Cloudera Runtime 7.2.12

Cloudera Search ETL Using Morphlines

Date published: 2019-11-19
Date modified:

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Using Morphlings to INAEX AVIO.......ueeiiiiecee et e 4

Using Morphlines With Syslog........cccviieiiiiiiece e 7

Cloudera Runtime Using Morphlines to index Avro

This exampleillustrates using a morphline to index an Avro file with a schema.

1. View the content of the Avro file to understand the data:

$ wget http://archive. apache. org/dist/avro/avro-1.7.4/javal avro-tools-1
7.4.jar

$ java -jar avro-tools-1.7.4.jar tojson \

[usr/ shar e/ doc/ sear ch*/ exanpl es/ t est - docunent s/ sanpl e- st at uses-20120906- 14
1433. avro

2. Inspect the schema of the Avro file:

$ java -jar avro-tools-1.7.4.jar getschema /usr/share/doc/search*/exanpl
es/ t est - docunent s/ sanpl e- st at uses-20120906- 141433. avr o

{
"type" : "record",
"nanme" : "Doc",
"doc" : "adoc",
"fields" : [{
"nanme" : "id",
"type" : "string"
}l
"name" : "user_statuses_count",
Iltypell : [Ili nt II, Ilnul I n]
}1
"nane" : "user_screen_nane",
"type" : ["string", "null"]
}l
"name" : "created_at",
Iltypell : [Ilstri r.]gll, Ilnul I n]
}1
"nane" : "text",
"type" : ["string", "null"]
}
]
}

3. Extract theid, user_screen name, created_at, and text fields from the Avro records, and then store and index them
in Solr, using the following Solr schema definition in schema.xml:

<fields>
<field nane="id" type="string" indexed="true" stored="true" required=
"true" multiVal ued="fal se" />
<fi el d nane="usernane" type="text_en" indexed="true" stored="true" />
<field nane="created_at" type="tdate" indexed="true" stored="true" />
<field nane="text" type="text_en" indexed="true" stored="true" />
<field nane="_version_" type="long" indexed="true" stored="true"/>
<dynani cFi el d name="i gnored_*" type="ignored"/>
</fields>

The Solr output schema omits some Avro input fields, such as user_statuses count. If your dataincludes Avro
input fields that are not included in the Solr output schema, you may want to make changesto dataasit is
ingested. For example, suppose you need to rename the input field user_screen_name to the output field username.

4

Cloudera Runtime Using Morphlines to index Avro

Also suppose that the time format for the created_at field isyyyy-MM-dd'T'HH:mm:ssZ'. Finally, suppose any
unknown fields present are to be removed. Recall that Solr throws an exception on any attempt to load a document
that contains afield that is not specified in schema.xml.

4. These transformation rules that make it possible to modify data so it fits your particular schema can be expressed
with morphline commands called r eadAvr oCont ai ner, ext r act Avr oPat hs, convert Ti nmest anp,
sani ti zeUnknownSol r Fi el ds and | oadSol r, by editing a morphline.conf file.

Specify server locations in a SOLR LOCATOR vari abl e; used later in
vari abl e substitutions:
SOLR LOCATOR : {

Nane of solr collection

collection : collectionl

ZooKeeper ensenbl e
zkHost : "127.0.0.1:2181/solr"
}

Specify an array of one or nore norphlines, each of which defines an ETL
transformation chain. A norphline consists of one or nore potentially

nested commands. A norphline is a way to consune records such as Flune e
vents,

HDFS files or blocks, turn theminto a stream of records, and pipe the
stream

of records through a set of easily configurable transformations on its
way to

Solr.

nmor phlines : [

Name used to identify a norphline. For exanple, used if there are nu
Itiple

nmorphlines in a nmorphline config file.

id: norphlinel

Inport all norphline commands in these java packages and their su

bpackages

Other commands that may be present on the classpath are not visible
to this

mor phli ne.

i mport Conmands : ["org.kitesdk.**", "org.apache.solr.**"]

commands : |

Parse Avro container file and emt a record for each Avro object
readAvr oCont ai ner {
Optionally, require the input to match one of these MM ty

pes:
supportedM neTypes : [avro/ bi nary]
Optionally, use a custom Avro schenma in JSON format inline:
reader SchemaString : """<json can go here>"""
Optionally, use a custom Avro schema file in JSON fornmat:
reader SchenmaFil e : /path/to/syslog.avsc
}
%
Consume the output record of the previous command and pi pe an
ot her
record downstream
#
extract AvroPaths is a command that uses zero or nore Avro path

excodebl ockssions to extract values froman Avro object. Each ex
codebl ockssi on

consists of a record output field name, which appears to the |le
ft of the

http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#readAvroContainer
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#extractAvroPaths
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#convertTimestamp
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#sanitizeUnknownSolrFields
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#loadSolr

Cloudera Runtime

Using Morphlines to index Avro

col on and zero or nore path steps, which appear to the right

#

Each path step is separated by a '/' slash. Avro arrays are
traversed with the '[]' notation
#
#

The result of a path excodebl ockssion is a |ist of objects, each
is added to the given record output field.

The path | anguage supports all Avro concepts, including nested
structures, records, arrays, maps, unions, and others, as well a

s a flatten

option that collects the prinmitives in a subtree into a flat

ist. In the
paths specification, entries on the left of the colon are the
target Solr

field and entries on the right specify the Avro source paths.

Pat hs are read

tten to

S HHFHHH

cunment

—H O HHHHFHHFHFE

H*

fromthe source that is named to the right of the colon and wi
t he
field that is named on the left.
extract AvroPat hs {
flatten : false
paths : {
id: /id
username : /user_screen_nane
created _at : /created at
text : /text

}
}

Consune the output record of the previous conmand and pi pe anot her
record downstream

convert timestanp field to native Solr timestanp format
such as 2012-09-06TO07: 14: 34Z to 2012-09-06T07: 14: 34. 000Z

convert Ti nest anp {
field : created _at
i nput Formats : ["yyyy-MMdd' T'"HH nmss' Z' ", "yyyy- Mt dd"]
i nput Ti nezone : Anmerical/ Los_Angel es
out put Format : "yyyy-Mvtdd' T' HH: mm ss. SSS' Z' *
out put Ti mezone : UTC

}

Consune the output record of the previous conmand and pi pe anot her
record downstream

This command del etes record fields that are unknown to Sol r
schena. xm .

Recall that Solr throws an exception on any attenpt to |oad a do
that contains a field that is not specified in schema. xm .

sani ti zeUnknownSol r Fi el ds {
Location fromwhich to fetch Solr schema
sol rLocator : ${SOLR LOCATOR}

}

log the record at DEBUG | evel to SLF4J

6

Cloudera Runtime Using Morphlines with Syslog

{ logbebug { format : "output record: {}", args : ["@&}"] } }
load the record into a Solr server or MapReduce Reducer

| oadSol r {
sol rLocator : ${SOLR LOCATOR}
}

}

Morphlines Reference Guide

This example illustrates using a morphline to extract information from a syslog file.

A sydog file contains semi-structured lines of the following form:
<164>Feb 4 10: 46: 14 syslog sshd[607]: listening on 0.0.0.0 port 22.
The program extracts the following record from the log line and loads it into Solr:

sysl og_pri: 164

syslog_tinestanp: Feb 4 10:46: 14

sysl og_host nane: sysl og

sysl og_program sshd

sysl og_pi d: 607

sysl og_nessage:listening on 0.0.0.0 port 22.

Use the following rules to create a chain of transformation commands, which are expressed with the readLine, grok,
and logDebug morphline commands, by editing a morphline.conf file.

Specify server locations in a SO.R LOCATOR vari abl e; used later in
variabl e substitutions:
SOLR _LOCATOR : {

Name of solr collection

collection : collectionl

ZooKeeper ensenbl e
zkHost : "127.0.0.1:2181/solr"

}

Specify an array of one or nore norphlines, each of which defines an ETL
transformati on chain. A norphline consists of one or nore potentially
nested conmands. A norphline is a way to consune records such as Flune e

vents,
HDFS files or blocks, turn theminto a stream of records, and pipe the
stream
of records through a set of easily configurable transformations on the
way to

a target application such as Solr.
nor phlines : [

id: norphlinel
i nport Commands : ["org. ki tesdk. **"]

http://kitesdk.org/docs/0.13.0/kite-morphlines/morphlinesReferenceGuide.html
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#readLine
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#grok
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#logTrace_logDebug_logInfo_logWarn_logError

Cloudera Runtime Using Morphlines with Syslog

conmands : [

readLi ne {
charset : UTF-8

}
}
{
grok {
a grok-dictionary is a config file that contains prefabricated r
egul ar expressions
that can be referred to by nane.
grok patterns specify such a regex name, plus an optional output
field nane.
The syntax is % REGEX_NAVE: OUTPUT_FI ELD_NAME}
The input line is expected in the "nessage" input field.
dictionaryFiles : [target/test-classes/grok-dictionaries]
expressi ons :
message : """<% POSI NT: sysl og_pri }>% SYSLOGII MESTAMP: sysl og_ti
nmest anp} 9% SYSLOGHOST: sysl og_host nane} 9% DATA: sysl og_progran} (?: \ [% POSI NT: s
ysl og_pid}\])?: 9% GREEDYDATA: sysl og_nessage}"""
}

}
}
Consume the output record of the previous conmand and pi pe anot her
record downstream
#
This command del etes record fields that are unknown to Solr
schema. xm .
#
Recall that Solr throws an exception on any attenpt to |load a docum
ent
that contains a field that is not specified in schema.xmn .
{
sani ti zeUnknownSol r Fi el ds {
Location fromwhich to fetch Solr schema
sol rLocator : ${SO.R_LOCATOR}
}
}
log the record at DEBUG | evel to SLF4J
{ logbDebug { format : "output record: {}", args : ["@&}"] } }
load the record into a Solr server or MapReduce Reducer
{
| cadSol r {
sol rLocator : ${SOLR LOCATOR}
}
}
]
}

Morphlines Reference Guide

http://kitesdk.org/docs/0.13.0/kite-morphlines/morphlinesReferenceGuide.html

	Contents
	Using Morphlines to index Avro
	Using Morphlines with Syslog

