Cloudera Runtime 7.2.10

Managing Apache Hive

Date published: 2021-02-22
Date modified: 2021-06-08

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

ACITD OPErALIONS.....ceieeeieieeieesee et e e se e see e eeesteeseeesseesseeesseesseeeseesreeeseesseeenseessenan 4
RV T Y 1 T (o PP 4
VL= T R =101 o o T ot PSP 4
D= 1= oo] o =T f Lo o PSS 5
(o] o= ot 1T T 1= (=10 (U1 1 (= 6
[S19T= o FSITU (0] 0= 1 [od oo 1o 1 o o VS 6
S oo aa] 7= o o) 1 7= 0= 8
VIBW COMPACTTION PIOGIESS....e.viteiteieisteteseeseeseeeeseesessessesseatessessessestessessensessessessesesseasessessessessessessessensensensensesesnenns 8
DIES= o TSIETW 0] = 1 [oaore 1 4]0 1 o o O 9
(O0T g1 o= T (g 0] 0= == TS 9
(O]81< AVARY= oo = 11 [o] o FH USSR 12

AVA=Te (o g bc= Lo o (< = U || SR 12

Cloudera Runtime ACID operations

Apache Hive supports ACID (atomicity, consistency, isolation, and durability) v2 transactions at the row level
without any configuration. Knowing what this support entails helps you determine the table type you create.

By default, managed tables are ACID tables. Y ou cannot disable ACID transactions on managed tables, but you

can change the Hive default behavior to create external tables by default to mimic legacy releases. Application
development and operations are simplified with strong transactional guarantees and simple semantics for SQL
commands. Y ou do not need to bucket ACID v2 tables, so maintenance is easier. With improvements in transactional
semantics, advanced optimizations, such as materialized view rewrites and automatic query cache, are available. With
these optimizations, you can deploy new Hive application types.

A Hive operation is atomic. The operation either succeeds completely or fails; it does not result in partial data. A Hive
operation is also consistent: After an application performs an operation, the results are visible to the application in
every subsequent operation. Hive operations are isolated. Y our operations do not cause unexpected side effects for
other users. Finally, a Hive operation is durable. A completed operation is preserved in the event of afailure.

Hive operations are atomic at the row level instead of the table or partition level. A Hive client can read from a
partition at the same time another client adds rows to the partition. Transaction streaming rapidly inserts data into
Hive tables and partitions.

As Administrator, you can view alist of open and aborted transactions.

Enter aquery to view transactions.
SHOW TRANSACTIONS
The following information appears in the output:

e Transaction ID

e Transaction state

¢ Hiveuser who initiated the transaction

« Host machine or virtual machine where transaction was initiated

AsaHive administrator, you can get troubleshooting information about locks on atable, partition, or schema.

Hive transactions, enabled by default, disables Zookeeper locking. DbL ockManager stores and manages all
transaction lock information in the Hive Metastore. Heartbeats are sent regularly from lock holders and transaction
initiators to the Hive Metastore to prevent stale locks and transactions. The lock or transaction is aborted if the
metastore does not receive a heartbeat within the amount of time specified by the hive.txn.timeout configuration

property.

Check that transactions are enabled (the default).

Cloudera Runtime

Data compaction

1. Enter aHive query to check table locks.

SHOW LOCKS mnyt abl e EXTENDED;

2. Check partition locks.

SHOW LOCKS nyt abl e PARTI TI ON(ds='2018-05-01', hr='12") EXTENDED,

3. Check schemalocks.

SHOW LOCKS SCHEMA nydat abase;

The following information appears in the output unless ZooK eeper or in-memory lock managers are used.

Database name

Table name

Partition, if the table is partitioned
Lock state:

» Acquired - transaction initiator hold the lock

* Waiting - transaction initiator is waiting for the lock

« Aborted - the lock has timed out but has not yet been cleaned
Lock type:

* Exclusive - the lock cannot be shared
e Shared_read - the lock cannot be shared with any number of other shared_read locks

e Shared write - the lock may be shared by any number of other shared read locks but not with other
shared write locks

Transaction |D associated with the lock, if one exists

Last time lock holder sent a heartbeat

Time the lock was acquired, if it has been acquired

Hive user who requested the lock

Host machine or virtual machine on which the Hive user is running a Hive client

Blocked By ID - ID of thelock causing current lock to be in Waiting mode, if the lock isin this mode

Apache wiki transaction configuration documentation

As administrator, you need to manage compaction of deltafiles that accumulate during data ingestion. Compaction is
aprocess that performs critical cleanup of files.

Hive creates a set of deltafiles for each transaction that alters atable or partition and stores them in a separate
deltadirectory. By default, Hive automatically compacts delta and base files at regular intervals. Compaction isa
consolidation of files. Y ou can configure automatic compactions, as well as perform manual compactions of base and
deltafiles. To submit compaction Jobs, Hive uses Tez as the execution engine, and uses MapReduce agorithmsin the
Stack. Compactions occur in the background without affecting concurrent reads and writes. The compactor initiator
should run on only one HM S instance.

There are two types of compaction:

* Minor

Rewrites a set of deltafilesto asingle deltafile for a bucket.

https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-Configuration

Cloudera Runtime Data compaction

« Maor

Rewrites one or more delta files and the base file as a new base file for a bucket.

Apache Wiki transactions and compaction documentation

To prevent dataloss or an unsuccessful compaction, you must meet the prerequisites before compaction occurs.

Compaction causes data loss if Apache Ranger policies for masking or row filtering are enabled and the user hive or
any other compaction user isincluded in the Ranger policies.

1. Set up Ranger masking or row filtering policiesto exclude the user hive from the policies.
The user (named hive) appearsin the Userslist in the Ranger Admin Ul.

Policy 1D Policy Name Policy Labels Status Audit Logging Roles Groups Users

all - hiveservice

2. ldentify any other compaction users from the masking or row filtering policies for tables as follows:

« |If the hive.compaction.run.as.user property is configured, the user runs compaction.
» If auserisconfigured as owner of the directory on which the compaction will run, the user runs compaction.
» If auserisconfigured as the table owner, the user runs compaction

3. Exclude compaction users from the masking or row filtering policies for tables.

Failure to perform these critical steps can cause data loss. For example, if a compaction user isincluded in an enabled
Ranger masking policy, the user sees only the masked data, just like other users who are subject to the Ranger
masking policy. The unmasked data is overwritten during compaction, which leads to data loss of unmasked content
as only the underlying tables will contain masked data. Similarly, if Ranger row filtering is enabled, you do not see,
or have access to, the filtered rows, and datais lost after compaction from the underlying tables.

The worker process executes queries to perform compaction, making Hive data subject to dataloss (HIVE-27643).
M apReduce-based compactions are not subject to the data | oss described above as these compactions directly use the
MapReduce framework.

Row-level filtering and column masking in Hive with Ranger policies

Several properties in the Hive and Hive metastore service configurations must be set to enable automatic compaction.
Y ou need to check that the property settings are correct and to add one of the propertiesto the Hive on Tez service.
Automatic compaction will then occur at regular intervals, but only if necessary.

Initiator threads should run in only one Hive metastore server (even in high-availability / HA configurations) in a
public cloud environment. Disable Initiator threads in the other Hive Metastore serversin the Datalake cluster, and
in all the Datahub clusters' Hive service, the compaction initiator thread can be run by a single Hive metastore in
the Datal_ake cluster. The following properties must be set in Hive metastore (Hive-1) and Hive on Tez services as
follows:

https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions/
https://issues.apache.org/jira/browse/HIVE-27643
https://docs.cloudera.com/runtime/7.2.10/security-ranger-authorization/topics/security-ranger-row-level-filtering-and-column-masking-in-hive.html

Cloudera Runtime Data compaction

» hive.compactor.initiator.on = true (default)
» hive.compactor.worker.threads = <a value greater than 0> (default and recommended value = 5)
« hive.metastore.runworker.in = hs2 (default)

Tables or partitions you are compacting must be full ACID or insert-only ACID tables.

1. InClouderaManager, select the Hive metastore service: Clusters Hive-1 Configuration .
2. Search for compact.

& ¢ HIVE-1 Actions « Ape 3, 10:57 PM UTC
Status nstances Configuration Commands Charts Library Audits Quick Links =
Q compact @ Filters Role Groups History and Rollback
Filters Sho A1 Deseriptisns
Turn om compadctor initiatar Hive Metastore Server Default Group LEI
SCOPE thread
live.compactorinitiator.or
1]
0 .
. Mumber of Threads Used by Hive Matastore Server Defaull Group)]

Compactor _
o 5
iivecompattorworker threacds

1]
Run compactor on Hive Hive Metastore Server Default Group)]
CATEGORY pactor “ = fadit broup £
Metastore or HiveServer2.
) . metastore
Advanced 3 tive melastore runwarkerin
Cloudera Navigator 0 Q hs2

3. Check that Turn on Compactor Initiator Thread (hive.compactor.initiator.on), Number of Threads Used by
Compactor (hive.compactor.worker.threads), and Run Compactor on Hive Metastore or HiveServer2 (hive.met
astore.runworker.in) are set to the values shown above.

4. Savethe changes.
5. In Cloudera Manager, select the Hive metastore service: Clusters HIVE_ON_TEZ-1 Configuration .
6. Search for compact.

@ ‘¢ HIVE_ON_TEZ-T | actions-

Slatus nstances Cor ||Sl.|l;,'l.|-p|| Commands Charis L|L|L|r:,- Audits HiveServer? Web U :’ Quick Links =
Q compac & Filters Role Groups
Filters
Number of Threads Used by Compactor HIVE_ON_TEZ-1 {Service-Wide)
SCOPE hive.compactorworkerthieads =
5
HIVE_OMN_TEZ-1 {Service-Wide) 3
Gateway o Run compactor on Hive Metastore o HIVE_OMN_TEZ-1 {Service-Wide)
HiveServer2 o HiveServer?
metastore
hivemedastore runwarkerin
CATEGORY O hs?

7. Check that the Number of Threads Used by Compactor (hive.compactor.worker.threads), and Run compactor on
Hive Metastore or HiveServer2 (hive.metastore.runworker.in) is set to hs2.

8. Savethe changes and restart the Hive on Tez and Hive (HIV E-1) metastore services at an appropriate time.

Cloudera Runtime Data compaction

Y ou manually start compaction when automatic compaction fails for some reason. Y ou can start compaction by
running a Hive statement.

Carefully consider the need for amajor compaction as this process can consume significant system resources and take
along time. Start amajor compaction during periods of low traffic. Base and deltafilesfor atable or partition are
compacted.

Start compaction using a query

Y ou use the following syntax to issue a query that starts compaction:

ALTER TABLE t abl enane [PARTI TION (partition_key='partition_value' [,...])]
COVPACT ' conpacti on_type'

Tables or partitions you are compacting must be full ACID or insert-only ACID tables.

1. In Cloudera Manager, select the Hive metastore service: Clusters Hive-1 Configuration .
2. Search for compact.

& ¢ HIVE-1 Actions « Apr 3, 10:57 PM UTC
Status nstances Configuration Commands Charts Library Audits Quick Links -
Q compact @ Filters Role Groups History and Rollback
Flhllr:’ Shew &1 Descriptinns
Turn on compactor initiator {ive Metastore Server Default Group ::'._)':u
SCOPE thread

Wve compactorinitiaton.or
TV = Wi il 0

3. Check that the Hive Metastore Server Default Group is selected (hive.compactor.initiator.on=true).
4. Runaquery to start amajor compaction of atable.

ALTER TABLE nyt abl e COVPACT ' naj or'

ALTER TABLE compacts tables even if the NO_AUTO_COMPACTION table property is set.

Y ou view the progress of compactions by running a Hive query.

Enter the query to view the progress of compactions.
SHOW COMPACTIONS;

e Uniqueinternal ID
e Database name

e Table name

e Partition name

Cloudera Runtime Data compaction

e Major or minor compaction
e Compaction state:

e Initiated - waiting in queue
* Working - currently compacting
» Ready for cleaning - compaction completed and old files scheduled for removal
» Failed - thejob failed. Details are printed to the metastore log.
* Succeeded
« Attempted - initiator attempted to schedule a compaction but failed. Details are printed to the metastore log.
e Thread ID
» Start time of compaction
e Duration
e JobID - ID of the submitted MapReduce job

Y ou can disable automatic compaction of a particular Hive table by setting a Hive table property. By default,
compaction is enabled, so you must enter an ALTER TABLE command to disableit.

Disabling automatic compaction does not prevent you from performing manual compaction.

Start the Hive shell, and in the database of the target table, alter the TBLPROPERTIES.

ALTER TABLE ny_t SET TBLPROPERTIES (' NO AUTO COMPACTI ON ='true');

Y ou check and change a number of Apache Hive properties to configure the compaction of deltafiles that accumulate
during dataingestion. Y ou need to know the defaults, valid values, and where to set these properties: Cloudera
Manager, TBLPROPERTIES, hive-site.xml, or core-sitexml. When properties do not appear in Cloudera Manager
search of configuration properties for a runtime service, you add the property to hive-site or core-site using the
Cloudera Manager Safety Valve.

hive.compactor .initiator.on
Default=false

Whether to run the initiator and cleaner threads on this metastore instance or not.

hive.compactor .worker .threads
Default=0

Set this to a positive number to enable Hive transactions, which are required to trigger transactions.
Worker threads spawn jobs to perform compactions, but do not perform the compactions
themselves. Increasing the number of worker threads decreases the time that it takes tables or
partitions to be compacted. However, increasing the number of worker threads also increases the
background load on the CDP cluster because they cause more jobs to run in the background.

hive.metastor e.runworker .in
Default=HS2

Cloudera Runtime Data compaction

Specifies where to run the Worker threads that spawn jobs to perform compactions. Valid values are
HiveServer (HS2) or Hive metastore (HMS).

hive.compactor .abortedtxn.threshold

Default=1000 aborts

The number of aborted transactions that triggers compaction on a table/partition.
hive.compactor .aborted.txn.time.threshold

Default=12 hours

The hours of aborted transactions that trigger compaction on atable/partition.

hive.compactor .wor ker .timeout
Default=86400s

Expects atime value with unit (d/day, h/hour, m/min, s/sec, ms/msec, usg/usec, ng/nsec), which is
sec if not specified. Time in seconds after which a compaction job will be declared failed and the
compaction re-queued.

hive.compactor.check.interval
Default=300s

A valid valueis atime with unit (d/day, h/hour, m/min, s/sec, mg/msec, us/usec, ng/nsec), which is
sec if not specified.

Time in seconds between checks to seeif any tables or partitions need to be compacted. This value
should be kept high because each check for compaction requires many calls against the NameNode.
Decreasing this value reduces the time it takes to start compaction for a table or partition that
requiresit. However, checking if compaction is needed requires several calls to the NameNode for
each table or partition involved in atransaction done since the last major compaction. Consequently,
decreasing this value increases the load on the NameNode.

hive.compactor.delta.num.threshold
Default=10

Number of delta directoriesin atable or partition that triggers a minor compaction.

hive.compactor .delta.pct.threshold
Default=0.1

Percentage (fractiona) size of the delta files relative to the base that triggers a major compaction.
(1.0 = 100%, so the default 0.1 = 10%.)

hive.compactor.max.num.delta
Default=500

Maximum number of delta files that the compactor attempts to handlein asingle job.

hive.compactor .wait.timeout
Default=300000

The value must be greater than 2000 milliseconds.
Time out in milliseconds for blocking compaction.

hive.compactor .initiator .failed.compacts.threshold
Default=2

A valid value is between 1 and 20, and must be less than hive.compactor.history.retention.failed.

The number of consecutive compaction failures (per table/partition) after which automatic
compactions are not scheduled any longer.

hive.compactor .cleaner.run.interval

10

Cloudera Runtime Data compaction

Default=5000ms

A valid value is atime with unit (d/day, h/hour, m/min, s/sec, ms/msec, us/usec, ng/nsec), which is
msec if not specified.

The time between runs of the cleaner thread.

hive.compactor .job.queue

Specifies the Hadoop queue name to which compaction jobs are submitted. If the value is an empty
string, Hadoop chooses the queue.

hive.compactor.compact.insert.only

Default=true

The compactor compacts insert-only tables, or not (false). A safety switch.
hive.compactor.crud.query.based

Default=false

Performs major compaction on full CRUD tables as a query, and disables minor compaction.
hive.split.grouping.mode

Default=query

A valid value is either query or compactor.

This property is set to compactor from within the query-based compactor. This setting enables
the Tez SplitGrouper to group splits based on their bucket number, so that all rows from different
bucket files for the same bucket number can end up in the same bucket file after the compaction.

hive.compactor .history.retention.succeeded
Default=3
A valid value is between 0 and 100.

Determines how many successful compaction records are retained in compaction history for agiven
table/partition.

hive.compactor .history.retention.failed
Default=3

A valid value is between 0 and 100.

Determines how many failed compaction records are retained in compaction history for agiven
table/partition.

hive.compactor .history.retention.attempted
Default=2
A valid value is between 0 and 100.

Determines how many attempted compaction records are retained in compaction history for agiven
table/partition.

hive.compactor .history.reaper.interval
Default=2m

A valid value is atime with unit (d/day, h/hour, m/min, s/sec, mg/msec, us/usec, ng/nsec), which is
msec if not specified.

Determines how often compaction history reaper runs.

11

Cloudera Runtime Query vectorization

Y ou can use vectorization to improve instruction pipelines and cache use. Vectorization enables certain data and
queries to process batches of primitive types on the entire column rather than one row at atime.

Some functionality is not supported on vectorized data:

» DDL queries
e DML queries other than single table, read-only queries
» Formats other than Optimized Row Columnar (ORC)

The following functionality is supported on vectorized data:
e Singletable, read-only queries

Selecting, filtering, and grouping data is supported.
» Partitioned tables
» Thefollowing expressions:

e Comparison; >, >=, <, <=, =, I=

e Arithmetic plus, minus, multiply, divide, and modulo
e Logical AND and OR

« Aggregates sum, avg, count, min, and max

Y ou can query data of the following types using vectorized queries:

o tinyint

e smalint

e int

e bigint

o date

e boolean
e float

e double

e timestamp
e stringchar
e varchar

e binary

Vectorized query execution can affect performance. Y ou need to be aware of the Boolean default value of
hive.vectorized.execution.enabled.

Vectorized query execution is enabled by default (true). Vectorized query execution processes Hive datain batch,
channeling alarge number of rows of datainto columns, foregoing intermediate results. This technique is more
efficient than the MapReduce execution process that stores temporary files.

12

	Contents
	ACID operations
	View transactions
	View transaction locks

	Data compaction
	Compaction prerequisites
	Enable automatic compaction
	Start compaction manually
	View compaction progress
	Disable automatic compaction
	Compactor properties

	Query vectorization
	Vectorization default

