Cloudera Runtime 7.2.12

Developing Apache Kafka Applications

Date published: 2019-12-18
Date modified: 2021-10-25

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

KafKa PrOQUCENS... ..ottt sttt ns e e e nne e snne e 4
KafKa CONSUMENS....cuiiiiicieie ettt sttt s sre e et 5
ST 101 o 1T TR 0T Y o oSS 7
(o0 1S 3= o I = (1 1 o 9
Protocol between conSUMEr and DrOKEN ..o 10
LS 0 E= 1110 0 0] 13
REITTES. ...ttt R R R R R Rt R e R e 13

Kafka ClIENtS N0 ZOOKEEPENcvieeecire e stes e stestes e e sae e e e e e e e eseesessesresbestesaestesteseeseesteeeaensensenseneesensenneasens 14
JAVA CHENT....cee e s e et r e s be e sae e e reennee s 15
JAVA CHENE BXAMPIES......eeeieieieeeet ettt ettt ettt heea e e aeeheeb e s bt saeebe s beseesb et et e e e s enee e eneeneeneenenbeas 16
SIMPIE JAVA CONSUMEN ...ttt ettt sttt sttt e ettt et bt b e s bt sbesbesbese e e e bese e e ense e et eseebesnesaesbenberes 16

SIMPIE JAVA PrOTUCESttt e bt e b e e et ese et e st ebesbesbesbesbeseeseebeneenean 17

Java ClieNt SECUNTY EXAMPIES... ..ttt ettt b e bt b et be e e b et e e e e e seeneeaeeaesbesaennen 18
AL ot = o 19
INEL ClIENE EXAMPIES.....c.eeeeeee et b et b e st se bt s e b se bt e e bt s b et sbe e s b e e ebe e 20
Simple .NET CONSUMES EXMPIE......c.cuiieiirieeitee ettt sttt sttt st st a ettt st st b e b e 20

Simple .NET ProduCer XAMPIE........coi ettt st sttt st b e 20

Performant .NET ProduCer €XamMPIe..........coeireirieirieiriere sttt 21

Net Client SECUMTY EXBMPIES......c.coiieei ettt b ettt b et b et b e et e b neene s 22
KafKa SIFBAMS ..ot et 23
KafKa PUDIIC APLS ..ottt 23

Recommendations for using the producer and consumer APIs...........cccoeeeueee. 24

Cloudera Runtime Kafka producers

Learn more about Kafka producers and their most important configuration properties.

Kafka producers are the publishers responsible for writing records to topics. Typically, this means writing a program
using the producer API availablein your chosen client library. To instantiate a producer:

Kaf kaPr oducer<String, String> producer = new
Kaf kaPr oducer <>(pr oducer Confi g) ;

var producer = new ProducerBuil der<string, string>(config).Build();

Most of the important producer settings, and mentioned below, are in the configuration passed by this constructor.

For each producer, there are two serialization properties that must be set, key.seriaizer (for the key)
and value.serializer (for the value). Y ou can write custom code for serialization or use one of the
ones aready provided by Kafka. Some of the more commonly used ones are:

» ByteArraySerializer: Binary data
e StringSeriaizer: String representations

Seridization is passed to the producer builder object for key and value serialization:

var producer = new ProducerBuil der<string, string>(producerConfi

9)
. Set KeySeri alizer(Serializers. Uf8)

. Set Val ueSerializer(Serializers.ByteArray)
.Build())

There are several settings to control how many records a producer accumulates before actually sending the data to the
cluster. Thistuning is highly dependent on the data source. Some possihilities include:

¢ batch.size: Combine this fixed number of records before sending data to the cluster.
e linger.ms: Always wait at least this amount of time before sending data to the cluster; then send however many
records has accumulated in that time.

e max.request.size: Put an absolute limit on data size sent. This technique prevents network congestion caused
by asingle transfer request containing alarge amount of data relative to the network speed.

e compression.type: Enable compression of data being sent.
« retries: Enable the client for retries based on transient network errors. Used for reliability.

Cloudera Runtime Kafka consumers

* BatchNumMessages: Combine this fixed number of records before sending data to the cluster.

e LingerMS: Alwayswait at least this amount of time before sending data to the cluster; then send however
many records has accumulated in that time.

e CompressionType: Enable compression of data being sent.
* MessageSendMaxRetries; Maximum number of retries for sending afailed message.

The full write path for records from a producer is to the leader partition and then to all of the follower replicas.
The producer can control which point in the path triggers an acknowledgment. Depending on the acks setting, the
producer may wait for the write to propagate all the way through the system or only wait for the earliest success point.

Valid acks values are:

* 0: Do not wait for any acknowledgment from the partition (fastest throughput).
» 1: Wait only for the leader partition response.
« dl: Wait for follower partitions responses to meet minimum (slowest throughput).

In Kafka, the partitioner determines how records map to partitions. Use the mapping to ensure the order of records
within a partition and manage the balance of messages across partitions. The default partitioner uses the entire key
to determine which partition a message corresponds to. Records with the same key are always mapped to the same
partition (assuming the number of partitions does not change for atopic). Consider writing a custom partitioner if
you have information about how your records are distributed that can produce more efficient load balancing across
partitions. A custom partitioner lets you take advantage of the other datain the record to control partitioning.

If apartitioner is not provided to the KafkaProducer, Kafka uses a default partitioner. The
ProducerRecord classis the actual object processed by the KafkaProducer. It takes the following
parameters:

» Kafka Record: The key and value to be stored.
» Intended Destination: The destination topic and the specific partition (optional).

Y ou can set what partitioner to use with the Partitioner property of ProducerConfig. By default
the consistent_random partitioner is used. In C# you define the key and value typesin the
ProducerBuilder. When a new message is sent to atopic, a Message<Key,Vaue> object is
processed with the key and val ue types specified in ProducerBuilder.

Learn more about K afka consumers.

Kafka consumers are the subscribers responsible for reading records from one or more topics and one or more
partitions of atopic. Consumers subscribing to atopic can happen manually or automatically; typically, this means
writing a program using the consumer APl available in your chosen client library.

To instantiate a consumer:

Kaf kaConsuner<String, String> kaf kaConsumer = new
Kaf kaConsuner <>(consuner Confi g) ;

Cloudera Runtime Kafka consumers

var consumer = new Consuner Buil der<string, string>(config).Build();

The consumer class has two generic type parameters. Just as producers can send data (the values) with keys, the
consumer can read data by keys. In this example both the keys and values are strings. If you define different types,
you need to define a deserializer to accommodate the alternate types. For deserializers you need to implement an
interface:

« For Javaimplement the org.apache. kafka.common.serialization.Deserializer interface
» For C#implement the Confluent.Kafka.l Deserializer interface

The most important configuration parameters that we need to specify are:

« bootstrap.servers: A list of brokersto initially connect to. List 2 to 3 brokers; you don't needed to list the full
cluster.

e group.id: Every consumer belongsto a group. That way they’ll share the partitions of atopic.

* key.deserializer/value.deserializer: Specify how to convert the Java representation to a sequence of bytesto
send data through the Kafka protocol.

« BootstrapServers: A list of brokersto initially connect to. List 2 to 3 brokers; you don't need to list the full
cluster.

e Groupld: Every consumer belongsto a group. That way they’ Il share the partitions of atopic.

» Kkey.deserializer/value.deserializer: Specify how to convert the Java representation to a sequence of bytesto
send data through the Kafka protocol.

* Key and value deserializer: In C# the key and value deserializers are not configuration parameters, instead they
are passed to the builder object. For example:

var consuner = new Consumner Buil der<string, GenericRecord>(config)

. Set KeyDeseri al i zer(new AvroDeserializer<strin
g>(schemaRegi stry). AsSyncOver Async())

. Set Val ueDeseri al i zer (new AvroDeseri al i zer <Gen
eri cRecor d>(schenaRegi stry). AsSyncOver Async())

.Bui I d()

In addition to the configuration properties presented above, there are a number of other important configurations that
any user of Kafka must know about. These are:

¢ heartbeat.interval.ms: The interval of the heartbeats. For example, if the heartbeat interval is set to 3 seconds,
the consumer sends a short heartbeat message to the broker every 3 secondsto indicate that it is alive.

* session.timeout.ms: The consumer tells this timeout to the coordinator. Thisis used to control the heartbeats
and remove the dead consumers. If it's set to 10 seconds, the consumer can miss sending 2 heartbeats,
assuming the previous heartbeat setting. If we increase the timeout, the consumer has more room for delays but
the broker notices lagging consumers later.

e max.poll.interval.ms: It isavery important detail: the consumers must maintain polling and should never do
long-running processing. If a consumer is taking too much time between two polls, it will be detached from
the consumer group. We can tune this configuration according to our needs. Note that if a consumer is stuck in
processing, it will be noticed later if the value isincreased.

* request.timeout.ms: Generally every request has atimeout. Thisis an upper bound that the client waits for the
server’ sresponse. If thistimeout elapses, then retries might happen if the number of retries are not exhausted.

Cloudera Runtime Kafka consumers

* HeartbeatIntervalMs: The interval of the heartbeats. For example, if the heartbeat interval is set to 3 seconds,
the consumer sends a short heartbeat message to the broker every 3 secondsto indicate that it is alive.

e SessionTimeoutMs: The consumer tells this timeout to the coordinator. Thisis used to control the heartbeats
and remove the dead consumers. If it’s set to 10 seconds, the consumer can miss sending 2 heartbeats,
assuming the previous heartbest setting. If we increase the timeout, the consumer has more room for delays but
the broker notices lagging consumers later.

* MaxPollintervalMs: It isavery important detail: the consumers must maintain polling and should never do
long-running processing. If a consumer istaking too much time between two polls, it will be detached from
the consumer group. We can tune this configuration according to our needs. Note that if a consumer is stuck in
processing, it will be noticed later if the value is increased.

Learn more about subscribing to atopic.

In order for the consumer to be able to consume messages, it first needs to subscribe to atopic. This can be done
using a subscribe method:

kaf kaConsuner . subscri be(Col | ecti ons. si ngl et onLi st (topic), rebal ancelListe
ner);

consuner . Subscri be(new List<string>() { topic });

Here you specify alist of topics that you want to consume from. In Java a'rebalance listener' is also specified.
Rebalancing is an important part of the consumer's life. Whenever the cluster or the consumers' state changes, a
rebalance will be issued. Thiswill ensure that all the partitions are assigned to a consumer.

After subscribing to atopic, the consumer hasto poll to seeif there are new records.

The poll () method returns multiple records that can be processed by the client. After processing the
records the client commits offsets synchronously, thus waiting until processing completes before
continuing to poll.

while (true) {
data = kaf kaConsumer. pol | ();
/1 do sonething with 'data'

}

The Consume() method returns a single result which can either be a single Kafka message, or an
end of partition event if the | sPartitionEOF property is true.

while (true)

Cloudera Runtime Kafka consumers

var result = consuner. Consune();
/1 Handl e result

The last important point isto save the progress.

In Javathis can be done with by the commitSync() and commitAsync() methods respectively. Auto commit is not
recommended; manual commit is appropriate in the majority of use cases.

In C# this can be done by calling the Close() method at the end of message processing which automatically commits
offsets. Alternatively, this can also be done manually by calling the Commit() method:

commitSync()

kaf kaConsuner . subscri be(Col | ecti ons. si ngl etonLi st(topic), rebala
ncelLi st ener);

while (true) {
Consumer Recor ds<String, String> records = kaf kaCon
suner . pol | (1000) ;
for (ConsunerRecord<String, String> record : recor
ds) {
System out. printf("Received Message with topic =
%, partition =%, offset = %, key = %, value = %\n",
record.topic(), record.partition(), recor
d.of fset (), record. key(), record.value());

// commit and wait until the offset is commtted
kaf kaConsuner. comm t Sync() ;

commitAsync()

kaf kaConsuner . subscri be(Col | ecti ons. si ngl etonLi st(topic), rebala
nceli stener);

while (true) {
Consumner Records<String, String> records = kaf kaCon
surmer . pol | (1000) ;
for (ConsumerRecord<String, String> record : recor
ds) {
System out. printf("Received Message with topic =
%, partition =%, offset = %l, key = %, value = %\n",
record.topic(), record.partition(), recor
d.of fset (), record. key(), record.value());

/1 Commt the offset and proceed with execution. The
cal | back will be invoked when the offset
// conmit's result cones back fromthe broker.
kaf kaConsuner. comm t Async((of fsets, exception) -> {
if (exception !'= null) {
/1 handl e the error that happened during off
set comit
} else {
/1 do sonething on successful offset conmt
i f needed

Cloudera Runtime Kafka consumers

1),

Clos()

consuner. C ose(); [// conmit offset and unsubscribe

Commit()

consunmer. Commit(); // commit offset

Learn more about how consumer groups fetch messages.

Kafka consumers are usually assigned to a group. This happens statically by setting the group.id configuration
property in the consumer configuration. Consuming with groups will result in the consumers balancing the load in the
group. That means each consumer will have their fair share of partitions. Also it can never be more consumers than
partitions as that way there would be idling consumers.

As shown in the figure below, both consumer groups share the partitions and each partition multicasts messages

to both consumer groups. The consumers pull messages from the broker instead of the broker periodically pushing
what is available. This helps the consumer as it won't be overloaded and it can query the broker at its own speed.
Furthermore, to avoid tight looping, it uses a so called “long-poll”. The consumer sends afetch request to poll for data
and receives areply only when enough data accumulates on the broker.

Cloudera Runtime Kafka consumers

Kafka Cluster

Consumer Group A
Broker 1

Partition 0 o

Consumer Group B
[y _consumers
R oot
Jg _ConsumerS
-~ I

Broker 2

partion 28

Protocol between consumer and broker

Get to know how the protocol works, what messages are going on the wire, and how that contributes to the overall
behavior of the consumer.

When discussing the internals of the consumers, there are a couple of basic terms to know:

Heartbeat

When the consumer is alive and is part of the consumer group, it sends heartbeats. These are short
periodic messages that tell the brokers that the consumer is alive and everything isfine.

Session
Often one missing heartbeat is not a big deal, but how do you know if a consumer is not sending
heartbeats for long enough to indicate a problem? A session is such atime interval. If the consumer

didn’t send any heartbeats for longer than the session, the broker can consider the consumer dead
and remove it from the group.

Coordinator

The special broker which manages the group on the broker side is called the coordinator. The
coordinator handles heartbeats and assigns the leader. Every group has a coordinator that organizes
the startup of a consumer group and assist whenever a consumer leaves the group.

L eader

The leader consumer is elected by the coordinator. Itsjob isto assign partitions to every consumer
in the group at startup or whenever a consumer leaves or joins the group. The leader holds the

10

Cloudera Runtime Kafka consumers

assignment strategy, it is decoupled from the broker. That means consumers can reconfigure the
partition assignment strategy without restarting the brokers.

Startup Protocol

As mentioned before, the consumers are working usually in groups. So amajor part of the startup processis spent
with figuring out the consumer group.

At startup, thefirst step isto match protocol versions. It is possible that the broker and the consumer are of different
versions (the broker is older and the consumer is newer, or vice versa). This matching is done by the API_VERS
IONS request.

Figure 2: Startup Protocol

Consumer Broker

API_VERSIONS

S
METADATA
-
FIND_COORDINATOR .
JOIN_GROUP
>
SYNC_GROUP
>

The next step isto collect cluster information, such as the addresses of all the brokers (prior to this point we used the
bootstrap server as areference), partition counts, and partition leaders. Thisis done in the METADATA request.

11

Cloudera Runtime Kafka consumers

After acquiring the metadata, the consumer has the information needed to join the group. By thistime on the broker
side, a coordinator has been selected per consumer group. The consumers must find their coordinator with the FIND
_COORDINATOR request.

After finding the coordinator, the consumer(s) are ready to join the group. Every consumer in the group sends their
own member-specific metadata to the coordinator in the JOIN_GROUP request. The coordinator waits until all the
consumers have sent their request, then assigns a leader for the group. At the response plus the collected metadata are
sent to the leader, so it knows about its group.

The remaining step isto assign partitions to consumers and propagate this state. Similar to the previous request, all
consumers send a SYNC_GROUP request to the coordinator; the leader provides the assignments in this request.
After it receives the sync request from each group member, the coordinator propagates this member state in the
response. By the end of this step, the consumers are ready and can start consuming.

When consuming, the first step is to query where should the consumer start. Thisis done in the OFFSET_FETCH
request. Thisis not mandatory: the consumer can a so provide the offset manually. After this, the consumer isfreeto
pull data from the broker. Data consumption happensin the FETCH requests. These are the long-pull requests. They
are answered only when the broker has enough data; the request can be outstanding for alonger period of time.

Consumer Broker

OFFSET_FETCH

=
FETCH
=
FETCH
OFFSET_COMMIT .
FETCH
=
HEARTBEAT
-

From time to time, the application has to either manually or automatically save the offsetsin an OFFSET_COMMIT
reguest and send heartbeats too in the HEARTBEAT requests. The first ensures that the position is saved while the
latter ensures that the coordinator knows that the consumer is alive.

12

Cloudera Runtime Kafka consumers

The last step when the consumption is done isto shut down the consumer gracefully. Thisis done in one single step,
called the LEAVE_GROUP protocol.

Consumer Broker

LEAVE_GROUP

Learn what rebalancing is, when it can occur, and how its propagated to the client.

There are multiple points in the protocol between consumers and brokers where failures can occur. There are points
in the normal operation of the system where you need to change the consumer group assignments. For example, to
consume a new partition or to respond to a consumer going offline. The process or responding to cluster information
changing is called rebalance. It can occur in the following cases:

» A consumer leaves. It can be a software failure where the session times out or a connection stalls for too long, but
it can also be a graceful shutdown.

* A consumer joins. It can be anew consumer but an old one that just recovered from a software failure
(automatically or manually).

« Partitionisadjusted. A partition can simply go offline because of abroker failure or a partition coming back
online. Alternatively an administrator can add or remove partitions to/from the broker. In these cases the
consumers must reassign who is consuming.

e Thecluster is adjusted. When a broker goes offline, the partitions that are lead by this broker will be reassigned.
In turn the consumers must rebalance so that they consume from the new leader. When a broker comes back, then
eventually a preferred leader election happens which restores the original |eadership. The consumers must follow
this change as well.

On the consumer side, this rebalance is propagated to the client via the ConsumerRebalancel istener interface. It has
two methods. The first, onPartitionsRevoked, will be invoked when any partition goes offline. This call happens
before the changes would reflect in any of the consumers, so thisis the chance to save offsetsif manual offset commit
is used. On the other hand onPartitionsAssigned is invoked after partition reassignment. Thiswould allow for the
programmer to detect which partitions are currently assigned to the current consumer. Complete examples can be
found in the devel opment section.

Learn more about retries and how they are constrained.

In Kafkaretries typically happen only for certain kinds of errors. When aretriable error is returned, the clients are
constrained by two facts: the timeout period and the backoff period.

The timeout period tells how long the consumer can retry the operation. The backoff period how often the consumer
should retry. There is no generic approach for "number of retries." Number of retries are usually controlled by timeout
periods.

13

Cloudera Runtime Kafka consumers

Kafka clients and ZooKeeper
L earn more about the differences between the old and new model for storing consumer offsets.

The default consumer model provides the metadata for offsets in the Kafka cluster. Thereisatopic named __consum
er_offsets that the Kafka consumers write their offsets to.

Figure 5: Kafka Consumer Dependencies

Kafka Cluster

Kafka Producer ——— Topic A » Kafka Consumer

Kafka Producer = » Kafka Consumer
Topic B

Kafka Producer [———» » Kafka Consumer

Kafka Producer > —consumer_offsets » Kafka Consumer

In releases before version 2.0 of CDK Powered by Apache Kafka, the same metadata was located in ZooK eeper. The
new model removes the dependency and load from Zookeeper. In the old approach:

» The consumers save their offsetsin a"consumer metadata’ section of ZooK eeper.
« With most Kafka setups, there are often alarge number of Kafka consumers. The resulting client load on
ZooK eeper can be significant, therefore this solution is discouraged.

Figure 6: Kafka Consumer Dependencies (Old Approach)

14

Cloudera Runtime

Javaclient

Kafka Cluster

Kafka Producer |—— Topic A » Kafka Consumer

Kafka Producer = » Kafka Consumer
Topic B

Kafka Producer > » Kafka Consumer

Kafka Consumer

Y
Y

Kafka Producer

Zookeeper Cluster

Consumer Metadata

Learn how the Java client libraries are distributed and how you can add the necessary artifactsto your projects.

Cloudera Runtime is shipped with the Java client libraries that are maintained as part of Apache Kafka. These are
available in the Cloudera Maven Repository. Review the following POM example to understand how you can add the
necessary artifactsto your project.

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="http://ww. w3.
or g/ 2001/ XM_Schena- i nst ance"

xsi : schemalLocati on="htt p:// maven. apache. org/ POM 4. 0. 0 http:// maven. apache

.org/ maven-v4 0 _0. xsd">

<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>com cl ouder a. kaf kaexanpl es</ gr oupl d>
<artifactl|d>kaf ka- exanpl es</artifactld>
<packagi ng>j ar </ packagi ng>
<ver si on>1. 0</ ver si on>
<name>kaf kadev</ name>
<url >http:// maven. apache. org</url >
<repositories>
<r eposi tory>
<i d>cl ouder a</i d>
<url >https://repository.cloudera.comartifactory/cl oudera-repos/</url>
</repository>
</repositories>
<dependenci es>
<dependency>
<gr oupl d>or g. apache. kaf ka</ gr oupl d>
<artifactld>kafka-clients</artifactld>
<ver si on>[*** KAFKA VERSI ON***] </ ver si on>
<scope>conpi | e</ scope>
</ dependency>

15

Cloudera Runtime Javaclient

</ dependenci es>

<bui | d>
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-conpil er-plugin</artifactld>
<versi on>3. 7. 0</ ver si on>
<confi guration>
<sour ce>1. 8</ sour ce>
<target>1.8</target>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

Note:

IE Replace [***KAFKA VERSION***] with the version of the kafka-clients artifact that you want to use. For
available versions, see https:.//repository.cloudera.com/artifactory/cloudera-repos/org/apache/kafka/kafka-
clients.

Cloudera Maven Repository

Y ou can produce messages to and consume messages from a Kafka cluster using the command line. For most cases
however, running Kafka producers and consumers using shell scripts and Kafka's command line scripts cannot be
used in practice. In these cases, native Kafka client development is the generally accepted option. Review these code
example to better understand how you can develop your own clients using the Java client library.

A simple working example of a producer program.

Note that this consumer is designed as an infinite loop. In normal operation of Kafka, al the producers could be idle
while consumers are likely to be still running.

The example includes Java properties for setting up the client identified in the comments; the functional parts of the
code arein bold. This code is compatible with versions as old as the 0.9.0-kafka-2.0.0 version of Kafka.

package com cl ouder a. kaf kaexanpl es;

import java.util.Arrays;

i mport java.util.Properties;

i mport org. apache. kaf ka. cl i ents. consuner. Consuner Confi g;

i mport org.apache. kaf ka. cl i ents. consuner. Consuner Recor d;

i mport org. apache. kaf ka. cl i ents. consuner. Consuner Recor ds;

i mport org. apache. kaf ka. cl i ents. consuner . Kaf kaConsuner ;

i mport org. apache. kaf ka. conmon. seri al i zati on. Stri ngDeseri ali zer;

public class SinpleConsuner {
public static void nmain(String[] args) {

/1 Set up client Java properties
Properties props = new Properties();
props. set Property(Consuner Confi g. BOOTSTRAP_SERVERS_CONFI G,

16

https://repository.cloudera.com/artifactory/cloudera-repos/org/apache/kafka/kafka-clients/
https://repository.cloudera.com/artifactory/cloudera-repos/org/apache/kafka/kafka-clients/
https://repository.cloudera.com/artifactory/cloudera-repos/

Cloudera Runtime

Javaclient

"host 1: 9092, host 2: 9092, host 3: 9092") ;
/1 Just a user-defined string to identify the consumer group
props. put (Consuner Config. GROUP_ID CONFI G, "test");
/1 Enable auto of fset commt
props. put (Consuner Confi g. ENABLE_AUTO COVMM T_CONFI G, "true");
props. put (Consuner Confi g. AUTO COVMM T_I NTERVAL_M5 CONFI G "1000");
props. set Property(Consuner Confi g. KEY_DESERI ALI ZER _CLASS_CONFI G
StringDeserializer.class.getNanme());
props. set Property(Consuner Confi g. VALUE DESERI ALI ZER CLASS CONFI G
StringDeserializer.class.getNane());

try (KafkaConsumer<String, String> consuner = new

Kaf kaConsumer <>(props)) {

/1 List of topics to subscribe to
consuner . subscri be(Arrays. asLi st ("ufo_si ghtings"));
while (true) {

try {
Consumer Records<String, String> records =

consuner. pol | (100) ;

for (ConsunerRecord<String, String> record : records) {

Systemout.printf("Offset = %\n", record.offset());

System out . printf ("Key = 9%8\n", record. key());
Systemout.printf("Value = %\n", record.value());

}
} catch (Exception e) {
e.printStackTrace();
}

A simple working example of a producer program.

The example includes Java properties for setting up the client identified in the comments; the functional parts of the

code arein bold. This code is compatible with versions as old as the 0.9.0-kafka-2.0.0 version of Kafka.

package com cl ouder a. kaf kaexanpl es;

i mport
i mport

i mport
i mport
i mport
i mport
public

java. util . Date;
java.util.Properties;

or g. apache. kaf ka. cl i ent s. producer . Kaf kaPr oducer ;

or g. apache. kaf ka. cl i ent s. producer . Producer Confi g;

or g. apache. kaf ka. cl i ent s. producer . Producer Recor d;

or g. apache. kaf ka. conmon. seri ali zation. StringSerializer;
cl ass Sinpl eProducer {

public static void nmain(String[] args) {

/1l Generate total consecutive events starting with ufold

|l ong total = Long. parseLong("10");

| ong ufold = Math.round(Math. random() * |nteger. MAX VALUE);

/1 Set up client Java properties

Properties props = new Properties();

props. set Property(Producer Confi g. BOOTSTRAP_SERVERS CONFI G
"host 1: 9092, host 2: 9092, host 3: 9092") ;

props. set Property(Producer Confi g. KEY_SERI ALI ZER CLASS CONFI G
StringSerializer.class.getName());

props. set Property(Producer Config. VALUE_SERI ALI ZER _CLASS_CONFI G
StringSerializer.class.getNane());

props. set Property(Producer Config. ACKS CONFIG "1");

17

Cloudera Runtime Javaclient

try (KafkaProducer<String, String> producer = new
Kaf kaPr oducer <>(props)) {
for (longi =0; i <total; i++) {
String key = Long.toString(ufold++);
long runtine = new Date().getTine();
double latitude = (Math.randonm() * (2 * 85.05112878)) - 85.

05112878;
doubl e I ongi tude = (Math.randon() * 360.0) - 180. 0;
String nsg = runtine + "," + latitude + "," + |ongitude;
try {
Producer Record<String, String> data = new
Producer Record<String, String>("ufo_sightings",
key, msg);
producer . send(dat a) ;
|l ong wait = Math.round(Math. randon() * 25);
Thr ead. sl eep(wai t);
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
}

Review the Java client security examples to learn what configuration properties you have to set when connecting to
secured or unsecured clusters.

The following code snippets give you a few simple examples on what configuration properties you need to set for
your Kafka clients when connecting them to either secured or unsecured Kafka clusters. Use the following examples
as a starting point and make changes as necessary. Depending on your environment, you may need to set other
optional properties. See the upstream A pache Kafka documentation for a comprehensive list of available properties.

Properties producerConfig = new Properties();
producer Confi g. put ("boot strap. servers"”, "***BROKER HOST***: *** PORT***") ;

Properties producerConfig = new Properties();

producer Confi g. put ("boot strap. servers"”, "***BROKER HOST***: ***PORT***") ;
producer Confi g. put (“security. protocol”, “SSL");

producer Confi g. put (“ssl.truststore.location”, “***PATH TO TRUSTSTORE***");
/1 .jks format

producer Confi g. put (“ssl.truststore. password”, “***TRUSTSTORE PASSWORD***”");
producer Confi g. put (“ssl . keystore. | ocation”, “***PATH TO KEYSTORE***"); [/ .
j ks format

producer Confi g. put (“ssl . keystore. password”, “***KEYSTORE PASSWORD***") ;

Important: Credentials are sent across the wire, Cloudera recommends that you always use channel
encryption.

Properties producerConfig = new Properties();

18

Cloudera Runtime .NET client

producer Confi g. put ("boot strap. servers", "***BROKER HOST***: *** PORT***") ;
producer Confi g. put (“security. protocol”, “SASL_SSL");

pr oducer Confi g. put (“sasl . nechani snf, “PLAIN’);

producer Confi g. put (“ssl.truststore.location”, “***PATH TO TRUSTSTORE***");
[l .jks format

producer Confi g. put (“ssl.truststore. password”, “***TRUSTSTORE PASSWORD***”") ;
producer Confi g. put (“sasl . jaas. config”, “org.apache. kaf ka. conmon. secu
rity.plain.PlainLogi nModul e required usernanme="*** USERNAME***" passwo
rd="***pPASSWORD***"); // credentials sent across the wire, also enabl e SSL/
TLS encryption

Properties producerConfig = new Properties();
producer Confi g. put ("boot strap. servers"”, "***BROKER HOST***: *** PORT***") ;

producer Confi g. put (“security.protocol”, “SASL_PLAI NTEXT");

pr oducer Confi g. put (“sasl . ker beros. servi ce. nane”, “***SERVI CE NAME***"); [/ Kk
af ka

producer Confi g. put (“sasl . jaas. config”, “com sun.security.auth.nodul e. Krb5Lo

gi nModul e required useTi cket Cache=true;”); // use kerberos ticket cache

Learn more about how you can download and install the Cloudera.NET client library for Apache Kafka.

Cloudera’ s .NET client library for Apache Kafka, called Cloudera.Kafka, is available through NuGet. This client
library is not distributed or packaged with Cloudera Runtime.

The client library can be downloaded and installed through Visual Studio or acommand line interface. Alternatively,
you can also download it directly from nuget.org.

Visual Studio

In Visual Studio you can use the NuGet Package Manager Ul to find and install the Cloudera.Kafka
package for the appropriate project.

Command lineinterface

The Cloudera.K afka package can be installed through a command line interface. Y ou can use the
Package Manager Console or the dotnet CLI.

Package Manager Console:

I nstal | - Package Cl ouder a. Kaf ka - Versi on [***VERSI ON***]
dotnet CL1I:

dot net add package C oudera. Kafka --version [***VERSI ON***]

Direct download

The Cloudera.Kafka package is available on the NuGet website at https.//www.nuget.org/packages/
Cloudera.Kafkal.

19

https://www.nuget.org/packages/Cloudera.Kafka/
https://www.nuget.org/packages/Cloudera.Kafka/

Cloudera Runtime .NET client

Y ou can produce messages to and consume messages from a Kafka cluster using the command line. For most cases
however, running Kafka producers and consumers using shell scripts and Kafka' s command line scripts cannot be
used in practice. In these cases, built-in Kafka client development is the generally accepted option. Review these code
example to better understand how you can develop your own clients using the Cloudera .Net client library.

Review this example code to learn how you can create asimple .NET consumer. This consumer is capable of
consuming around 50000 messages every second in devel opment environment.

var config = new Consumer Config

{
Boot st rapServers = "broker: 9092",
G oupld = "sinpl e-dot net - consuner ™,
Aut oOf f set Reset = Aut oOf f set Reset. Earl i est,
Enabl ePartiti onEof = true
}s

usi ng var consuner = new ConsumnerBui |l der<string, string>(config)
.SetErrorHandler((_, e) => Console. WiteLine($"Error: {e.Reason}"))
.Build();

consumer . Subscri be(new List<string>() {"topic"});

var start = DateTi me. Now,

| ong nmessageCounter = 0;

try
whil e (! (Consol e. KeyAvai |l abl e && Consol e. ReadKey() . Key == Consol eKey. Q)

var result = consuner. Consune(Ti neSpan. FronM I | i seconds(100));
if (result == null) { continue; }
if (result.lsPartitionEOF) { break; }

++messageCount er
i f (messageCounter % 1024 == 0) { Consol e. WiteLine($"Received ness
age key: \"{result. Message. Key}\" value: {result.Message.Value}"); }

} catch (OperationCancel edException) {}

consumer. C ose(); [// comit offset and unsubscri be

var el apsed = DateTinme. Now - start;

Consol e. Wi teLi ne("average throughput: {0: N3} nsg/sec, {1} messages over {2
: N3} sec", messageCounter / el apsed. Total Seconds, nessageCounter, el apsed.To
t al Seconds) ;

Review this example code to learn how you can create asimple .NET producer. This producer is capable of producing
around 36000 messages every second in development environment.

i nternal class Program

{
private static int _inFlight;
private static |ong _delivered;

private static void Handl eDel i veryResult (int msgid, DeliveryResult<strin
g, string> deliveryResult)

{
if (megid %1024 == 0) // witing to console on every nessage woul d
be a bottl eneck

20

Cloudera Runtime .NET client

Consol e. WiteLine($"Delivered '{deliveryResult.Value}' to '{deli

veryResul t. Topi cPartitionOfset}', in flight on delivery confirmation: {_inF
light}");
--_inFlight;
++ del i vered;
}
private static void Main(string[] args)
{

usi ng var producer = new ProducerBuil der<string, string>(new Produce
rConfig { BootstrapServers = "broker:9092" }).Build();

i nt negCounter = O;

var start = DateTi ne. Now,

whil e (! (Consol e. KeyAvai | abl e && Consol e. ReadKey() . Key == Consol eKe
y.Q || (DateTime.Now - start). Total Seconds >= 60))

{

int msgid = ++nmsgCount er;
try
{ . . .
producer. Produce("topi c", new Message<string, string> { Key

= nsgid. ToString(), Value = $"{nsgid}, in flight on send: {++_inFlight}" },
result => Handl eDel i veryResult(nmsgid, result));

catch (ProduceException<string, string> e)

Consol e. WiteLine($"Produce failed: {e.Error.Reason}");

}

}

producer . Fl ush();

Consol e. Wi telLine("average throughput: {0:N3} nsg/sec", _delivered /
(Dat eTi ne. Now - start). Tot al Seconds) ;

}

Review this example code to learn how you can create a more complex, high-performing .NET producer with async
processing and TPL. This producer is capable of producing around 50000 messages every second in devel opment
environment.

i nternal class Program

{
private static int _inFlight;
private static |ong _delivered;

private static void Handl eDeliveryResult(int nsgid, DeliveryResult<strin
g, string> deliveryResult)

{
if (nmegid %1024 == 0) // witing to console on every nessage woul d
be a bottl eneck

Consol e. WiteLine($"Delivered '{deliveryResult.Value}' to '{deli
veryResul t. Topi cPartitionOffset}', in flight on delivery confirmation: {_inF

light}");
}

I nterl ocked. Decrenent (ref _inFlight);
Interl ocked. I ncrenment(ref _delivered);

}

private static async Task Main(string[] args)

{

21

Cloudera Runtime .NET client

const int inFlightRequests = 16384;

const int bufferedMessages = inFlight Requests * 4;

var config = new ProducerConfig { BootstrapServers = "broker:9092",

Li nger Ms = 50, QueueBufferingMaxMessages = bufferedMessages };
using var p = new ProducerBuil der<string, string>(config).Build();
var actionBl ock = new Acti onBl ock<i nt >(
msgi d => p. ProduceAsync("topic", new Message<string, string> {
Key=msgi d. ToString(), Value = $"{nsgid}, in flight on send: {lnterlocked.Inc
renent (ref _inFlight)}" }
. Conti nueWth(async task => Handl eDel i veryResul t (nsgi d, aw

ait task)),
new Executi onDat af | owBl ockOpti ons { MaxDegreeOf Parallelism = inF

| i ght Requests, BoundedCapacity = inFlightRequests });

i nt nsgCounter = O;

bool accepted = true;

var start = DateTi me. Now,

whil e (accepted && ! (Consol e. KeyAvai | abl e & & Consol e. ReadKey() . Key
== Consol eKey.Q || (DateTinme.Now - start). Total Seconds >= 60))

{

try
{

accepted = await actionBl ock. SendAsync(nmsgCount er ++) ;
catch (ProduceException<string, string> e)

Consol e. WiteLine($"Produce failed: {e.Error.Reason}");

}

}

act i onBl ock. Conpl ete();

awai t actionBl ock. Conpl eti on;

Consol e. Wi telLine("average throughput: {0:N3} nsg/sec", _delivered /
(Dat eTi ne. Now - start). Tot al Seconds) ;

}

Review the .NET client security examplesto learn what configuration properties you have to set when connecting to
secured or unsecured clusters.

The following code snippets give you afew simple examples on what configuration properties you need to set for
your Kafka clients when connecting them to either secured or unsecured Kafka clusters. Use the following examples
as astarting point and make changes as necessary.

var producer Config = new Producer Config

Boot strapServers = "***BROKER HOST*** . *** PORT* **"
¥

var producer Config = new Producer Config

Boot st rapServers = "***BROKER HOST* **: *** PORT***" |
SecurityProtocol = SecurityProtocol. Ssl,
Ssl CaLocation = "***PATH TO BROKER CA CERTI FI CATE***",

22

Cloudera Runtime Kafka Streams

Ssl Keyst oreLocati on = "***KEYSTORE LOCATI ON***" | [/ client’s keystore,

pkcs12 for mat
Ssl Keyst or ePassword = "***KEYSTORE PASSWORD***” [/ client’s keystore p

asswor d

H

Note: Note: Credentials are sent across the wire, Cloudera recommends that you always use channel
encryption.

var producer Config = new Producer Config

{
Boot strapServers = "***BROKER HOST***. *** PORT* **" |
SecurityProtocol = SecurityProtocol. Sasl Ssl,
Sasl Mechani sm = Sasl Mechani sm Pl ai n,
Ssl CaLocation = "***PATH TO BROKER CA CERTI FI CATE***" |
Sasl User name = "*** USERNAME* **" |
Sasl Password = "*** PASSWORD* * * "

I

f Important:
Windows does not support Kerberos principals or keytabs for authentication, it only supports Kerberos
authentication through SSPI, The native windows authentication interface, which uses the currently logged on
user asits credentials.

var producer Config = new Producer Config

{
Boot strapServers = "***BROKER HOST*** . *** PORT* **" |
SecurityProtocol = SecurityProtocol. Sasl,
Sas| Mechani sm = Sasl Mechani sm Gssapi ,
Sasl| Ker ber osServi ceNane = "kaf ka"
I

Learn more about Kafka Streams.
Y ou can access the Apache Kafka website for information on how to use Kafka Streams.

» Read the Kafka Streams Introduction for an overview of the feature and an introductory video.
o Get familiar with Kafka Streams Core Concepts.

* Understand Kafka Streams Architecture.

» Accessthe Quick Start documentation to run a demonstration Kafka Streams Application.

* Usethe Tutorial to write your first Kafka Streams Application.

Learn what is and what is not considered a Kafka public API by Cloudera.

23

https://kafka.apache.org/20/documentation/streams/
https://kafka.apache.org/20/documentation/streams/core-concepts
https://kafka.apache.org/20/documentation/streams/architecture
https://kafka.apache.org/20/documentation/streams/quickstart
https://kafka.apache.org/20/documentation/streams/tutorial

Cloudera Runtime Recommendations for using the producer and consumer APls

The following parts of Apache Kafkain CDP are considered as public APIs:

» Kafkawire protocol format: the format itself might change, but brokers will be able to use the old format as long
as documentation and upgrade instructions are followed properly.

« Binary log format: the format itself might change, but brokers will be able to use the old format aslong as
documentation and upgrade instructions are followed properly.
« Interfaces and classes in the following packages:

 org/apache/kafka/common/serialization
 org/apache/kafka/common/errors
» org/apache/kafka/clients/producer
» org/apache/kafka/clients/consumer
« Command-line admin tools. arguments, except ZooK eeper related options, that are subject to change and/or
removal.

» HttpMetricsReporter: existing fields will stay backward compatible, but new fields may be introduced. The only
public API of HttpMetricsReporter is the /api/metrics REST endpoint. For alist of supported metrics, see Kafka
Metrics.

* Properties, excluding their default values
« Config file content and format, and the effect of configuration attributes
» Endpoints

There are structures that third parties might regard as an interface but Cloudera K afka distributions do not consider
them public APIs. In general, any API that is not listed as public in the What is a Public API section should be
considered private, and client code should not rely on behavior/data content or format. Some examples are:

» Datastructuresin ZooKeeper: the content and format what Kafka storesin ZooK eeper are internal implementation
details.

» Authorizer interface: the only supported authorizer in CDP isthe Ranger one.

e AdminClient: it isanew and rapidly evolving part of Kafka, so Cloudera can’t provide the same guarantees as for
other interfaces.

« Interfaces marked with the @Evolving or @Unstable annotationsin the Kafka source code

* Index files generated by Kafka

« Application log file content and format (for example what Log4JSLFAJ ... produces)

* Any classes used for testing

« Relying on transitive dependencies: any dependency pulled in by Kafka

« Any other interfaces not listed above

« Anything that Cloudera does not support, even if it fits the definition of a public AP

KafkaMetrics

Review the following collection of code snippets and recommendations regarding the use of the producer and
consumer APIsto learn how you can develop better Kafka clients.

After reviewing the basic examples of a producer and consumer, prototyping your own designs shouldn’t be too
difficult. However, your code will likely undergo several iterations that improve on scalability, debuggability,
robustness, and maintainability.

24

https://docs.cloudera.com/runtime/7.2.12/kafka-managing/topics/kafka-manage-metrics.html

Cloudera Runtime Recommendations for using the producer and consumer APls

This topic presents recommendations in the form of code snippets that illustrate some of the important waysto use the
producer and consumer APIs.

In addition to the recommendations presented here, it is highly recommended that you also review the Javadoc for
producers and consumers or any other APl documentation available for the client library you are using. These will
have additional details about Kafka client programming .

API documentation is known to be dense with information. They assume you have sufficient background in reliable
computing, networking, multithreading, and distributed systems to use the APIs correctly. While the following
recommendations point out many caveats in using the client APIs, the APl documentation (and ultimately the source
code) provides a more detailed explanation.

In these examples, the consumer constructor should be called once and the poll method called within aloop. If this
object is not reused, then a new connection to the broker is opened with each new consumer object created.

Recommended

Kaf kaConsumer <String, String> consumer = new Kaf kaConsumer <>(pro
ps);

while (true) {
Consumner Records<String, String> records = consuner. pol | (100);

}

Not Recommended

while (true) {
Kaf kaConsuner<String, String> consunmer = new Kaf kaConsuner <>(pr

ops) ;
Consumer Records<String, String> records = consuner. pol | (100);

}

Recommended

var consuner = new Consuner Bui |l der<string, string>(config).Build
()

while (true)

{

var result = consuner. Consune();

}

Not recommended
while (true)
{
var consuner = new ConsunerBuil der<string, string>(config).Bu

ihd();
var result = consuner. Consune();
}

Similarly, it is recommended that you use one consumer and/or producer object per thread. Creating more objects
opens multiple ports per broker connection. Overusing ephemeral ports can cause performance i ssues.

25

Cloudera Runtime Recommendations for using the producer and consumer APls

In addition, Cloudera recommends to set and use afixed client ID for producers and consumers when they are
connecting to the brokers. If thisis not done, Kafka will assign a new client id every time a new connection is
established, which can severely increase resource utilization (memory) on the broker side.

Any consumer connected to a partition will time out if no polling is done before the maximum poll interval is
reached.

In the example below, the call to myDataProcess.doStuff(records) can cause infrequent polling. This could be dueto a
combination of reasons. This could be due to a combination of reasons:

» Being ablocking method call.

« Doing work on aremote machine.

» Having highly variable processing time.

» Saving to storage that has highly variable 1/0O throughpuit.

In such cases, consider having another thread or process doing the actual work and making the handoff as lightweight
aspossible.

Example: poll() gets KafkaException due to session timeout

while (true) {
Kaf kaConsumer <String, String> consumer = new Kaf kaConsumer <>(pr
ops);
Consuner Records<String, String> records = consuner. pol | (100);
/1 the call bel ow should return quickly in all cases
nmyDat aPr ocess. doSt uf f (records);

}

Example: Consume() gets K afkaException due to session timeout

while (true) {

var consuner = new Consumer Buil der<string, string>(config).Buil
d();

var result = consuner. Consune(100);

/1 the call below should return quickly in all cases

nmyDat aPr ocess. DoSt uf f (records);

}

From the poll() Javadoc page, you can see that the poll() method throws several exceptions. If the
catch statements are not complete, then any uncaught exception will end up in the finally statement
calling KafkaConsumer#close(). Thiswill not be the desired behavior in many cases.

while (true) {
try {
Consuner Records<String, String> records = consuner. pol | (100);
} catch (Exception e) {
e.printStackTrace();
} finally {
consuner . cl ose();

}

26

https://kafka.apache.org/10/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html#poll-long-

Cloudera Runtime Recommendations for using the producer and consumer APls

Inthe .NET client some overloads can only throw one, but another overload can throw multiple
exceptions. Make sure that all exceptions are caught.

while (true)
{

try
{
var result = consuner. Consune();
}
catch (Exception e)

Consol e. Wi teLine($"Exception caught:\n {e. StackTrace}");

.
finally
{
consuner. d ose();
}

}

B Note: Thisrecommendation isfor the Javaclient only.

The interface org.apache. kafka.clients.producer.Callback (Javadoc) is used to define a class that can be used upon
completion of a KafkaProducer#send() call. It allows for tracking, clean up, or other administrative code to be called.
An example of unintended usage is to call KafkaProducer#send() within the Callback#onCompletion() method,
essentially mimicking aretry. Because the onCompletion() method is always expected to return cleanly and the send
() method makes no such guarantees, calling send() within the callback could end up hanging the code in case of
network or broker issues.

The documentation for the latest upstream release of Apache Kafkaindicates if there have been any changesto how
the APIs are used (setup, read, write). Reviewing the latest information could help avoid upgrade-related changes to
your producer or consumer.

Some examples from past versions include:

kafka.producer.ProducerConfig java.util .Properties
kafka.javaapi.* kafka.api.*
kafka.producer.K eyedM essage kafka.clients.producer.ProducerRecord

Network dependency is one of the more subtle issues. Given the consumer dependencies on Ranger and Zookeeper,
having a combination of frequent or prolonged DNS or network outages can also cause various session timeouts to
occur. Such timeouts will force partition rebalancing on the brokers, which will worsen general Kafka reliability.

Should these issues be common in your network, you may need to have aless straightforward design that can handle
such reliability issues outside of the Kafka client.

KafkaConsumer Javadoc
KafkaProducer Javadoc

27

https://kafka.apache.org/10/javadoc/org/apache/kafka/clients/producer/Callback.html
https://kafka.apache.org/10/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html
https://kafka.apache.org/10/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html

	Contents
	Kafka producers
	Kafka consumers
	Subscribing to a topic
	Groups and fetching
	Protocol between consumer and broker
	Rebalancing partitions
	Retries
	Kafka clients and ZooKeeper

	Java client
	Java Client examples
	Simple Java consumer
	Simple Java producer

	Java client security examples

	.NET client
	.Net client examples
	Simple .NET consumer example
	Simple .NET producer example
	Performant .NET producer example

	.Net client security examples

	Kafka Streams
	Kafka public APIs
	Recommendations for using the producer and consumer APIs

