Cloudera Runtime 7.2.14

Configuring Apache Kafka

Date published: 2019-12-18
Date modified: 2022-02-24

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Operating System reqUITeMENTS........ccoiirieerir e ser e s 4
Performance CONSIAEr aliONS.........ccoiiriiiieree e 4
L@ 1T)>RS 5
1 1 I SRR 5
N 1O B (U] o TP TSSO PR TP 6
JBOD DiSK MIGIAIION.....cuteeterteiiiteiestee ettt sttt ettt se et se it se e bt se e st s b et b et b et s b e e e b e neeb e s e eb e e e ebeseebe s b e st s be st sbenenbe e ebns 7
Setting user limitsfor KafKa.........cccooeiiiiiiece e 9
Connecting Kafka clients to Data Hub provisioned clusters..........cccooevveeneennen. 9
RoOIlING restart CheCKS.........ooieie e 12
Configuring rolliNg rEStArt CHECKS.........c..ciiiirieieieete ettt b et b e e b e s b e s b e e s e 14
Configuring the client configuration used for rolling restart Checks..........cooveireneneinc e 15
Configuring Kafka ZooK egper CNroot..........cccoiuveieeiiecee e 16
KafKa raCk @War BNESS........cooii ittt sttt nne e e s 16
Rack awareness for Kafka DIOKEIS.........cocireiice et 16
Configuring rack awareness for Kafka DroKErs............coo i e 17
Rack awareness for Kafka CONSUMES...........oiiiriirie ittt 18
Configuring rack awareness for Kafka CONSUMENS.........cccoiririiirere ettt s 19
Rack awareness for KafKa PrOOUCEIS... ..ottt sttt be bbb et be e e e ne e e eneeneas 20

Configuring rack awareness for KafKa ProQUCENS..........cooiiririerincre sttt 21

Cloudera Runtime Operating system requirements

A collection of operating system requirements for Kafka.

Unlike CentOS, SLES limits virtual memory by default. Changing this default requires adding the following entriesto
the /etc/security/limits.conf file:

* hard as unlinted
* soft as unlimted

There are three settings you must configure properly for the kernel.

File Descriptors
Y ou can set file descriptors in Cloudera Manager by going to KafkaConfigurationMaximum
Process File Descriptors and setting the required value. Cloudera recommends a configuration of
100000 or higher.

Max Memory Map

Y ou must configure the maximum number of memory maps in your specific kernel settings.
Cloudera recommends a configuration of 32000 or higher.

Max Socket Buffer Size
Set the buffer size larger than any Kafka send buffers that you define.

A collection of basic recommendations for Kafka clusters.

The simplest recommendation for running Kafka with maximum performance is to have dedicated hosts for the Kafka
brokers and a dedicated ZooK eeper cluster for the Kafka cluster. If that is not an option, consider these additional
guidelines for resource sharing with the Kafka cluster:

Runningin VMs

It is common practice in modern data centers to run processes in virtual machines. This generally
alowsfor better sharing of resources. Kafkais sufficiently sensitive to I/O throughput that VMs
interfere with the regular operation of brokers. For thisreason, it is generally not recommended to
run Kafkain VMs. However, if you are running Kafkain avirtual environment you will need to
rely on your VM vendor for help with optimizing Kafka performance.

Do not run other processeswith Brokersor ZooK eeper
Dueto I/O contention with other processes, it is generally recommended to avoid running other
such processes on the same hosts as Kafka brokers.

Keep the Kafka-ZooK eeper Connection Stable

Kafkarelies heavily on having a stable ZooK eeper connection. Putting an unreliable network
between Kafka and ZooK eeper will appear asif ZooKeeper is offline to Kafka. Examples of
unreliable networks include:

» Do not put Kafka/ZooK eeper nodes on separated networks
« Do not put Kafka/ZooK eeper nodes on the same network with other high network loads

Cloudera Runtime Quotas

Learn about Quotas and how to set them.
For a quick video introduction to quotas, see Quotas.

Kafka can enforce quotas on produce and fetch requests. Producers and consumers can use very high volumes of data.
This can monopolize broker resources, cause network saturation, and generally deny service to other clients and the
brokers themselves. Quotas protect against these issues and are important for large, multi-tenant clusters where a
small set of clients using high volumes of data can degrade the user experience.

Quotas are byte-rate threshol ds, defined per client ID. A client ID logicaly identifies an application making a request.
A single client ID can span multiple producer and consumer instances. The quotais applied for all instances as a
single entity. For example, if aclient ID has a produce quota of 10 MBY/s, that quotais shared across all instances with
that same ID.

When running Kafka as a service, quotas can enforce API limits. By default, each unique client ID receives a fixed
quotain bytes per second, as configured by the cluster (quota.producer.default, quota.consumer.default). This quotais
defined on a per-broker basis. Each client can publish or fetch a maximum of X bytes per second per broker before it
gets throttled.

The broker does not return an error when aclient exceeds its quota, but instead attemptsto slow the client down.
The broker computes the amount of delay needed to bring a client under its quota and delays the response for that
amount of time. This approach keeps the quota violation transparent to clients (outside of client-side metrics). This
also prevents clients from having to implement special backoff and retry behavior.

Y ou can override the default quota for client IDs that need a higher or lower quota. The mechanismis similar to per-
topic log configuration overrides. Write your client ID overrides to ZooKeeper under /config/clients. All brokers read
the overrides, which are effective immediately. Y ou can change quotas without having to do arolling restart of the
entire cluster.

By default, each client ID receives an unlimited quota. The following configuration sets the default quota per
producer and consumer client 1D to 10 MB/s.

quot a. producer . def aul t =10485760
quot a. consuner . def aul t =10485760

To set quotas using Cloudera Manager, open the Kafka Configuration page and search for Quota. Use the fields
provided to set the Default Consumer Quota or Default Producer Quota.

Changing the Configuration of a Service or Role Instance

Overview on Kafka with JBOD.

JBOD refersto a system configuration where disks are used independently rather than organizing them into redundant
arrays (RAID). Using RAID usually resultsin more reliable hard disk configurations even if the individual disks

are not reliable. RAID setups like these are common in large scale big data environments built on top of commodity
hardware. RAID enabled configurations are more expensive and more complicated to set up. In alarge number of
environments, JBOD configurations are preferred for the following reasons:

* Reduced storage cost: RAID-10 is recommended to protect against disk failures. However, scaling RAID-10
configurations can become excessively expensive. Storing the data redundantly on each node means that storage
space requirements have to be multiplied because the data is also replicated across nodes.

https://youtu.be/zMAwFoPdcmM
https://docs.cloudera.com/cloudera-manager/7.6.0/configuring-clusters/topics/cm-changing-the-configuration-of-a-service-or-role-instance.html

Cloudera Runtime JBOD

* Improved performance: Just like HDFS, the slowest disk in RAID-10 configuration limits overall throughput.
Writes need to go through a RAID controller. On the other hand, when using JBOD, 10 performanceis increased
as aresult of isolated writes across disks without a controller.

Learn how to set up JBOD in your Kafka environment.

Consider the following before using JBOD support in Kafka:

« Manual operation and administration: Monitoring offline directories and JBOD related metrics is done through
Cloudera Manager. However, identifying failed disks and rebalancing partitions between disks is done manually.

e Manual load balancing between disks: Unlike with RAID-10, JBOD does not automatically distribute data across
disks. The processis fully manual.

To provide robust JBOD support in Kafka, changes in the Kafka protocol have been made. When performing an
upgrade to a new version of Kafka, make sure that you follow the recommended rolling upgrade process.

For more information regarding the JBOD related Kafka protocol changes, see KIP-112 and KIP-113.

1. Mount the required number of disks on your system.
2. In Cloudera Manager, set up log directories for all Kafka brokers:
a) Go to the Kafka service, select Instances and select the broker.
b) Go to Configuration and find the Data Directories property.
¢) Modify the path of the log directories so that they correspond with the newly mounted disks.

E Note: Depending on your, setup you may need to add or remove multiple data directories.

d) Enter a Reason for change, and then click Save Changes to commit the changes.
3. Go to the Kafka service and select Configuration.
4. Find and configure the following properties depending on your system and use case.
* Number of 1/O Threads
* Number of Network Threads

* Number of Replica Fetchers
e Minimum Number of Replicasin ISR

5. Set replication factor to at least 3.

Important: If you set replication factor to less than 3, your datawill be at risk. In addition, in case of a
disk failure, disk maintenance cannot be carried out without system downtime.

6. Restart the service:

a) Return to the home page by clicking hte Cloudera Manager logo.

b) Go tothe Kafka service and select Actions Rolling Restart

¢) Check the Restart roles with stale configurations only checkbox and click Rolling restart.
d) Click Close when the restart has finished.

JBOD disks are set up in your Kafka environment.

KIP-112

https://cwiki.apache.org/confluence/display/KAFKA/KIP-112%3A+Handle+disk+failure+for+JBOD#KIP-112:HandlediskfailureforJBOD-Protocol

Cloudera Runtime JBOD

KIP-113

Learn how to migrate existing Kafka partitions to JBOD configured disks.

Migrating data from one disk to another is achieved with the kafka-reassign-partitions tool. The following instructions
focus on migrating existing Kafka partitions to JBOD configured disks.

Note: Clouderarecommends that you minimize the volume of replica changes per command instance.
E Instead of moving 10 replicas with a single command, move two at atimein order to save cluster resources.

e Set up JBOD inyour Kafka environment. For more information, see JBOD Setup.

« Caollect the log directory paths on the JBOD disks where you want to migrate existing data.
e Collect the broker 1Ds of the brokers you want to migrate data to.

» Collect the name of the topics you want to migrate partitions from.

E Note: Output examplesin these instructions are cleaned and formatted to make them easily readable.

1. Create atopics-to-move JSON file that specifies the topics you want to reassign. Use the following format:
Use the following format:

{"topics": [{"topic": "MYTOPIC1"},
{"topic": "MYTOPIC2"}],
"version":1

}

2. Generate the content for the reassignment configuration JISON with the following command:

kaf ka-reassi gn-partitions --zookeeper HOSTNAME: PORT --topi cs-to-nove-json-
file TOPICS TO MOVE. j son --broker-list BROKER 1, BROKER 2 --generate

Running the command lists the distribution of partition replicas on your current brokers followed by a proposed
partition reassignment configuration.

Example output:

Current partition replica assignnent
{"version":1,
"partitions":
[{"topic":"nmytopic2","partition":1,"replicas":[2,3],"log _dirs":["any","
any"] })
{"topic":"nytopicl", "partition":0,"replicas":[1,2],"log _dirs":["any"
,tany"]},
{"topic":"nytopic2","partition":0,"replicas":[1,2],"log dirs":["any","
any”]}
{"topic":"nytopicl","partition":2
1"any"]}1_ . g . 2 i
"topic":"nytopicl","partition":1,"replicas":[2,3],"log dirs":["any","
?nY"] }H

,"replicas":[3,1],"log _dirs":["any"

)

https://cwiki.apache.org/confluence/display/KAFKA/KIP-113%3A+Support+replicas+movement+between+log+directories#KIP-113:Supportreplicasmovementbetweenlogdirectories-Protocol

Cloudera Runtime JBOD

Proposed partition reassignment configuration

{"version":1,
"partitions":
[{"topic":"nytopicl", "partition":0,"replicas":[4,5],"log_dirs":["any",

"any"]},
{"topic":"nytopicl","partition":2,"replicas":[4,5],"log_dirs":["any
", tany"]},
{"topic":"nmytopic2","partition":1,"replicas":[4,5],"log_dirs":["any",
" any"] }!
{"topic":"nytopicl", "partition":1,"replicas":[5,4],"log_dirs":["any
", vany"]},
{"topic":"nytopic2","partition":0,"replicas":[5,4],"log_dirs":["any",
“any”] }]
}
In this example, the tool proposed a configuration which reassigns existing partitions on broker 1, 2, and 3 to
brokers 4 and 5.

3. Copy and paste the proposed partition reassignment configuration into an empty JSON file.
4. Modify the suggested reassignment configuration.

When migrating data you have two choices. Y ou can move partitions to a different log directory on the same
broker, or move it to adifferent log directory on another broker.

a. 1. Toreassign partitions between log directories on the same broker, change the appropriate any entry to an
absolute path. For example:

{"topic":"nmytopicl","partition":0,"replicas":[4,5],"log_dirs":["/
JBOD- di sk/directoryl”, "any"]}

2. Toreassign partitions between log directories across different brokers, change the broker ID specified in
replicas and the appropriate any entry to an absolute path. For example:

{"topic":"nytopicl", "partition":0,"replicas":[6,5],"log_dirs":["/
JBOD- di sk/directoryl”, "any"]}

5. Savethefile.
6. Start the redistribution process with the following command:

kaf ka-reassi gn-partitions --zookeeper HOSTNAME: PORT --reassi gnnent-json-
file REASSI GNVENT CONFI GURATI ON. j son --boot strap-server HOSTNAME: PORT --e
xecut e

Important: The bootstrap server has to be specified with the --bootstrap-server option if an absolute log
directory path is specified for areplicain the reassignment configuration JSON file.

Thetool printsalist containing the original replica assignment and a message that reassignment has started.
Example output:

Current partition replica assignnent

{"version":1,
"partitions":

) [f{l"topi c":"mytopic2","partition":1,"replicas":[2,3],"log_dirs":["any",

) a:]y{]'j{l’opi c":"mytopicl", "partition":0,"replicas":[1,2],"log_dirs":["any

aE'Yt 1):|}JI c":"nytopic2","partition":0,"replicas":[1,2],"log dirs":["any",

) a?y{]'iic?i c":"mytopicl", "partition":2,"replicas":[3,1],"log_dirs":["any
,oany-lyr,

Cloudera Runtime

Setting user limits for Kafka

{"topic":"nytopicl","partition":1,"replicas":[2,3],"log_dirs":["any",

“any”]}]
}

Save this to use as the --reassignnment-json-file option during roll back
Successfully started reassi gnment of partitions.

7. Verify the status of the reassignment with the following command:

kaf ka-reassi gn-partitions --zookeeper
fil e REASSI GNVENT CONFI GURATI ON. j son

erify

Thetool prints the reassignment status of all partitions. Example output:

Status of partition reassignment:

Reassi gnnent
Reassi gnnent
Reassi gnnent
Reassi gnnent
Reassi gnnent

of
of
of
of
of

partition
partition
partition
partition
partition

nyt opi c2-1
myt opi c1-0
myt opi c2-0
myt opi c1- 2
myt opi c1-1

conpl et ed
conpl et ed
conpl et ed
conpl et ed
conpl et ed

Existing Kafka partitions are migrated to JBOD configured disks.

JBOD setup
kafka-reassign-partitions

Learn more about Kafka User limits and how to monitor them.

successful ly
successful ly
successful ly
successful ly
successful |y

HOSTNAME: PORT - -reassi gnnent - j son-

--boot st rap- server HOSTNAME: PORT --v

Kafka opens many files at the same time. The default setting of 1024 for the maximum number of open files on
most Unix-like systems is insufficient. Any significant load can result in failures and cause error messages such as
java.io.lOException...(Too many open files) to be logged in the Kafka or HDFS log files. Y ou might also notice
errors such asthis:

ERROR Error in acceptor (kafka.network.Acceptor)

java.io. | OExcepti on:

Too many open files

Clouderarecommends setting the value to arelatively high starting point, such as 32,768.

Y ou can monitor the number of file descriptors in use on the Kafka Broker dashboard. In Cloudera Manager:

1. Gotothe Kafkaservice.

2. Select aKafkaBroker.
3. Open Charts Library Process Resources and scroll down to the File Descriptors chart.

Learn how to connect Kafka clients to clusters provisioned with Data Hub.

https://docs.cloudera.com/runtime/7.2.14/kafka-managing/topics/kafka-manage-cli-reassign-overview.html

Cloudera Runtime Connecting Kafka clients to Data Hub provisioned clusters

Use the following steps to connect Kafka clients to clusters provisioned with Data Hub. Configuration examples
provided in thislist of steps assume that the cluster you are connecting to was provisioned with a Streams Messaging
cluster definition.

Note:

E These instructions are for connecting Kafka clients to Data Hub provisioned Kafka clusters. For information
on connecting NiFi to Kafka within the same CDP Public Cloud environment, see Ingesting data into Apache
Kafka.

« |If you are connecting your clients from outside of your virtual network (VPC or Vnet) verify that both inbound
and outbound traffic is enabled on the port used by Kafka brokers for secure communication. The default port is
9093. For more information, see the following resources:

e AWS: Security Groupsfor Your VPC
e Azure: How to open ports to avirtual machine with the Azure portal

» If you are connecting your clients over the internet, verify that your virtual network (VPC or Vnet) is assigned a
public IP address. For more information, see the following resources:

e AWS: IPAddressinginYour VPC
* Azure: Associate a public IP address to avirtual machine

« Clients connecting to Data Hub provisioned clusters require a CDP user account that provides access to the
required CDP resources. Verify that a CDP user account with the required roles and permissionsis available for
use. If not, create one. Any type of CDP user account can be used. If you are creating a new account to be used
by Kafka clients, Cloudera recommends that you create a machine user account. For more information, see User
Management in the Cloudera Management Console documentation.

« Inaddition to the CDP user account having access to the required CDP resources, the user account also needs to
have the correct policies assigned to it in Ranger. Otherwise, the client cannot perform tasks on Kafka resources.
These policies are specified within the Ranger instance that provides authorization to the Kafka service you want
to connect to. For more information, see the Cloudera Runtime documentation on Apache Ranger and the Kafka
specific Ranger documentation.

1. Obtain the Freel PA certificate of your environment:
a) From the CDP Home Page navigateto Management Console Environments.
b) Locate and select your environment from the list of available environments.
¢) Go to the Freel PA tab.
d) Click Get FreelPA Certificate.
The Freel PA certificatefile, [***ENVIRONMENT NAME***] .crt, is downloaded to your compulter.
2. Addthe Freel PA certificate to the truststore of the client.
The certificate needs to be added for all clients that you want to connect to the Data Hub provisioned cluster. The

exact steps of adding the certificate to the truststore depends on the platform and key management software used.
For example, you can use the Java Keytool command line tool:

keytool -inport -keystore [***CLI ENT TRUSTSTORE. JKS***] -al
ias [***ALI AS***] -file [***FREElI PA CERTI FI CATE***]

Tip: Thiscommand creates a new truststore file if the file specified with the -keystore option does not
exist.

10

https://docs.cloudera.com/cdf-datahub/7.2.14/nifi-kafka-ingest/topics/cdf-datahub-fm-kafka-ingest-overview.html
https://docs.cloudera.com/cdf-datahub/7.2.14/nifi-kafka-ingest/topics/cdf-datahub-fm-kafka-ingest-overview.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nsg-quickstart-portal
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-public-ip
https://docs.microsoft.com/en-us/azure/virtual-network/associate-public-ip-address-vm
https://docs.cloudera.com/management-console/cloud/user-management/topics/mc-managing-user-access.html
https://docs.cloudera.com/management-console/cloud/user-management/topics/mc-managing-user-access.html
https://docs.cloudera.com/runtime/7.2.14/security-ranger-authorization/topics/security-ranger-provide-authorization-cdp.html
https://docs.cloudera.com/runtime/7.2.14/kafka-securing/topics/kafka-secure-ranger.html
https://docs.cloudera.com/runtime/7.2.14/kafka-securing/topics/kafka-secure-ranger.html

Cloudera Runtime Connecting Kafka clients to Data Hub provisioned clusters

3. Obtain CDP workload credentials:
A valid workload username and password has to be provided to the client, otherwise it cannot connect to the
cluster. Credentials can be obtained from Management Console.
a) From the CDP Home Page navigate to Management Console User Management.
b) Locate and select the user account you want to use from the list of available accounts.
The user details page displays information about the user.
¢) Find the username found in the Workload Username entry and note it down.
d) Findthe Workload Password entry and click Set Workload Password.
€) Inthediaog box that appears, enter a new workload password, confirm the password and note it down.
f) Fill out the Environment text box.
g) Click Set Workload Password and wait for the process to finish.
h) Click close.
4. Configure clients.
In order for clientsto be able to connect to Kafka brokers, all required security related properties have to be added
to the client's propertiesfile. The following example configuration lists the default properties that are needed
when connecting clients to a cluster provisioned by Data Hub with a Streams Messaging cluster definition. If you
made changes to the security configuration of the brokers, or provisioned a custom cluster with non-default Kafka
security settings, make sure to change the appropriate parameters in the client configuration as well.

security. protocol =SASL_SSL
sasl . mechani sm=PLAI N
ssl.truststore.location=[***CLI ENT TRUSTSTORE. JKS***]
ssl . truststore. password=[*** TRUSTSTORE PASSWORD* * *]
sasl . jaas. confi g=or g. apache. kaf ka. common. security. pl ai n. Pl ai nLogi nMbdul e
required \
user name="[*** USERNAME***] " \
passwor d="[*** PASSWORD* **] " ;

Replace [*** CLIENT TRUSTSTORE.JKS***] with the path to the client's truststore file.This is the same file that
you added the Freel PA certificate to in Step 2 on page 10.

Replace [*** TRUSTSTORE PASSWORD***] with the password of the truststore file.

Replace [***USERNAME***] and [*** PASSWORD***] with the workload username and password obtained in
Step 3 on page 11.
5. Obtain Kafka broker hostnames:
Y ou can obtain the Kafka broker hostnames from the Cloudera Manager Ul.
a) From the CDP Home Page navigateto Management Console Environments.
b) Locate and select your environment from the list of available environments.
c) Select the Data Hub cluster you want to connect to from the list of available clusters.

d) Click thelink found in the Cloudera Manger Info section.
Y ou are redirected to the Cloudera Manager web Ul.

€) Click Clusters and select the cluster that the Kafka service is running on.

The default name for clusters created with a Streams Messaging Cluster definition is streams-messaging.
f) Select the Kafka service.
g) Go to Instances.

The Kafka broker hostnames are listed in the Hostname column.

11

Cloudera Runtime Rolling restart checks

6. Connect clients to brokers.

Connect the clients by supplying them with the broker hosthames obtained in step 5 on page 11. The actions
you need to take differ depending on the type of client you are using.

Custom developed K afka Applications

When producing or consuming messages with your own Kafka client application, you have to
provide the Kafka broker hostnames within the client code.

K afka console producer and consumer

When producing or consuming messages with the kafka-console-consumer or kafka-console-produc
er command line tools, run the producer or consumer with the appropriate hostnames. Additionally,
you must also pass the client properties file containing the security related properties with --produc
er.configor --consumer.config. For example:

kaf ka- consol e- producer --br oker -
[ist [***HOSTNAMVE***]:[***PORT***] --topic [***TOPIC***] --produ
cer.config [***CLI ENT PROPERTI ES FI LE***]

kaf ka- consol e- consuner --bootstrap-serve
r [***HOSTNAVE***]: [***PORT***] --topic [***TOPIC***] --from begi
nni ng --consuner.config [***CLI ENT PROPERTI ES FI LE***]

Replace [*** CLIENT PROPERTIES FILE***] with the path to the client's propertiesfile. Thisis
the same file that you updated in Step 4 on page 11.

Kafka clients are configured and are able to connect to Data Hub provisioned clusters.

Y ou can configure Cloudera Manager to perform a check on Kafka brokers during arolling restart. Using this check
can ensure that Kafka brokers stay healthy after the rolling restart. There are multiple types of checks available, each
providing a different level of guarantee on Kafka broker and cluster health.

By default, during arolling restart, Cloudera Manager only checks whether restarting a Kafka broker has failed or
succeeded. As aresult of this behaviour, Kafka brokers might go into a state where some of the topics and partitions
become unreachabl e by the clients. For example, by default Cloudera Manager might restart a broker while the
previous broker is not fully ready for operation. This can cause outages and corrupted log indexes. To avoid such
issues, you can configure Cloudera Manager to perform a more thorough check on the Kafka brokers during arolling
restart.

There are multiple checks available, each providing a different (higher) level of guarantee on Kafka cluster and
broker health. The type of check performed is configured with the Cluster Health Guarantee During Rolling Restart
property. The property has four different settings, each setting correspondsto a different type of check. The available
settings and the check types that the settings correspond to are as follows:

none

This setting disables rolling restart checks. If this option is selected, no checks are performed and no
health guarantees are provided. Thisisthe default setting.

ready for request

This setting ensures that when a broker is restarted, the restarted broker is accepting and responding
to requests made on its service port. The next broker is only restarted after the previous broker is
ready for requests.

healthy partitions stay healthy

12

Cloudera Runtime Rolling restart checks

This setting ensures that no partitions go into an under-min-isr state when a broker is stopped. This
is achieved by waiting before each broker is stopped so that al other brokers can catch up with all
replicasthat arein an at-min-isr state. Additionally, this setting ensures that the restarted broker is
accepting and is responding to requests made on its service port before restarting the next broker.
This setting ignores partitions which are already in an under-min-isr state.

all partitions stay healthy

This setting ensures that no partitions are in an under-min-isr or at-min-isr state when a broker is
stopped. Thisis achieved by waiting before each broker is stopped so that al other brokers can
catch up with all replicas that arein an at-min-isr or under-min-isr state. Additionally, this setting
ensures that the restarted broker is accepting requests on its service port before the next broker is
restarted.

In addition to configuring and enabling these checks using Cluster Health Guarantee During Rolling Restart, a
number of other configuration properties are also available that enable you to fine-tune the behaviour of the checks.
For detailed steps on how to enable and configure rolling restart checks, see Configuring rolling restart checks.

When Cloudera Manager executes arolling restart check, it uses the kafka-topics tool to gather information about
the brokers, topics, and partitions. The kafka-topics tool requires avalid client configuration file to run. In the case
of rolling restart checks, two configuration files are required. One for the kafka-topics commands that are initiated
before abroker is stopped, and a separate one for the commands initiated after a broker is restarted. Cloudera
Manager automatically generates these client configuration files based on the configuration of the Kafka service.
These files can also be manually updated using advanced security snippets.

Using these files, Cloudera Manager executes kafka-topics commands on the brokers. Based on the response from the
tool, Cloudera Manager either waits for a specified amount of time or continues with the rolling restart.

Depending on what type of check is configured, Cloudera Manager pollsinformation with kafka-topics at different
pointsin time. As aresult, the checks can be categorised in two groups. Pre-checks and post-checks. If either healthy
partitions stay healthy or all partitions stay healthy is selected, information is polled both before a broker is stopped
(pre-check) and after abroker is restarted (post-check). If the ready for request setting is selected, information is only
polled after abroker is restarted.

If apre-check failsto find a proper state when a broker can be stopped, the check will stop the entire rolling restart
process. This can happen if the broker that is about to be stopped still has at-min-isr or under-min-isr partitions after
the configured timeout interval is reached. Post-checks behave in asimilar way. If the post-check fails to receive
validation (a correct exit code) within the specified timeout interval from the kafka-topics command that the broker
isready for requests, the check will stop the entire rolling restart process. In both of these cases the brokers are not
stopped or restarted. The rolling restart fails and the brokers continue to run.

Note: Configuring and using any type of check increases the time reguired for arolling restart. Thisisthe

B result of Cloudera Manager waiting between restarting the brokers. The timeout intervals however can be
configured to alower valueif therolling restart check takes too much time to finish. Alternatively, if you are
experiencing timeout related rolling restart failures, you can a so configure the timeout intervals to a higher
value.

There are two scenarios when additional configuration is required. These scenarios are as follows:
Kafka brokersare configured to use a custom listeners

If you configured your Kafka brokers with advanced configuration snippets to use custom listeners
(for example a custom host:port pair), you must manually update both client configuration files
that Cloudera Manager generates. Thisis required because Cloudera Manager might not be

able to automatically extract the information required to establish a connection with the Kafka
brokers when custom listeners are configured. For more information, see Configuring the client
configuration used for rolling restart checks.

13

Cloudera Runtime Rolling restart checks

A broker connectivity change is made after rolling restart checks are enabled

A broker connectivity change is any type of change made to listeners, bootstrap servers, ports, or
security. If achange like thisis made after rolling restart checks are enabled, Cloudera Manager
uses the newly set configuration to generate the client configuration files. However, until arestart is
executed, the Kafka brokers still operate with the old configuration. As aresult, Cloudera Manager
will run the kafka-topics tool with an invalid configuration causing the check and the rolling

restart to fail. In a case like this, you must disable rolling restart checks until the Kafka brokers are
restarted at least once. This can be done by setting Cluster Health Guarantee During Rolling Restart
to none. Following the initial restart, the brokers will operate with the new configuration and you
can re-enable rolling restart checks.

Y ou can configure Cloudera Manager to perform different types of checks on Kafka brokers during arolling restart.
The type of check performed by Cloudera Manager is configured with the Cluster Health Guarantee During Rolling
Restart property. The property has multiple settings, each setting corresponds to a different type of check.

The following steps walk you through the basic configuration method of how you can enable and configure rolling
restart checks.

If your Kafka service is configured to use custom listeners, complete Configuring the client configuration used for
rolling restart checks before continuing with this task.

1. In Cloudera Manager, select the Kafka service.
2. Goto Configuration.
3. Find and configure the Cluster Health Guarantee During Rolling Restart property.

Select one of the available options. Click the ?icon next to the property's name to reveal afull description of each
option and the check that they correspond to.

4. Fine-tunerolling restart check behaviour by configuring the following properties:

* Maximum Allowed Runtime For Kafka Broker Rolling Restart Check
* Retry Interval For Kafka Broker Rolling Restart Check
« Default API Timeout For Kafka Topics Client Used In Kafka Broker Rolling Restart Check

These properties alow you to configure different interval and timeout values related to the rolling restart check.
Configure these properties based on your cluster and requirements.

5. Click Save Changes.

6. Restart the Kafka service.

Rolling restart checks are configured and enabled. During any subsequent rolling restarts, Cloudera Manager executes
the type of check you configured.

If you make any configuration changes related to broker connectivity (security, listeners, port, bootstrap) after rolling
restart checks are enabled, you must disable rolling restart checks for the first restart after the change was made.
Otherwise, the check and the rolling restart might fail. Following the initial restart, you can re-enable rolling restart
checks.

14

https://docs.cloudera.com/runtime/7.2.14/kafka-configuring/topics/kafka-config-rolling-restart-client-conf.html
https://docs.cloudera.com/runtime/7.2.14/kafka-configuring/topics/kafka-config-rolling-restart-client-conf.html

Cloudera Runtime Rolling restart checks

Cloudera Manager requires Kafka client configuration files to perform rolling restart checks. These files are generated
automatically. However, if your Kafka service has custom listeners configured, you must manually update these client
configuration files. Otherwise, the rolling restart check might fail.

When Cloudera Manager executes arolling restart check, it uses the kafka-topics tool to gather information about

the brokers, topics, and partitions. The kafka-topics tool requires avalid client configuration file to run. Cloudera
Manager automatically generates two configuration files for this purpose. Oneis used for the kafka-topics commands
initiated before the brokers are stopped, the other, after brokers are restarted.

If your Kafka service is configured to use custom listeners, you must manually update the configuration files
generated by Cloudera Manager. Thisis required because Cloudera Manager might not be able to automatically
extract the information required to establish a connection with the Kafka service when custom listeners are
configured. The client configuration files can be updated using advanced security snippets.

1. In Cloudera Manager, select the Kafka service.
2. Goto Configuration.
3. Manually update the client configuration files used during rolling restart checks.
This can be done by adding avalid client configuration to the following advanced configuration snippets:

« KafkaBroker Advanced Configuration Snippet (Safety Valve) for
rolling_restart_check before stop_admin_client_configs.properties

« KafkaBroker Advanced Configuration Snippet (Safety Valve) for
rolling_restart_check after _start admin_client_configs.properties

Ensure that you add the same client configuration to both snippets. The client configuration you add must contain
all propertiesthat are required to establish a connection with the brokers. The client configuration you add here
issimilar to any other client configuration you create for Kafka command line tools. However, this specific
configuration accepts the bootstrap.servers property. Use this property to specify your custom host:port pairs that
yOu use as your custom listeners.

The following client configuration exampleisfor a Kafka service that has both TLS/SSL and Kerberos enabled.
Y ou can use this example as a template and make changes as needed. For more client configuration examples, see
the Securing Apache Kafka publication in the Sreams Messaging documentation.

boot st rap. servers=[***HOST***] : [*** PORT** *]

security. protocol =SASL_SSL

ssl.client. aut h=none

sasl . mechani sm=GSSAPI

sasl . ker ber os. servi ce. nane=kaf ka

sasl . jaas. confi g=com sun. security. aut h. nodul e. Kr b5Logi nModul e requir
ed useKeyTab=true storeKey=true keyTab="[***PATH TO KEYTAB***]" pri nci
pal =" [*** KERBEROCS PRI NCI PAL***]";

ssl . keystore. | ocati on=[*** PATH TO KEYSTORE. JKS* * *]

ssl . key. passwor d=[*** PASSWORD* * * |

ssl . keyst or e. passwor d=[*** PASSWORD* * * |

ssl . keystore. type=j ks

ssl.truststore.location=[***PATH TO TRUSTSTORE. JKS* * *]
ssl.truststore.type=j ks

ssl . truststore. passwor d=[*** PASSWORD* * *

4. Click Save Changes.

15

Cloudera Runtime Configuring Kafka ZooK eeper chroot

The client configuration files used by Cloudera Manager during rolling restart checks are configured.

Enable and configure rolling restart checks. Complete Configuring rolling restart checks.

Streams Messaging
Configuring rolling restart checks

By default, the /kafka path is used in ZooK eeper to store Kafka related metadata. This path can be changed by
configuring the ZooK eeper Root Kafka property.

Complete the following steps to change the Kafka ZooK eeper chroot on an already existing service. Y ou can
also configure the ZooK eeper Root property when adding a new Kafka service to a cluster. The property can be
configured on the Review Changes page when using the Add a Service wizard.

Important: Configuring the Kafka ZooK eeper chroot must be done during broker setup, before the broker

& is started for the first time. If the property is changed on an already running broker, metadata stored in the
previoudly configured paths will not be available to Kafka once Kafkais restarted. This can lead to potential
dataloss.

1. Select the Kafka service.

2. Goto Configuration and find the ZooK eeper Root property.

3. Add the path to use as a chroot environment for the Kafka cluster.
Cloudera recommends that you use /kafka.

4, Enter a Reason for change and click Save Changes.

5. Restart the Kafka service.

The Kafka ZooK eeper chroot is configured. Kafka uses the configured path to store its metadata in ZooK eeper.

Learn about Kafka rack awareness and how it can be configured for Kafka brokers and clients.

Racks provide information about the physical location of abroker or aclient. A Kafka deployment can be made
rack aware by configuring rack awareness for the Kafka brokers and clients respectively. Enabling rack awareness
can help in hardening your deployment, it provides durability guarantees for your Kafka service, and significantly
decreases the chances of dataloss.

Learn about Kafka broker rack awareness and how rack aware Kafka brokers behave.

16

https://docs.cloudera.com/runtime/7.2.14/howto-streaming.html
https://docs.cloudera.com/runtime/7.2.14/kafka-configuring/topics/kafka-config-rolling-restart-conf.html

Cloudera Runtime Kafka rack awareness

To avoid asingle point of failure, instead of putting all brokers into the same rack, it is considered a best practice to
spread your Kafka brokers among racks. In cloud environments Kafka brokers located in different availability zones
or data centers are usually deployed in different racks. Kafka brokers have built in support for this type of cluster
topology and can be configured to be aware of the racksthey arein.

If you create, modify, or redistribute atopic in arack-aware Kafka deployment, rack awareness ensures that replicas
of the same partition are spread across as many racks as possible. This limitsthe risk of datalossif a complete rack
fails. Replica assignment will try to assign an equal number of leaders for each broker, therefore, it is advised to
configure an equal number of brokers for each rack to avoid uneven load of racks.

For example, assume you have atopic partition with 3 replicas and have the brokers configured in 3 different racks.

If rack awareness is enabled, Kafka will try to distribute the replicas among the racks evenly in a round-robin fashion.
In the case of this example, this means that Kafka will ensure to spread all replicas among the 3 different racks,
significantly decreasing the chances of datalossin case of arack failure.

Rack 1 Rack 2 Rack 3
Kafka Broker Kafka Broker Kafka Broker
broker.rack=Rackl broker.rack=Rack?2 broker.rack=Rack3

Topic1 Topic1 Topic1

Partition0
Leader

Partition0
InSync Follower

Partition0
InSync Follower

Kafka Broker Kafka Broker Kafka Broker

broker.rack=Rackl broker.rack=Rack?2 broker.rack=Rack3

Learn how to configure rack awareness for Kafka brokers

Rack awareness is enabled and configured by selecting the Enable Rack Awareness Kafka service property. Once
selected, Enable Rack Awareness automatically configures racks for each Kafka broker based on the rack information
available in Cloudera Manager.

Important: If after configuring and enabling rack awareness you make changes to rack information (for
example, change arack name), ensure that you restart the Kafka service. If the rack information is changed,
the Kafka service will become stale, Cloudera Manager, however, will not display the Kafka service as stale.

* Inorder for rack awareness to properly function, the brokersin your deployment must be spread across available
racks. If all brokers are deployed on the same rack, enabling and configuring rack awareness will not provide you
with any benefits.

» |If you previously configured and enabled rack awareness by manually configuring the broker.rack property with
Kafka Broker Advanced Configuration Snippet (Safety Valve), ensure that you remove al broker.rack entries
from the advanced configuration snippet. The advanced configuration snippet takes precedence over Enable Rack
Awareness and overwrites the configuration set by Enable Rack Awareness.

17

Cloudera Runtime Kafka rack awareness

Procedure

1. In Cloudera Manager, select the Kafka service.

Go to Configuration.

Find and select the Enable Rack Awareness property.
Click Save Changes.

Restart the Kafka service.

o > wDd

Results
Rack awarenessis enabled and configured for the Kafka brokers.

What to do next
Configure rack awareness for Kafka clients.

Rack awareness for Kafka consumers
Learn about |eader fetching, which can be used to make Kafka consumers rack aware

When a Kafka consumer tries to consume atopic partition, it fetches from the partition leader by default. If the
partition leader and the consumer are not in the same rack, fetching generates significant cross-rack traffic, which
has a number of disadvantages. For example, it can generate high costs and lead to lower consumer bandwidth and

throughput.
Rack 1 Rack 2 Rack 3
Kafka Broker Kafka Broker Kafka Broker
broker.rack=Rackl broker.rack=Rack2 broker.rack=Rack3

Topic1 Topic1

Topic1
Partition0
Leader

Partition0
InSync Follower

Partition0
InSync Follower

Kafka Broker Kafka Broker Kafka Broker

broker.rack=Rackl broker.rack=Rack2 broker.rack=Rack3

Kafka Consumer

For this reason, it is possible to provide the client with rack information so that the client fetches from the closest
replicainstead of the leader. If the configured closest replica does not exist (there is no replica for the needed partition
in the configured closest rack), it uses the partition leader. Thisfeature is called follower fetching and it can be used
to mitigate the costs generated by cross-rack traffic or increase consumer throughput.

Note: Due to the nature of the Kafka protocol and high watermark propagation, consumers might experience
IE increased message latency when fetching from areplica compared to when they are fetching from the leader.

18

Cloudera Runtime

Kafka rack awareness

Rack 1

Kafka Broker

broker.rack=Rackl

Topic1

Partition0
Leader

Kafka Broker

broker.rack=Rackil

Rack 2

Kafka Broker

broker.rack=Rack2

Topic1

Partition0
InSync Follower

Kafka Broker

broker.rack=Rack2

Rack 3

Kafka Broker
broker.rack=Rack3

Topic1
Partition0
InSync Follower

Kafka Broker

broker.rack=Rack3

Kafka Consumer
client.rack=Rack3

Configuring rack awareness for Kafka consumers

Learn how to make Kafka consumers rack aware by enabling and configuring follower fetching.

About this task

Kafka Consumers can be made rack aware enabling follower fetching for your Kafka deployment. Follower fetching
can be enabled by configuring replica.selector.class property for the broker and configuring the client.rack property
in the consumer’ s configuration. The replica.selector.class property is not directly available for configuration in
Cloudera Manager and you must use an advanced security snippet to configureit.

Before you begin
Ensure that brokers have rack awareness enabled. For more information, see Configuring rack awareness for Kafka
brokers.

Procedure

1. In Cloudera Manager, select the Kafka service.

2. Goto Configuration.

3. Find the Kafka Broker Advanced Configuration Snippet (Safety Valve) for kafkaproperties property.
4. Add thefollowing configuration entry to the advanced configuration snippet.

replica. sel ector. cl ass=or g. apache. kaf ka. common. r epl i ca. RackAwar eRepl i caS
el ector

5. Click Save Changes.
6. Restart the Kafka service.
7. Add the following to your consumer configuration.

client.rack=[***RACK | D***]

Replace [***RACK ID***] with the ID of the rack that the consumer is running in. The rack ID should match
one of therack ID’s you configured for the brokers. Ensure that you configure each consumer and add its

19

https://docs.cloudera.com/runtime/7.2.14/kafka-configuring/topics/kafka-config-rack-awareness.html#kafka-rack-awareness-broker-config
https://docs.cloudera.com/runtime/7.2.14/kafka-configuring/topics/kafka-config-rack-awareness.html#kafka-rack-awareness-broker-config

Cloudera Runtime Kafka rack awareness

corresponding rack ID. If the consumer is deployed in arack with no brokers, specify therack ID of a broker that
is closest to the rack that the consumer isrunningin.

Follower fetching is enabled for the Kafka deployment. Kafka consumers are now rack aware and attempt to consume
from thereplicathat isin the closet rack instead of consuming from the replica leader.

Learn about rack awareness for Kafka producers.

Compared to brokers or consumers, there are no producer specific rack-awareness features or toggles that you can
enable. However, in a deployment where rack awareness is an important factor, you can make configuration changes
so that producers make use of rack awareness and have messages replicated to multiple racks.

Specifically, Cloudera recommends a configuration that ensures that the produced messages are replicated to at least
two different racks before the messages are considered to be successful. Thisinvolves configuring acksto al in the
producer configuration and setting up min.insync.replicas for the topics in away that ensures a minimum of two racks
get the message before the produce request is considered successful.

The configuration of the acks property is fixed. If you want to make your producers rack aware, the property must be
set to all no matter the cluster topology or deployment.

The exact value you set for min.insync.replicas on the other hand depends on your cluster deployment. Specificaly,

the min.insync.replicas value you must set will depend on the number of racks, brokers, and the replication factor of

your topics. Cloudera recommends that you exercise caution and review the following examples to better understand
configuration.

For example, consider a Cloudera recommended deployment that has three racks with topic replication set to 3. In
acase like this, amin.insync.replicas setting of 2 ensures that you always have data written to at least two different
racks even if onereplicaislagging.

Rack 1 Rack 2 Rack 3
Kafka Broker Kafka Broker Kafka Broker
broker.rack=Rackil broker.rack=Rack2 broker.rack=Rack3

Topic1 Topicl Topic1

Partition0
Lagging Follower

Partition0
InSync Follower

Partition0
Leader

Kafka Broker Kafka Broker Kafka Broker

broker.rack=Rackil broker.rack=Rack2 broker.rack=Rack3

Understand however, that setting min.insync.replicas to 2 does not universally work for al deployments and may not
guarantee that you always have your produced message in at least two racks. Configuration depends on the number of
replicas, as well as the number of racks and brokers.

If you have more replicas and brokers than racks, you will have at least two replicas in the same rack. In acase
like this, setting min.insync.replicasto 2 is not sufficient, a partition might become unavailable under certain
circumstances.

For example, assume you have three racks with topic replication factor set to 4, meaning that there are atotal of four
replicas. Additionally, assume that only two of the replicas are in the in-sync replica set (I1SR), the leader and one of

20

Cloudera Runtime Kafka rack awareness

the followers, and both are located in the same rack. The other two replicas are lagging. Unclean leader election is
disabled to avoid dataloss.

Rack 1 Rack 2 Rack 3
Kafka Broker Kafka Broker Kafka Broker
broker.rack=Rackl broker.rack=Rack?2 broker.rack=Rack3

Topicl Topicl Topic1

Partition0
Leader

Partition0
Lagging Follower

Partition0
Lagging Follower

Kafka Broker Kafka Broker Kafka Broker

broker . rack=Racki broker.rack=Rack2 broker.rack=Rack3

Topic1

Partition0
InSync Follower

When the leader and the in-sync follower (located in the same rack) successfully append a produced message to the
log, message production is considered successful. The leader does not wait for acknowledgement from the lagging
replicas. Thisis because acks=all only guarantees that the |leader waits for the replicas that arein the ISR (including
itself). This means that while the latest messages are available on two brokers, both are located on the same rack. If
the rack goes down at the same time or shortly after production is successful, the partition will become unavailable as
only the two lagging replicas remain, which cannot become leaders.

In cases like this, a correct vaue for min.insync.replicas would be 3 instead of 2 as three | SRs would guarantee that
messages are produced to at least two different racks.

Configuring rack awareness for Kafka producers

Learn how to enable and configure rack awareness for Kafka producers.

About this task

Enabling rack awareness for Kafka producers involves configuring your Kafka deployment in away that ensures that
producers commit messages to at least two separate brokers that are deployed on different racks. This can be done by

configuring your producers to provide the highest available guarantee on message delivery and configuring min.insy
nc.replicas for your topics.

Before you begin

Ensure that brokers have rack awareness enabled. For more information, see Configuring rack awareness for Kafka
brokers.

21

https://docs.cloudera.com/runtime/7.2.14/kafka-configuring/topics/kafka-config-rack-awareness.html#kafka-rack-awareness-broker-config
https://docs.cloudera.com/runtime/7.2.14/kafka-configuring/topics/kafka-config-rack-awareness.html#kafka-rack-awareness-broker-config

Cloudera Runtime Kafka rack awareness

1. Addthefollowing to your producer configuration.
acks=al |

Thisis the default configuration for producer version 3.0.0 or later. Asaresult, configuring this property might
not be required.

2. Configure min.insync.replicas for the produced topics to a value that ensures the desired number of racks
(minimum of 2) get the message before the produce request is considered successful.

Rack awareness for Kafka producersis configured. Producers will now ensure that messages are produced to at |east
2 (or more) of the available racks.

22

	Contents
	Operating system requirements
	Performance considerations
	Quotas
	JBOD
	JBOD setup
	JBOD Disk migration

	Setting user limits for Kafka
	Connecting Kafka clients to Data Hub provisioned clusters
	Rolling restart checks
	Configuring rolling restart checks
	Configuring the client configuration used for rolling restart checks

	Configuring Kafka ZooKeeper chroot
	Kafka rack awareness
	Rack awareness for Kafka brokers
	Configuring rack awareness for Kafka brokers
	Rack awareness for Kafka consumers
	Configuring rack awareness for Kafka consumers
	Rack awareness for Kafka producers
	Configuring rack awareness for Kafka producers

