsin a queue for a number of reasons, such as when
decommissioning a queue and migrating its users to other queues. Administrators can stop queues at run-time,

so that while current applications run to completion, no new applications are admitted. Existing applications can
continue until they finish running, and thus the queue can be drained gracefully without any end-user impact.

Administrators can also restart the stopped queues by modifying the state configuration property and then
refreshing the queue using yarn rmadmin -refreshQueues.

To avoid system-thrash due to an unmanageabl e load -- caused either by malicious users, or by accident -- the
Capacity Scheduler enables you to place a static, configurable limit on the total number of concurrently active (both
running and pending) applications at any onetime.

Y ou can set the maximum applications limit using the maximum-applications configuration property. The default
valueis 10,000.

In Cloudera Manager, select the Y ARN service.

Click the Configuration tab.

Search for scheduler.

In Capacity Scheduler Configuration Advanced Configuration Snippet (Safety Valve)add the following:

A w DN PR

Name: yarn. schedul er. capacity. maxi num appl i cati ons
Val ue: 10000

The limit for running applications in any specific queue is afraction of thistotal limit, proportional to its capacity.
Thisisahard limit, which means that once this limit is reached for a queue, any new applicationsto that queue

32

Cloudera Runtime Allocating Resources with Capacity Scheduler

will beregjected, and clients will have to wait and retry later. This limit can be explicitly overridden on a per-queue
basis with the following configuration property:

Nanme: yarn. schedul er. capaci ty. <queue- pat h>. maxi num appl i cati ons
Val ue: absol ute-capacity * yarn. schedul er. capacity. maxi nrum appl i cati ons

There is another resource limit that can be used to set a maximum percentage of cluster resources allocated
specifically to ApplicationMasters. The maximum-am-resource-percent property has a default value of 10%,

and exists to avoid cross-application deadlocks where significant resources in the cluster are occupied entirely

by the Containers running ApplicationMasters. This property also indirectly controls the number of concurrent
running applications in the cluster, with each queue limited to a number of running applications proportional to its

capacity.

Nane: yarn. schedul er. capacity. maxi nrum anr esour ce- per cent
Val ue: 0.1

As with maximum-applications, this limit can also be overridden on a per-queue basis:

Nane: yarn.schedul er. capacity. <queue- pat h>. maxi nrum am r esour ce- per cent
Val ue: 0.1

All of these limits ensure that no single application, user, or queue can cause catastrophic failure, or monopolize
the cluster and cause excessive degradation of cluster performance.

Capacity Scheduler Preemption allows higher-priority applications to preempt lower-priority applications.

A scenario can occur in which a queue has a guaranteed level of cluster resources, but must wait to run applications
because other queues are utilizing all of the available resources. If Preemption is enabled, higher-priority applications
do not have to wait because lower priority applications have taken up the available capacity. With Preemption
enabled, under-served queues can begin to claim their allocated cluster resources amost immediately, without having
to wait for other queues applications to finish running.

Preemption is governed by a set of capacity monitor policies, which must be enabled by setting the yarn.resourceman
ager.scheduler.monitor.enable property to true. These capacity monitor policies apply Preemption in configurable
intervals based on defined capacity allocations, and in as graceful a manner as possible. Containers are only killed as
alast resort.

The following image demonstrates the Preemption workflow:

33

Cloudera Runtime Allocating Resources with Capacity Scheduler

Giathes o Cureonl Capmsty
Orig G pnligd Capacty
5mate + Pending Requests
P + Figune oul what is needed 1o achionwe capaoity balanco
] Sedech npplecabons 1o preempl: Oeer cap, Os and FIFGD ordar
f I v Rogpess Bounds on amount of prsampion allswad for asch round
1. Romove reservatons froem the most recently assigned app
Preempt Z. lssu precmphions for containers of same apo (reverse
application{s] chronological order, List assigred contaner (et
B MRS pof-prepdon 4 s neson
1 Track thoss cortarsss thal have been Eaysd Erg)yl exocuiod
Kill eontainers prEeTRon
| 2. Afer a sel of execulion perods, foncibly kil those containers

b .

Configure preemption
Configure various properties in yarn-sitexml to set application preemption in the Capacity Scheduler.

Procedure

1. In Cloudera Manager, select the YARN service.
2. Click the Configuration tab.

3. Search for yarn-sitexml.
4

. In ResourceManager Advanced Configuration Snippet (Safety Vave) for yarn-site.xml add the following to
enable and configure Preemption:

Nane: yarn.resour cemanager. schedul er. noni t or. enabl e

Val ue: true

Description: Setting this property to "true" enables Preenption. It enab
les a set of periodic nonitors that affect the Capacity Schedul er. This
default value for this property is "false" (disabled).

Name: yarn.resourcemanager. schedul er. nonitor. policies

Val ue: org. apache. hadoop. yar n. server.resour cenanager. noni tor. capacity. Prop

ortional CapacityPreenpti onPolicy

Description: The list of SchedulingEditPolicy classes that interact with
the schedul er. The only policy currently available for preenption is the
“Proportional CapacityPreenpti onPolicy”

Name: yarn.resourcemanager. nmonitor. capacity. preenption. monitoring_interva

Val ue: 3000

Description: The time in mlliseconds between invocations of this policy.
Setting this value to a longer tinme interval will cause the Capacity Moni

tor to run less frequently.

Nane: yarn.resourcemanager. noni tor.capacity. preenption. max_wait_before_k
ill

Val ue: 15000
Description: The time in mlliseconds between requesting a preenption f
rom an application and killing the container. Setting this to a higher v

Cloudera Runtime

Allocating Resources with Capacity Scheduler

alue will give applications nore tine to respond to preenption requests
and gracefully rel ease Contai ners.

Nane: yarn.resourcemanager. noni tor.capacity. preenption.total preenption_
per round

Val ue: 0.1

Descri ption: The maxi num percent age of resources preenpted in a single
round. You can use this value to restrict the pace at which Containers are
reclainmed fromthe cluster. After conputing the total desired preenption,
the policy scales it back to this limt. This should be set to (nmenory-
of - one- NodeManager)/ (total -cluster-nenory). For exanple, if one NodeMana
ger has 32 GB, and the total cluster resource is 100 GB, the total _preem
ption_per_round should set to 32/100 = 0.32. The default value is 0.1 (1

0% .

Nane: yarn.resour cemanager. noni tor.capacity. preenption.natural _term nati
on_factor

Value: 1.0

Description: Simlar to total preenption_per_round, you can apply this
factor to sl ow down resource preenption after the preenption target is c
onputed for each queue (for exanple, “give ne 5 GB back from queue-A").
For exanple, if 5 GB is needed back, in the first cycle preenption takes
back 1 GB (20% of 5GB), 0.8 GB (20% of the renmmining 4 GB) in the next,
0.64 GB (20% of the remaining 3.2 GB) next, and so on. You can increase
this value to speed up resource reclamation. The reconmended val ue for
this parameter is 1.0, nmeaning that 100% of the target capacity is preem
pted in a cycle.

Y ou can use Priority Scheduling to run YARN applications at higher priority, regardless of other applications that

are

aready running in the cluster. Y ARN allocates more resources to applications running at a higher priority over

those running at alower priority. Priority Scheduling enables you to set an application’s priority both at the time of
submission and dynamically at run time.

Priority Scheduling works only with the FIFO (first-in, first-out) ordering policy. FIFO is the default Capacity
Scheduler ordering policy. Y ou can set cluster maximum and leaf-queue level priorities.

> w NP

In Cloudera Manager, select the Y ARN service.

Click the Configuration tab.

Search for yarn-sitexml.

In YARN Service Advanced Configuration Snippet (Safety Vave) for yarn-sitexml field, add the following:

Nane: yarn.cluster.max-application-priority
Val ue: <priorityh>
Description: The maximum priority for an application in the cluster.

Any application submitted with a priority greater than this setting has its priority reset to the yarn.cluster.max-
application-priority value.

Nanme: yarn. schedul er. capacity. root. <l eaf - queue- pat h>. def aul t - appl i cati on-
priority
Val ue: <priorityh>

35

Cloudera Runtime Allocating Resources with Capacity Scheduler

Descri ption: The default application priority in a |eaf queue.

The default application priority is used for any application submitted without a specified priority.
5. Useeither the yarn application -applD command-line option or the Cluster Application REST API to set the
priority for already running applications.
e yarn application -applD <APPID> -updatePriority <PRIORITY>
e Cluster Application Priority API

Configure Priority ACLs to ensure that only select users can submit applications with a specified priority to a queue.
Y ou must configure these Priority ACLs at the leaf queue-level.

If ACLs are already configured for user access to aleaf queue, then the Priority ACLs for the queue can include only
those users with access to that queue.

In Cloudera Manager, select the YARN service.

Click the Configuration tab.

Search for scheduler.

In Capacity Scheduler Configuration Advanced Configuration Snippet (Safety Valve) field, add the following:

pw DN

Name: yarn. schedul er. capacity. <l eaf - queue- pat h>. acl _appl i cati on_nmax_prio
rity
Val ue: [user={usernane} group={groupnane} max_priority={priority} defau

It _priority={priority}]
Descri ption: The ACL of users who can subnmit applications with configured
priority.

The following example shows how you can configure Priority ACLs for auser mariaand for the users of a group
hadoop:

Nane: yarn. schedul er. capacity. root.queuel. acl _application_nmax _priority
Val ue: [user=nari a group=hadoop nmax_priority=7 default priority=4]

The user maria and the users of the hadoop group can submit applications with a maximum priority of 7.

Intra-queue preemption helpsin effective distribution of resources within a queue based on configured user limits or
application priorities.

Intra-queue preemption prevents resource imbalances in a queue by preventing the following situations from
occurring:

« Lower-priority applications consuming all the available resources on the queue and, thereby, starving higher-
priority applications of resources.

« A few users consuming the entire queue capacity and, thereby, depriving other users from submitting higher-
priority applications. This situation could occur in spite of all the users being eligible for the queue's resources
based on configured limits.

36

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/ResourceManagerRest.html#Cluster_Application_Priority_API

Cloudera Runtime Allocating Resources with Capacity Scheduler

Intra-queue preemption is enabled by default for YARN queues. |n addition, you can configure the order of intra-
gueue preemption either by application priorities or configured user limits.

Using Cloudera Manager, you can configure the values of the following propertiesin YARN Service Advanced
Configuration Snippet (Safety Valve) for yarn-sitexml field, for intra-queue preemption:

Property Description

yarn.resourcemanager.monitor.capacity.preemption.intra-queue-preempt | Specifies whether intra-queue

ion.enabled preemption is enabled or disabled for
queues.

The default value is true.

yarn.resourcemanager.monitor.capacity.preemption.intra-queue-preempt | Specifies the order in which a queue
ion.preemption-order-policy can preempt resources. Based on your
reguirements, you can configure this
property to either of the following
values:

o userlimit-first, to initiate intra-
queue preemption based on
configured user limits. Thisisthe
default value.

o priority-firgt, to initiate intra-queue
preemption based on application
priorities.

Enabling preemption on a queue depending on application priorities ensures that higher-priority applications can
preempt resources from lower-priority applications when required.

Consider a queue gA with root.gA.capacity configured at 70%. Consider applications submitted in the following
order:

1. A user submits an application appl with priority pl. Because no other application is running on the queue, appl
uses amagjority of the resources available on the queue.

2. Shortly after appl starts running, the user submits another application app2 with the same priority as appl. In this
situation, app2 uses the resources that remain on the queue.

3. The user submits a third application app3 with a higher priority p3.

If preemption is not enabled on the queue, the lower priority applications appl and app2 consume al of the
gueue's avail able capacity leaving the higher priority application app3 starved of resources.

The following table explains the resource distribution between the three applications:

Application Priority Consumed Resour ces Pending Resour ces
appl pl 50 20
app2 pl 20 20
app3 p3 0 80

37

Cloudera Runtime Allocating Resources with Capacity Scheduler

app3

Example of resource consumption on a queue with preemption
Consider the same queue and applications with priorities as the previous example.

If preemption based on application priority is enabled on the queue, resources are preempted from appl and app?2 for
the higher-priority app3 to run.

The following table explains the resource distribution between the three applications when preemption is enabled:

Application Priority Preempted Consumed Resour ces Pending Resour ces
Resour ces

appl pl 16 34 36

app2 pl 19 1 39

app3 p3 0 35 45

38

Cloudera Runtime

Allocating Resources with Capacity Scheduler

Intra-Queue preemption based on user limits
Enabling preemption on a queue based on user limits ensures that resources are uniformly distributed among all users

who submit applications to the particular queue.

Example of resource consumption on a queue without preemption

Consider a queue gA with root.gA.capacity configured at 100% and minimum-user-limit-percent configured at 33%.
Thisimpliesthat the first three users submitting applications to the queue can each use a minimum of 33% of the
gueue's resources. If the three users are already consuming the queue's resources as specified, then any additional user
must wait for resources to be allocated before submitting applications.

Consider applications submitted in the following order:

1. Theuser ul submits an application appl with priority pl. Because no other application is running on the queue,
appl uses amajority of the resources available on the queue.

2. Shortly after appl starts running, users u2 and u3 respectively submit applications app2 and app3 around the same
time with priority pl. In this situation, app2 and app3 use the resources that remain on the queue.

If preemption is not enabled on the queue, app2 and app3 cannot consume their share of resources on the queuein

spite of having the same priority as appl.

The following table explains the resource distribution between the three applications:

Application Users Consumed Resour ces Pending Resour ces
appl ul 60 30
app2 u2 20 25
app3 u3 20 25

Example of resource consumption on a queue with preemption

Consider the same queue and applications with priorities as the previous example.

If preemption based on user limitsis enabled on the queue, resources are preempted from appl for app2 and app3 to

run.

The following table explains the resource distribution between the three applications when preemption is enabled:

39

Cloudera Runtime

Allocating Resources with Capacity Scheduler

Application Priority Preempted Consumed Resour ces Pending Resour ces
Resour ces
appl ul 26 34 56
app2 u2 0 33 12
app3 u3 0 33 12
app1 app2 app3

40

	Contents
	Cluster Management with Capacity Scheduler
	Using scheduling to allocate resources
	YARN resource allocation
	Use CPU scheduling
	Configure CPU scheduling and isolation
	Limit CPU usage with Cgroups
	Enable Cgroups
	Using Cgroups
	Partition a cluster using node labels
	Configure node labels
	Use node labels

	Allocating Resources with Capacity Scheduler
	Capacity Scheduler Overview
	Enable the Capacity Scheduler
	Set up queues
	Hierarchical Queue Characteristics
	Scheduling Among Queues

	Control access to queues with ACLs
	Define queue mapping policies
	Configure queue mapping for users and groups to specific queues
	Configure queue mapping for users and groups to queues with the same name
	Configure queue mapping to use the user name from the application tag
	Enable override of default queue mappings

	Manage cluster capacity with queues
	Set queue priorities
	Resource distribution workflow
	Resource distribution workflow example
	Set user limits
	Application reservations
	Set flexible scheduling policies
	Examples of FIFO and Fair Sharing policies
	Configure queue ordering policies
	Best practices for ordering policies

	Start and stop queues
	Set application limits
	Enable preemption
	Preemption workflow
	Configure preemption

	Enable priority scheduling
	Configure ACLs for application priorities
	Enable intra-queue preemption
	Properties for configuring intra-queue preemption
	Intra-Queue preemption based on application priorities
	Intra-Queue preemption based on user limits

