
Cloudera Runtime 7.1.0

Managing Cloudera Search
Date published: 2019-11-19
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Managing Cloudera Search... 4
Managing Cloudera Search Configuration...4
Managing Configuration Using Configs or Instance Directories.. 4

Managing Configs...5
Managing Instance Directories...5
Securing configs with ZooKeeper ACLs and Ranger... 6
Config Templates..7
Updating the Schema in a Solr Collection.. 8

Managing Collections in Cloudera Search...8
Creating a Solr Collection..8
Viewing Existing Solr Collections...9
Deleting All Documents in a Solr Collection..9
Backing Up and Restoring Solr Collections.. 9
Deleting a Solr Collection..9

Example solrctl Usage..10
Using solrctl with an HTTP proxy.. 10
Creating Replicas of Existing Shards...10
Converting Instance Directories to Configs...11

Migrating Solr replicas... 11
Backing Up and Restoring Cloudera Search... 14

Backing Up a Solr Collection.. 14
Restoring a Solr Collection.. 16
Cloudera Search Backup and Restore Command Reference... 17

solrctl Reference... 20

Cloudera Runtime Managing Cloudera Search

Managing Cloudera Search

Most Cloudera Search configuration is managed using solrctl, a wrapper script included with Cloudera Search. You
can manipulate collections, instance directories, configs, individual cores, and so on.

A SolrCloud collection is the top-level object for indexing documents and providing a query interface. Each
collection must be associated with a configuration, using either an instance directory or a config object. Different
collections can use the same configuration. Each collection is typically replicated among several SolrCloud instances.
Each replica is called a core and is assigned to an individual Solr service. The assignment process is managed
automatically, but you can apply fine-grained control over individual cores using the solrctl core command.

A typical deployment workflow with solrctl consists of:

1. Establishing a configuration

• If using configs, creating a config object from a template.
• If using instance directories, generating an instance directory and uploading it to ZooKeeper.

2. Creating a collection associated with the name of the config or instance directory.

For a comparison of configs and instance directories, see Managing Configuration Using Configs or Instance
Directories on page 4.

Managing Cloudera Search Configuration

Cloudera Search configuration is primarily controlled by several configuration files, some of which are stored in
Apache ZooKeeper:

• solr.xml

This file is stored in ZooKeeper, and controls global properties for Apache Solr. To edit this file, you must
download it from ZooKeeper, make your changes, and then upload the modified file back to ZooKeeper using the
solrctl cluster command. For information about the solr.xml file, see Solr Configuration Files and Solr Cores and
solr.xml in the Solr documentation.

• solrconfig.xml

Each collection in Solr uses a solrconfig.xml file, stored in ZooKeeper, to control collection behavior. For
information about the solrconfig.xml file, see Solr Configuration Files and Configuring solrconfig.xml in the Solr
documentation.

• managed-schema or schema.xml

Starting from CDH 6, Cloudera recommends using a managed schema, and making schema changes using the
Schema API (Apache Solr documentation). Collections use either a managed schema or the legacy schema.xml
file. These files, also stored in ZooKeeper and assigned to a collection, define the schema for the documents you
are indexing. For example, they specify which fields to index, the expected data type for each field, the default
field to query when the field is unspecified, and so on. For information about managed-schema and schema.xml,
see Schema Factory Definition in SolrConfig in the Solr documentation.

• core.properties

Unlike other configuration files, this file is stored in the local filesystem rather than ZooKeeper, and is used for
core discovery. For more information on this process and the structure of the file, see Defining core.properties in
the Solr documentation.

Managing Configuration Using Configs or Instance Directories

4

https://lucene.apache.org/solr/guide/7_0/solr-configuration-files.html
https://lucene.apache.org/solr/guide/7_0/solr-cores-and-solr-xml.html
https://lucene.apache.org/solr/guide/7_0/solr-cores-and-solr-xml.html
https://lucene.apache.org/solr/guide/7_0/solr-configuration-files.html
https://lucene.apache.org/solr/guide/7_0/configuring-solrconfig-xml.html
https://lucene.apache.org/solr/guide/7_0/schema-api.html
https://lucene.apache.org/solr/guide/7_0/schema-factory-definition-in-solrconfig.html
https://lucene.apache.org/solr/guide/7_0/defining-core-properties.html

Cloudera Runtime Managing Cloudera Search

The solrctl utility includes the config and instancedir commands for managing configuration. Configs and instance
directories refer to the same thing: named configuration sets used by collections,as specified by the solrctl collection -
-create -c <CONFIGNAME> command.

Although configs and instance directories are functionally identical from the perspective of the Solr server, there are a
number of important administrative differences between these two implementations:

Table 1: Config and Instance Directory Comparison

Attribute Config Instance Directory

Security • In a Kerberos-enabled cluster, the
ZooKeeper znodes associated with
configurations created using the solrctl
config command automatically have
proper ZooKeeper ACLs.

• No ZooKeeper security support. Any user
can create, delete, or modify an instance
dir directly in ZooKeeper.

• Because instancedir updates ZooKeeper
directly, it is the client's responsibility
to add the proper ACLs, which can be
cumbersome.

Creation method Generated from existing configs or instance
directories in ZooKeeper using the ConfigSets
API.

Manually edited locally and re-uploaded
directly to ZooKeeper using solrctl utility.

Template support • Several predefined templates are
available. These can be used as the basis
for creating additional configs. Additional
templates can be created by creating
configs that are immutable.

• Mutable configs that use a managed
schema can only be modified using
the Schema API as opposed to being
manually edited. As a result, configs are
less flexible, but they are also less error-
prone than instance directories.

One standard template.

Managing Configs

You can manage configuration objects directly using the solrctl config command, which is a wrapper script for the
ConfigSets API.

Configs are named configuration sets that you can reference when creating collections. The solrctl config command
syntax is as follows:

solrctl config [--create <NAME> <BASECONFIG> [-p <NAME>=<VALUE>]...]
 [--delete <NAME>]

• --create <NAME> <BASECONFIG> : Creates a new config based on an existing config. The config is created
with the specified <NAME>, using <BASECONFIG> as the template. For more information about config
templates, see Config Templates on page 7.

• -p <NAME>=<VALUE> : Overrides a <BASECONFIG> setting. The only config property that you can
override is immutable, so the possible options are -p immutable=true and -p immutable=false. If you are
copying an immutable config, such as a template, use -p immutable=false to make sure that you can edit the
new config.

• --delete <NAME> : Deletes the specified config. You cannot delete an immutable config without accessing
ZooKeeper directly as the solr super user.

Managing Instance Directories

An instance directory is a named set of configuration files. You can generate an instance directory template locally,
edit the configuration, and then upload the directory to ZooKeeper as a named configuration set. You can then
reference this named configuration set when creating a collection.

5

https://lucene.apache.org/solr/guide/7_0/configsets-api.html

Cloudera Runtime Managing Cloudera Search

If you want to control access to configuration sets, you must enable ZooKeeper ACLs and use configs instead.

The solrctl instancedir command syntax is as follows:

solrctl instancedir [--generate <PATH> [-schemaless]]
 [--create <NAME> <PATH>]
 [--update <NAME> <PATH>]
 [--get <NAME> <PATH>]
 [--delete <NAME>]
 [--list]

• --generate <PATH> : Generates an instance directory template on the local filesystem at <PATH>. The
configuration files are located in the conf subdirectory under <PATH>.

• -schemaless: Generates a schemaless instance directory template.
• --create <NAME> <PATH> : Uploads a copy of the instance directory from <PATH> on the local filesystem

to ZooKeeper. If an instance directory with the specified <NAME> already exists, this command fails. Use --up
date to modify existing instance directories.

• --update <NAME> <PATH> : Overwrites an existing instance directory in ZooKeeper using the specified
files on the local filesystem. This command is analogous to first running --delete <NAME> followed by --create
<NAME> <PATH> .

• --get <NAME> <PATH> : Downloads the specified instance directory from ZooKeeper to the specified path
on the local filesystem. You can then edit the configuration and then re-upload it using --update.

• --delete <NAME> : Deletes the specified instance directory from ZooKeeper.
• --list: Lists existing instance directories as well as configs created by the solrctl config command.

Securing configs with ZooKeeper ACLs and Ranger
Learn how you can restrict access to configuration sets by setting ZooKeeper Acces control Lists (ACLs) on all
znodes under and including the /solr directory and using Ranger to control access to the ConfigSets API.

Before you begin
Ranger requires Kerberos authentication.

About this task

The solrctl instancedir command interacts directly with ZooKeeper, and therefore cannot be protected by Ranger.
Because the solrctl config command is a wrapper script for the ConfigSets API, it can be protected by Ranger.

To force users to use the ConfigSets API, you must set all ZooKeeper znodes under and including /solr to read-only
(except for the solr user).

After completing these steps, you cannot run commands such as solrctl instancedir --create or solrctl instancedir
--delete without first authenticating as the solr@EXAMPLE.COM super user principal. Unauthenticated users can
still run solrctl instancedir --list and solrctl instancedir --get, because those commands only perform read operations
against ZooKeeper.

Procedure

1. Create a jaas.conf file containing the following:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=false
 useTicketCache=true
 principal="solr@[***EXAMPLE.COM***]";
 };

Replace [***EXAMPLE.COM***] with your Kerberos realm name.

6

Cloudera Runtime Managing Cloudera Search

2. Set the LOG4J_PROPS environment variable so that it points to a log4j.properties file:

export LOG4J_PROPS=/etc/zookeeper/conf/log4j.properties

3. Set the ZKCLI_JVM_FLAGS environment variable:

export ZKCLI_JVM_FLAGS="-Djava.security.auth.login.config=[***PATH TO
 JAAS.CONF FILE***] \
 -DzkACLProvider=org.apache.solr.common.cloud.SaslZkACLProvid
er \
 -Droot.logger=INFO,console"

Replace [***PATH TO JAAS.CONF FILE***] with the path pointing to the jaas.conf file you just created.

4. Authenticate as the solr user:

kinit solr@[***EXAMPLE.COM***]

Replace [***EXAMPLE.COM***] with your Kerberos realm name.

5. Run the zkcli.sh script as follows:

/opt/cloudera/parcels/CDH/lib/solr/bin/zkcli.sh -zkhost [***ZOOKEEPER
 SERVER HOSTNAME***]:2181 -cmd updateacls /solr

Replace [***ZOOKEEPER SERVER HOSTNAME***] with the hostname of a ZooKeeper server.

Config Templates

Configs can be declared as immutable, which means they cannot be deleted or have their Schema updated by the
Schema API. Immutable configs are uneditable config templates that are the basis for additional configs. After a
config is made immutable, you cannot change it back without accessing ZooKeeper directly as the solr (or solr@EXA
MPLE.COM principal, if you are using Kerberos) super user.

Solr provides a set of immutable config templates. These templates are only available after Solr initialization, so
templates are not available in upgrades until after Solr is initialized or re-initialized. Templates include:

Table 2: Available Config Templates and Attributes

Template Name Supports Schema API Uses Schemaless Solr

managedTemplate

schemalessTemplate

managedTemplateSecure

schemalessTemplateSecure

Note: schemalessTemplate is the same as the template generated by the solrctl instancedir --generate
command.

Config templates are managed using the solrctl config command. For example:

• To create a new config based on the managedTemplateSecure template:

solrctl config --create newConfig managedTemplateSecure -p immutable=false

• To create a new template (immutable config) from an existing config:

solrctl config --create newTemplate existingConfig -p immutable=true

7

Cloudera Runtime Managing Cloudera Search

Updating the Schema in a Solr Collection

If your collection was configured using an instance directory, you can download the instance directory, edit schema.x
ml, then re-upload it to ZooKeeper. For instructions, see Managing Instance Directories on page 5.

If your collection was configured using a config, you can update the schema using the Schema API. For information
on using the Schema API, see Schema API in the Apache Solr Reference Guide.

Managing Collections in Cloudera Search

A collection in Cloudera Search refers to a repository for indexing and querying documents. Collections typically
contain the same types of documents with similar schemas. For example, you might create separate collections for
email, Twitter data, logs, forum posts, customer interactions, and so on.

Collections are managed using the solrctl command. For a reference to the solrctl commands and options, see solrctl
Reference.

Creating a Solr Collection

Before you begin
If you have enabled Ranger for authorization, you must have Solr Admin permission to be able to create collections.

About this task

Note: Although it is not currenly strictly enforced, you are strongly recommended to observe the following
limitations on collection names:

• Use only ASCII alphanumeric characters (A-Za-z0-9), hyphen (-), or underscore (_).
• Avoid using the strings shard and replica.

Procedure

1. If you are using Kerberos, kinit as a user with permission to create the collection:

kinit solradmin@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

2. On a host running a Solr server, make sure that the SOLR_ZK_ENSEMBLE environment variable is set in /etc/sol
r/conf/solr-env.sh. For example:

cat /etc/solr/conf/solr-env.sh
export SOLR_ZK_ENSEMBLE=zk01.example.com:2181,zk02.example.com:2181,zk03.
example.com:2181/solr

If you are using Cloudera Manager, this is automatically set on hosts with a Solr Server or Gateway role.

3. Generate configuration files for the collection:

• Using Configs:

solrctl config --create logs_config managedTemplate -p immutable=false

• Using Instance Directories:

solrctl instancedir --generate $HOME/logs_config
Edit the configuration files as needed

8

https://lucene.apache.org/solr/guide/7_0/schema-api.html
https://docs.cloudera.com/runtime/7.1.0/search-managing/topics/search-solrctl-ref.html
https://docs.cloudera.com/runtime/7.1.0/search-managing/topics/search-solrctl-ref.html

Cloudera Runtime Managing Cloudera Search

solrctl instancedir --create logs_config $HOME/logs_config

For more information on configs and instance directories, see Managing Configuration Using Configs or Instance
Directories on page 4.

4. Create a new collection using the specified configuration:

solrctl collection --create logs -s <NUMSHARDS> -c logs_config

Viewing Existing Solr Collections

You can view existing collections using the solrctl collection --list command.

Deleting All Documents in a Solr Collection

Before you begin
If you have enabled Ranger for authorization, you must have Solr Admin permission to be able to delete documents in
a collection.

About this task

Deleting all documents in a Solr collection does not delete the collection or its configuration files. It only deletes the
index. This can be useful for rapid prototyping of configuration changes in test environments.

Procedure

1. If you are using Kerberos, kinit as a user with permission to delete the collection:

kinit solradmin@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

2. On a host running Solr Server, make sure that the SOLR_ZK_ENSEMBLE environment variable is set in /etc/sol
r/conf/solr-env.sh. For example:

$ cat /etc/solr/conf/solr-env.sh
export SOLR_ZK_ENSEMBLE=zk01.example.com:2181,zk02.example.com:2181,zk0
3.example.com:2181/solr

If you are using Cloudera Manager, this is automatically set on hosts with a Solr Server or Gateway role.

3. Delete the documents:

solrctl collection --deletedocs logs

Backing Up and Restoring Solr Collections

Cloudera Search includes a backup/restore mechanism primarily designed to provide disaster recovery capability for
Apache Solr. You can create a backup of a Solr collection and restore from this backup if the index is corrupted due
to a software bug, or if an administrator accidentally or maliciously deletes a collection or a subset of documents. This
procedure can also be used as part of a cluster migration (for example, if you are migrating to a cloud environment),
or to recover from a failed upgrade.

For more information, see Backing Up and Restoring Cloudera Search on page 14.

Deleting a Solr Collection

9

Cloudera Runtime Managing Cloudera Search

Before you begin
If you have enabled Ranger for authorization, you must have Solr Admin permission to be able to delete collections.

About this task

Deleting a Solr collection deletes the collection and its index, but does not delete its configuration files.

Procedure

1. If you are using Kerberos, kinit as a user with permission to delete the collection:

kinit solradmin@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

2. On a host running Solr Server, make sure that the SOLR_ZK_ENSEMBLE environment variable is set in /etc/sol
r/conf/solr-env.sh. For example:

$ cat /etc/solr/conf/solr-env.sh
export SOLR_ZK_ENSEMBLE=zk01.example.com:2181,zk02.example.com:2181,zk0
3.example.com:2181/solr

If you are using Cloudera Manager, this is automatically set on hosts with a Solr Server or Gateway role.

3. Delete the collection:

solrctl collection --delete logs

Example solrctl Usage

This topic includes some examples of:

• Configuration changes that may be required for solrctl to function as desired.
• Common tasks completed with solrctl.

Using solrctl with an HTTP proxy

About this task

Using solrctl to manage a deployment in an environment that uses an HTTP proxy fails because solrctl uses curl,
which attempts to use the proxy. You can disable the proxy so solrctl succeeds:

Procedure

• Modify the settings for the current shell by exporting the NO_PROXY environment variable. For example:

export NO_PROXY='*'

• Modify the settings for single commands by prefacing solrctl with NO_PROXY='*'. For example:

NO_PROXY='*' solrctl collection --create collectionName -s 3

Creating Replicas of Existing Shards

10

https://docs.cloudera.com/runtime/7.1.0/search-managing/topics/search-solrctl-ref.html

Cloudera Runtime Managing Cloudera Search

Procedure

You can create additional replicas of existing shards using a command of the following form:

solrctl core --create <NEWCORE> -p collection=<NAME> \
-p shard=<SHARD_TO_REPLICATE>

For example, to create a new replica of the collection named collection1 that is comprised of shard1, use the
following command:

solrctl core --create collection1_shard1_replica2 \
-p collection=collection1 -p shard=shard1

Converting Instance Directories to Configs

About this task

Cloudera Search supports converting existing deployments that use instance directories to use configs:

Procedure

1. Create a temporary config based on the existing instance directory. For example, if the instance directory name is
weblogs_config:

solrctl config --create weblogs_config_temp weblogs_config \
-p immutable=false

2. Delete the existing instance directory. For example:

solrctl instancedir --delete weblogs_config

3. Create a config using the same name as the instance directory you just deleted, based on the temporary config you
created earlier.

solrctl config --create weblogs_config weblogs_config_temp \
-p immutable=false

4. Delete the temporary config:

solrctl config --delete weblogs_config_temp

5. Reload the affected collection (weblogs in this example):

solrctl collection --reload weblogs

Migrating Solr replicas
When you replace a host, migrating replicas from that host to the new host, instead of depending on failure recovery,
can help ensure optimal performance.

Where possible, the Solr service routes requests to the proper host. Both ADDREPLICA and DELETEREPLICA
Collections API calls can be sent to any host in the cluster. For more information on the Collections API, see Apache
Solr Reference Guide.

• For adding replicas, the node parameter ensures the new replica is created on the intended host. If no host is
specified, Solr selects a host with relatively fewer replicas.

• For deleting replicas, the request is routed to the host that hosts the replica to be deleted.

11

https://lucene.apache.org/solr/guide/7_4/collections-api.html
https://lucene.apache.org/solr/guide/7_4/collections-api.html

Cloudera Runtime Managing Cloudera Search

Adding replicas can be resource intensive. For best results, add replicas when the system is not under heavy load. For
example, do not add replicas when heavy indexing is occurring or when MapReduceIndexerTool jobs are running.

Cloudera recommends using API calls to create and unload cores. Do not use the Cloudera Manager Admin Console
or the Solr Admin UI for these tasks.

This procedure uses the following names:

• Host names:

• Origin: solr01.example.com.
• Destination: solr02.example.com.

• Collection name: email
• Replicas:

• The original replica email_shard1_replica1, which is on solr01.example.com.
• The new replica email_shard1_replica2, which will be on solr02.example.com.

To migrate a replica to a new host:

1. (Optional) If you want to add a replica to a particular node, review the contents of the live_nodes directory on
ZooKeeper to find all nodes available to host replicas. Open the Solr Administration User interface, click Cloud,
click Tree, and expand live_nodes. The Solr Administration User Interface, including live_nodes, might appear as
follows:

Note: Information about Solr nodes can also be found in clusterstate.json, but that file only lists nodes
currently hosting replicas. Nodes running Solr but not currently hosting replicas are not listed in clusters
tate.json.

12

Cloudera Runtime Managing Cloudera Search

2. Add the new replica on solr02.example.com using the ADDREPLICA API call.

http://solr01.example.com:8983/solr/admin/collections?action=ADDREPLICA&
collection=email&shard=shard1&node=solr02.example.com:8983_solr

3. Verify that the replica creation succeeds and moves from recovery state to ACTIVE. You can check the replica
status in the Cloud view, which can be found at a URL similar to: http://solr02.example.com:8983/solr/#/~cloud.

Note: Do not delete the original replica until the new one is in the ACTIVE state. When the newly added
replica is listed as ACTIVE, the index has been fully replicated to the newly added replica. The total time
to replicate an index varies according to factors such as network bandwidth and the size of the index.
Replication times on the scale of hours are not uncommon and do not necessarily indicate a problem.

You can use the details command to get an XML document that contains information about replication
progress. Use curl or a browser to access a URI similar to:

http://solr02.example.com:8983/solr/email_shard1_replica2/replicatio
n?command=details

Accessing this URI returns an XML document that contains content about replication progress. A snippet
of the XML content might appear as follows:

...
<str name="numFilesDownloaded">126</str>
<str name="replication StartTime">Tue Jan 21 14:34:43 PST 2014</str>
<str name="timeElapsed">457s</str>
<str name="currentFile">4xt_Lucene41_0.pos</str>
<str name="currentFileSize">975.17 MB</str>
<str name="currentFileSizeDownloaded">545 MB</str>
<str name="currentFileSizePercent">55.0</str>
<str name="bytesDownloaded">8.16 GB</str>
<str name="totalPercent">73.0</str>
<str name="timeRemaining">166s</str>
<str name="downloadSpeed">18.29 MB</str>
...

4. Use the CLUSTERSTATUS API call to retrieve information about the cluster, including current cluster status:

http://solr01.example.com:8983/solr/admin/collections?action=clusterstat
us&wt=json&indent=true

Review the returned information to find the correct replica to remove. An example of the JSON file might appear
as follows:

13

Cloudera Runtime Managing Cloudera Search

5. Delete the old replica on solr01.example.com server using the DELETEREPLICA API call:

http://solr01.example.com:8983/solr/admin/collections?action=DELETEREPLI
CA&collection=email&shard=shard1&replica=core_node2

The DELETEREPLICA call removes the datadir.

Backing Up and Restoring Cloudera Search

Important: The following documentation is about backing up and restoring Cloudera Search, which is based
on the SolrCloud implementation of Apache Solr. Cloudera Search does not support backups using the Solr
replication handler.

Cloudera Search includes a backup/restore mechanism primarily designed to provide disaster recovery capability for
Apache Solr. You can create a backup of a Solr collection and restore from this backup if the index is corrupted due
to a software bug, or if an administrator accidentally or maliciously deletes a collection or a subset of documents. This
procedure can also be used as part of a cluster migration (for example, if you are migrating to a cloud environment),
or to recover from a failed upgrade.

At a high level, the steps to back up a Solr collection are as follows:

1. Create a snapshot.
2. If you are exporting the snapshot to a remote cluster, prepare the snapshot for export.
3. Export the snapshot to either the local cluster or a remote one. This step uses the Hadoop DistCP utility.

The backup operation uses the native Solr snapshot capability to capture a point-in-time, consistent state of index data
for a specified Solr collection. You can then use the Hadoop DistCp utility to copy the index files and the associated
metadata for that snapshot to a specified location in HDFS or a cloud object store (for example, Amazon S3).

The Solr snapshot mechanism is based on the Apache Lucene IndexDeletionPolicy abstraction, which enables
applications such as Cloudera Search to manage the lifecycle of specific index commits. A Solr snapshot assigns a
user-specified name to the latest hard-committed state. After the snapshot is created, the Lucene index files associated
with the commit are retained until the snapshot is explicitly deleted. The index files associated with the snapshot are
preserved regardless of document updates and deletions, segment merges during index optimization, and so on.

Creating a snapshot does not take much time because it only preserves the snapshot metadata and does not copy the
associated index files. A snapshot does have some storage overhead corresponding to the size of the index because the
index files are retained indefinitely until the snapshot is deleted.

Solr snapshots can help you recover from some scenarios, such as accidental or malicious data modification or
deletion. They are insufficient to address others, such as index corruption and accidental or malicious administrative
action (for example, deleting a collection, changing collection configuration, and so on). To address these situations,
export snapshots regularly and before performing non-trivial administrative operations such as changing the schema,
splitting shards, or deleting replicas.

Exporting a snapshot exports the collection metadata as well as the corresponding Lucene index files. This operation
internally uses the Hadoop DistCp utility to copy the Lucene index files and metadata, which creates a full backup at
the specified location. After the backup is created, the original Solr snapshot can be safely deleted if necessary.

Important: If you create a snapshot and do not export it, you do not have a complete backup, and cannot
restore index files if they are accidentally or maliciously deleted.

Backing Up a Solr Collection

About this task

Use the following procedure to back up a Solr collection. For more information on the commands used, see Cloudera
Search Backup and Restore Command Reference on page 17.

14

https://lucene.apache.org/solr/guide/7_0/making-and-restoring-backups.html#standalone-mode-backups
https://lucene.apache.org/solr/guide/7_0/making-and-restoring-backups.html#standalone-mode-backups
https://lucene.apache.org/core/7_0_0/core/org/apache/lucene/index/IndexDeletionPolicy.html

Cloudera Runtime Managing Cloudera Search

Before you begin

If you are using a secure (Kerberos-enabled) cluster, specify your jaas.conf file by adding the following parameter to
each command:

--jaas /PATH/TO/JAAS.CONF

If TLS is enabled for the Solr service, specify the truststore and password using the ZKCLI_JVM_FLAGS
environment variable before you begin the procedure:

export ZKCLI_JVM_FLAGS="-Djavax.net.ssl.trustStore=/PATH/TO/TRUSTSTORE \
-Djavax.net.ssl.trustStorePassword=TRUSTSTOREPASSWORD"

Procedure

1. Create a snapshot. On a host running Solr Server, run the following command:

solrctl collection --create-snapshot <SNAPSHOTNAME> -c <COLLECTIONNAME>

For example, to create a snapshot for a collection named tweets:

solrctl collection --create-snapshot tweets-$(date +%Y%m%d%H%M) -c tweets
Successfully created snapshot with name tweets-201803281043 for collection
 tweets

2. If you are backing up the Solr collection to a remote cluster, prepare the snapshot for export. If you are backing up
the Solr collection to the local cluster, skip this step.

solrctl collection --prepare-snapshot-export <SNAPSHOTNAME> -
c <COLLECTIONNAME> -d <DESTDIR>

The destination HDFS directory path (specified by the -d option) must exist on the local cluster before you run
this command. Make sure that the Solr superuser (solr by default) has permission to write to this directory.

For example:

hdfs dfs -mkdir -p /path/to/backup-staging/tweets-201803281043
hdfs dfs -chown :solr /path/to/backup-staging/tweets-201803281043
solrctl collection --prepare-snapshot-export tweets-201803281043 -c twe
ets \
-d /path/to/backup-staging/tweets-201803281043

3. Export the snapshot. This step uses the DistCp utility to back up the collection metadata as well as the
corresponding index files. The destination directory must exist and be writable by the Solr superuser (solr by
default).

To export the snapshot to a remote cluster, run the following command:

solrctl collection --export-snapshot <SNAPSHOTNAME> -s <SOURCEDIR> -
d <PROTOCOL>://<NAMENODE>:<PORT>/<DESTDIR>

For example:

• HDFS protocol:

solrctl collection --export-snapshot tweets-201803281043 -s /path/to/bac
kup-staging/tweets-201803281043 \

15

Cloudera Runtime Managing Cloudera Search

-d hdfs://nn01.example.com:8020/path/to/backups

• WebHDFS protocol:

solrctl collection --export-snapshot tweets-201803281043 -s /path/to/bac
kup-staging/tweets-201803281043 \
-d webhdfs://nn01.example.com:20101/path/to/backups

To export the snapshot to the local cluster, run the following command:

solrctl collection --export-snapshot <SNAPSHOTNAME> -c <COLLECTIONNAME> -
d <DESTDIR>

For example:

solrctl collection --export-snapshot tweets-201803281043 -c tweets -d /p
ath/to/backups/

4. Delete the snapshot:

solrctl collection --delete-snapshot <snapshotName> -c <collectionName>

For example:

solrctl collection --delete-snapshot tweets-201803281043 -c tweets

Restoring a Solr Collection

About this task

Use the following procedure to restore a Solr collection. For more information on the commands used, see Cloudera
Search Backup and Restore Command Reference on page 17.

Before you begin

If you are using a secure (Kerberos-enabled) cluster, specify your jaas.conf file by adding the following parameter to
each command:

-jaas /PATH/TO/JAAS.CONF

If TLS is enabled for the Solr service, specify the truststore and password by using the ZKCLI_JVM_FLAGS
environment variable before you begin the procedure:

export ZKCLI_JVM_FLAGS="-Djavax.net.ssl.trustStore=/PATH/TO/TRUSTSTORE \
-Djavax.net.ssl.trustStorePassword=TRUSTSTOREPASSWORD"

Procedure

1. If you are restoring from a backup stored on a remote cluster, copy the backup from the remote cluster to the local
cluster. If you are restoring from a local backup, skip this step.

Run the following commands on the cluster to which you want to restore the collection:

hdfs dfs -mkdir -p /path/to/restore-staging

16

Cloudera Runtime Managing Cloudera Search

hadoop distcp <PROTOCOL>://<NAMENODE>:<PORT>/PATH/TO/BACKUP /path/to/re
store-staging

For example:

• HDFS protocol:

hadoop distcp hdfs://nn01.example.com:8020/path/to/backups/tweets-201803
281043 /path/to/restore-staging

• WebHDFS protocol:

hadoop distcp webhdfs://nn01.example.com:20101/path/to/backups/tweets-20
1803281043 /path/to/restore-staging

2. Start the restore procedure. Run the following command:

solrctl collection --restore <RESTORECOLLECTIONNAME> -l <BACKUPLOCATION> -
b <SNAPSHOTNAME> -i <REQUESTID>

Make sure that you use a unique <REQUESTID> each time you run this command.

For example:

solrctl collection --restore tweets -l /path/to/restore-staging -b tweet
s-201803281043 -i restore-tweets

3. Monitor the status of the restore operation. Run the following command periodically:

solrctl collection --request-status <requestId>

Look for <str name="state"> in the output. For example (emphasis added):

solrctl collection --request-status restore-tweets
 <?xml version="1.0" encoding="UTF-8"?> <response> <lst name="responseHea
der"> <int name="status"> 0</int> <int name="QTime"> 1</int> </lst> \
<lst name="status"> <str name="state"> completed</str> <str name="msg"> fo
und restore-tweets in completed tasks</str> </lst> </response>

The state parameter can be one of the following:

• running: The restore operation is running.
• completed: The restore operation is complete.
• failed: The restore operation failed.
• notfound: The specified <REQUESTID> does not exist.

Cloudera Search Backup and Restore Command Reference

Use the following commands to create snapshots, back up, and restore Solr collections.

If you are using a secure (Kerberos-enabled) cluster, specify your jaas.conf file by adding the following parameter to
the command:

-jaas /PATH/TO/JAAS.CONF

If TLS is enabled for the Solr service, specify the truststore and password by using the ZKCLI_JVM_FLAGS
environment variable:

export ZKCLI_JVM_FLAGS="-Djavax.net.ssl.trustStore=/PATH/TO/TRUSTSTORE \
-Djavax.net.ssl.trustStorePassword=TRUSTSTOREPASSWORD"

17

Cloudera Runtime Managing Cloudera Search

Create a snapshot

Command: solrctl collection --create-snapshot <snapshotName> -c <collectionName>

Description: Creates a named snapshot for the specified collection.

Delete a snapshot

Command: solrctl collection --delete-snapshot <snapshotName> -c <collectionName>

Description: Deletes the specified snapshot for the specified collection.

Describe a snapshot

Command: solrctl collection --describe-snapshot <snapshotName> -c <collectionName>

Description: Provides detailed information about a snapshot for the specified collection.

List all snapshots

Command: solrctl collection --list-snapshots <collectionName>

Description: Lists all snapshots for the specified collection.

Prepare snapshot for export to a remote cluster

Command: solrctl collection --prepare-snapshot-export <snapshotName> -c <collectionName> -d <destDir>

Description: Prepares the snapshot for export to a remote cluster. If you are exporting the snapshot to the local cluster,
you do not need to run this command. This command generates collection metadata as well as information about the
Lucene index files corresponding to the snapshot.

The destination HDFS directory path (specified by the -d option) must exist on the local cluster before you run this
command. Make sure that the Solr superuser (solr by default) has permission to write to this directory.

If you are running the snapshot export command on a remote cluster, specify the HDFS protocol (such as WebHDFS
or HFTP) to be used for accessing the Lucene index files corresponding to the snapshot on the source cluster. This
configuration is driven by the -p option which expects a fully qualified URI for the root filesystem on the source
cluster, for example webhdfs://namenode.example.com:20101/.

Export snapshot to local cluster

Command: solrctl collection --export-snapshot <snapshotName> -c <collectionName> -d <destDir>

Description: Creates a backup copy of the Solr collection metadata as well as the associated Lucene index files at the
specified location. The -d configuration option specifies the directory path where this backup copy is be created. This
directory must exist before exporting the snapshot, and the Solr superuser must be able to write to it.

Export snapshot to remote cluster

Command: solrctl collection --export-snapshot <snapshotName> -s <sourceDir> -d <destDir>

Description: Creates a backup copy of the Solr collection snapshot, which includes collection metadata as well as
Lucene index files at the specified location. The -d configuration option specifies the directory path where this backup
copy is be created.

Make sure that you prepare the snapshot for export before exporting it to a remote cluster.

You can run this command on either the source or destination cluster, depending on your environment and the DistCp
utility requirements. If the destination cluster does not have the solrctl utility, you must run the command on the
source cluster. The exported snapshot state can then be copied using standard tools, such as DistCp.

The source and destination directory paths (specified by the -s and -d options, respectively) must be specified relative
to the cluster from which you are running the command. Directories on the local cluster are formatted as /path/to/dir,

18

Cloudera Runtime Managing Cloudera Search

and directories on the remote cluster are formatted as <PROTOCOL>://<NAMENODE>:<PORT>/path/to/dir. For
example:

• Local path: /solr-backup/tweets-2016-10-19
• Remote HDFS path: hdfs://nn01.example.com:8020/solr-backup/tweets-2016-10-19
• Remote WebHDFS path: webhdfs://nn01.example.com:20101/solr-backup/tweets-2016-10-19

The source directory (specified by the -s option) is the directory containing the output of the solrctl collection --pre
pare-snapshot-export command. The destination directory (specified by the -d option) must exit on the destination
cluster before running this command.

If your cluster is secured (Kerberos-enabled), initialize your Kerberos credentials by using kinit before executing this
command.

Restore from a local snapshot

Command: solrctl collection --restore <RESTORECOLLECTIONNAME> -l <BACKUPLOCATION> -b
 <SNAPSHOTNAME> -i <REQUESTID>

Description: Restores the state of an earlier created backup as a new Solr collection. Run this command on the cluster
on which you want to restore the backup.

The -l configuration option specifies the local HDFS directory where the backup is stored. If the backup is stored on a
remote cluster, you must copy it to the local cluster before restoring it. The Solr superuser (solr by default) must have
permission to read from this directory.

The -b configuration option specifies the name of the backup to be restored.

Because the restore operation can take a long time to complete depending on the size of the exported snapshot, it is
run asynchronously. The -i configuration parameter specifies a unique identifier for tracking operation. For more
information, see Check the status of an operation on page 19.

The optional -a configuration option enables the autoAddReplicas feature for the new Solr collection.

The optional -c configuration option specifies the configName for the new Solr collection. If this option is not
specified, the configName of the original collection at the time of backup is used. If the specified configName does
not exist, the restore operation creates a new configuration from the backup.

The optional -r configuration option specifies the replication factor for the new Solr collection. If this option is not
specified, the replication factor of the original collection at the time of backup is used.

The optional -m configuration option specifies the maximum number of replicas (maxShardsPerNode) to create on
each Solr Server. If this option is not specified, the maxShardsPerNode configuration of the original collection at the
time of backup is used.

If your cluster is secured (Kerberos-enabled), initialize your Kerberos credentials using kinit before running this
command.

Check the status of an operation

Command: solrctl collection --request-status <requestId>

Description: Displays the status of the specified operation. The status can be one of the following:

• running: The restore operation is running.
• completed: The restore operation is complete.
• failed: The restore operation failed.
• notfound: The specified REQUESTID is not found.

If your cluster is secured (Kerberos-enabled), initialize your Kerberos credentials (using kinit) before running this
command.

19

Cloudera Runtime Managing Cloudera Search

solrctl Reference
The solrctl utility is a wrapper shell script included with Cloudera Search for managing collections, instance
directories, configs, and more.

For some examples of common tasks using solrctl, see Example solrctl Usage.

Make sure that the host on which you are running the solrctl utility has either a Gateway or Solr Server role assigned.

In general, if an operation succeeds, solrctl exits silently with a success exit code. If an error occurs, solrctl prints a
diagnostics message combined with a failure exit code. solrctl supports specifying a log4j.properties file by setting
the LOG4J_PROPS environment variable. By default, the LOG4J_PROPS setting specifies the log4j.properties in the
Solr configuration directory (for example, /etc/solr/conf/log4j.properties). Many solrctl commands redirect stderr to /
dev/null, so Cloudera recommends that your log4j properties file specify a location other than stderr for log output.

You can run solrctl on any host that is configured as part of the SolrCloud deployment (the Solr service in Cloudera
Manager environments) . To run any solrctl command on a host outside of SolrCloud deployment, ensure that
SolrCloud hosts are reachable and provide --zk and --solr command line options.

If you are using solrctl to manage your deployment in an environment that requires Kerberos authentication, you must
have a valid Kerberos ticket, which you can get using kinit.

For collection configuration, users have the option of interacting directly with ZooKeeper using the instancedir option
or using the Solr ConfigSets API using the config option. For more information, see Managing Configuration Using
Configs or Instance Directories.

Syntax

The general solrctl command syntax is:

solrctl [options] command [command-arg] [command [command-arg]] ...

Each element and its possible values are described in the following sections.

Options

If used, the following options must precede commands:

• --solr <SOLR_URI>: Directs solrctl to a SolrCloud web API available at the specified URI. This option is
required for hosts running outside of SolrCloud. A sample URI might be: http://search01.example.com:8983/solr.

• --zk <ZK_ENSEMBLE>: Directs solrctl to a particular ZooKeeper quorum. This option is required for hosts
running outside of SolrCloud. For example: zk01.example.com:2181,zk02.example.com:2181,zk03.example.com
:2181/solr. Output from solrctl commands that use the --zk option is sent to /dev/null, so no results are displayed.

• --jaas /PATH/TO/JAAS.CONF: Used to identify a JAAS configuration that specifies the principal with permissions
to modify Solr metadata. The principal is typically solr@EXAMPLE.COM. In Kerberos-enabled environments
where ZooKeeper ACLs protect Solr metadata, you must use this parameter when modifying metadata.

• --help: Prints help.
• --quiet: Suppresses most solrctl messages.
• --debug: Prints errors to stdout.
• --trace: Prints the executed commands to stdout.

Commands

The solrctl commands init, instancedir, config, collection and cluster affect the entire SolrCloud deployment and only
need to be run once per required operation.

The solrctl core command affects a single SolrCloud host.

• init [--force]: The init command, which initializes the overall state of the SolrCloud deployment, must be run
before starting solr-server daemons for the first time. Use this command cautiously because it erases all SolrCloud

20

https://docs.cloudera.com/runtime/7.1.0/search-managing/topics/search-solrctl-examples.html
https://docs.cloudera.com/runtime/7.1.0/search-managing/topics/search-managing-configuration-using-configs-or-instance-directories.html
https://docs.cloudera.com/runtime/7.1.0/search-managing/topics/search-managing-configuration-using-configs-or-instance-directories.html

Cloudera Runtime Managing Cloudera Search

deployment state information from ZooKeeper, including all configuration files. It does not delete collections.
After successful initialization, you cannot recover any previous state.

•
instancedir [--generate <PATH> [-schemaless]]
 [--create <NAME> <PATH>]
 [--update <NAME> <PATH>]
 [--get <NAME> <PATH>]
 [--delete <NAME>]
 [--list]

Manipulates instance directories. The following options are supported:

• --generate <PATH>: Generates an instance directory template on the local filesystem at <PATH>. The
configuration files are located in the conf subdirectory under <PATH>.

• -schemaless: Generates a schemaless instance directory template. For more information on schemaless
support, see Schemaless Mode Overview and Best Practices.

• --create <NAME> <PATH>: Uploads a copy of the instance directory from <PATH> on the local
filesystem to ZooKeeper. If an instance directory with the specified <NAME> already exists, this command
fails. Use --update to modify existing instance directories.

• --update <NAME> <PATH>: Overwrites an existing instance directory in ZooKeeper using the specified
files on the local filesystem. This command is analogous to first running --delete <NAME> followed by --cr
eate <NAME> <PATH>.

• --get <NAME> <PATH>: Downloads the specified instance directory from ZooKeeper to the specified path
on the local filesystem. You can then edit the configuration and then re-upload it using --update.

• --delete <NAME>: Deletes the specified instance directory from ZooKeeper.
• --list: Lists existing instance directories, including configs created by the solrctl config command.

•
config [--create <NAME> <BASECONFIG> [-p <NAME>=<VALUE>]...]
 [--delete name]

Manipulates configs. The following options are supported:

• --create name <BASECONFIG> [-p <NAME>=<VALUE>: Creates a new config based on an existing
config. The config is created with the specified <NAME>, using <BASECONFIG> as the template. For
more information about config templates, see Config Templates. The -p name=value option verrides a
<BASECONFIG> setting. The only config property that you can override is immutable, so the possible
options are -p immutable=true and -p immutable=false. If you are copying an immutable config, such as a
template, use -p immutable=false to make sure that you can edit the new config.

• --delete name: Deletes the specified config. You cannot delete an immutable config without accessing
ZooKeeper directly as the solr super user.

•
collection [--create <NAME> -s <NUMSHARDS>
 [-a]
 [-c <CONFIGNAME>]
 [-r <REPLICATIONFACTOR>]
 [-m <MAXSHARDSPERHOST>]
 [-n <CREATEHOSTSET>]]
 [--delete <NAME>]
 [--reload <NAME>]
 [--stat <NAME>]
 [--deletedocs <NAME>]
 [--list]
 [--create-snapshot <SNAPSHOTNAME> -c <COLLECTIONNAME>]
 [--delete-snapshot <SNAPSHOTNAME> -c <COLLECTIONNAME>]
 [--list-snapshots <COLLECTIONNAME>]
 [--describe-snapshot <SNAPSHOTNAME> -c <COLLECTIONNAME>]
 [--prepare-snapshot-export <SNAPSHOTNAME> -c <COLLECTIONNAME> -
d <DESTDIR> [-p <FSPATHPREFIX>]]
 [--export-snapshot <SNAPSHOTNAME> [-s <SOURCEDIR>] [-
c <COLLECTIONNAME>] -d <DESTDIR>]

21

https://docs.cloudera.com/runtime/7.1.0/search-deployment-planning/topics/search-deployment-planning-schemaless-mode.html
https://docs.cloudera.com/runtime/7.1.0/search-managing/topics/search-config-templates.html

Cloudera Runtime Managing Cloudera Search

 [--restore name -b <BACKUPNAME> -l <BACKUPLOCATION> -
i <REQUESTID>
 [-a]
 [-c <CONFIGNAME>]
 [-r <REPLICATIONFACTOR>]
 [-m <MAXSHARDSPERNODE>]]
 [--request-status <REQUESTID>]

Manipulates collections. The following options are supported:

• --create <NAME> -s <NUMSHARDS> [-a] [-c <CONFIGNAME>] [-r
 <REPLICATIONFACTOR>] [-m <MAXSHARDSPERHOST>] [-n <HOSTLIST>]]: Creates a new
collection with <NUMSHARDS> shards.

The -a option enables automatic addition of replicas (autoAddReplicas=true) if machines hosting existing
shards become unavailable.

The collection uses the specified <CONFIGNAME> for its configuration set, and the specified
<REPLICATIONFACTOR> controls the number of replicas for the collection. Keep in mind that this
replication factor is on top of the HDFS replication factor.

The maximum shards per host is determined by <MAXSHARDSPERHOST>, and you can specify specific
hosts for the collection in the <HOSTLIST>.

The only required parameters are <NAME> and -s <NUMSHARDS>. If -c <CONFIGNAME> is not provided,
it is assumed to be the same as the name of the collection.

• --delete <NAME>: Deletes a collection.
• --reload <NAME>: Reloads a collection.
• --stat <NAME>: Outputs SolrCloud specific run-time information for a collection.
• --deletedocs <NAME>: Purges all indexed documents from a collection.
• --list: Lists all collections.
• The snapshot-related commands are covered in detail in Backing Up and Restoring Cloudera Search.

•
core [--create <NAME> [-p <NAME>=<VALUE>]...]
 [--reload <NAME>]
 [--unload <NAME>]
 [--status <NAME>]

Manipulates cores. The following options are supported:

• --create <NAME> [-p <NAME>=<VALUE>]: Creates a new core. The core is configured using
<NAME>=<VALUE> pairs. For more information about configuration options, see Solr documentation.

• --reload <NAME>: Reloads a core.
• --unload <NAME>: Unloads a core.
• --status <NAME>: Prints status of a core.

•
cluster [--get-solrxml <FILE>]
 [--put-solrxml <FILE>]
 [--set-property <NAME> <VALUE>]
 [--remove-property <NAME>]
 [--get-clusterstate <FILE>]

Manages cluster configuration. The following options are supported:

• --get-solrxml <FILE>: Downloads the cluster configuration file solr.xml from ZooKeeper to the local
system.

• --put-solrxml <FILE>: Uploads the specified file to ZooKeeper as the cluster configuration file solr.xml.

22

https://docs.cloudera.com/runtime/7.1.0/search-managing/topics/search-backup-restore.html
http://lucene.apache.org/solr/resources.html

Cloudera Runtime Managing Cloudera Search

• [--set-property <NAME> <VALUE>]: Sets property names and values. Typically used in a deployment that
is not managed by Cloudera Manager. For example, to configure a cluster to use TLS/SSL:

solrctl cluster --set-property urlScheme https

• [--remove-property <NAME>]: Removes the specified property.
• [--get-clusterstate <FILE>]: Downloads the clusterstate.json file from ZooKeeper to the local system.

23

	Contents
	Managing Cloudera Search
	Managing Cloudera Search Configuration
	Managing Configuration Using Configs or Instance Directories
	Managing Configs
	Managing Instance Directories
	Securing configs with ZooKeeper ACLs and Ranger
	Config Templates
	Updating the Schema in a Solr Collection

	Managing Collections in Cloudera Search
	Creating a Solr Collection
	Viewing Existing Solr Collections
	Deleting All Documents in a Solr Collection
	Backing Up and Restoring Solr Collections
	Deleting a Solr Collection

	Example solrctl Usage
	Using solrctl with an HTTP proxy
	Creating Replicas of Existing Shards
	Converting Instance Directories to Configs

	Migrating Solr replicas
	Backing Up and Restoring Cloudera Search
	Backing Up a Solr Collection
	Restoring a Solr Collection
	Cloudera Search Backup and Restore Command Reference

	solrctl Reference

