Cloudera Runtime 7.0.1

Cloud Data Access

Date published: 2019-09-23
Date modified:

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Cloud Storage CONNECLONS OVEN VIEW........cecveerieeiieesieeseeestesseeesseesseeessessssesnsessssesnses 5
The Cloud Storage CONNECIONS........ceciuieiieiieeieectee e se e e e s sre e eneesreeenne s 5
Working With Amazon S3.........ooiiiieee e e 6
Limitations Of AMEBZON S3.........coiiiiiiiiiii ittt bbbt b e e n b n e nne 7
CoNfIQUITNG ACCESS 10 S3.....o ittt ettt et b b et e £e s e et e a e e s e e Rt eheeb e e bt ebeebesbese e bebese e e ene e e eneenennas 7
Using EC2 Instance Metadata to AUINENLICALE...........oouiiriieeieeeeee e 8
Referencing S3 Data in APPIICALIONS........ciui ittt b e b bbb e e es 8
Configuring Per-BUCKEL SELIINGS........o.eieiiriirieriereeee ettt st e e b sbesbesbeseesbeneeseen 8
Customizing Per-Bucket Secrets Held in Credential Files..........cccooiiiiiiiiinini e 9
Configuring Per-Bucket Settings to Access Data Around the World............cccooeiininnninenniee, 10
ENCrypting Data ON S3........cooiiiiieieiitere ettt sttt a st besb e b e s ae b et se e e et e e et e neeaeeaeabeebesbesaenbeseereen 10
SSE-S3: Amazon S3-Managed ENCryption KEYS.........coiiiiiiiinerie e 11
SSE-KMS: Amazon S3-KMS Managed ENCryption KEYS.........cccererireniienene e 11
SSE-C: Server-Side Encryption with Customer-Provided Encryption Keys..........ccooevereieneneceeennene 12
Configuring Encryption for SPeCific BUCKELS............coii i 13
Encrypting an S3 Bucket with Amazon S3 Default ENCryption..........ccocoeievereneneieeeneeesesese e 13
Performance Impact Of ENCIYPLION. ..ottt b s s sb e sae e e e 14

Using S3Guard for CoNSIStENt S3 MEAOEEAL..........cceouriereeiirere et et sb e bbb e 14
INErOUCEION 10 SBGUBIT......c.ecuieciiieierieert ettt 14
(001170 0qT 0o IS ST = o ISR 15
Monitoring and MaintaiNiNg S3GUEIT...........eierieririiiieee ettt e e e e se e eaeeaeas 16
Disabling S3Guard and destroying a table...........ccooiriiii e s 16
Pruning Old Data from S3GUard TabIES.......cccooiiiiiiiieie e e e 16
IMpOorting @ BUCKEL INtO S3GUAIT........c.creriruerierieitestesie et sbe e st be e e b e e e e e eneenes 17
Verifying that S3Guard is Enabled on @ BUCKEL.............cooiiiiiiiini e 17

USING the SBGUAIT CLI...uiiiiiiiiiieie ettt st b bbb nn e 18
S3GUArd: OPErational ISSUES..........coueiririii ittt sttt sttt b e b bbb e e b e b e e e e e e e s ebenaas 18
Safely Writing to S3 Through the S3A COMMUTLEYS.........coiiiiiee e e 19
Introducing the S3A COMMULLEYS.......c.ciiiiiie et ae b b sae b e e 19
Configuring Directories for INtermediate Dafa...........coceiererererierieee e e s 20

Using the Directory Committer in MapREAUCE..........ccoiiiiiiieeeeee e 21
Verifying That an S3A Committer Was USE.......c.oiiiiieieeeereeerene et 21
Cleaning up after failled JODS.........ooo s 21

Using the S3Guard Command to List and Delete Uploads............ccoeerererininene e 21
Advanced Committer CONfIQUIBLION.........cccciiiiriiirerie sttt s e e e e 22
SeCUNNG the S3A COMMITTELS.....coeiiiiieie ettt e bt et e b e et e e e e eneebe e 23

The S3A Committers and Third-Party ODJECt SEOFES........cocueireririrerie e 23
Limitations Of the S3A COMMITIEIS........eoiiiereee et 23
Troubleshooting the S3A COMMUTIENS........c.iiiiereieieeeee ettt sbe e 24
Security Model and OPerations 0N S3.........c.coi ittt ettt e e s e be e e e e e esesaeeaesresaesaens 24
S3A and ChecksumsS (AAVANCED FEALUNE)..........c ettt sttt et be bbbt see s e e s 25
A List of S3A CoNnfiguration PrOPEItIES.........coiiiuiiiririerierierie ettt sttt see e be e e e e e e e e e eneas 26
Working With VErsioned S3 DUCKELS..........coiiiiieee et et sb e s sb e 26
Working with Third-party S3-compatible ObjECt SLOrES........ccccorireririeierere et 27

IMpProving PerformanCe fOr S3A ettt bbb ettt e e e et e e et e e e se e st ebesbesbenaens 28

Working with S3 buckets in the Same AWS regioN..........ccoorireninene e 28

Configuring and tuning S3A bIOCK UPIOAU..........cooiiiicee e 28
Optimizing S3A read performance for different file types.......cooeve e 31
S3 PerformanCe ChECKIISE..........oiiiiieireeere et 32

Troubleshooting S3 AN S3GUAIT........cocoiiiiiirieiese et sb e s bbb e e b et e e e e e e e e e e eneeresaeene 32

Cloudera Runtime Cloud storage connectors overview

This content provides information and steps required for, using, securing, tuning performance, and troubleshooting
access to the cloud storage services using CDP cloud storage connectors available for Amazon Web Services
(Amazon S3). This content provides information and steps required for, using, securing, tuning performance, and
troubleshooting access to the cloud storage services using CDP cloud storage connectors available for Amazon Web
Services (Amazon S3) and Microsoft Azure (ADLS Gen 2).

The primary audience of this content are the administrators and users of CDP deployed on cloud Infrastructure-as-
aService (1aaS) such as Amazon Web Services (AWS). The primary audience of this content are the administrators
and users of CDP deployed on cloud Infrastructure-as-a-Service (1aaS) such as Amazon Web Services (AWS) and
Microsoft Azure.

Y ou may also use this content if your CDP is deployed in your own data center and you plan to access cloud storage
through the connectors; however, your experience and performance may vary based on the network bandwidth
between your data center and the cloud storage service. In addition, you can optionally configure other features where
available.

When deploying CDP clusters on cloud 1aaS, you can take advantage of the native integration with the object storage
services available on Amazon S3 on AWS . Thisintegration is through cloud storage connectors included with CDP.
Their primary function is to help you connect to, access, and work with data the cloud storage services.

The cloud connectors alow you to access and work with data stored in Amazon S3, including but not limited to the
following use cases:

» Collect datafor analysis and then load it into Hadoop ecosystem applications such as Hive or Spark directly from
cloud storage services.

» Persist datato cloud storage services for use outside of CDP clusters.

« Copy data stored in cloud storage services to HDFS for analysis and then copy back to the cloud when done.
» Share data between multiple CDP clusters — and between various external non-CDP systems.

» Back up CDP clusters using distcp.

The cloud object store connectors are implemented as individual Hadoop modules. The libraries and their
dependencies are automatically placed on the classpath.

Cloudera Runtime Working with Amazon S3

Hadoop Ecosystem Applications
(Hive queries, MapReduce, Spark, etc.)

Hadoop Filesystem API

"

d h ¢ YT wass J (N | S3A 1 ‘ GCS
HDFS WebHDFs ~ Connector ABFS Connector | | Connector
Client RESTAPI | | | Connector :

L mele AWS SDK GCS SDK

N/ 1T |
N/ L | I

r

Azure Google
:F:E Clusier Azure Datalake Amazon 53 Cloud
system Storage Gen 2 Storage

- -

Amazon S3 is an object store. The S3A connector implements the Hadoop filesystem interface using AWS Java SDK
to access the web service, and provides Hadoop applications with a filesystem view of the buckets. Applications can
manipul ate data stored in Amazon S3 buckets with an URL starting with the s3a:// prefix.

Amazon S3 can not be used as a replacement for HDFS as the cluster filesystem in CDP. Amazon S3 can be used asa
source and destination of work.

The Amazon S3 object store is the standard mechanism to store, retrieve, and share large quantities of datain AWS.
The features of Amazon S3 include:

» Object store model for storing, listing, and retrieving data.

« Support for objects up to 5 terabytes, with many petabytes of data allowed in asingle "bucket".
« Dataisstored in Amazon S3 in buckets which are stored in different AWS regions.

» Buckets can be restricted to different users or IAM roles.

» Datastored in an Amazon S3 bucket is billed based on the size of datahow long it is stored, and on operations
accessing this data. In addition, you are billed when you transfer data between regions:

» Datatransfers between an Amazon S3 bucket and a cluster running in the same region are free of download
charges (except in the special case of bucketsin which datais served on a user-pays basis).
» Datadownloaded from an Amazon S3 bucket located outside the region in which the bucket is hosted is billed
per megabyte.
« Datadownloaded from an Amazon S3 bucket to any host over the internet is also billed per-Megabyte.
« Datastored in Amazon S3 can be backed up with Amazon Glacier.

The Hadoop client to S3, called "S3A", makes the contents of a bucket appear like afilesystem, with directories, files
in the directories, and operations on directories and files. As aresult, applications which can work with data stored in
HDFS can also work with data stored in S3. However, since S3 is an object store, it has certain limitations that you
should be aware of.

http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://aws.amazon.com/glacier/

Cloudera Runtime Working with Amazon S3

Even though Hadoop's S3A client can make an S3 bucket appear to be a Hadoop-compatible filesystem, it is still an
object store, and has some limitations when acting as a Hadoop-compatible filesystem.

The key thingsto be aware of are:

e Operations on directories are potentially slow and non-atomic.

* Not all file operations are supported. In particular, some file operations needed by Apache HBase are not available
— s0 HBase cannot be run on top of Amazon S3.

« Dataisnot visible in the object store until the entire output stream has been written.

« Neither the per-file and per-directory permissions supported by HDFS nor its more sophisticated ACL mechanism
are supported.

« Bandwidth between your workload clusters and Amazon S3 is limited and can vary significantly depending on
network and VM load.

For these reasons, while Amazon S3 can be used as the source and store for persistent data, it cannot be used asa
direct replacement for a cluster-wide filesystem such as HDFS, or be used as defaultFS.

IDBroker isa REST API built as part of Apache Knox's authentication services. It allows an authenticated user to
exchange a set of credentials or atoken for cloud vendor access tokens. It manages mapping LDAP usersto Freel PA
cloud identities for data access. It performs identity mapping for access to object stores.

This section provides information about the options that are enabled by default. For information on how IDBroker
works in CDP, see Management Console documentation.

For Apache Hadoop applications to be able to interact with Amazon S3, they must know the AWS access key and
the secret key. This can be achieved in multiple ways, including configuration properties, environment variables, and
EC2 instance metadata. While the first two options can be used when accessing S3 from a cluster running in your
own data center. IAM roles, which use instance metadata should be used to control access to AWS resources if your
cluster is running on EC2.

Deployment Scenario Authentication Options

Cluster runs on EC2 Use IAM rolesto bind your EC2 VMsto a specific

role, and so manage its access to AWS resources.
IDBroker will provide authenticated users with the AWS
credentials they need to access datain S3. Thereisno
need to manually provide any AWS login credentials
directly to users

Cluster runsin your own data center Use configuration properties to authenticate. Y ou can set
the configuration properties globally or per-bucket.

Temporary security credentials, also known as "session credentials*, can be issued. These consist of a secret key with
alimited lifespan, along with a session token, another secret which must be known and used alongside the access key.
The secret key is never passed to AWS services directly. Instead it is used to sign the URL and headers of the HTTP
request.

By default, the S3A filesystem client follows the following authentication chain:

1. The AWSIlogin details are looked for in the job configuration settings.
2. The AWS environment variables are then looked for.

3. An attempt is made to query the Amazon EC2 Instance Metadata Service to retrieve credential's published to EC2
VMs.

https://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html

Cloudera Runtime Working with Amazon S3

If your cluster is running on EC2, the standard way to manage access is via Amazon ldentity and Access Management
(IAM),which alows you to create users, groups, and roles to control accessto services such as Amazon S3 via
attached policies.

A role does not have any credentials such as password or access keys associated with it. Instead, if auser is assigned
to arole, access keys are generated dynamically and provided to the user when needed. For more information, refer to
IAM Roles for Amazon EC2 in Amazon documentation.

When launching your cluster on EC2, specify an IAM role that you want to use; if you are planning to use S3 with
your cluster, make sure that the role associated with the cluster includes a policy that grants access to S3. For more
information, refer to Using an IAM Role to Grant Permissions to Applications Running on Amazon EC2 Instancesin
Amazon documentation. No additional configuration is required.

Note: You can use IAM Rolesto control access to keys stored in Amazon's KMS Key Management service.
For more information, refer to Overview of Managing Accessto Your AWS KM S Resources in Amazon
documentation.

Y ou can reference datain Amazon S3 using a URL starting with the s3a:// prefix followed by bucket name and path
to file or directory.

The URL structureis:
s3a: // <bucket>/<dir>/<fil e>

For example, to access afile called "mytestfile” in adirectory called "mytestdir”, which is stored in a bucket called
"mytestbucket”, the URL is:

s3a: // nytestbucket/nytestdir/nmytestfile
The following FileSystem shell commands demonstrate access to a bucket named mytestbucket:

hadoop fs -1s s3a://nytestbucket/
hadoop fs -nkdir s3a://nytestbucket/testDir

hadoop fs -put testFile s3a://nytestbucket/testFile
hadoop fs -cat s3a://mytestbucket/testFile

Y ou can specify bucket-specific configuration values which override the common configuration values.

1. Authentication mechanisms and credentials
2. Encryption settings

3. The specific S3 endpoints to send HTTP requests to. Thisis essential when working with S3 regions which only
support the "V4 authentication API™, in case of which callers must always declare the explicit region.

All fs.s3a options other than a small set of unmodifiable values (currently fs.s3a.impl) can be set on a per-bucket
basis.

To set a bucket-specific option:

https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#managing-access

Cloudera Runtime Working with Amazon S3

1. Add anew configuration, replacing the fs.s3a. prefix on an option with fs.s3a.bucket. BUCKETNAME, where
BUCKETNAME is the name of the bucket.

For example, if you are configuring access key for a bucket called "nightly"”, instead of using fs.s3a.access.key
property name, use fs.s3a.bucket.nightly.access.key.

2. When connecting to a bucket, al options explicitly set for that bucket will override the base fs.s3a. values, but
they will not be picked up by other buckets.

Y ou may have a base configuration to use the IAM role information available when deployed in Amazon EC2 VM or
an AWS container service.

<property>

<name>f s. s3a. aws. credenti al s. provi der </ nanme>

<val ue>or g. apache. hadoop. fs. s3a. aut h. | AM nst anceCr edent i al sProvi der </ val
ue>
</ property>

Thiswill be the default authentication mechanism for S3A buckets.

A bucket s3a://nightly/ used for nightly data uses a session key, so its bucket-specific configuration is:

<property>
<name>f s. s3a. bucket . ni ghtly. access. key</ name>
<val ue>AKAACCES- SKEY- 2</ val ue>

</ property>

<property>
<name>f s. s3a. bucket . ni ghtly. secret. key</ name>
<val ue>SESS| ON- SECRET- KEY</ val ue>

</ property>

<property>
<nanme>f s. s3a. bucket . ni ghtl y. sessi on. t oken</ name>
<val ue>SHORT- LI VED- SESSI ON- TOKEN</ val ue>

</ property>

<property>

<nanme>f s. s3a. bucket . ni ghtly. aws. credenti al s. provi der </ name>

<val ue>or g. apache. hadoop. f s. s3a. Tenpor ar yAWSCr edent i al sPr ovi der </ val ue>
</ property>

Finally, the public s3a://landsat-pds/ bucket could be accessed anonymously, so its bucket-specific configuration is:

<property>

<nanme>f s. s3a. bucket . | andsat - pds. aws. credenti al s. provi der </ nane>

<val ue>or g. apache. hadoop. f s. s3a. Anonynous AWSCr edent i al sProvi der </ val ue>
</ property>

For all other buckets, the base configuration is used.

JCEK s credential files support the same per-bucket settings as those in XML files. To provide different credentials for
different buckets, simply create par-bucket entriesin the JCEK S file with the relevant secrets.

1. Set base properties for fs.s3a.secret.key and fs.s3a.access.key in the JCEK S file. These will be the default.

2. Set dl non-security properties per-bucket for abucket called "frankfurt-1" in the core-sitexml. These will override
the base properties when talking to the bucket "frankfurt-1".

Cloudera Runtime Working with Amazon S3

3. For the AWS authentication secrets, set the fs.s3a.frankfurt-1.access.key and fs.s3a.frankfurt-1.secret.key
properties in the JCEK Sfile.

Credential Provider APl Guide

S3 buckets are hosted in different AWS regions, the default being "US-East”. The S3A client talksto this region by
default, issuing HTTP requests to the server s3.amazonaws.com. This central endpoint can be used for accessing any
bucket in any region which supports using the V2 Authentication API, abeit possibly at a reduced performance.

Each region has its own S3 endpoint, documented by Amazon. The S3A client supports these endpoints. Whileit is
generally simpler to use the default endpoint, direct connections to specific regions (i.e. connections viaregion's own
endpoint) may deliver performance and availability improvements, and are mandatory when working with the most
recently deployed regions, such as Frankfurt and Seoul.

When deciding which endpoint to use, consider the following:

1. Applications running in EC2 infrastructure do not pay for data transfers to or from local S3 buckets. In contrast,
they will be billed for access to remote buckets. Therefore, wherever possible, aways use local buckets and local
copies of data.

2. When the V1 request signing protocol is used, the default S3 endpoint can support data transfer with any bucket.

3. When the V4 request signing protocol is used, AWS requires the explicit region endpoint to be used — hence S3A
must be configured to use the specific endpoint. Thisis done in the configuration option fs.s3a.endpoint.

4. All endpoints other than the default endpoint only support interaction with buckets local to that S3 instance.

If the wrong endpoint is used, the request may fail. This may be reported as a 301 redirect error, or as a400 Bad
Request. Take these failures as cues to check the endpoint setting of a bucket.

The up to date list of endpointsis provided by Amazon: https.//docs.aws.amazon.com/general/latest/gr/
rande.html#s3_region

The following examples show per-bucket endpoints set for the "landsat-pds* and "eu-dataset” buckets, with the
endpoints set to the default central endpoint and EU/Ireland, respectively:

<property>

<name>f s. s3a. bucket . | andsat - pds. endpoi nt </ nanme>

<val ue>s3. amazonaws. conx/ val ue>

<descri pti on>The endpoint for s3a://l|andsat-pds URLs</description>
</ property>
<property>

<name>f s. s3a. bucket . eu- dat aset . endpoi nt </ nane>

<val ue>s3- eu-west - 1. amazonaws. conx/ val ue>

<descri pti on>The endpoi nt for s3a://eu-dataset URLs</description>
</ property>

Explicitly declaring a bucket bound to the central endpoint ensuresthat if the default endpoint is changed to a new
region, data stored in US-east is till reachable.

Amazon S3 supports a number of encryption mechanisms to better secure the datain S3.

e In Server-Side Encryption (SSE), the datais encrypted before it is saved to disk in S3, and decrypted when it is
read. This encryption and decryption takes place in the S3 infrastructure, and is transparent to (authenticated)
clients.

10

https://github.com/apache/hadoop/blob/trunk/hadoop-common-project/hadoop-common/src/site/markdown/CredentialProviderAPI.md
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html

Cloudera Runtime Working with Amazon S3

e InClient-Side Encryption (CSE), the data is encrypted and decrypted on the client, that is, inside the AWS S3
SDK. This mechanism is not supported in Hadoop due to incompatibilities with most applications. Specifically,
the amount of decrypted data is often less than the file length, breaking all the code which assumes that the the
content of afileisthe same size asthat stated in directory listings.

E Note: CDP only supports Server-Side Encryption (SSE) and does not support Client-Side Encryption (CSE).

For this server-side encryption to work, the S3 servers require secret keys to encrypt data, and the same secret keysto
decrypt it. These keys can be managed in three ways:

e SSE-S3: By using Amazon S3-Managed Keys
e SSE-KMS: By using AWS Key Management Service
e SSE-C: By using customer-supplied keys

In general, the specific configuration mechanism can be set via the property fs.s3a.server-side-encryption-algorithm
in core-site.xml. However, some encryption options require extra settings. Server Side encryption slightly slows down
performance when reading data from S3.

It is possible to configure encryption for specific buckets and to mandate encryption for a specific S3 bucket.

Troubleshooting S3 and S3Guard

In SSE-S3, al keys and secrets are managed inside S3. This is the simplest encryption mechanism.

To write S3-SSE encrypted files, the value of fs.s3a.server-side-encryption-algorithm must be set to that of the
encryption mechanism used in core-site.xml; currently only AES256 is supported.

<property>
<nanme>f s. s3a. server -si de-encrypti on-al gorit hns/ name>
<val ue>AES256</ val ue>

</ property>

Once s&t, all new datawill be uploaded encrypted. Thereis no need to set this property when downloading data— the
data will be automatically decrypted when read using the Amazon S3-managed key.

To learn more, refer to Protecting Data Using Server-Side Encryption with Amazon S3-Managed Encryption Keys
(SSE-S3) in AWS documentation.

Note: When encrypted files are renamed, they are de-encrypted and then re-encrypted with the encryption
settings algorithm of the client application performing the rename. If a client with encryption disabled
renames an encrypted file, the new file will be unencrypted.

Amazon offers a pay-per-use key management service, AWS KMS. This service can be used to encrypt data on S3
using keys which can be centrally managed and assigned to specific rolesand IAM accounts.

The AWS KMS can be used by S3 to encrypt uploaded data. When uploading data encrypted with SSE-KMS, the
named key that was used to encrypt the datais retrieved from the KM S service, and used to encode the per-object
secret which encrypts the uploaded data. To decode the data, the same key must be retrieved from KM S and used to
unencrypt the per-object secret key, which is then used to decode the actua file.

KMS keys can be managed by an organization's administratorsin AWS, including having access permissions
assigned and removed from specific users, groups, and IAM roles. Only those "principals' with granted rightsto a
key may access it, hence only they may encrypt data with the key, and decrypt data encrypted with it. This allows
KMS to be used to provide a cryptographically secure access control mechanism for data stores on S3.

11

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://aws.amazon.com/documentation/kms/
http://docs.aws.amazon.com/kms/latest/developerguide/services-s3.html

Cloudera Runtime Working with Amazon S3

Note:

E AWSKMS serviceis not related to the Key Management Service built into Hadoop (Hadoop KMS). The
Hadoop KM S primarily focuses on managing keys for HDFS Transparent Encryption. Similarly, HDFS
encryption is unrelated to S3 data encryption.

To enable SSE-KMS, the property fs.s3a.server-side-encryption-algorithm must be set to SSE-KMS in core-site.xml.

<property>
<name>f s. s3a. server - si de-encrypti on-al gorit hns/ name>
<val ue>SSE- KM5</ val ue>

</ property>

The ID of the specific key used to encrypt the data should also be set in the property fs.s3a.server-side-encryptio
n.key:

<property>

<nanme>fs. s3a. server -si de-encrypti on. key</ nane>

<val ue>arn: aws: kns: us- west - 2: 360379543683: key/ 071a86f f - 8881- 4ba0- 9230- 95af
6d01ca0l</ val ue>

</ property>

If your account is set up with adefault KM S key and fs.s3a.server-side-encryption.key is unset, the default key will
be used.

Alternatively, organizations may define a default key in the Amazon KMS; if adefault key is set, then it will be used
whenever SSE-KMS encryption is chosen and the value of fs.s3a.server-side-encryption.key is empty.

Note: AWS Key Management Service (KMS) is pay-per-use, working with data encrypted viaKM S keys
B incurs extra charges during data |/O.
To learn more, refer to Protecting Data Using Server-Side Encryption with AWS KM S-Managed Keys (SSE-KMS) in
the AWS documentation.
IE Note: The AWS KMS key used must be in the same region as the S3 Bucket where the data is being
encrypted.

Note: The KMSkey specified is only used when writing new data, or when renaming objects. When reading
E an existing object, whichever KM S key was used to encrypt the data is reused to decrypt it.

All 1AM roles which need to read data encrypted with SSE-KM S must have the permissions to decrypt using the
specific key the data was encrypted with: kms:Decrypt

All 1AM roles which need to both read and write data need the encrypt and decrypt permissions (encrypt-only
permission is not supported).

kms: Decr ypt
kms: Gener at eDat akey

If arole does not have the permissionsto read data, it will fail with an java.nio.AccessDeniedException.

Note: The renaming files require the permission to decrypt the data, asit is decrypted and then re-encrypted
asitiscopied. See AWS KMS API Permissions; Actions and Resources Reference for more detailson KMS
permissions.

In SSE-C, the client supplies the secret key needed to read and write data.

12

https://aws.amazon.com/kms/
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html

Cloudera Runtime Working with Amazon S3

The same SSE-C key must be used on all clients reading or writing the data; this must be set client-side, in the hadoop
configuration.

For hadoop applications to work reliably, SSE-C with acommon key must be used exclusively within abucket if it is
to be used at all. Thisisthe only way to ensure that path and directory listings do not fail with "Bad Request” errors.

To use SSE-C, the configuration option fs.s3a.server-side-encryption-algorithm must be set to SSE-C, and a base-64
encoding of the key placed in fs.s3a.server-side-encryption.key.

<property>
<name>f s. s3a. server - si de-encrypti on-al gorit hns/ name>
<val ue>SSE- C</ val ue>

</ property>

<property>

<nanme>fs. s3a. server -si de-encrypti on. key</ nane>

<val ue>REgbnd0l Gv2ZXl gb®&nl HRoaXMya2V5l Ryl RB0aGvyd2| zZSBzaGFy ZSBpdA==</
val ue>
</ property>

This property can be set in aHadoop JCEK S credentia file, which is significantly more secure than embedding
secretsin the XML configuration file.

S3A's per-bucket configuration mechanism can be used to configure the encryption mechanism and credentials for
specific buckets.

For exampl e, to access the bucket called "production” using SSE-KMS with the key 1D arn:aws.kms;us-west-2:36
0379543683:key/071a86ff-8881-4ba0l-9230-95af 6d01call, the settings are as follows:

<property>
<name>f s. s3a. bucket . producti on. server -si de-encrypti on-al gorit hnk/ nane>
<val ue>SSE- KM5</ val ue>

</ property>

<property>

<nanme>f s. s3a. bucket . producti on. server - si de-encrypti on. key</ nane>

<val ue>arn: aws: kns: us- west - 2: 360379543683: key/ 071a86f f - 8881- 4ba0- 9230- 95
af 6d01ca0l</val ue>
</ property>

To guarantee that all data uploaded to a bucket is encrypted, it is possible to set a default encryption option for a
bucket in the AWS management console.

For more information, see Amazon S3 Default Encryption for S3 Buckets.

« Thisdoes not encrypt any data already stored in the bucket.

« S3A clients can till be configured to use a different encryption option if desired; thisis the default value to use if
no other policy was set.

A default encryption across a bucket offers significant benefits:

» |t guaranteesthat all clients uploading data have encryption enabled.

« |t guarantees that when afile is renamed, it will be re-encrypted, even if the client does not explicitly request
encryption.

« |If applied to an empty bucket, it guarantees that all future uploaded data in the bucket is encrypted.

13

https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html

Cloudera Runtime Working with Amazon S3

We recommend selecting an encryption policy for a bucket when the bucket is created, and setting it in the bucket
policy. This stops misconfigured clients from unintentionally uploading unencrypted data, or decrypting data when
renaming files.

Server Side encryption slightly slows down performance when reading data from S3, both in the reading of data
during the execution of a query, and in scanning the files prior to the actual scheduling of work.

Amazon throttles reads and writes of S3-SSE data, which resultsin asignificantly lower throughput than normal S3
10 requests. The default rate, 600 requestsminute, means that at most ten objects per second can be read or written
using SSE-KMS per second — across an entire hadoop cluster (or the entire customer account). The default limits
may be suitable during development — but in large scale production applications the limits may rapidly be reached.
Contact Amazon to increase capacity.

S3Guard mitigates the issues related to S3's eventual consistency on listings by using atable on Amazon DynamoDB
as aconsistent metadata store. This guarantees a consistent view of data stored in S3.

In addition, S3Guard may improve query performance by reducing the number of times S3 needs to be contacted, —
as DynamoDB is significantly faster.

Note: S3Guard should always be enabled on CDP in AWS asiit is critical for guaranteeing the correctness of
B interactions with S3.

Amazon S3 is an object store, not afilesystem. There are no directories, only objects. The S3A connector lets
Hadoop, Hive and Spark applications see filesin a directory tree, but really they are working on the objects
undernesth, by listing them and working on each one one-by-one.

Some of the operations which filesystems support are actually absent, with rename being the key one. The S3A
connector mimicsfile or directory rename, by copying each file then deleting the original, which takes about 6-10
megabytes/second.

The S3 Object Storeis "eventually consistent”: when afile is deleted or overwritten it can take time for that change to
propagate across al serversreplicating the data. As aresult, newly deleted files can still be visible, while queries of
updated files can return the old version.

There is no specific time period by when the object store will be eventually consistent. The paper "Benchmarking
Eventual Consistency" has shown it can vary by time of day, and be ten seconds or more — sometimes much more.

A critical problem islisting inconsistency: when aquery is made of S3 to list all objects under a specific path, that
listing can be out of date. This means that those operation on files under a"directory" mimicked by listing and acting
on all objects underneath it are at risk of not seeing the complete list of files. Newly created files are at most risk.

This may affect the following operations on S3 data:

* When listing files, newly created objects may not be listed immediately and deleted objects may continue to
be listed — which means that your input for data processing may be incorrect. In Hive, Spark, or MapReduce,
this could lead to erroneous results. In the worst case, it could potentially lead to dataloss at the time of data
movement.

« When renaming directories, the listing may be incomplete or out of date, so the rename operation loses files. This
is very dangerous as MapReduce, Hive, Spark and Tez all rely on rename to commit the output of workers to the
final output of the job. If dataislost, the output is incorrect —something which may not be immediately obvious.

» When deleting directories, the listing may be inconsistent, so not all objects are deleted. If another job writes data
to the same directory path, the old data may <till be present.

14

http://docs.aws.amazon.com/kms/latest/developerguide/limits.html
http://www.aifb.kit.edu/images/8/8d/Ic2e2014.pdf
http://www.aifb.kit.edu/images/8/8d/Ic2e2014.pdf

Cloudera Runtime Working with Amazon S3

» During an ETL workflow, in a sequence of multiple jobs that form the workflow, the next job is launched
soon after the previous job has been completed. Applications such as Oozie rely on marker filesto trigger the
subsequent workflows. Any delay in the visibility of these files can lead to delays in the subsequent workflows.

» During existence-guarded path operations, if a deleted file which has the same name as atarget path appearsin a
listing, some actions may unexpectedly fail due to the target path being present — even though the file has already
been deleted.

This eventually consistent behavior of S3 can cause seemingly unpredictable results from queries made against it,
limiting the practical utility of the S3A connector for use cases where data gets modified.

S3Guard mitigates the issues related to S3's eventual consistency on listings by using a table on Amazon DynamoDB
as a consistent metadata store. This guarantees a consistent view of data stored in S3. In addition, S3Guard may
improve query performance by reducing the number of times S3 needs to be contacted, —as DynamoDB is
significantly faster.

How S3Guard Works

S3Guard is afeature in the Hadoop S3A connector which uses Amazon's DynamoDB to cache information about
created and deleted files, "The S3Guard Database'.

When an application using the S3A Connector with S3Guard enabled manipulates objects in S3, such as creating,
deleting or "renaming" them, the S3Guard database is updated. Newly created/copied files are added to the table,
while deleted files have "tombstone markers" added to indicate that they have been deleted.

When adirectory islisted on S3, the information from the S3Guard database is used to update the listing with this
information: new files are added while those files with tombstone markers are not included in alisting.

Asaresult, thelisting is up to date with all operations performed on the directory by al clients using S3Guard.

When afileis opened for reading, or any existence check made, the S3Guard database is checked first. If an entry is
found in the database. that is used as the response —omitting all checks of S3 itself. Thisincludes tombstone markers,
which are used as evidence that afile does not exist. The caller is given the current state of the object (existence/
nonexistence, size and type), without S3 being queried at all. This can be significantly faster than interacting with S3.

With this design, directory listings are kept consistent across a sequence of operations, even across multiple servers
—indeed, across multiple Hadoop clusters.

What S3Guard Cannot Do

S3Guard only stores filenames, lengths, "etags" and optional version datain its DynamoDB tables. The contents of
thefilesare still stored in S3. If afile is overwritten, S3's eventual consistency may mean that the old dataiis still
present. S3 triesto detect this by using the following techniques:

« Storing the "etag" checksum of each file and detecting when the value is different from that in S3.
« Inan S3 bucket with "versioning" enabled, the version is used to guarantee that the file loaded is the one matching
the S3Guard record.

When afileisloaded, the S3A connector will make repeated attempts to load a file with the expected etag and version
ID before concluding that it is not available — at which point the operation will fail.

S3Guard does not provide the "atomic directory rename" operation which many applications rely on to commit their
intermediate work to the final destination of the job. This does not work in S3 where files are copied one-by-onein a
slow process. If this operation isinterrupted, the source and destination will be in an unknown state.

« For Spark applications, use an S3A committer.

« When copying files using distcp, avoid the -atomic option. All it will do is make the copy slower. Use the -direct
operation for a direct upload, and be aware that a failure during the copy can leave the destination inconsistent.

Y ou can enable S3Guard when configuring your CDP environment.

For more information, see Register an AWS environment in the Management Console documentation.

15

https://docs.cloudera.com/management-console/cloud/environments/topics/mc-environment-register-aws-ui.html

Cloudera Runtime Working with Amazon S3

The DynamoDB console on AWS allows you to monitor the workload on DynamoDB.

If you are not using auto scaling, the AWS console allows you to adjust the read/write capacities of the table. The
command hadoop s3guard set-capacity can also be used to alter these values.

To disable S3Guard, you must delete the per-bucket fs.s3a.metadatastore.impl parameter or set it back to the default
org.apache.hadoop.fs.s3a.s3guard.Null M etadataStore.

If you are not using a shared table, in DynamoDB console on AWS, delete the DynamoDB table to avoid incurring
unnecessary costs.

The command hadoop s3guard destroy can be used on the command line to destroy atable.

hadoop s3guard destroy s3a://guarded-tabl e/
2018-05-31 15:35:39,075 [main] | NFO s3guard. S3CGuardTool (S3CuardTool.java:
i ni t Met adat aSt ore(270)) -
Met adat a st ore DynanoDBMet adat aSt or e{r egi on=eu-west -1, tabl eNane
=guarded-table} is initialized.
2018- 05-31 15:35:39,077 [rmain] |INFO s3guard. DynanoDBMet adat aSt ore (DynanoDB
Met adat aSt or e. j ava: destroy(793)) -
Del eti ng DynanoDB tabl e guarded-table in region eu-west-1
Met adata store is del eted.

Destroying atable does not destroy the datain S3; it merely removes the summary data used by S3Guard to provide
consistent listings. Y ou can verify this by listing the bucket:

> hadoop fs -1Is -R s3a://guarded-tabl e/
- P WA W T W 1 alice alice 0 2019-07-31 20:45 s3a://guarded-tabl e/
exanpl e

Note:

IE Even though hadoop fs commands can print the owner and permissions of afile, these are not real attributes
of the object, and generated for the benefit of applications which check them. The owner and group of a
file or directory is always the user for whom the S3A Filesystem was instantiated. File permissions are
aways read and write; while directories are read, write and execute — irrespective of any underlying access
permissions on the objects.

S3Guard keeps tombstone markers of deleted files. It isgood to clean these regularly, just to keep costs down. This
can be donewith thehadoop s3guard prune command.

The command can be used to delete entries older than a certain number of days, minutes or hours.

> hadoop s3guard prune -days 3 s3a://guarded-tabl e/

2019-07-31 21:27: 37,264 [main] | NFO s3guard. S3Guar dTool (S3GuardTool.java:in
i t Met adat aSt ore(321)) - Metadata store DynanoDBMet adat aSt or e{r egi on=eu- west -
2, tabl eNane=guar ded-tabl e, tabl eArn=arn: aws: dynanodb: eu- west - 2: 980678866538
:tabl e/guarded-table} is initialized.

2019-07-31 21:27:37,285 [nmain] | NFO s3guard. DynanoDBMet adat aStore (Durati o
nlnfo.java:<init>(72)) - Starting: Pruning DynanoDB Store

2019-07-31 21:27:37,332 [mai n] | NFO s3guar d. DynanoDBMet adat aSt ore (Durati o
nl nfo.java: cl ose(87)) - Pruning DynanoDB Store: duration 0:00.047s

2019- 07-31 21:27:37,332 [mai n] | NFO s3guar d. DynanoDBMet adat aSt or e (Dynano
DBMet adat aSt ore. j ava: i nner Prune(1576)) - Finished pruning 366 itens in batch
es of 25

16

Cloudera Runtime Working with Amazon S3

The hadoop s3guard import command can list and import a bucket's metadata into a S3Guard table. Thisis harmless
if the contents are already imported.

hadoop s3guard i nport s3a://guarded-tabl e/

2019-07-31 21: 32: 54,600 [main] | NFO s3guard. S3Guar dTool (S3GuardTool.java:in
i t Met adat aSt ore(321)) - Metadata store DynanoDBMet adat aSt or e{r egi on=eu- west -
2, tabl eNane=guar ded-tabl e, tabl eArn=arn: aws: dynanodb: eu- west - 2: 980678866538
:tabl e/ guarded-table} is initialized.
Inserted 2 itens into Metadata Store

Y ou do not need to issue this command after creating atable; the datais added as listings of S3 paths find new
entries. It merely saves by proactively building up the database.

When S3Guard is working, apart from some messages in the logs, there is no obvious clue that it is enabled. To verify
that a bucket does have S3Guard enabled, use the command-line command hadoop s3guard bucket-info. This will
print bucket information, and can be used to explicitly check that a bucket has s3guard enabled.

On aguarded bucket, it will list details about the bucket and the S3Guard Database on DynamoDB.

hadoop s3guard bucket-info s3a://exanpl el/

Fi | esystem s3a://exanpl el

Location: eu-west-1

Fil esystem s3a://exanplel is using S3G@uard with store DynanoDBMet adat aSt ore
{regi on=eu-west -1, tabl eNane=exanpl el, tabl eArn=arn: aws: dynanodb: eu-west-1: 9
8067886600: t abl e/ exanpl el}
Authoritative Metadata Store: fs.s3a.netadatastore.authoritative=false
Aut horitative Path: fs.s3a.authoritative. path=

Met adat a Store Di agnosti cs:

ARN=ar n: aws: dynanodb: eu- west - 1: 98067886600: t abl e/ exanpl el

bi | I i ng- node=per - r equest

descri pti on=S3CGuard netadata store in DynanoDB

nane=exanpl el

persi st.authoritative. bit=true

r ead- capaci t y=0

regi on=eu-west - 1

retryPol i cy=Exponenti al Backof f Retry(naxRetri es=9, sl eepTi ne=250 M LLI SECOND
S)

si ze=14431

st at us=ACTI VE

tabl e={AttributeDefinitions: [{AttributeNane: child, AttributeType: S}, {A
ttributeNanme: parent, AttributeType: S}], Tabl eNane: exanpl el, KeySchenma: [{Att
ri buteName: parent, KeyType: HASH}, {AttributeNanme: child, KeyType: RANGE}], Ta
bl eSt at us: ACTI VE, CreationDat eTi ne: Wed Jun 05 13:23:18 BST 2019, Provi si oned
Thr oughput : { Nunber O Decr easesToday: 0, ReadCapacityUnits: 0, WiteCapacityUni
ts: 0}, Tabl eSi zeBytes: 14431, |tenCount: 96, Tabl eArn: arn:aws: dynanodb: eu- wes
t-1:98067886600: t abl e/ exanpl el, Tabl el d: b4b1b660- 9cbd- 0000f 10623, Bi | | i nghMbde
Summary: {BillingWbde: PAY_PER REQUEST, Last Updat eToPayPer Request Dat eTi ne: W
d Jun 05 13:32:07 BST 2019}, }

write-capacity=0

The "magi c" conmitter is supported

S3A Cient
Signing Algorithm fs.s3a.signing-algorithm(unset)
Endpoi nt: fs.s3a. endpoi nt =s3- eu- west - 1. amazonaws. com
Encryption: fs.s3a.server-side-encryption-al gorithmnone
I nput seek policy: fs.s3a.experinental.input.fadvise=normal
Change Detection Source: fs.s3a.change. detection. source=etag
Change Detection Mde: fs.s3a.change. detection. node=server

17

Cloudera Runtime Working with Amazon S3

Del egati on token support is disabled

In this example the bucket is shown to be guarded by atable whose billing mode is " per-request".

The S3Guard CLI offers other maintenance commands. for information on how to use them, refer toApache
documentation.

One useful command to use is hadoop s3guard prune -tombstone, which removes "tombstone markers' from the
table. These are entries created when files are deleted, so as to identify recently deleted files which should be omitted
from listings. After the S3 Store has become consistent with these del etions, the markers are no longer deleted.

> hadoop s3guard prune -tonbstone -days 1 s3a://hwdev-steve-irel and- new

2019-08-20 16:55:40,790 [main] | NFO s3guard. S3GuardTool - Metadata store

DynanoDBMet adat aSt or e{ r egi on=eu-west -1, tabl eName=exanpl el, tabl eArn=arn: aws

: dynanodb: eu- west - 1: 98067886600: t abl e/ exanpl el} is initialized.

2019-08-20 16:55:40,810 [nmain] | NFO s3guard. DynanoDBMet adataStore - Startin

g: Pruni ng DynanoDB Store

2019-08-20 16:55: 40,846 [main] | NFO s3guard. DynanoDBMet adat aSt ore - Pruni ng
DynanoDB Store: duration 0:00. 036s

2019-08-20 16:55: 40,846 [main] | NFO s3guard. DynanoDBMet adat aStore - Finis

hed pruning O itens in batches of 25

There are various issues and limitations that you must consider when working with S3Guard.

The following operational issues have been identified while testing S3Guard.

Third-party object stores which reimplement the AWS S3 protocol are usually "consistent”. As such, thereis no need
to use S3Guard. Consult the object store's supplier asto its consistency model.

The DynamoDB table needs to be writeable by all users/services using S3Guard. If asingle DynamoDB tableis used
to store metadata about multiple buckets, then clients with access to the table will be able to read the metadata about
objects in any bucket to which their read access restricted via AWS permissions.

The standard S3 Bucket and Object Access permissions do not provide any restriction on accessing the S3Guard
index data. Asthisis only the Hadoop file status data of object name, type, size and timestamp, the actual object data
and any tags attached to the object are still protected by AWS permissions. However, directory and filenames will be
visible.

The key limitation of S3Guard isthat it only provides consistent file and directory listings. It does not address update
and delete consistency of the data. It is only consistent with respect to changes made by client applications using the
S3A connector with S3Guard enabled and the same DynamoDB table. Changes which are made by other applications
are only eventually consistent from the perspective of S3A clients.

S3Guard will track the etag of uploaded files, and, on a versioned S3 bucket, the S3 version ID of an uploaded file.
These will be used when opening files, so as to detect and possibly react to changes.

18

http://hadoop.apache.org/docs/r3.1.0/hadoop-aws/tools/hadoop-aws/s3guard.html

Cloudera Runtime Working with Amazon S3

The S3A committers are three different committers used to commit work directly to Mapreduce and Spark. The
committers are enabled by default for Spark in CDP.

Amazon's S3 Object Store is not a filesystem: some expected behaviors of afilesystem are missing.
Some of the following aspects of S3 that are different from afilesystem are asfollows:

» Directory listings are only eventually consistent.
» File overwrites and deletes are only eventually consistent: readers may get old data.

e Thereisno rename operation; it is mimicked in the S3A client by listing a directory and copying each file
underneath, one-by-one.

Because directory rename is mimicked by listing and then copying files the eventual consistency of both listing and
reading fails may result in incorrect data. And, because of the copying: it is slow.

S3Guard addresses the listing inconsistency problem. However, it does not address the update consistency or
performance.

The normal means by which Hadoop MapReduce and Apache Spark commit work from multiple tasksis through
renaming the output. Each task attempt writesto a private task attempt directory; when the task is given permission
to commit by the MapReduce Application Master or Spark Driver, thistask attempt directory is renamed into the
job attempt directory. When the job is ready to commit, the output of all the tasks is merged into the final output
directory, again by renaming files and directories.

Thisisfast and safe on HDFS and similar filesystems, and on object stores with rename operations, such as Azure
WASB. On S3, it is unreliable without S3Guard, and even with S3Guard, the the time to commit work to S3is
proportional to the amount of data written. An operation which may work well during development can turn out to be
unusable in production.

To address this the S3A committers were developed. They allow the output of MapReduce and Spark jobs to be
written directly to S3, with atime to commit the job independent of the amount of data created.

What Are the S3A Committers?

The S3A committers are three different committers which can be used to commit work directly to Map-reduce
and Spark. They differ in how they deal with conflict and how they upload data to the destination bucket —but
underneath they all share much of the same code.

They rely on a specific S3 feature: multipart upload of largefiles.
When writing alarge object to S3, S3A and other S3 clients use a mechanism called “Multipart Upload”.

The caller initiates a“ multipart upload request”, listing the destination path and receiving an upload ID to use in the
upload operations.

The caller then uploads the datain a series of HTTP POST requests, closing with afinal POST listing the blocks
uploaded.

The uploaded dataiis not visible until that final POST request is made, at which point it is published in asingle atomic
operation.

This mechanism is always used by S3A whenever it writes large files; the size of each part is set to the value of fs.s
3amultipart.size

The S3A Committers use the same multipart upload process, but convert it into a mechanism for committing the work
of tasks because of a special feature of the mechanism: The final POST request does not need to be issued by the
same process or host which uploaded the data.

19

Cloudera Runtime Working with Amazon S3

The output of each worker task can be uploaded to S3 as a multipart upload, but without issuing the final POST
reguest to complete the upload. Instead, all the information needed to issue that request is saved to a cluster-wide
filesystem (HDFS or potentially S3 itself)

When ajob is committed, thisinformation is loaded, and the upload completed. If aatask is aborted of fails: the
upload is not completed, so the output does not become visible. If the entire job fails, none of its output becomes
visible.

For further reading, see:

« HADOOP-13786: Add S3A committers for zero-rename commitsto S3 endpoints.
* S3A Committers: Architecture and | mplementation.
e A Zero-Rename Committer: Object-storage as a Destination for Apache Hadoop and Spark.

The Three Committers
The three different S3A committers are directory committer, partitioned committer, magic committer.

« Directory Committer: Buffers working datato the local disk, uses HDFS to propagate commit information from
tasks to job committer, and manages conflict across the entire destination directory tree.

« Partitioned Committer: Identical to the Directory committer except that conflict is managed on a partition-by-
partition basis. Thisallows it to be used for in-place updates of existing datasets. It is only suitable for use with
Spark.

e Magic Committer: Datais written directly to S3, but “magically” re-targeted at the final destination. Conflict is
managed across the directory tree. It requires a consistent S3 object store, which means S3Guard is a mandatory
pre-requisite.

We currently recommend use of the “ Directory” committer: it is the simplest of the set, and by using HDFS to
propagate data from workers to the job committer, does not directly require S3Guard — this makes it easier to set up.

Therest of the documentation only covers the Directory Committer: to explore the other options, consult the Apache
documentation.

In addition to fs.s3a.committer.name, two other core-site.xml configuration options are used to control where
intermediate is stored.

A locationisin the local filesystem for buffering data

<property>

<name>f s. s3a. buf f er. di r </ name>

<val ue>${ hadoop. t np. di r}/ s3a</ val ue>

<descri pti on>Comma separated list of directories that will be used to b
uffer file

upl oads to.</description>
</ property>

These directories will store the output created by all active tasks until each task is committed; the more worker
processes/spark worker threads a host can support, the more disk space will be needed. Multiple disks can be listed to
help spread the load, and recover from disk failure.

A location in the cluster's HDFS filesystem to share summary data about pending uploads.
<property>
<nanme>fs. s3a.conmmi tter.stagi ng.tnp. pat h</ nane>

<val ue>t np/ st agi ng</ val ue>
</ property>

These files are generally quite small: afew kilobytes per task.

20

https://issues.apache.org/jira/browse/HADOOP-13786
http://hadoop.apache.org/docs/r3.1.0/hadoop-aws/tools/hadoop-aws/committer_architecture.html
https://github.com/steveloughran/zero-rename-committer/releases

Cloudera Runtime Working with Amazon S3

Once the propertyfs.s3a.committer.name is set, Hadoop MapReduce jobs writing to paths using the s3a:// schema will
automatically switch to the new committers.

Jobs using any other filesystem as a destination will still use the normal file committer.

When working correctly, the only sign the new committers are in useisthat it should be faster to use S3 asa
destination of work.

There is astraightforward way to determine if a new committer was used: examine the SUCCESS file created in the
destination directory of a query. With the original file committer, thisis a zero-byte file. The new S3A committers al
write a JSON file describing the committer used, the files created and various diagnostics information.

Listing thisfileis enough to show whether an S3A committer was used:
hadoop fs -1s s3a://guarded-bucket/ dat aset s/ orc/_SUCCESS

If thisfileis of size 0. then no S3A committer was used. If the file length is greater than zero, then an S3A committer
was used.

To see more detail s about the job commit operation, the file's contents can be printed.

hadoop fs -cat s3a://guarded-bucket/ dataset s/ orc/ _SUCCESS

The S3A committers upload datain the tasks, completing the uploads when the job is committed.

Amazon AWS still bill you for all dataheld in this“pending” state. The hadoop s3guard upl oads command
can be used to list and cancel such uploads. However, it is simplest to automate cleanup with a bucket lifecycle rule.

Go to the AWS S3 console: https://s3.console.aws.amazon.com/.

Find the bucket you are using as a destination of work.

Select the Management tab.

Select Add anew lifecyclerule.

Create arule “cleanup uploads’ with no filter, and without any “transitions”.
Configure an “Expiration” action of Clean up incomplete multipart uploads.
Select atime limit for outstanding uploads, such as 1 Day.

7. Review and confirm the lifecycle rule

Y ou need to select alimit of how long uploads can be outstanding. For Hadoop applications, thisis the maximum
time that either an application can write to the same file and the maximum time which ajob may take. If the
timeout is shorter than either of these, then programs are likely to fail.

Oncetheruleis set, the cleanup is automatic.

a s~ DN

o

The hadoop s3guard uploads command can a so be used to list all outstanding uploads under a path, and delete them.

hadoop s3guard upl oads s3a://guar ded-bucket/

t est s3ascal e/ scal e/ hugefil e nB3gct gP34ZSpzJ5 02AVb7kKRi i cXf bkBql f1 AQy. | H7Ci
mMH1O0VUzohRC 3Cf Fst 0Q dcge478Zi dXu764yNOvud 1j 5kcOV3r Dhsr c. RBZ5skZ93j VCN9g2¢
21QyB

21

Cloudera Runtime Working with Amazon S3

Total 1 uploads found.
All outstanding uploads can be aborted, or those older than a certain age.

hadoop s3guard upl oads -abort -days 1 -force s3a://guarded-bucket/

Del eting: tests3ascal e/ scal e/ hugefil e nB3gct gP34ZSpzJ5 02AVb7kKRi i cXf bk Bqg

I f1 AOy. | H7G mH1O0VUzohRC 3Q Fst 0Q dcged78Zi dXu764yNOvud 1j 5kcOV3r Dhsr c. RBZ5s
kZ93j VCN9g2c21(yB

2018-06- 28 20:58: 18,504 [main] | NFO s3a. S3AFi | eSyst em (S3AFi | eSystem j ava:
abort Mul ti part Upl oad(3266)) - Aborting multipart upload nB3gct gP34ZSpzJ5_02A
Vb7kKRi i cXf bkBgl f | AOy. | H7G nH1O0VUzohRG 3 Fst 0Q dcge478Zi dXu764yNOvud 1j 5kc
OV3r Dhsr c. RBZbskZ93j VCN9g2c21(B t o tests3ascal e/ scal e/ hugefil e

Total 1 uploads del et ed.

While bucket lifecycleis the best way to guarantee that all outstanding uploads are deleted; this command line tool is
useful to verify that such cleanup istaking place, or explicitly clean up after afailure.

The Apache documentation covers the full set of configuration options for the committers.

The S3A committers all support speculative execution.

For MapReduce, enable the following properties in the job:

mapr educe. map. specul ati ve true
mapr educe. r educe. specul ati ve true

For Spark, set the following configuration option:

spar k. specul ation true

When updating existing datasets, if anew file overwrites an existing file of the same name, S3's eventual consistency
on file updates means that the old data may till be returned.

To avoid this, unique filenames should be used when creating files. The property fs.s3a.committer.staging.unique-file
names enables this.

<property>
<name>f s. s3a. conmi tt er. st agi ng. uni que-fil enane</ nane>
<val ue>t rue</ val ue>

</ property>

It is set to true by default; you only need to disableit if you explicitly want newly created files to have the same name
as any predecessors.

When an individual job writes many filesto S3, the time to commit the job can increase.

It can be speeded up by increasing the value of fs.s3a.committer.threads>. However, the value of fs.s3a.connectio
n.maximum must be at |east this size otherwise the limit on the number of parallel uploadsis still limited.

<property>
<nane>fs.s3a.conm tter.threads</ nane>
<val ue>8</ val ue>

</ property>

<property>
<nanme>f s. s3a. connecti on. maxi nunx/ nane>
<val ue>15</ val ue>

22

Cloudera Runtime Working with Amazon S3

</ property>

There are afew security considerations when using the S3A committers.
S3 Bucket Permissions

To use an S3A committer, the account/role must have the same AWS permissions as heeded to write to the
destination bucket.

The multipart upload list/abort operations may be a new addition to the permissions for the active role.

When using S3Guard, the account/role must also have full read/write/del ete permissions for the DynamoDB table
used.

Local Filesystem Security

All the committers use the directories listed in fs.s3a.buffer.dir to store staged/buffered output before uploading it to
S3.

To ensure that other processes running on the same host do not have access to this data, unique paths should be used
per-account.

This requirement holds for al applications working with S3 through the S3A connector.
HDFS Security

The directory and partitioned committers use HDFS to propagate commit information between workers and the job
committer.

These intermediate files are saved into a job-specific directory under the path ${ fs.s3a.committer.staging.tmp.path}/
${user} where ${ user} isthe name of the user running the job.

The default value of fs.s3a.committer.staging.tmp.path is tmp/staging, Which will be converted at run time to a path
under the current user's home directory, essentially /user/${ user} /tmp/staging/${ user} /.

Provided the user's home directory has access restricted to trusted accounts, this intermediate data will be secure.

If the property fs.s3a.committer.staging.tmp.path is changed to a different location, then this path will need to be
secured to protect pending jobs from tampering.

Note: Thisintermediate data does not contain the output, merely the listings of all pending files and the MD5
B checksums of each block.

The S3A committers will work with any object store which implements the AWS S3 protocols.

The directory committer requires a consistent cluster filesystem to propagate commit information from the worker
processes to the job committer. Thisis normally done in HDFS.

If the third-party object store is consistent, then it may also be used as the cluster filesystem. Set fs.s3a.committer.sta
ging.tmp.path to a chosen path in the store.

There are limitations of the S3A committers associated with custom file output formats, MapReduce API output
format, and non-availability of Hive support.

Output formats which implement their own committers do not automatically switch to the new committers. If such a
custom committer relies on renaming files to commit output, then it will depend on S3Guard for a consistent view of
the object store, and take time to commit output proportional to the amount of data and the number of files.

23

Cloudera Runtime Working with Amazon S3

To determine if thisis the case, find the subclass of org.apache.hadoop.mapreduce.lib.output.FileOutputFormat which
implements the custom format, to see if it subclasses the getOutputCommitter() to return its own committer, or has a
custom subclass of org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.

It may be possible to migrate such a committer to support store-specific committers, as was done for Apache Parquet
support in Spark. Here a subclass of Parquet's ParquetOutputCommitter was implemented to delegates all operations
to the real committer.

Only the MapReduce V2 APIs underorg.apache.hadoop.mapreduce support the new committer binding mechanism.
The V1 APIs under the org.apache.hadoop.mapred package only bind to the file committer and subclasses. The vl
APIs date from Hadoop 1.0 and should be considered obsolete. Please migrate to the v2 APIs, not just for the new
committers, but because the V2 APIs are still being actively developed and maintained.

Thereis currently no Hive support for the S3A committers. To safely use S3 as a destination of Hive work, you must
use S3Guard.

The Apache documentation contains information about troubleshooting the committers.

The primary issue which surfacesis actually programs not switching to the new committers. There are three common
reasons for this.

« The configuration settings to switch to the new committer are not being picked up. Thisis particularly commonin
Spark, which is harder to set up.

e Theprogram isusing the older V1 MapReduce APIs. Fix: switch to the V2 API.

« The output format the program uses is explicitly creating its own committer. This can only be fixed by modifying
the program.

To help debug Spark's configuration, there is an option which can be set to forcibly fail the spark query if the path
output committer is used. However, the file committer is being returned.

spar k. hadoop. pat hout putconmit.reject.fil eoutput true

Thereis aso the blunt-instrument approach of causing the original output committer to crash with an invalid
configuration.

spar k. hadoop. mapr educe. fil eout putconmitter. al gorithm version 3

This (invalid) option ensures that if the original file committer is used, it will raise an exception.
To enable low-level logging of the committers, set the log-level of the package org.apache.hadoop.fs.s3a.commit to
DEBUG. With Log4J, this can be onein log4j.properties:

| og4j . | ogger. org. apache. hadoop. fs. s3a. comm t =DEBUG

The security and permissions model of Amazon S3 is very different from this of a UNIX-style filesystem: on Amazon
S3, operations which query or manipulate permissions are generally unsupported. Operations to which this applies
include: chgrp, chmod, chown, getfacl, and setfacl. The related attribute commands getfattr andsetfattr are also
unavailable.

In addition, operations which try to preserve permissions (for example fs-put -p) do not preserve permissions.

24

http://hadoop.apache.org/docs/r3.1.0/hadoop-aws/tools/hadoop-aws/committers.html

Cloudera Runtime Working with Amazon S3

Although these operations are unsupported, filesystem commands which list permission and user/group details
usualy simulate these details. As a consequence, when interacting with read-only object stores, the permissions found
in“list” and “stat” commands may indicate that the user has write access — when they do not.

Amazon S3 has a permissions model of its own. This model can be manipulated through store-specific tooling. Be
aware that some of the permissions which can be set — such aswrite-only paths, or various permissions on the root
path — may be incompatible with the S3A client. It expects full read and write access to the entire bucket with trying
to write data, and may fail if it does not have these permissions.

As an example of how permissions are simulated, hereis alisting of Amazon's public, read-only bucket of Landsat
images:

$ hadoop fs -1s s3a://I|andsat - pds/
Found 10 itens
drwxrwxrwx - nmapred 0 2016-09-26 12:16 s3a://| andsat-pds/ L8

-rwrwrw 1 nmapred 23764 2015-01-28 18: 13 s3a://l andsat - pds/i ndex. ht n
drwxrwxrwx - mapred 0 2016-09-26 12: 16 s3a://| andsat - pds/| andsat - pds_stats
-rwrwrw 1 mapred 105 2016-08-19 18: 12 s3a://| andsat - pds/robot s. t xt
-rwrwrw 1 mapred 38 2016-09-26 12:16 s3a:/ /Il andsat-pds/run_info.json
drwxrwxrwx - mapred 0 2016-09-26 12:16 s3a://| andsat - pds/runs

-rwrwrw 1 nmapred 27458808 2016-09-26 12: 16 s3a://landsat-pds/scene_li st.
gz

drwxrwxrwx - mapred 0 2016-09-26 12: 16 s3a://| andsat-pds/tarq
drwxrwxrwx - mapred 0 2016-09-26 12: 16 s3a://| andsat-pds/tarqg_corrupt
drwxrwxrwx - mapred 0 2016-09-26 12:16 s3a://| andsat - pds/t est

The following is evident from the examples:

» All filesarelisted as having full read/write permissions.

« All directories appear to have full rwx permissions.

e Thereplication count of all filesis"1".

« The owner of all files and directoriesis declared to be the current user (mapred).

e Thetimestamp of all directoriesis actualy that of the time the -Is operation was executed. This is because these

directories are not actual objectsin the store; they are simulated directories based on the existence of objects under
their paths.

When an attempt is made to delete one of the files, the operation fails — despite the permissions shown by the Is
command:

$ hadoop fs -rms3a://l andsat - pds/ scene_list.gz

rm s3a://landsat-pds/scene |ist.gz: delete on s3a://landsat-pds/scene_li st.
gz:

com amazonaws. servi ces. s3. nodel . AmazonS3Excepti on: Access Denied (Service: A
mazon S3;

St at us Code: 403; Error Code: AccessDeni ed; Request |D: 1EF98D5957BCAB3D),

S3 Extended Request |ID: w 3veOXFuFqWBUCIgV3Z+NQVj 9gWgZVdXl PUAKBbYMsw gA+hyh
RXcaQ+PogQOsDgHh31H TCebQ=

This demonstrates that the listed permissions cannot be taken as evidence of write access. Only object manipulation
can determine this.

The S3A connector can be configured to export the HT TP etag of an object as a checksum, by setting the option fs.s
3a.etag.checksum.enabled to true. When unset (the defaut), S3A objects have no checksum.

$ hadoop fs -touchz s3a://hwdev-bucket/src/ sonet hing. t xt
$ hadoop fs -checksum s3a://hwdev-bucket/src/sonet hi ng. t xt

25

Cloudera Runtime Working with Amazon S3

s3a:// hwdev- bucket/ src/ sonet hi ng. t xt NONE
Once set, S3A objects have a checksum which is created on upload.

$ hadoop fs -Dfs.s3a. etag. checksum enabl ed=true -checksum s3a://hwdev-bucket
/ src/ sonet hi ng. t xt

s3a: // hwdev- bucket/src/sonet hing.txt etag 6434316438636439386630306232303
465393830303939386563663834323765

This checksum is not compatible with that or HDFS, so cannot be used to compare file versions when using the -upd
ate option on DistCp between S3 and HDFS. More specifically, unless -skipcrccheck is set, the DistCP operation will
fail with a checksum mismatch. However, it can be used for incremental updates within and across S3A buckets.

$ hadoop di stcp -Dfs.s3a. etag. checksum enabl ed=true --update s3a://hwdev-buc
ket/src s3a://hwdev-bucket/ dest

$ hadoop fs -Dfs.s3a. etag. checksum enabl ed=true -checksum s3a://hwdev- bucke
t/ dest/ sonet hi ng. t xt

s3a: // hwdev- bucket/src/sonething.txt etag 643431643863643938663030623230346
5393830303939386563663834323765

As the checksums match small files created as a single block, incremental updates will not copy unchanged files.
For large files uploaded using multiple blocks, the checksum values may differ in which case the source file will be
copied again.

All S3A client options are configured with options with the prefix fs.s3a.

For information about the S3A configuration properties, see General S3A client configuration.

AWS S3 supports "Versioning" in buckets, where the bucket is configured to save older versions of objects. When an
object is overwritten (or even deleted), the old version can be accessed when arequest is made for the object using the
original version ID.

For more information, see Using Versioning.
The S3A connector supports versioning in the following ways:

e S3Guard will record the versionld of new files written into the store. It can then use that value when opening a
file, so that it can guarantee that the specific version listed in the S3Guard table is opened. This can compensate
for eventual consistency of overwritten data—even if the old version isinitially found when opening the file, the
S3A connector can retry until the new version is found.

* When afileis opened for reading, the version ID of that fileis recorded, and then for the duration of the file read
(seconds, minutes, hours...) only that version of the dataisread. Even if the file is overwritten, the single ongoing
file read will always read the original data.

* When afileiscopied (asin arename operation), the version ID is used to guarantee that even if the source fileis
overwritten, the copied file will be the original version.

* It can be used as an aternative to moving deleted filesto atrash location: simply delete the files and then recover
them later. Note: The S3A connector does not provide arecovery tool.

The following are some issues you must be aware of when using versioning:

e Too many S3 Tombstone markers from deleted objects will slow down directory listings, and can result in clients
being throttled (https://docs.aws.amazon.com/A mazonS3/l atest/dev/troubl eshooting.html#troubl eshooting-by-
symptom-increase-503-reponses)

26

https://hadoop.apache.org/docs/current3/hadoop-aws/tools/hadoop-aws/#General_S3A_Client_configuration
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
https://www.google.com/url?q=https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html%23troubleshooting-by-symptom-increase-503-reponses&sa=D&ust=1565468494080000
https://www.google.com/url?q=https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html%23troubleshooting-by-symptom-increase-503-reponses&sa=D&ust=1565468494080000

Cloudera Runtime Working with Amazon S3

* Oldversionsof filesare still billed for.

To keep costs down and minimize performance problems, we recommend having alifecycle rule on the bucket which
deletes older versions of files after a number of days. This can be done from the Management tab of the AWS S3
console.

Here is an example policy which deletes all versions of objects which were overwritten more than aweek previously,
while also cleaning up tombstone markers and incompl ete file uploads:

Lifecycle rule X

@ Name and scope @ Tansitions (3) Expiration (4) Review

Configure expiration
B Cument version Previous versions

Permanently delete previous versions

After days from becoming a previous version

Clean up expired object delete markers and incomplete multipart
uploads

Clean up expired object dalate markera

Clean up incomplete multipart uploads

After from start of upload

-

Working with Third-party S3-compatible Object Stores

The S3A Connector can work with third-party object stores; some vendors test the connector against their stores —
and even actively collaborate in developing the connector in the open source community.

Option Changeto

fs.s3a.endpoint (the hostname of the S3 Store)

fs.s3a path.style.access true

27

Cloudera Runtime Working with Amazon S3

fs.s3a.signing-algorithm If the default signing mechanism is rejected, another
mechanism may work from: "QueryStringSigner Type",
"S3SignerType", "AWS3SignerType", "AWSASignerType",
"AWS4UnsignedPayloadSignerType" and "NoOpSignerType".

fs.s3a.connection.ssl.enabled Set to "false" if HTTPisused instead of HTTPS
fs.s3a.multiobjectdel ete.enable Set to "false” if bulk delete operations are not supported.
fs.s3alist.version Set to "1" if thelist directories with the default "2" option failswith an

error.

Third-party object stores are generally consistent; there is no need for S3Guard. The S3A Committers will still offer
better performance, and should be used for MapReduce and Spark.

Encryption may or may not be supported: consult the documentation.

Security permissions are likely to be implemented differently from the IAM role mode —again, consult the
documentation to see what is available.

Y ou can consider various options for improving performance when working with data stored in Amazon S3.

The bandwidth between the CDP cluster and Amazon S3 is the upper limit to how fast data can be copied into S3.
The further the CDP cluster is from the Amazon S3 installation, or the narrower the network connection is, the longer
the operation will take. Even a CDP cluster deployed within Amazon's own infrastructure may encounter network
delays from throttled VM network connections.

Network bandwidth limits notwithstanding, there are some options which can be used to tune the performance of an
upload:

« Working with S3 buckets in the same AWS region on page 28
e Configuring and tuning S3A block upload on page 28

A foundational step to getting good performance is working with buckets close to the Hadoop cluster, where "close"
is measured in network terms.

Maximum performance is achieved from working with S3 buckets in the same AWS region as the cluster. For
example, if your cluster isin North Virginia ("US East"), you will achieve best performance if your S3 bucket isin
the same region.

In addition to improving performance, working with local buckets ensures that no bills are incurred for reading from
the bucket.

Because of the nature of the S3 object store, data written to an S3A OutputStream is not written incrementally —
instead, by default, it is buffered to disk until the stream is closed in its close() method. This can make output slow
because the execution time for OutputStream.close() is proportional to the amount of data buffered and inversely
proportional to the bandwidth between the host to S3; that is O(data/bandwidth).

Other work in the same process, server, or network at the time of upload may increase the upload time.

In summary, the further the processis from the S3 store, or the smaller the EC2 VM is, the longer it will take
complete the work. This can create problems in application code:

» Code often assumes that the close() call isfast; the delays can create bottlenecks in operations.
« Very slow uploads sometimes cause applications to time out - generally, threads blocking during the upload stop
reporting progress, triggering timeouts.

28

Cloudera Runtime Working with Amazon S3

e Streaming very large amounts of data may consume all disk space before the upload begins.

When dataiswritten to S3, it is buffered locally and then uploaded in multi-Megabyte blocks, with the final upload
taking place asthefileis closed.

The following major configuration options are available for the S3A block upload options. These are used whenever
dataiswritten to S3.

fs.s3amultipart.size 100M Definesthe size (in bytes) of the blocks into
which the upload or copy operations will be
split up. A suffix from the set {K,M,G,T,P}
may be used to scale the numeric value.

fs.s3afast.upload.active.blocks 8 Defines the maximum number of blocks
asingle output stream can have active
uploading, or queued to the central FileSystem
instance's pool of queued operations. This
stops a single stream overloading the shared
thread pool.

fs.s3abuffer.dir Empty value A comma separated list of temporary
directories use for storing blocks of data prior
to their being uploaded to S3. When unset
(by default), the Hadoop temporary directory
hadoop.tmp.dir is used.

fs.s3a fast.upload.buffer disk The fs.s3afast.upload.buffer determines the
buffering mechanism to use when uploading
data.

Allowed values are: disk, array, bytebuffer:

e (default) "disk" will use the directories
listed in fs.s3a.buffer.dir as the location(s)
to save data prior to being uploaded.

e array" usesarraysinthe VM heap.

e "bytebuffer" uses off-heap memory within
the VM.

Both "array" and "bytebuffer" will consume
memory in asingle stream up to the number
of blocks set by: fs.s3amultipart.size* fss
3afast.upload.active.blocks. If using either of
these mechanisms, keep this value low.

The total number of threads performing work
across dl threadsiis set by fs.s3athreads.max,
with fs.s3a.max.total .tasks val ues setting the
number of queued work items.

Note that:

« |f the amount of datawritten to a stream is below that set in fs.s3a.multipart.size, the upload takes place after the
application has written al its data.

¢ The maximum size of asinglefilein S3 is one thousand blocks, which, for uploads means 10000 * fs.s3a.multi
part.size. Too A small value of fs.s3a.multipart.size can limit the maximum size of files.

* Incremental writes are not visible; the object can only be listed or read when the multipart operation completesin
the close() call, which will block until the upload is completed.

Thisisthe default buffer mechanism. The amount of data which can be buffered islimited by the amount of available
disk space.

29

Cloudera Runtime Working with Amazon S3

When fs.s3a.fast.upload.buffer is set to "disk”, all datais buffered to local hard disks prior to upload. This minimizes
the amount of memory consumed, and so eliminates heap size as the limiting factor in queued uploads.

When fs.s3a.fast.upload.buffer is set to "bytebuffer", all datais buffered in "direct" ByteBuffers prior to upload. This
may be faster than buffering to disk in cases such as when disk spaceis small there may not be much disk spaceto
buffer with (for example, when using "tiny" EC2 VMs).

The ByteBuffers are created in the memory of the VM, but not in the Java Heap itself. The amount of datawhich can
be buffered is limited by the Java runtime, the operating system, and, for YARN applications, the amount of memory
regquested for each container.

The slower the upload bandwidth to S3, the greater the risk of running out of memory — and so the more careis
needed in tuning the upload thread settings to reduce the maximum amount of data which can be buffered awaiting
upload.

When fs.s3a.fast.upload.buffer is set to "array”, all datais buffered in byte arraysin the JVM's heap prior to upload.
This may be faster than buffering to disk.

The amount of data which can be buffered is limited by the available size of the VM heap heap. The slower the
write bandwidth to S3, the greater the risk of heap overflows. This risk can be mitigated by tuning the upload thread
settings.

Both the array and bytebuffer buffer mechanisms can consume very large amounts of memory, on-heap or off-heap
respectively. The disk buffer mechanism does not use much memory up, but it consumes hard disk capacity.

If there are many output streams being written to in a single process, the amount of memory or disk used isthe
multiple of all streams' active memory and disk use.

Y ou may need to perform careful tuning to reduce the risk of running out memory, especialy if the datais buffered in
memory. There are anumber parameters which can be tuned:

fs.s3a.fast.upload.active.blocks 4 Maximum number of blocks a single output
stream can have active (uploading, or queued
to the central FileSystem instance's pool of
queued operations). This stops a single stream
overloading the shared thread pool.

fs.s3athreads.max 10 The total number of threads available in
the filesystem for data uploads or any other
queued filesystem operation.

fs.s3amax.total .tasks 5 The number of operations which can be
queued for execution

fs.s3athreads.keepalivetime 60 The number of seconds athread can beidle
before being terminated.

When the maximum allowed number of active blocks of a single stream is reached, no more blocks can be uploaded
from that stream until one or more of those active block uploads completes. That is, awrite() call which would trigger
an upload of anow full datablock will instead block until thereis capacity in the queue.

Consider the following:

« Asthepool of threads set in fs.s3a.threads.max is shared (and intended to be used across all threads), alarger
number here can allow for more parallel operations. However, as uploads require network bandwidth, adding
more threads does not guarantee speedup.

30

Cloudera Runtime Working with Amazon S3

» The extra queue of tasks for the thread pool (fs.s3a.max.total.tasks) covers all ongoing background S3A
operations.

* When using memory buffering, asmall value of fs.s3afast.upload.active.blocks limits the amount of memory
which can be consumed per stream.

* When using disk buffering, alarger value of fs.s3afast.upload.active.blocks does not consume much memory. But
it may result in alarge number of blocks to compete with other filesystem operations.

We recommend alow value of fs.s3a.fast.upload.active.blocks — enough to start background upload without
overloading other parts of the system. Then experiment to see if higher values deliver more throughput — especially
from VMs running on EC2.

The S3A filesystem client supports the notion of input policies, similar to that of the POSIX fadvise() API call. This
tunes the behavior of the S3A client to optimize HTTP GET requests for reading different filetypes. To optimize
HTTP GET requests, you can take advantage of the S3A input policy option fs.s3a.experimental .input.fadvise.

"normal” This starts off as"sequentia": it asks for the wholefile. As soon as
the application tries to seek backwards in the file it switchesinto
"random" O mode. Thisis not quite as efficient for Random 10 as
the "random" mode, because that first read may have to be aborted.
However, because it is adaptive, it is the best choiceif you do not know
the data formats which will be read.

"sequential" (default) Read through the file, possibly with some short forward seeks.

The whole document is requested in asingle HTTP request; forward
seeks within the readahead range are supported by skipping over the
intermediate data.

This leads to maximum read throughput, but with very expensive
backward seeks.

"random” Optimized for random 10, specifically the Hadoop
*PositionedReadable’ operations — though “seek(offset);
read(byte_buffer)” also benefits.

Rather than ask for the wholefile, the range of the HTTP request is set
to that of the length of data desired in the ‘read” operation - rounded up
to the readahead value set in “setReadahead()” if necessary.

By reducing the cost of closing existing HT TP requests, thisis highly
efficient for file 10 accessing a binary file through a series of Posi
tionedReadable.read() and PositionedReadable.readFully() calls.
Sequential reading of afileis expensive, as now many HTTP requests
must be made to read through thefile.

For operations simply reading through afile (copying, DistCp, reading gzip or other compressed formats, parsing .csv
files, and so on) the sequential policy is appropriate. Thisis the default, so you do not need to configureit.

For the specific case of high-performance random access 10 (for example, accessing ORC files), you may consider
using the random policy in the following circumstances:

» Dataisread using the PositionedReadable API.

e Therearelong distance (many MB) forward seeks.

e Backward seeks are aslikely as forward seeks.

* Thereislittle or no use of single character read() calls or small read(buffer) calls.

» Applications are running close to the Amazon S3 data store; that is, the EC2 VM s on which the applications run
arein the same region as the Amazon S3 bucket.

31

Cloudera Runtime Working with Amazon S3

Y ou must set the desired fadvise policy in the configuration option fs.s3a.experimental .input.fadvise when the
filesystem instance is created. It can only be set on a per-filesystem basis, not on a per-file-read basis. Y ou can set it
in core-sitexml:

<property>
<nanme>f s. s3a. experi mental . i nput. fadvi se</ name>
<val ue>r andonx/ val ue>

</ property>

Or, you can set it in the spark-defaults.conf configuration of Spark:
spar k. hadoop. fs. s3a. experi nental . i nput . fadvi se random

Be aware that this random access performance comes at the expense of sequential 10 — which includes reading files
compressed with gzip.

There are various types of checklists that you can use to ensure optimal performance when working with datain S3.
Checklist for Data

* [] Amazon S3 bucket isin same region as the EC2-hosted cluster.
e [] Thedirectory layout is"shallow". For directory listing performance, the directory layout prefers "shallow"
directory trees with many files over deep directory trees with only afew files per directory.

e [] The"pseudo" block size set in fs.s3a.block.size is appropriate for the work to be performed on the data.
* [] Copy to HDFS any data that needs to be repeatedly read to HDFS.

Checklist for Cluster Configurations
» [] Set yarn.scheduler.capacity.node-locality-delay to 0 to improve container launch times.
Checklist for Code

« [] Application does not make rename() calls. Where it does, it does not assume the operation is immediate.
* [] Application does not assume that delete() is near-instantaneous.

« [] Application uses FileSystem.listFiles(path, recursive=true) to list adirectory tree.

e [] Application prefers forward seeks through files, rather than full random 10.

e []If making "random™ 10 through seek() and read() sequences or and Hadoop's PositionedReadable API, fs.s3a.e
xperimental.input.fadvise is set to random.

It can be a bit troublesome to get the S3A connector to work, with classpath and authentication being the usual trouble
spots. Use the tips provided in the following links to troubleshoot errors.

S3: https://aws.amazon.com/premiumsupport/knowledge-center/

S3Guard: https://hadoop.apache.org/docs/ current3/hadoop-aws/tool s/hadoop-aws/troubl eshooting_s3a.html

Encrypting Data on S3

32

https://www.google.com/url?q=https://aws.amazon.com/premiumsupport/knowledge-center/&sa=D&ust=1565468494117000
https://www.google.com/url?q=https://hadoop.apache.org/docs/current3/hadoop-aws/tools/hadoop-aws/troubleshooting_s3a.html&sa=D&ust=1565468494117000

	Contents
	Cloud storage connectors overview
	The Cloud Storage Connectors
	Working with Amazon S3
	Limitations of Amazon S3
	Configuring Access to S3
	Using EC2 Instance Metadata to Authenticate

	Referencing S3 Data in Applications
	Configuring Per-Bucket Settings
	Customizing Per-Bucket Secrets Held in Credential Files
	Configuring Per-Bucket Settings to Access Data Around the World

	Encrypting Data on S3
	SSE-S3: Amazon S3-Managed Encryption Keys
	Enabling SSE-S3

	SSE-KMS: Amazon S3-KMS Managed Encryption Keys
	Enabling SSE-KMS
	IAM Role permissions for working with SSE-KMS

	SSE-C: Server-Side Encryption with Customer-Provided Encryption Keys
	Enabling SSE-C

	Configuring Encryption for Specific Buckets
	Encrypting an S3 Bucket with Amazon S3 Default Encryption
	Performance Impact of Encryption

	Using S3Guard for Consistent S3 Metadata
	Introduction to S3Guard
	Configuring S3Guard
	Monitoring and Maintaining S3Guard
	Disabling S3Guard and destroying a table
	Pruning Old Data from S3Guard Tables
	Importing a Bucket into S3Guard
	Verifying that S3Guard is Enabled on a Bucket
	Using the S3Guard CLI
	S3Guard: Operational Issues

	Safely Writing to S3 Through the S3A Committers
	Introducing the S3A Committers
	Configuring Directories for Intermediate Data
	Using the Directory Committer in MapReduce
	Verifying That an S3A Committer Was Used
	Cleaning up after failed jobs
	Using the S3Guard Command to List and Delete Uploads
	Advanced Committer Configuration
	Enabling Speculative Execution
	Using Unique Filenames to Avoid File Update Inconsistency
	Speeding up Job Commits by Increasing the Number of Threads

	Securing the S3A Committers
	The S3A Committers and Third-Party Object Stores
	Limitations of the S3A Committers
	Troubleshooting the S3A Committers

	Security Model and Operations on S3
	S3A and Checksums (Advanced Feature)
	A List of S3A Configuration Properties
	Working with versioned S3 buckets
	Working with Third-party S3-compatible Object Stores
	Improving Performance for S3A
	Working with S3 buckets in the same AWS region
	Configuring and tuning S3A block upload
	Tuning S3A Uploads
	Thread Tuning for S3A Data Upload

	Optimizing S3A read performance for different file types
	S3 Performance Checklist

	Troubleshooting S3 and S3Guard

