
Cloudera Runtime 7.2.10

Securing Apache Hive
Date published: 2021-02-22
Date modified: 2021-06-08

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Transactional table access... 4

Hive authentication...4
Secure HiveServer using LDAP...4
Client connections to HiveServer...5
JDBC connection string syntax..7

Under AutoTLS secure a HiveServer JDBC/ODBC endpoint.............................9

Cloudera Runtime Transactional table access

Transactional table access

As administrator, you must enable the Apache Ranger service to authorize users who want to work with transactional
tables. These types of tables are the default, ACID-compliant tables in Hive 3 and later.

ACID tables reside by default in /warehouse/tablespace/managed/hive. Only the Hive service can own and interact
with files in this directory. Ranger is the only available authorization mechanism that Cloudera recommends for
ACID tables.

Hive authentication

HiveServer supports authentication of clients using Kerberos or user/password validation backed by LDAP.

If you configure HiveServer to use Kerberos authentication, HiveServer acquires a Kerberos ticket during startup.
HiveServer requires a principal and keytab file specified in the configuration. Client applications (for example, JDBC
or Beeline) must have a valid Kerberos ticket before initiating a connection to HiveServer2. JDBC-based clients must
include principal=<hive.server2.authentication.principal> in the JDBC connection string. For example:

String url = "jdbc:hive2://node1:10000/default;principal=hive/HiveServerHost
@YOUR-REALM.COM"
Connection con = DriverManager.getConnection(url);

where hive is the principal configured in hive-site.xml and HiveServerHost is the host where HiveServer is running.

To start Beeline and connect to a secure HiveServer, enter a command as shown in the following example:

beeline -u "jdbc:hive2://10.65.13.98:10000/default;principal=hive/_HOST@CLOU
DERA.SITE"

Secure HiveServer using LDAP
You can secure the remote client connection to Hive by configuring HiveServer to use authentication with LDAP.

About this task
When you configure HiveServer to use user and password validation backed by LDAP, the Hive client sends a
username and password during connection initiation. HiveServer validates these credentials using an external LDAP
service. You can enable LDAP Authentication with HiveServer using Active Directory or OpenLDAP.

Procedure

1. In Cloudera Manager, select Hive-on-Tez Configuration .

2. Search for ldap.

3. Check Enable LDAP Authentication for HiveServer2 for Hive (Service Wide).

4. Enter your LDAP URL in the format ldap[s]://<host>:<port>.

LDAP_URL is the access URL for your LDAP server. For example, ldap://ldap_host_name.xyz.com:389

4

Cloudera Runtime Hive authentication

5. Enter the Active Directory Domain or LDAP Base DN for your environment.

• Active Directory (AD)
• LDAP_BaseDN

Enter the domain name of the AD server. For example, corp.domain.com.

Enter the base LDAP distinguished name (DN) for your LDAP server. For example, ou=dev, dc=xyz.

6. Click Save Changes.

7. Restart the Hive service.

8. Construct the LDAP connection string to connect to HiveServer.
The following simple example is insecure because it sends clear text passwords.

String URL = "jdbc:hive2://node1:10000/default;user=LDAP_Userid;password
=LDAP_Password"
Connection con = DriverManager.getConnection(url);

The following example shows a secure connection string that uses encrypted passwords.

String url ="jdbc:hive2://node1:10000/default;ssl=true;sslTrustStore=/my
truststore_path;trustStorePassword=my_truststore_password"
Connection con = DriverManager.getConnection(url);

For information about encrypting communication, see links below.

Related Information
Custom Configuration (about Cloudera Manager Safety Valve)

Client connections to HiveServer
You can use Beeline, a JDBC, or an ODBC connection to HiveServer.

5

https://docs.cloudera.com/cloudera-manager/7.4.2/configuring-clusters/topics/cm-configuration-snippet.html

Cloudera Runtime Hive authentication

JDBC Client-HiveServer Authentication

The JDBC client requires a connection URL as shown below. JDBC-based clients must include a user name and
password in the JDBC connection string. For example:

String url = "jdbc:hive2://node1:10000/default;user=LDAP_Userid;password=LDA
P_Password" Connection con = DriverManager.getConnection(url);

where the LDAP_Userid value is the user ID and LDAP_Password is the password of the client user.

HiveServer modes of operation

HiveServer supports the following modes for interacting with Hive:

Operating Mode Description

Embedded The Beeline client and the Hive installation reside on the same host
machine or virtual machine. No TCP connectivity is required.

Remote Use remote mode to support multiple, concurrent clients executing
queries against the same remote Hive installation. Remote transport
mode supports authentication with LDAP and Kerberos. It also
supports encryption with SSL. TCP connectivity is required.

Remote mode: Launch Hive using the following URL:

 jdbc:hive2://<host>:<port>/<db>.

The default HiveServer2 port is 10000.

Embedded mode: Launch Hive using the following URL:

 jdbc:hive2://

Transport Modes

As administrator, you can start HiveServer in one of the following transport modes:

Transport Mode Description

TCP HiveServer uses TCP transport for sending and receiving Thrift RPC
messages.

HTTP HiveServer uses HTTP transport for sending and receiving Thrift RPC
messages.

Pluggable Authentication Modules in HiveServer

While running in TCP transport mode, HiveServer supports Pluggable Authentication Modules (PAM). Using
Pluggable Authentication Modules, you can integrate multiple authentication schemes into a single API. You use the
Cloudera Manager Safety Valve technique on HIVE_ON_TEZ-1 Configuration to set the following properties:

• hive.server2.authentication

Value = CUSTOM
• hive.server2.custom.authentication.class

Value = <the pluggable auth class name>

The class you provide must be a proper implementation of the org.apache.hive.service.auth.PasswdAuthenticatio
nProvider. HiveServer calls its Authenticate(user, passed) method to authenticate requests. The implementation can
optionally extend the Hadoop's org.apache.hadoop.conf.Configured class to grab the Hive Configuration object.

6

Cloudera Runtime Hive authentication

HiveServer Trusted Delegation

HiveServer determines the identity of the connecting user from the authentication subsystem (Kerberos or LDAP).
Any new session started for this connection runs on behalf of this connecting user. If the server is configured to proxy
the user, the identity of the connecting user is used to connect to Hive. Users with Hadoop superuser privileges can
request an alternate user for the given session. HiveServer checks that the connecting user can proxy the requested
userid, and if so, runs the new session as the alternate user.

JDBC connection string syntax
The JDBC connection string for connecting to a remote Hive client requires a host, port, and Hive database name.
You can optionally specify a transport type and authentication.

jdbc:hive2://<host>:<port>/<dbName>;<sessionConfs>?<hiveConfs>#<hiveVars>

Connection string parameters

The following table describes the parameters for specifying the JDBC connection.

JDBC Parameter Description Required

host The cluster node hosting HiveServer. yes

port The port number to which HiveServer listens. yes

dbName The name of the Hive database to run the
query against.

yes

sessionConfs Optional configuration parameters for the
JDBC/ODBC driver in the following format:
<key1>=<value1>;<key2>=<key2>...;

no

hiveConfs Optional configuration parameters for Hive on
the server in the following format: <key1>=<
value1>;<key2>=<key2>; ...

The configurations last for the duration of the
user session.

no

hiveVars Optional configuration parameters for Hive
variables in the following format: <key1>=<
value1>;<key2>=<key2>; ...

The configurations last for the duration of the
user session.

no

TCP and HTTP Transport

The following table shows variables for use in the connection string when you configure HiveServer. The JDBC
client and HiveServer can use either HTTP or TCP-based transport to exchange RPC messages. Because the default
transport is TCP, there is no need to specify transportMode=binary if TCP transport is desired.

transportMode Variable Value Description

http Connect to HiveServer2 using HTTP transport.

binary Connect to HiveServer2 using TCP transport.

The syntax for using these parameters is:

jdbc:hive2://<host>:<port>/<dbName>;transportMode=http;httpPath=<http_endpoi
nt>; \
 <otherSessionConfs>?<hiveConfs>#<hiveVars>

7

Cloudera Runtime Hive authentication

User Authentication

If configured in remote mode, HiveServer supports Kerberos, LDAP, Pluggable Authentication Modules (PAM), and
custom plugins for authenticating the JDBC user connecting to HiveServer. The format of the JDBC connection URL
for authentication with Kerberos differs from the format for other authentication models. The following table shows
the variables for Kerberos authentication.

User Authentication Variable Description

principal A string that uniquely identifies a Kerberos user.

saslQop Quality of protection for the SASL framework. The level of quality is
negotiated between the client and server during authentication. Used by
Kerberos authentication with TCP transport.

user Username for non-Kerberos authentication model.

password Password for non-Kerberos authentication model.

The syntax for using these parameters is:

jdbc:hive://<host>:<port>/<dbName>;principal=<HiveServer2_kerberos_principal
>;<otherSessionConfs>?<hiveConfs>#<hiveVars>

Transport Layer Security

HiveServer2 supports SSL and Sasl QOP for transport-layer security. The format of the JDBC connection string for
SSL uses these variables:

SSL Variable Description

ssl Specifies whether to use SSL

sslTrustStore The path to the SSL TrustStore.

trustStorePassword The password to the SSL TrustStore.

The syntax for using the authentication parameters is:

jdbc:hive2://<host>:<port>/<dbName>; \
ssl=true;sslTrustStore=<ssl_truststore_path>;trustStorePassword=<truststo
re_password>; \
<otherSessionConfs>?<hiveConfs>#<hiveVars>

When using TCP for transport and Kerberos for security, HiveServer2 uses Sasl QOP for encryption rather than SSL.

Sasl QOP Variable Description

principal A string that uniquely identifies a Kerberos user.

saslQop The level of protection desired. For authentication, checksum, and
encryption, specify auth-conf. The other valid values do not provide
encryption.

The JDBC connection string for Sasl QOP uses these variables.

jdbc:hive2://FQDN.EXAMPLE.COM:10000/default;principal=hive/_H
OST@EXAMPLE.COM;saslQop=auth-conf

The _HOST is a wildcard placeholder that gets automatically replaced with the fully qualified domain name (FQDN)
of the server running the HiveServer daemon process.

8

Cloudera Runtime Under AutoTLS secure a HiveServer JDBC/ODBC endpoint

Under AutoTLS secure a HiveServer JDBC/ODBC
endpoint

The default cluster configuration for HiveServer (HS2) with AutoTLS secures the HS2 WebUI Port, but NOT the
JDBC/ODBC endpoint.

About this task
The default cluster configuration for HS2 with AutoTLS will secure the HS2 Server WebUI Port, but NOT the JDBC/
ODBC endpoint.

Assumptions:

• Auto-TLS Self-signed Certificates.
• Proper CA Root certs eliminate the need for any of the following truststore actions.

When HS2 TLS is enabled hive.server2.use.SSL=true, the auto-connect feature on gateway servers is not supported.
The auto-connect feature uses /etc/hive/conf/beeline-site.xml to automatically connect to Cloudera Manager
controlled HS2 services. Also, with hive.server2.use.SSL=true, ZooKeeper discovery mode is not supported because
the HS2 reference stored in ZooKeeper does not include the ssl=true and other TLS truststore references (self-signed)
needed to connect with TLS.

The beeline-site.xml file managed for gateways doesn't not include ssl=true or a reference to a truststore that includes
a CA for the self-signed TLS certificate used by ZooKeeper or HiveServer.

The best practice, under the default configuration, is to have all external clients connect to Hive (JDBC/ODBC)
through the Apache Knox proxy. With TLS enabled via Auto-TLS with a self-signed cert, you can use the jks file
downloaded from Knox as the client trusted CA for the Knox host. That cert will only work for KNOX. And since
KNOX and HS2 TLS server certs are from the same CA, Knox connects without adjustments.

To connect through Knox:

Procedure

1. Configure the HS2 transport mode as http to support the Knox proxy interface.

jdbc:hive2://<host>:8443/;ssl=true;\
transportMode=http;httpPath=gateway/cdp-proxy-api/hive;\
...

The TLS Public Certificate in <path>/bin/certs/gateway-client-trust.jks will not work.

2. Build a TLS Public Certificate from the self-signed root CA used for the cluster in Cloudera Manager.

keytool -import -v -trustcacerts -alias home90-ca -file \
/var/lib/cloudera-scm-agent/agent-cert/cm-auto-global_cacerts.pem \
-keystore <my_cacert>.jks

3. Connect to HS2 on the Beeline command line, using the -u option.

hive -u jdbc:hive2://<HS2 host>:10001/default;ssl=true;\
transportMode=http;httpPath=cliservice;\
principal=hive/_HOST@<realm>;user=<user name>;\
sslTrustStore=<path>/certs/home90_cacert.jks;\
trustStorePassword=changeit

The httpPath default is configured in Cloudera Manager. The sslTrustStore is required is you are using a self-
signed certificate.

9

	Contents
	Transactional table access
	Hive authentication
	Secure HiveServer using LDAP
	Client connections to HiveServer
	JDBC connection string syntax

	Under AutoTLS secure a HiveServer JDBC/ODBC endpoint

