Cloudera Runtime 7.2.14

Using Apache Hive

Date published: 2019-08-21
Date modified: 2022-02-24

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Apache Hive 3 tables.........oov i 5
HIVE TADIE TOCELIONS. ... vttt ettt b e bbb s b e b e s e e bt e bbbttt bene bt 6

Refer to a table USING Ot NOLELION..........cuiiiriiiriiet ettt sb e enas 6
Creating @ CRUD transaCtional Al ..ot 7
Creating an insert-only transactional tahle.............cci i 7
Creating an S3-based eXterNal TADIE..........ciiiire e bbb 8
Dropping an external table along With dataL...........cccoeiiiiiiinee e 9
Converting a managed non-transactional table to eXErNal...........coueireireriirie s 9
Accessing StorageHandler and other external tables............ooiiiiirc s 9
Creating SeCUre exXterNal TADIES........oii i et eb e 11

Check for required Ranger features in Data HUD...........ccoeiiiiiiineeeee e 13

Enable authorization of StorageHandler-based tables in Data Hub.............ccooeiviniininicceee, 14

Examples of creating secure external tables........ ..o 14

USING CONSIFAINTS. ...ttt sttt sttt sttt s b e se ekt se bt s bt s bRt b et b et b e e e b e s e e b e se e b e s e e bt s e e bt ne e st s b e st e be e nbeneebne 16
Determining the talE tYPe... ..o bbb e bbb 18
Apache Hive 3 ACID transactions..........ccceeeieeieeeiieesie e see e see e e 18
ApPache HiVe QUENY DASICS........ccuiieiieeiee et 21
Querying the information_schema datalase............c.ooeeirir e 22
INSErting data iNtO @ tADIE.........oi i ettt e b e b e b et e snenean 23
Updating data in @ tADIE..........eii et b e b b e e e ene 24
MeErging data iN TADIES..... ..ottt b e bt bt a e s bt e b et e e e e e e et et e e eneeneene b 24
Deleting data from @ tAl€.........c.oiiiee e bbb e et es 25

USING @ SUDGUENY ...ttt ettt h bt et b b sa e e e ke e e s e et et et e ae e Rt e Rt eaeebenbesbesbenbeseeseenean 25
ST 0To [0S VA == L o] SRRV 25

Use wildcards with SHOW DATABASES........ccoireee ettt sttt 26
Aggregating and groUPING QAEAL..........coeeererirtere ettt ettt se e se et s be st e e e e e e e seesesaeeseebesbeseesaeeas 26
(181 VT aTo [ere (= = 1= o [o = = RSSO 26

USiNg COMMON A1 @ EXPIESSIONS.......cuieiieieeeeeeeeee ettt ettt b sttt e e bt e e e se e e e e et eseeseeaeesesbesbesaesbesbesbeseens 27

U WO I 1 1= W o (U< YRS 27

Comparing tables USING ANY /SOMESALL ..ottt b e sa e e 28
Escaping an inValid THENEITIEN. ..o et s b e e es 28
CHAR a8 LYP SUPPOIT.....c.veteieereetesee ettt ettt be st s ae st be e et e bese e e e s e et e e emeese e st eseebesbesbesbesbesbeseenbaneeseans 29

ORC VS PalQUEL FOMMIBLS....c..eitiitirteiteste ettt sttt et et st b sbesbesee st e besee e ene e e et ebesbesaesaeebesaeseenbebeseesenseneeneaneas 29
Creating a default directory for managed tables...........ccccoeecieevieecieccceecee 30
Configuring a table location outside the warehouse root dir€CLOrY..........ccvveviiinienie e 31
Generating SUrrogate KEYS........ccveieeiiieeiie et e et nre e s ens 31
Partitions and PerforManCe..........ccoceeiiiiie i 32
Creating partitions dyNaMICAITYot et e se e e e e e ae e b e naesne 33

Partition refresh and CONFIQUIBLION............oiiiiiiirie ettt ettt be bbb e e eas 35

Automating partition diSCOVErY and FEPAIT........ccceererireriereie sttt e sbe e sbe e 35

Managing partition retention tIME....... ...ttt s e e eneas 36

Repairing partitions manually using MSCK FEPEIT.........ccccoirireriiriene et e eeneas 37

(@ 101 VS o 1= o [][] o T SO 37
ENabling SChEAUIEH QUENTES........c.oiiiiiiet ettt bbbttt bt b e 38
Periodically rebuilding @ MaterialiZed VIEW............coviirieiiieiieses e 38
Getting scheduled query information and MONItOr the QUENYcoeiiiririnireee e 40
MAtEr TAlIZEA VIBWS.......ciiiieieeie ettt e 41
Creating and uSiNg @ MAENTAliZEA VIEW........cceiiiiiee ettt st e e e reenesnesneerenrees 42
Creating the tableS aNd VIEW.........ccvci et neeneens 42

Verifing USE Of @ QUENY TEWIITE.......cceieiiceseese e ste e te e ettt s ae s r e besaesa e s et e e e e eneeneenennens 43

Using optimizations from @ SUDQUETY..........cceierierieiierieiee et st se e e e e e ens 44

Dropping @ MaterialiZEA VIEW..........cceciiiie e sesteses et st seese s e se st te e ste e saesre e aeseeneenaeneeneesens 45

ShowWing MELENialiZEA VIBWS........cociiecicie ettt st sttt s e e e seeseenesnesresreseesrenn 45

Describing @ MaterialiZEA VIEW......ccucueieeeeceece ettt st ne e e s ens 46

MaNBGING QUETY TEWIITES.....cueeuieteieeeteetestestestes e steseeseeeeeesessesseesestesaessestesteseessentessenseseeseeseesessessessessenseses 48

Purposely using a stale MaterialiZEA VIEW.........ccveueeeeeececeee st 48

Creating and using a partitioned MaterialiZed VIEW...........cocvveeeciie s 49

USING FUNCHIONS.....ooiieeeie et 51
Reloading, viewing, and filtering FUNCHIONS..........o.o oo en 51
Create a USer-defiNed FUNCHION.o ettt s a e b b st sb b e e e e e e e eneas 52
Setting up the develOpmMEeNt ENVIFONMENL..........coi it e 53

Creating the UDF ClaSS......c.oiiiiiiiiiee ettt bbb st st e et sbeenas 54

Building the project and upload the JAR..... .ot e 55

REGISLENTNG the UDFot ettt b e bbb e sbe b b e beseeseeneas 56

CalliNg the UDF 1N @ QUENYcouiiiiieeeeiesie ettt ettt b e ae b b e bt e s e se et et e e e e eneeneeneeneas 57

Cloudera Runtime

Apache Hive 3 tables

Apache Hive 3 tables

Table type definitions and a diagram of the relationship of table typesto ACID properties clarifies Hive tables. The
location of a table depends on the table type. Y ou might choose atable type based on its supported storage format.

Y ou can create ACID (atomic, consistent, isolated, and durable) tables for unlimited transactions or for insert-
only transactions. These tables are Hive managed tables. Alternatively, you can create an externa table for non-

transactional use. Because Hive control of the external table isweak, the table is not ACID compliant.

The following diagram depicts the Hive table types.

— — Hive — —

transactional

NO ACID

Hive Metastore

Managed tables

CRUD insert-only temporary

ORC any any

External

table

metadata

- data

The following matrix includes the types of tables you can create using Hive, whether or not ACID properties are

supported, required storage format, and key SQL operations.

Table Type ACID File For mat INSERT UPDATE/DELETE
Yes Yes Yes

Managed: CRUD ORC

transactional

Managed: Insert-only Yes Any Yes No
transactional

Managed: Temporary No Any Yes No
External No Any Yes No

Although you cannot use the SQL UPDATE or DELETE statements to delete data in some types of tables, you can

use DROP PARTITION on any table type to delete the data.

Table storage formats

The datain CRUD tables must be in ORC format. Implementing a storage handler that supports AcidlnputFormat and

AcidOutputFormat is equivalent to specifying ORC storage.

Insert-only tables support all file formats.

The managed table storage type is Optimized Row Column (ORC) by default. If you accept the default by not
specifying any storage during table creation, or if you specify ORC storage, you get an ACID table with insert,
update, and delete (CRUD) capahilities. If you specify any other storage type, such astext, CSV, AVRO, or JSON,
you get an insert-only ACID table. You cannot update or delete columns in the insert-only table.

Cloudera Runtime Apache Hive 3 tables

Transactional tables are ACID tables that reside in the Hive warehouse. To achieve ACID compliance, Hive has
to manage the table, including access to the table data. Only through Hive can you access and change the datain
managed tables. Because Hive has full control of managed tables, Hive can optimize these tables extensively.

Hive is designed to support arelatively low rate of transactions, as opposed to serving as an online analytical
processing (OLAP) system. Y ou can use the SHOW TRANSACTIONS command to list open and aborted
transactions.

Transactional tablesin Hive 3 are on a par with non-ACID tables. No bucketing or sorting is required in Hive 3
transactional tables. Bucketing does not affect performance. These tables are compatible with native cloud storage.

Hive supports one statement per transaction, which can include any number of rows, partitions, or tables.

External table datais not owned or controlled by Hive. Y ou typically use an external table when you want to access
datadirectly at thefile level, using atool other than Hive. Y ou can also use a storage handler, such as Druid or
HBase, to create atable that resides outside the Hive metastore.

Hive 3 does not support the following capabilities for external tables:

e Query cache

e Materialized views, except in alimited way

e Automatic runtime filtering

» Filemerging after insert

e ARCHIVE, UNARCHIVE, TRUNCATE, MERGE, and CONCATENATE. These statements only work for Hive
Managed tables.

When you run DROP TABLE on an external table, by default Hive drops only the metadata (schema). If you want the
DROP TABLE command to also remove the actual datain the external table, as DROP TABLE does on a managed
table, you need to set the external .table.purge property to true as described later.

Y ou need alittle information about the location of your Hive tablesin CDP Public Cloud, which you can control. The
location depends on the table type that you can determine by running a Hive query.

In CDP Public Cloud, you specify the location of managed tables and external table metadatain the Hive warehouse
during Data Warehouse setup. Hive metastore properties hive.metastore.warehouse.dir and hive.metastore.warehouse
.external.dir set the storage locations for Hive tables. For example:

« hive.metastore.warehouse.external .dir = s3a://bucketName/warehouse/tabl espace/external /hive
« hive.metastore.warehouse.dir=s3a://bucketName/warehouse/tabl espace/managed/hive

In Cloudera Manager, when you launch your cluster, you accept default or specify other Hive metastore variables
hive.metastore.warehouse.dir and hive.metastore.warehouse.external .dir that determine storage locations for Hive
tables. Managed tables reside in the managed tablespace, which only Hive can access. By default, Hive assumes
external tablesresidein the external tablespace.

To determine the managed or external table type, you can run the DESCRIBE EXTENDED table_name command.

Hive 3.1 changes to table references using dot notation might require changes to your Hive scripts.

Cloudera Runtime Apache Hive 3 tables

Hive 3.1 in CDP includes SQL compatibility (Hive-16907), which rejects “db.table’ in SQL queries. The dot (.) is not
alowed in table names. To reference the database and table in atable name, enclosed both in backticks as follows:

“db”. “tabl e’

Y ou create a CRUD transactional table having ACID (atomic, consistent, isolated, and durable) properties when you
need a managed table that you can update, delete, and merge. Y ou learn by example how to determine the table type.

In thistask, you create a CRUD transactional table. Y ou cannot sort this type of table. To create a CRUD
transactional table, you must accept the default ORC format by not specifying any storage during table creation, or by
specifying ORC storage explicitly.

1. Start Hive.
For example, start Hive from a JDBC client:

beeline -u jdbc: hive2://nyhiveserver.com 10000 -n hive -p

2. Enter your user name and password.
The Hive 3 connection message, followed by the Hive prompt for entering SQL queries on the command line,

appesars.
3. Create a CRUD transactional table named T having two integer columns, aand b:

CREATE TABLE T(a int, b int);
4, Confirm that you created a managed, ACID table.

DESCRI BE FORMATTED T;

The table type says MANAGED_TABLE and transactional = true.

HMS storage

Y ou can cregte a transactional table using any storage format if you do not reguire update and delete capability. This
type of table has ACID properties, is a managed table, and accepts insert operations only. The storage format of an
insert-only tableis not restricted to ORC.

In thistask, you create an insert-only transactional table for storing text. In the CREATE TABLE statement,
specifying a storage type other than ORC, such astext, CSV, AVRO, or JSON, resultsin an insert-only ACID table.
Y ou can explicitly specify insert-only in the table properties clause.

https://docs.cloudera.com/runtime/7.2.14/hive-metastore/topics/hive-hms-table-storage.html

Cloudera Runtime Apache Hive 3 tables

1. Start Hive.
For example, start Hive from a JDBC client:

beeline -u jdbc: hive2://nyhiveserver.com 10000 -n hive -p

2. Enter your user name and password.
The Hive 3 connection message, followed by the Hive prompt for entering SQL queries on the command line,
appears.

3. Create ainsert-only transactional table named T2 having two integer columns, aand b:

CREATE TABLE T2(a int, b int)
STORED AS ORC
TBLPROPERTI ES ('transactional'="true',
"transactional _properties'="insert_only");

The 'transactional _properties="insert_only' is required; otherwise, a CRUD table results. The STORED AS ORC
clause isoptional (default = ORC).

4. Create an insert-only transactional table for text data.

CREATE TABLE T3(a int, b int)
STORED AS TEXTFI LE;

The 'transactional_properties="insert_only' is not required because the storage format is other than ORC.

HMS storage

You use the LOCATION clause in the CREATE EXTERNAL TABLE statement to create an external data having
source dataon S3.

In thistask, you create a partitioned, external table and load data from the source on S3. Y ou can use the LOCATION
clausein the CREATE TABLE to specify the location of external table data. The metadata is stored in the Hive
warehouse.

e Set up Hive paliciesin Ranger to include S3 URLSs.

1. Put data sourcefileson S3.
2. Create an external table based on the data source files.

CREATE EXTERNAL TABLE “inventory (
“inv_itemsk® int,
“inv_warehouse_sk® int,
“inv_quantity _on_hand® int)
PARTI TI ONED BY (
“inv_date sk® int) STORED AS ORC
LOCATI ON
's3a:// BUCKET _NAME/t pcds_bi n_partitioned_orc_200.db/inventory';

https://docs.cloudera.com/runtime/7.2.14/hive-metastore/topics/hive-hms-table-storage.html

Cloudera Runtime Apache Hive 3 tables

When you run DROP TABLE on an external table, by default Hive drops only the metadata (schema). If you want the
DROP TABLE command to also remove the actual data in the external table, as DROP TABLE does on a managed
table, you need to configure the table properties accordingly.

1. CreateaCSV file of datayou want to query in Hive.
2. Start Hive.
3. Create an external table to store the CSV data, configuring the table so you can drop it along with the data.

CREATE EXTERNAL TABLE | F NOT EXI STS nanes_t ext (
a INT, b STRI NG
ROW FORVAT DELI M TED
FI ELDS TERM NATED BY ',
STORED AS TEXTFI LE
LOCATION '<fil e systenr://andrena'
TBLPROPERTI ES (' external .table.purge' ="true');

4. Run DROP TABLE on the external table.
DROP TABLE nanes_text;

Thetable is removed from Hive Metastore and the data stored externally. For example, names_text is removed
from the Hive Metastore and the CSV file that stored the datais also deleted from the file system.

5. Prevent datain external table from being deleted by a DROP TABLE statement.

ALTER TABLE addresses_text SET TBLPROPERTIES (' external.table.purge' = fa
I se');

Y ou can easily convert amanaged table, if it isnot an ACID (transactional) table, to external using the ALTER
TABLE statement. Y ou might have a non-ACID, managed table after an upgrade from Hive 1 or 2.

The following pseudo-code changes a managed table, if it is not transactional, to external. The data and metadatais
dropped when the table is dropped.

ALTER TABLE ... SET TBLPROPERTI ES(' EXTERNAL' =' TRUE' , ' ext ernal . t abl e. pur ge' ='
true')

Before and After Upgrading Table Type Comparison

Before creating secure external tables based on a StorageHandler, you must configure Hive impersonation. You learn
which permissions Hive checks before you attempt to create a secure external table. Y ou understand the policies
necessary for accessing HBase from Hive.

When you create a managed versus an external table, including external tables based on a StorageHandler, Hive
checks permissions described in the following table:

https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/upgrade-hdp/topics/ug_hdp_hive_check_locations.html

Cloudera Runtime Apache Hive 3 tables

Table 1:
Table Type Example Permissions Checked
Managed Create table foo(i int); Does the user have write and execute permission to the table
storage location?
Externa Create table foo_ext(i int) stored by Does the user have write and execute permission to the table
‘org.apache.hadoop.hive.hbase.HBaseStorageHandler' with storage location and does the user have read access to the
serdeproperties ("hbase.columns.mapping"="cf:string", external table, hbase table O, for example?

"hbase.table.name"'="hbase_table 0");

In Hive 3, you follow recommendations to turn off Hive impersonation (hive.server2.enable.doAs property = false).
As shown in the following diagram, any Hive user who can create atable, can also read the data of any external table.

Ranger
Hive Policies HBase Policies
userx userx
CREATE/ restricted

DROP/
SELECT

hive

superuser

requires

— —as userx

userx

HBase

HiveServer

(HS2)
doAs=false

When doas=true, HBase policies restrict access to HBase. When doAs=true, HBase recogni zes the end-user who
logged into Hive. To access the HBase service, you need to create Ranger policies for end user access, instead of just
user hive accessto Hive.

When doas=false, any Hive user with CREATE/DROP/SELECT table access in Hive can read, write, or delete any
HBase table using the HBaseStorageHandler. When doas=fal se, HBase see suser hive is accessing the HBase tables.
Y ou need to create one policy in Ranger for HBase that allows user hive to read data from any table in HBase. From
Hive, any user can read data from any tablein HBase.

AsaHive 3 user, you must set doas=false to use Ranger. Ranger is the supported authorization model in CDP. You
must set up Ranger to secure external tables, such as the HBaseStorageHandler table, as described in the next topic.

Related Information
Configure aresource-based storage handler policy: HadoopSQL

10

https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/securing-hive/topics/hive_sba_permissions_model.html
https://docs.cloudera.com/runtime/7.2.14/security-ranger-authorization/topics/security-ranger-resource-policy-storage-handler.html

Cloudera Runtime Apache Hive 3 tables

A step-by-step procedure shows you how to create a secure external table using SERDEPROPERTIES or
TBLPROPERTIES and Ranger policies.

Y ou provide SERDEPROPERTIES or TBLPROPERTIES when you create the external table. Hive uses

this information to authorize access to the table based on Ranger policies you set up. Continuing with the
HBaseStorageHandler example from the previous topic, this procedure shows how to set up Ranger policies for the
following table:

Create table foo_ext(i int) stored by 'org.apache. hadoop. hi ve. hbase. HBaseSt o
rageHandl er'

wi th serdeproperties ("hbase.col ums. mappi ng"="cf:string", "hbase.table.na
me" ="hbase_table 0");

In this case, the URI sent for ranger Authentication is hbase://hostclustername:2181/hbase table O/cf. In this
procedure, you create a Hadoop SQL policy in Ranger that provides the following authorizations:
« Authorizes the end user against the location of the external table.

For example, in Ranger create an HDFS policy to give read, write, and execute permissions to hdfs://user/ware
house/tablespace/external/hive/foo.

« Authorizesthe end user against the URI used in the table creation statement.
For example, in Ranger set a SQL policy to give create/alter/drop privileges on hbase://hosthame: portnumber/
hbase table 0.

» Authorizesthe user hive to access the HBase table.

For example, in Ranger set an HBase policy to have full access to hbase://hostname/hbase _table 0.

By default, the capability to create StorageHandler-based tablesis turned off. Required Ranger features changes
might not be available in your environment.

» Check that you have required Ranger features as described in the next topic.
« Enable authorization of StorageHandler based tables as described in the subsequent topic.

11

Cloudera Runtime Apache Hive 3 tables

Procedure

1. Goto Ranger Service Manager Hadoop SQL Policies, enter apolicy name, and click the numerical link for all -
storage-type, storage-url.
For example, click 11 in the screenshot below.

List of Policies : Hadoop SQL

Q, Search for your policy

Palicy ID Palicy Name Palicy Labels Status

: all - global - m
a all - database, tabile, column =
10 all - databass, table -
1 all - starage-type, slorage-url

2. In Edit Policy, select storage-type, type hbase, and then select hbase to set the storage type to hbase.

3. In Storage URL, type the URI format for the table.
For example, type hbase-cluster:port/hbase-table.

Hadoop SQL Policies » Create Policy
Policy Type m
Paolicy Name * Hbase Storage Handler Policy (3] . . Normal
Policy Label Policy Label
e e @
Storage Url ®
g % hbase-cluster:port/hbase-table ’

12

Cloudera Runtime Apache Hive 3 tables

4. Add permissions for users or groupsto create a table on the table storage location.
For example, select Create Table on Storage.

add/edit permissions

O select
update
| Create
Drop
Alter
1 Index
Lock
1 All
| Read
L) Write
| Repladmin
| Service Admin
] Temporary UDF Admin
[] Refrash
Create Table on Storage
| Alter Table on Storage

| Select/Deselect All

.
Configure aresource-based storage handler policy: HadoopSQL

Y our version of Data Hub might not have the features necessary to create secure external tables. Learn how to quickly
check for the required Ranger feature.

1. InClouderaManager, click Clusters Ranger Admin web Ul .
2. Enter your user name and password, then click Sign In.
3. Select Hadoop SQL.

13

https://docs.cloudera.com/runtime/7.2.14/security-ranger-authorization/topics/security-ranger-resource-policy-storage-handler.html

Cloudera Runtime Apache Hive 3 tables

4. In Hadoop SQL Policies, look for the all - storage-type, storage-url policy.
List of Policies : Hadoop SQL

Q, Search for your policy

Paliey ID Palicy Name Palicy Labels Status

] all - global - m
) all - database, table, column -
10 all - detabass, table -- m

all - staracge-type, storage-url m

Y ou need to know how to enable authorization of StorageHandler-based tables. Y ou follow steps to add a custom
property.

In Data Hub, you configure hive.security.authorization.tables.on.storagehandlers = true to enable authorization of
StorageHandler-based tables.

1. InClouderaManager, click Clusters Hive Configurations, and search for
hive.security.authorization.tables.on.storagehandlers.

2. Setthevaueto true.
3. Savechanges.

You learn by example how to set up policies to secure HBase-, Kafka- and JDBC-based tables using the Ranger
policy properties.

CREATE EXTERNAL TABLE kafka table test ("timestanp™ tinestanp , ~page’ strin
g, newPage bool ean, added int, deleted bigint, delta double)

STORED BY ' or g. apache. hadoop. hi ve. kaf ka. Kaf kaSt or ageHand| er"'

TBLPROPERTI ES ("kafka.topic" = "test-topic","kafka. bootstrap. servers" ="
host cl ust er nanme: 2181") ;

In this case, the URI for ranger Authentication is kafka://hostclustername: 2181/test-topic/column_names.

14

Cloudera Runtime Apache Hive 3 tables

The policy definition sets the kafka storage-type and storage Url format bootstrap-server:port/kafka-topic.

Hadoop SQL Policies Create Policy
Policy Details:
Palicy Type
Policy Name Kafka Storage Handler Policy L el —
Policy Label Palicy Labe
.
Storage Url ™ -
» bootstrap-server:port/kafka-topic)

JDBC-based table

CREATE EXTERNAL TABLE nytabl e_jdbc(col 1l string, col2 int, col3 double)
STORED BY ' or g. apache. hi ve. st orage. j dbc. JdbcSt or ageHand! er’

TBLPROPERTI ES ("hi ve. sql . dat abase. type" = "MYSQ.", "hive.sql.jdbc.driver" =

"com nysql .jdbc. Driver", "hive.sql.jdbc.url"™ = "jdbc:nysql://local host/sanp
I e", "hive.sql.dbcp.username" = "hive", "hive.sql.dbcp.password" = "hive", "
hi ve.sqgl .tabl e" = "MYTABLE");

In the query, you need to specify either hive.sgl.table or hive.sgl.query to tell the storagehandler how to get data from
the JDBC database. In this case, the URI for Ranger Authentication is jdbc:mysql://localhost/sample/MY TABLE.

The policy definition sets the com.mysgl.jdbc.Driver storage-type and the storage Url format to jdbc:mysql://mysql-
host: port/table-name.

Service Manager Hadoop SQL Palicies Create Policy

Policy Details:

Policy Type

Policy Neme JOBC Storage Handler Policy L] e

Palicy Label

storage-typ v ' »® com.mysql.jdbe.Driver

Storage Url * =
= jdbe:mysql:/mysql-host:port/table-name

When you create the table, you use the hive.sql.table table property to denote a single table name if your policy
defined the Storage Url format using a table name, as shown in the screenshot above.

15

Cloudera Runtime Apache Hive 3 tables

Alternatively, you can use the wildcard asterisk in the Storage Url format when you define the policy, for example
jdbc:mysgl://mysgl-host:port/* as shown below. In the query, you then use the hive.sql.query table property to denote

an arbitrary SQL query:

storage-typ v » com.mysql.jdbc.Driver

Storage URL * » jdbc:mysgl://mysqgl-host:port/* m

Configure a resource-based storage handler policy: HadoopSQL

Y ou can use SQL constraints to enforce data integrity and improve performance. Using constraints, the optimizer can
simplify queries. Constraints can make data predictable and easy to locate. Using constraints and supported modifiers,
you can follow examplesto constrain queries to unique or not null values, for example.

Hive enforces DEFAULT, NOT NULL and CHECK only, not PRIMARY KEY, FOREIGN KEY, and UNIQUE.

Y ou can use the constraints listed below in your queries. Hive enforces DEFAULT, NOT NULL and CHECK only,
not PRIMARY KEY, FOREIGN KEY, and UNIQUE. DEFAULT even if enforced, does not support complex types
(array,map,struct). Constraint enforcement is limited to the metadata level. This limitation aids integration with third
party tools and optimization of constraints declarations, such as materialized view rewriting.

CHECK
Limits the range of values you can placein a column.
DEFAULT
Ensures avalue exists, which is useful in offloading data from a data warehouse.
PRIMARY KEY
Identifies each row in atable using a unique identifier.
FOREIGN KEY
Identifies arow in another table using a unique identifier.
UNIQUE KEY
Checks that values stored in a column are different.

NOT NULL
Ensures that a column cannot be set to NULL.

Y ou can use the following optional modifiers:
ENABLE
Ensures that all incoming data conforms to the constraint.

DISABLE
Does not ensure that all incoming data conforms to the constraint.

VALIDATE

16

https://docs.cloudera.com/runtime/7.2.14/security-ranger-authorization/topics/security-ranger-resource-policy-storage-handler.html

Cloudera Runtime Apache Hive 3 tables

Checksthat all existing datain the table conforms to the constraint.

NOVALIDATE
Does not check that all existing datain the table conforms to the constraint.

ENFORCED
Mapsto ENABLE NOVALIDATE.

NOT ENFORCED
Mapsto DISABLE NOVALIDATE.

RELY
Specifies abiding by a constraint; used by the optimizer to apply further optimizations.
NORELY
Specifies not abiding by a constraint.
Y ou use modifiers as shown in the following syntax:
((((ENABLE | DI SABLE) (VALIDATE | NOVALIDATE)) | (ENFORCED | NOT ENFORC
ED)) (RELY | NORELY))
Default modfiers
The following default modifiers are in place:

* Thedefault modifier for ENABLE isSNOVALIDATE RELY.
* Thedefault modifier for DISABLE isNOVALIDATE NORELY.

« If you do not specify amodifier when you declare a constraint, the default is ENABLE NOVALIDATE RELY.
The following constraints do not support ENABLE:

* PRIMARY KEY
 FOREIGN KEY
* UNIQUEKEY

To prevent an error, specify amodfier when using these constraints to override the default.

The optimizer uses the constraint information to make smart decisions. The following examples show the use of
constraints.

The following example shows how to create a table that declaresthe NOT NULL in-line constraint to constrain a
column.

CREATE TABLE t(a TINYINT, b SVMALLI NT NOT NULL ENABLE, c | NT);
The constrained column b acceptsa SMALLINT value as shown in the first INSERT statement.

I NSERT | NTO t val ues(2, 45, 5667) ;

1 row affected ...
The constrained column b will not accept aNULL value.

I NSERT INTO t val ues(2, NULL, 5667) ;

Error: Error running query: org.apache. hadoop. hive. gl . exec. errors. Dat
aConstraintViolationError: /

Ei ther CHECK or NOT NULL constraint violated! (state=, code=0)

17

Cloudera Runtime Apache Hive 3 ACID transactions

The following examples shows how to declare the FOREIGN KEY constraint out of line. Y ou can specify a
constraint name, in this case fk, in an out-of-line constraint

CREATE TABLE Persons (
I D I NT NOT NULL,
Name STRI NG NOT NULL,
Age | NT,
Creat or STRI NG DEFAULT CURRENT_USER(),
Creat eDat e DATE DEFAULT CURRENT_DATE(),
PRI MARY KEY (| D) DI SABLE NOVALI DATE) ;

CREATE TABLE Busi nessUnit (

I D I NT NOT NULL,

Head | NT NOT NULL,

Creator STRI NG DEFAULT CURRENT_USER(),

Creat eDat e DATE DEFAULT CURRENT_DATE(),

PRI MARY KEY (I D) DI SABLE NOVALI DATE,

CONSTRAI NT fk FOREI GN KEY (Head) REFERENCES Persons(|D) DI SABLE NOVA
LI DATE

)

Y ou can determine the type of a Hive table, whether it has ACID properties, the storage format, such as ORC, and
other information. Knowing the table type is important for a number of reasons, such as understanding how to store
datain the table or to completely remove data from the cluster.

1. Inthe Hive shell, get an extended description of the table.
For example: DESCRIBE EXTENDED mydatabase.mytable;

2. Scrall to the bottom of the command output to see the table type.
The following output says the table type is managed. transaction=true indicates that the table has ACID properties:

| Detailed Table Information | Tabl e(tabl eNane:t2, dbName: nydat abase, o
wner: hdfs, createTinme: 1538152187, | ast AccessTinme: 0, retention: 0, sd: Stor
ageDescriptor(col s:[Fi el dSchema(nane: a, type:int, comrent:null), FieldSc
hema(nane: b, type:int, coment:null)], .

HMS storage

Hive 3 achieves atomicity and isolation of operations on transactional tables by using techniques in write, read, insert,
create, delete, and update operations that involve deltafiles. Y ou can obtain query status information from these files
and use the files to troubleshoot query problems.

Hive 3 write and read operations improve the ACID qualities and performance of transactional tables. Transactional
tables perform as well as other tables. Hive supports al TPC Benchmark DS (TPC-DS) queries.

Hive 3 and later extends atomic operations from simple writes and inserts to support the following operations:

18

https://docs.cloudera.com/runtime/7.2.14/hive-metastore/topics/hive-hms-table-storage.html

Cloudera Runtime Apache Hive 3 ACID transactions

* Writing to multiple partitions
« Using multipleinsert clausesin asingle SELECT statement

A single statement can write to multiple partitions or multiple tables. If the operation fails, partial writes or inserts are
not visible to users. Operations remain fast even if data changes often, such as one percent per hour. Hive 3 and later
does not overwrite the entire partition to perform update or delete operations.

Hive compacts ACID transaction files automatically without impacting concurrent queries. Automatic compaction
improves query performance and the metadata footprint when you query many small, partitioned files.

Read semantics consist of snapshot isolation. Hive logically locksin the state of the warehouse when aread operation
starts. A read operation is not affected by changes that occur during the operation.

When an insert-only transaction begins, the transaction manager gets atransaction ID. For every write, the transaction
manager allocates awrite ID. This D determines a path to which datais actually written. The following code shows
an example of a statement that creates insert-only transactional table:

CREATE TABLE tm (a int, b int) TBLPROPERTI ES
("transactional'="true', 'transactional _properties'="insert_only")

Assume that three insert operations occur, and the second one fails:

| NSERT | NTO t m VALUES(1, 1) ;
| NSERT | NTO tm VALUES(2,2): // Fails
| NSERT | NTO t m VALUES(3, 3) ;

For every write operation, Hive creates a delta directory to which the transaction manager writes data files. Hive
writes all datato deltafiles, designated by write IDs, and mapped to atransaction ID that represents an atomic
operation. If afailure occurs, the transaction is marked aborted, but it is atomic:

tm

___ delta_0000001_0000001_0000

000000_0

___ delta_0000002_0000002_0000 //Fails
000000_0

___ delta_0000003_0000003_0000

000000_0

During the read process, the transaction manager maintains the state of every transaction. When the reader starts, it
asks for the snapshot information, represented by a high watermark. The watermark identifies the highest transaction
ID in the system followed by alist of exceptions that represent transactions that are still running or are aborted.

The reader looks at deltas and filters out, or skips, any IDs of transactions that are aborted or still running. The reader
uses this technique with any number of partitions or tables that participate in the transaction to achieve atomicity and
isolation of operations on transactional tables.

You create afull CRUD (create, retrieve, update, delete) transactional table using the following SQL statement:
CREATE TABLE acidtbl (a INT, b STRI NG ;

Running SHOW CREATE TABLE acidtbl provides information about the defaults: transactional (ACID) and the
ORC data storage format:

createtab_stm

19

Cloudera Runtime Apache Hive 3 ACID transactions

eccooccococoocococooooococooooooCoooCcooCcoooCcocoooooosoooc +
CREATE TABLE "aci dthbl " (
“a int,

ROW FORVAT SERDE
' or g. apache. hadoop. hive. gl .io.orc. OrcSerde'

| |
[b’ string) [
| |
| STORED AS | NPUTFORVAT [
I
I
|
|
|

' org. apache. hadoop. hive. gl .io.orc. O clnput Format' |
OUTPUTFORVAT |

' org. apache. hadoop. hive. gl .io0.orc. O cCQut put Format' |
LOCATI ON

's3:// nyserver.com 8020/ war ehouse/ t abl espace/ managed/ hi ve/ aci dt b

| TBLPROPERTIES (|
| "bucketing version' = 2", |
["transactional ' ='true', [
| "transactional _properties' = default"', |
| "transi ent | astDdl Ti me' =" 1555090610') |

Tables that support updates and deletions require aslightly different technique to achieve atomicity and isolation.
Hive runs in append-only mode, which means Hive does not perform in-place updates or deletions. Isolation of
readers and writers cannot occur in the presence of in-place updates or deletions. In this situation, alock manager or
some other mechanism, is required for isolation. These mechanisms create a problem for long-running queries.

Instead of in-place updates, Hive decorates every row with arow ID. Therow ID isastruct that consists of the
following information:

* Thewrite D that maps to the transaction that created the row
e Thebucket ID, abit-backed integer with several bits of information, of the physical writer that created the row
e Therow ID, which numbers rows as they were written to adatafile

Metadata Columns | original_write_id

bucket_id Ruw_l D

row_id
current_write_id

User Columns col_1:

a:INT
col_2:

b : 5STRING

Instead of in-place deletions, Hive appends changes to the table when a del etion occurs. The deleted data becomes
unavailable and the compaction process takes care of the garbage collection later.

The following example inserts several rows of datainto afull CRUD transactional table, creates a deltafile, and adds
row IDsto adatafile.

I NSERT | NTO aci dtbl (a,b) VALUES (100, "oranges"), (200, "apples"), (300, "b
ananas");

This operation generates adirectory and file, delta_00001_00001/bucket 0000, that have the following data:

20

Cloudera Runtime Apache Hive query basics

ROW_ID a b

{1,0,0} 100 "oranges"
{1,0.1} 200 "apples’
{1,0,2} 300 "bananas’

Delete operation

A delete statement that matches a single row also creates a deltafile, called the delete-delta. The file stores a set of
row IDsfor the rows that match your query. At read time, the reader looks at thisinformation. When it finds a delete
event that matches arow, it skips the row and that row is not included in the operator pipeline. The following example
deletes data from atransactional table:

DELETE FROM aci dTbl where a = 200;

This operation generates adirectory and file, delete_delta_ 00002_00002/bucket_0000 that have the following data:

ROW_ID a b

{1,0,1} null null

Update operation

An update combines the deletion and insertion of new data. The following example updates a transactional table:
UPDATE aci dThl SET b = "pears" where a = 300;

One deltafile contains the del ete event, and the other, the insert event:

ACID_PK A B
{1.0.0} 100 “oranges”
{1.0.1} 200 “apples” 1 1
{1.0.2} 300 | “bananas" ACID_PK A B ACID_PK A B
delta_00001_00001/bucket_0000 {2.0,0}] 300 | “pears” {1.0.2} lnull |null
delta 00003 00003 /bucket 0000 delate_delta_00003_00003/bucket 0000

The reader, which requires the AcidinputFormat, applies al the insert events and encapsulates all the logic to handle
delete events. A read operation first gets snapshot information from the transaction manager based on which it selects
filesthat are relevant to that read operation. Next, the process splits each data file into the number of pieces that each
process has to work on. Relevant delete events are localized to each processing task. Delete events are stored in a
sorted ORC file. The compressed, stored datais minimal, which is a significant advantage of Hive 3. Y ou no longer
need to worry about saturating the network with insert eventsin deltafiles.

Apache Hive query basics

Using Apache Hive, you can query distributed data storage. Y ou need to know ANSI SQL to view, maintain, or
analyze Hive data. Examples of the basics, such as how to insert, update, and delete data from a table, helps you get
started with Hive.

Hive supports ANSI SQL and atomic, consistent, isolated, and durable (ACID) transactions. For updating data, you
can use the MERGE statement, which meets ACID standards. Materialized views optimize queries based on access
patterns. Hive supports tables up to 300PB in Optimized Row Columnar (ORC) format. Other file formats are also
supported. Y ou can create tables that resemble those in atraditional relational database. Y ou use familiar insert,
update, delete, and merge SQL statements to query table data. The insert statement writes data to tables. Update and
delete statements modify and delete values already written to Hive. The merge statement streamlines updates, deletes,

21

Cloudera Runtime Apache Hive query basics

and changes data capture operations by drawing on co-existing tables. These statements support auto-commit that
treats each statement as a separate transaction and commitsit after the SQL statement is executed.

ORC Language Manual on the Apache wiki

Hive supports the ANSI-standard information_schema database, which you can query for information about tables,
views, columns, and your Hive privileges. The information_schema data reveals the state of the system, similar to
sys database data, but in a user-friendly, read-only way. Y ou can use joins, aggregates, filters, and projectionsin
information_schema queries.

One of the following steps involves changing the time interval for synchronization between HiveServer and the
policy. HiveServer responds to any policy changes within thistime interval. Y ou can query the information_schema
database for only your own privilege information.

1. Open Ranger Access Manager, and check that the preloaded default database tables columns and information_
schema database policies are enabled for group public.

Paolicy ID Policy Name Policy Labels Status Audit Logging Roles Groups Users

all - global = Enab Enabled = =

all - databasa, table, column - Enabl Enabled - -

m

+ More
o all - database, table - Enabled Enabled - -

i More
10 all - databass — Enabled Enabled -

+ More
11 all - hiveservice - Enabled Enabled - -

+ More
12 all - databasa, udf - Enabled Enabled - -

+ More
13 all - url = Enabled Enabled — —

+ More
14 default database tables columns - Enabled Enabied - public
15 Information_schema database ... - Enablec Enabiled -

The information schema database is synchronized every half hour by default.
2. Fromthe Bedline shell, start Hive, and check for the information_schema database:

SHOW DATABASES;

| default |
| informati on_schema |

22

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC/

Cloudera Runtime Apache Hive query basics

3. Usetheinformation_schema database to list tables in the database.

USE i nf ormati on_schenm;

SHOW TABLES:

| columm_privil eges |
| columms |
| schenat a |
| table_privileges |
| tables |
| views |

4. Query theinformation_schema database to see, for example, information about tables into which you can insert
values.

SELECT * FROM i nformati on_schena.tabl es WHERE i s_insertabl e_i nto="' YES' |

imt 2;

e e R
| tabl es. tabl e_catal og|tabl es.tabl e schena|tabl es. tabl e nane
feccococococococooocoocoooo foccocoococoococooocoocooa fococcocooococoocooso
| def aul t | def aul t | student s2

| def aul t | def aul t [t3

To insert datainto atable you use afamiliar ANSI SQL statement. A simple example shows you have to accomplish
this basic task.

Toinsert datainto an ACID table, use the Optimized Row Columnar (ORC) storage format. To insert datainto a non-
ACID table, you can use other supported formats. Y ou can specify partitioning as shown in the following syntax:

INSERT INTO TABLE tablename [PARTITION (partcol1=vall, partcol2=val2 ...)] VALUES vaues row [, valu
es row...]

where
values row is(value[, vaue]) .
A value can be NULL or any SQL literal.

1. Create an ACID table to contain student information.
CREATE TABLE students (name VARCHAR(64), age INT, gpa DECIMAL(3,2));

2. Insert name, age, and gpavalues for afew students into the table.
INSERT INTO TABLE students VALUES (‘fred flintstone', 35, 1.28), (‘barney rubble', 32, 2.32):

3. Create atable called pageviews and assign null values to columns you do not want to assign avalue.

CREATE TABLE pagevi ews (userid VARCHAR(64), |ink STRING from STRING PA
RTI TI ONED BY (datestanp STRING) CLUSTERED BY (userid) | NTO 256 BUCKETS;

23

Cloudera Runtime Apache Hive query basics

| NSERT | NTO TABLE pagevi ews PARTI TI ON (dat estanp = '2014-09-23') VALUES

("jsmth', 'mail.com, 'sports.com), ('jdoe', 'mail.com, null);

| NSERT | NTO TABLE pagevi ews PARTI TI ON (dat estanp) VALUES ('tjohnson', 'sp
orts.com, 'finance.com, '2014-09-23'), ('tlee', 'finance.com, null, '
2014-09-21');

The ACID dataresides in the warehouse.

The syntax describes the UPDATE statement you use to modify data already stored in atable. An example shows
how to apply the syntax.

Y ou construct an UPDATE statement using the following syntax:
UPDATE tablename SET column = value [, column = value...] [WHERE expression];

Depending on the condition specified in the optional WHERE clause, an UPDATE statement might affect every row
in atable. The expression in the WHERE clause must be an expression supported by a SELECT clause. Subqueries
are not allowed on the right side of the SET statement. Partition columns cannot be updated.

Y ou must have SELECT and UPDATE privileges to use the UPDATE statement.

Create a statement that changes the values in the name column of all rows where the gpa column has the value of 1.0.
UPDATE students SET name = null WHERE gpa <= 1.0;

A sample statement shows how you can conditionally insert existing data in Hive tables using the ACID MERGE
statement. Additional merge operations are mentioned.

The MERGE statement is based on ANS|-standard SQL.

1. Construct aquery to update the customers names and states in customer table to match the names and states of
customers having the same IDs in the new_customer_stage table.

2. Enhancethe query to insert data from new_customer_stage table into the customer table if none already exists.
Update or delete data using MERGE in asimilar manner.

MERGE | NTO cust oner USI NG (SELECT * FROM new_cust oner _stage) sub ON sub.id
= custoner.id

WHEN MATCHED THEN UPDATE SET name = sub. nane, state = sub.new state

VWHEN NOT MATCHED THEN | NSERT VALUES (sub.id, sub.name, sub.state);

Merge documentation on the Apache wiki

24

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-Merge

Cloudera Runtime Apache Hive query basics

Y ou use the DELETE statement to del ete data already written to an ACID table.

Use the following syntax to delete data from a Hive table. DELETE FROM tablename [WHERE expression];

Delete any rows of data from the studentstable if the gpa column has avalue of 1 or 0.
DELETE FROM students WHERE gpa <= 1,0;

Hive supports subqueries in FROM clauses and WHERE clauses that you can use for many Apache Hive operations,
such as filtering data from one table based on contents of another table.

A subquery isa SQL expression in an inner query that returns aresult set to the outer query. From the result set, the
outer query is evaluated. The outer query isthe main query that contains the inner subquery. A subquery in a WHERE
clause includes a query predicate and predicate operator. A predicate is a condition that evaluatesto a Boolean value.
The predicate in a subquery must also contain a predicate operator. The predicate operator specifies the relationship
tested in a predicate query.

Select all the state and net_payments values from the transfer _payments table if the value of the year columnin the
table matches ayear in the us_censustable.

SELECT state, net_paynents
FROM transfer _paynents
WHERE t ransfer_paynments.year |IN (SELECT year FROM us_census);

The predicate starts with the first WHERE keyword. The predicate operator isthe IN keyword.

The predicate returnstrue for arow in the transfer_payments table if the year value in at least one row of the
us_census table matches ayear value in the transfer_payments table.

To construct queries efficiently, you must understand the restrictions of subqueriesin WHERE clauses.

» Subqueries must appear on the right side of an expression.

* Nested subqueries are not supported.

< A single query can have only one subquery expression.

e Subquery predicates must appear as top-level conjuncts.

» Subqueries support four logical operatorsin query predicates: IN, NOT IN, EXISTS, and NOT EXISTS.
e ThelN and NOT IN logical operators may select only one column in a WHERE clause subquery.

e The EXISTSand NOT EXISTS operators must have at least one correlated predicate.

» Theleft side of asubquery must qualify all references to table columns.

* Referencesto columnsin the parent query are allowed only in the WHERE clause of the subquery.

» Subquery predicates that reference a column in a parent query must use the equals (=) predicate operator.
e Subquery predicates may not refer only to columnsin the parent query.

» Correlated subqueries with an implied GROUP BY statement may return only one row.

« All unqualified references to columnsin a subquery must resolve to tables in the subquery.

25

Cloudera Runtime Apache Hive query basics

» Correlated subqueries cannot contain windowing clauses.

InaSHOW DATABASES LIKE statement, you can use wildcards, and in this release of Hive, specify any character
or asingle character.

SHOW DATABASES or SHOW SCHEMAS lists all of the databases defined in Hive metastore. Y ou can use the
following wildcards:
%

Matches any single character or multiple characters

Matches any single character

Matches either the part of the pattern on the left or the right side of the pipe.

For example, 'students, 'stu%', 'stu_ents' match the database named students.

You use AVG, SUM, or MAX functions to aggregate data, and the GROUP BY clause to group data query resultsin
one or more table columns..

The GROUP BY clause explicitly groups data. Hive supports implicit grouping, which occurs when aggregating the
tablein full.

1. Construct aquery that returns the average salary of all employeesin the engineering department grouped by year.

SELECT year, AV@ sal ary)
FROM Enpl oyees
WHERE Departnment = 'engi neering’ GROUP BY year;

2. Construct an implicit grouping query to get the highest paid employee.

SELECT MAX(sal ary) as hi ghest pay,
AVG sal ary) as average_pay

FROM Enpl oyees

WHERE Departnment = 'engineering';

Y ou can query one table relative to the datain another table.

A correlated query contains a query predicate with the equals (=) operator. One side of the operator must reference at
least one column from the parent query and the other side must reference at |east one column from the subquery. An
uncorrelated query does not reference any columns in the parent query.

26

Cloudera Runtime Apache Hive query basics

Select all state and net_payments values from the transfer_payments table for years during which the value of the
state column in the transfer_payments table matches the value of the state column in the us_census table.

SELECT state, net_paynents
FROM t ransf er _paynents
VHERE EXI STS
(SELECT year
FROM us_census
WHERE t ransfer_paynments.state = us_census. state);

This query is correlated because one side of the equals predicate operator in the subquery references the state column
in the transfer_payments table in the parent query and the other side of the operator references the state column in the
us_censustable.

This statement includes a conjunct in the WHERE clause.

A conjunct is equivalent to the AND condition, while adisjunct is the equivaent of the OR condition The following
subquery contains a conjunct:

... WHERE transfer_payments.year = "2018" AND us_census.state= "cdifornia’
The following subquery contains a disjunct:

... WHERE transfer_payments.year = "2018" OR us census.state= "california"

Using common table expression (CTE), you can create atemporary view that repeatedly references a subquery.

A CTE isaset of query results obtained from asimple query specified within aWITH clause that immediately
precedes a SELECT or INSERT keyword. A CTE exists only within the scope of asingle SQL statement and not
stored in the metastore. Y ou can include one or more CTEs in the following SQL statements:

 SELECT

* INSERT

» CREATETABLEASSELECT
« CREATEVIEW ASSELECT

Recursive queries are not supported and the WITH clause is not supported within subquery blocks.

Y ou can use acommon table expression (CTE) to simplify creating aview or table, selecting data, or inserting data.

1. UseaCTE to create atable based on another table that you select using the CREATE TABLE AS SELECT
(CTAS) clause.

CREATE TABLE s2 AS WTH ql AS (SELECT key FROM src WHERE key = '4') SELECT
* FROM q1;

2. UseaCTE to create aview.

CREATE VIEWv1 AS WTH g1 AS (SELECT key FROM src WHERE key='5') SELECT *
from ql;

3. UseaCTE to select data.

WTH ql AS (SELECT key fromsrc where key = '5")

27

Cloudera Runtime Apache Hive query basics

SELECT * from ql;

4, UseaCTE to insert data

CREATE TABLE s1 LIKE src;
W TH g1 AS (SELECT key, val ue FROM src WHERE key = '5') FROM gl | NSERT OV
ERWRI TE TABLE s1 SELECT *;

Y ou learn how to use quantified comparison predicates (ANY/SOME/ALL) in non-correlated subqueries according to
the SQL standard. SOME isany aliasfor ANY.

Y ou can use one of the following operators with a comparison predicate:

ALL:

« |f thetableis empty, or the comparison istrue for every row in subquery table, the predicate is true for that
predicand.

» |If the comparison isfalsefor at least one row, the predicate is false.
SOME or ANY:

» |If the comparison istrue for at least one row in the subquery table, the predicate is true for that predicand.
» If thetableis empty or the comparison is false for each row in subquery table, the predicate is false.

If the comparison is neither true nor false, the result is undefined.

For example, you run the following query to match any value in c2 of thl equal to any value in c1 from the same thl:
select cl1 fromtbl where cl = ANY (select c2 fromtbl);
Y ou run the following query to match al valuesin c1 of thl not equal to any valuein c2 from the same thl.

select cl1 fromtbl where cl <> ALL (select c2 fromthbl);

When you need to use reserved words, special characters, or a spacein acolumn or partition name, encloseit in
backticks ().

An identifier in SQL is a sequence of a phanumeric and underscore (_) characters enclosed in backtick characters. In
Hive, these identifiers are called quoted identifiers and are case-insensitive. Y ou can use the identifier instead of a
column or table partition name.

Y ou have set the following parameter to column in the hive-sitexml file to enable quoted identifiers:

28

Cloudera Runtime Apache Hive query basics

Set the hive.support.quoted.identifiers configuration parameter to column in the hive-sitexml file to enable quoted
identifiersin column names. Valid values are none and column. For example, in Hive execute the following
command: SET hive.support.quoted.identifiers = column.

Procedure

1. Create atable named test that has two columns of strings specified by quoted identifiers:
CREATE TABLE test (x+y" String, "a?b” String);

2. Create atable that defines a partition using a quoted identifier and aregion number:
CREATE TABLE partition_date-1 (key string, value string) PARTITIONED BY (‘dt+x" date, region int);

3. Create atable that defines clustering using a quoted identifier:
CREATE TABLE bucket_test("key?1" string, value string) CLUSTERED BY (‘key?1’) into 5 buckets;

CHAR data type support
Knowing how Hive supports the CHAR data type compared to other databases is critical during migration.

Table 2: Trailing Whitespace Characters on Various Databases

Data Type Hive Oracle SQL Server MySQL
CHAR Ignore Ignore Ignore Ignore Ignore
VARCHAR Compare Compare Configurable Ignore Ignore
STRING Compare N/A N/A N/A N/A

ORC vs Parquet formats

The differences between Optimized Row Columnar (ORC) file format for storing datain SQL engines are important
to understand. Query performance improves when you use the appropriate format for your application.

ORC and Parquet capabilities comparison

The following table compares SQL engine support for ORC and Parquet.

Table 3:

Capability Data War ehouse Parquet SQL Engine

Read non-transactional Apache Hive Hive

data

Read non-transactional Apache Impala # Impala

data

Read/Write Full ACID Apache Hive Hive

tables

Read Full ACID tables Apache Impala Impala& HMS
Read Insert-only managed | Apache Impaa # Impala& HMS
tables

Column index Apache Hive # Hive & HMS
Column index Apache Impala # Impala& HMS
CBO uses column Apache Hive Hive & HMS
metadata

Recommended format Apache Hive Hive & HMS

29

Cloudera Runtime Creating a default directory for managed tables

Recommended format Apache Impala # Impala& HMS
Vectorized reader Apache Hive # # Hive & HMS
Read complex types Apache Impala # # Impala& HMS
Read/write complex types | Apache Hive # # Hive & HMS

Y ou can specify atop-level directory for managed tables when creating a Hive database.

Create adefault directory for managed tables only after limiting CREATE DATABASE and ALTER DATABASE
statements to users having the Admin role, which has hive service user permissions. Permissions to the managed
directory must be limited to the hive service user. In addition to restricting permissions to the hive user, you can
further secure managed tables using Ranger fine-grained permissions, such as row-level filtering and column
masking.

As Admin, you specify a managed location within the default location specified by the hive.metastore.warehouse.dir
configuration property to give managed tables a common location for governance policies. The managed location
designates asingle root directory for all tenant tables, managed and external.

Setting the metastore.warehouse.tenant.colocation property to true allows a common location for managed tables
outside the warehouse root directory, providing a tenant-based common root for setting quotas and other policies.
To set this property, in Cloudera Manager use the Hive on Tez safety valve for hive-site.xml as described in the next
topic.

Use the following syntax to create a database that specifies alocation for managed tables:

CREATE (DATABASE| SCHEMA) [I F NOT EXI STS] dat abase_name
[COMMENT dat abase_comment]
[LOCATI ON ext ernal _tabl e path]
[MANAGEDLOCATI ON managed_t abl e_di rectory_pat h]
[WTH DBPROPERTI ES (property_nane=property value, ...)];

Do not set LOCATION and MANAGEDLOCATION to the same file system path.

Use the following syntax to set or change alocation for managed tables.

ALTER (DATABASE| SCHEMA) dat abase_nanme SET MANAGEDLOCATI ON [managed_t abl e dir
ectory_path];

1. Create a database mydatabase that specifies atop level directory named sales for managed tables.

CREATE DATABASE nydat abase MANAGEDLOCATI ON '/ war ehouse/ t abl espace/ managed/
hi ve/ sal es’ ;

2. Changethe abc_sales database location to the same location as mydatabase.

ALTER DATABASE abc_sal es SET MANAGEDLOCATI ON '/ war ehouse/ t abl espace/ mana
ged/ hi ve/ sal es' ;

30

Cloudera Runtime Generating surrogate keys

Configuring a table location outside the warehouse root directory
Y ou need to know how to set the property that allows you to establish a common location for tables.

Procedure

1. InClouderaManager, click Clusters Hive on Tez Configuration .

2. Inscope, click Hive on Tez (Service-Wide).
3. InHive Service Advanced Configuration Snippet (Safety Valve) for hive-sitexml, click +.
4. In Name, enter metastore.warehouse.tenant.colocation.
5. InValue, enter true.
Hive Service Advanced HIVE_OM_TEZ-1 {Service-Wide) D Undo 6]
Configuration Snippet {Safety View as XL
Valve) for hive-site.xm| -
" Name metastore. warehouse.tenant.colocation @
hive_service_config_safety_vabe
Value true
6. Save changes.

7. In Cloudera Manager Home, restart Hive on Tez.

Generating surrogate keys

Y ou can use the built-in SURROGATE_KEY user-defined function (UDF) to automatically generate numerical Ids
for rows as you enter data into atable. The generated surrogate keys can replace wide, multiple composite keys.

Before you begin
Hive supports the surrogate keys on ACID tables only, as described in the following matrix of table types:

Table Type ACID Surrogate Keys File Format INSERT UPDATE/DELETE
Yes Yes ORC Yes Yes

Managed: CRUD

transactional

Managed: Insert-only | Yes Yes Any Yes No
transactional

Managed: Temporary | No No Any Yes No
External No No Any Yes No

The table you want to join using surrogate keys cannot have column types that need casting. These data types must be
primitives, such as INT or STRING.

About this task

Joins using the generated keys are faster than joins using strings. Using generated keys does not force datainto
asingle node by arow number. Y ou can generate keys as abstractions of natural keys. Surrogate keys have an
advantage over UUIDs, which are slower and probabilistic.

The SURROGATE_KEY UDF generates aunique Id for every row that you insert into atable. It generates keys
based on the execution environment in a distributed system, which includes a number of factors, such asinternal data
structures, the state of atable, and the last transaction id. Surrogate key generation does not require any coordination
between compute tasks.

The UDF takes either no arguments or two arguments:
e Writeld bits

31

Cloudera Runtime Partitions and performance

Task Id bits

1. Create a studentstable in the default ORC format that has ACID properties.

CREATE TABLE students (row_id I NT, nanme VARCHAR(64), dorm I NT);

2. Insert datainto the table. For example:

| NSERT | NTO TABLE students VALUES (1, 'fred flintstone', 100), (2, 'barney
rubbl e', 200);

3. Create aversion of the students table using the SURROGATE_KEY UDF.

CREATE TABLE students_v2
('ID BI G NT DEFAULT SURROGATE_KEY(),
row id I NT,
nane VARCHAR(64),
dor m | NT,
PRI MARY KEY (1 D) DI SABLE NOVALI DATE) ;

4. Insert data, which automatically generates surrogate keys for the primary keys.

I NSERT | NTO students_v2 (row_id, nanme, dorn) SELECT * FROM students;

5. Takealook at the surrogate keys.

SELECT * FROM st udents_v2;

T o oo oo T S
-------- +
| students_v2.id | students_v2.row.id | students_v2.name | students_v2.
dorm |
o m e e aa-oa o mm e e e ee-oa-o- o m e e e mee-aa-o-- D T
-------- +
| 1099511627776 | 1 | fred flintstone | 100

|
| 1099511627777 | 2 | barney rubble | 200

|
o m e e aa-oa o mm e e e ee-oa-o- o m e e e mee-aa-o-- Hmmm e em o
------ +

6. Add the surrogate keys as aforeign key to another table, such as a student_grades table, to speed up subsequent
joins of the tables.

ALTER TABLE st udent grades ADD COLUMNS (gen_id Bl G NT);

MERGE | NTO student _grades g USI NG students v2 s ONg.rowid = s.row.id
VWHEN MATCHED THEN UPDATE SET gen_id = s.id;

Now you can achieve fast joins on the surrogate keys.

A brief description of partitions and the performance benefits includes characters you must avoid when creating
a partition. Examples of creating a partition and inserting data in a partition introduce basic partition syntax. Best
practices for partitioning are mentioned.

32

Cloudera Runtime Partitions and performance

A table you create without partitioning puts the datain asingle directory. Partitioning divides the data into multiple
directories. Queries of one or more columns based on the directories can run faster. Lengthy full table scans are
avoided. Only datain the relevant directory is scanned. For example, a school_records table partitioned on a year
column, segregates values by year into separate directories. A WHERE condiition such as YEAR=2020, YEAR IN

(2020,2019), or YEAR BETWEEN 2001 AND 2010 scans only the data in the appropriate directory to resolve the
query. Using partitions typically improves query performance.

Ina SQL query, you define the partition as shown in the following example:

CREATE TABLE sal e(id in, anount decimal) PARTI TI ONED BY (xdate string, state
string);

To insert datainto thistable, you specify the partition key for fast loading:

I NSERT | NTO sal e (xdat e='2016-03-08"', state='CA') SELECT * FROM st agi ng_t abl
e WHERE xdat e=' 2016- 03-08' AND state='CA';

Y ou do not need to specify dynamic partition columns. Hive generates a partition specification if you enable dynamic
partitions.

I NSERT | NTO sal e (xdate, state)
SELECT * FROM st agi ng_t abl e;

Follow these best practices when you partition tables and query partitioned tables:

» Never partition on aunique ID.
« Size partitions to greater than or equal to 1 GB on average.
» Design queries to process not more than 1000 partitions.

When you create a partition, do not use the following characters in a partition name:

e colon
e question mark
e percent

If you use these characters in a partition name, your directories will be named using the URL encoding of these
characters, as described in "Why some special characters should not be used in a partition name in Hive/lmpala."

Why some special characters should not be used in a partition name in Hive/lmpala

Y ou can configure Hive to create partitions dynamically and then run a query that creates the related directories on
the file system or object store. Hive then separates the data into the directories.

This example assumes you have the following CSV file named employees.csv to use as the data source:

1, j ane doe, engi neer, servi ce
2,john smth,sales rep, sal es

3, naoko rmurai, service rep, service
4, sonmpor n thong, ceo, sal es

33

https://community.cloudera.com/t5/Customer/Why-some-special-characters-should-not-be-used-in-a/ta-p/304028

Cloudera Runtime Partitions and performance

5,xi singh, cfo, finance

1. Upload the CSV fileto afile system.
2. Inthe Hive shell, create an unpartitioned table that holds all the data.

CREATE EXTERNAL TABLE enpl oyees (eid int, name string, position string,
dept string)

ROW FORVAT DELI M TED

FI ELDS TERM NATED BY ',

STORED AS TEXTFI LE

LOCATI ON ' <obj ect store or file system path>';

3. Check that the data loaded into the employeestable.
SELECT * FROM enpl oyees;

The output, formatted to fit this publication, appears.

fecoooo feccoccocoooooco feccoccocooooo feccoooo feccoococo +
| eid | nane | position | dept | |
4o - T T T 4o - N S |
1	jane doe	engineer	service
2	john smith	sales rep	sales
3	naoko nurai	service rep	service
4	sonmporn thong	ceo	sales
5	xi singh	cfo	finance [
focoooo feccoccocoooococs foccoccocooooo fooccooccoccooococooo +

4. Create a partition table.

CREATE EXTERNAL TABLE EMP_PART (eid int, name string, position string)
PARTI TI ONED BY (dept string);

5. Accept the default dynamic partition mode (nonstrict) to create partitioned directories of data dynamically when
dataisinserted, or if you changed the default, reset the mode as follows:

SET hi ve. exec. dynam c. partition. node=nonstri ct;

6. Insert datafrom the unpartitioned table (all the data) into the partitioned table , dynamically creating the partitions.

| NSERT | NTO TABLE EMP_PART PARTI TI ON (DEPT)
SELECT ei d, nane, posi ti on, dept FROM enpl oyees;

Partitions are created dynamically.
7. Check that the partitions were created.

SHOW PARTI TI ONS enp_part;

| dept=finance [
| dept=sales |
| dept=service |

Cloudera Runtime Partitions and performance

Y ou can discover partition changes and synchronize Hive metadata automatically. Performing synchronization
automatically, instead of manually, can save substantial time, especially when partitioned data, such aslogs, changes
frequently. Y ou can also configure how long to retain partition data and metadata.

After creating a partitioned table, Hive does not update metadata about corresponding objects or directories on the file
system that you add or drop. The partition metadata in the Hive metastore becomes stale after corresponding objects/
directories are added or deleted. Y ou need to synchronize the metastore and the file system.

Y ou can refresh Hive metastore partition information manually or automatically. The time it takes to refresh the
partition information is proportional to the number of partitionsinvolved.

e Manualy

Y ou run the MSCK (metastore consistency check) Hive command: MSCK REPAIR TABLE table_name SYNC
PARTITIONS every time you need to synchronize a partition with the file system.
e Automatically

Y ou set up partition discovery to occur periodicaly.

The discover.partitions table property is automatically created and enabled for external partitioned tables. When disc
over.partitionsis enabled for atable, Hive performs an automatic refresh as follows:

« Adds corresponding partitions that are in the file system, but not in the metastore, to the metastore.
* Removes partition schema information from metastore if you removed the corresponding partitions from the file
system.

Partition retention
Y ou can configure how long to keep partition metadata and data, and remove it after the retention period el apses.
Limitations

Generally, partition discovery and retention is not recommended for use on managed tables. The Hive metastore
acquires an exclusive lock on atable that enables partition discovery that can slow down other queries.

Creating partitions dynamically
Apache Wiki: Discover Partitions and Partition Retention

Automated partition discovery and repair is useful for processing log data, and other data, in Spark and Hive catal ogs.
Y ou learn how to set the partition discovery parameter to suit your use case. An aggressive partition discovery and
repair configuration can delay the upgrade process.

Apache Hive can automatically and periodically discover discrepancies in partition metadata in the Hive metastore
and in corresponding directories, or objects, on the file system. After discovering discrepancies, Hive performs
synchronization.

The discover.partitions table property enables and disables synchronization of the file system with partitions. In
external partitioned tables, this property is disabled (false) by default when you create the table. To alegacy external
table (created using a version of Hive that does not support this feature), you need to add discover.partitions to the
table properties to enable partition discovery.

By default, the discovery and synchronization of partitions occurs every 5 minutes. Thisis too often if you are
upgrading and can result in the Hive database being queried every few milliseconds, leading to performance

35

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-DiscoverPartitions

Cloudera Runtime Partitions and performance

degradation. During upgrading the high frequency of batch routines dictates running discovery and synchronization
infrequently, perhaps hourly or even daily. Y ou can configure the frequency as shown in this task.

1. For external partitioned tables and for legacy external tables that are created using a version of Hive that does not
support partition discovery, enable partition discovery for the table.

ALTER TABLE exttbl SET TBLPROPERTI ES (' discover.partitions' = "true');

2. In Cloudera Manager, click Clusters Hive Configuration , search for Hive Server Advanced Configuration Snipp
et (Safety Valve) for hive-sitexml.

3. Add the following property and value to hive-site.xml: Property: metastore.partition.management.task.frequency
Value: 600.
The default value of metastore.partition.management.task.frequency is 300. Changing this to 600 sets
synchronization of partitions to occur every 10 minutes expressed in seconds. If you are upgrading, consider
running discovery and synchonization once every 24 hours by setting the value to 86,400 seconds. Increasing the
value of metastore.partition.management.task.frequency incur higher cloud cost.

Important: Inamulti-Hive Metastore setup ensure that metastore.housekeeping.threads.on is enabled
(true) only on one Hive Metastore instance in the Datal ake cluster (if there are more Hive metastore
instances). This ensures that partition management (and other housekeeping activities) are done by one
instance minimizing locking issues and enhancing performance.

Disable the metastore.housekeeping.threads.on in al the Datahub clusters' Hive service, the housekeeping
can be done by asingle Hive metastore in the Datal_ake cluster.

Creating partitions dynamically
Apache Wiki: Discover Partitions and Partition Retention

Y ou can keep the size of the Apache Hive metadata and data you accumulate for log processing, and other activities,
to a manageable size by setting a retention period for the data

The table must be configured to automatically synchronize partition metadata with directories or objects on afile
system.

If you specify a partition metadata retention period, Hive drops the metadata and corresponding data in any partition
created after the retention period. Y ou express the retention time using a numeral and the following character or
characters:

* ms(milliseconds)
e s(seconds)

e m(minutes)

* d(days)

In thistask, you configure automatic synchronization of the file system partitions with the metastore and a partition
retention period. Assume you already created a partitioned, external table named employees.

36

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-DiscoverPartitions

Cloudera Runtime Query scheduling

1. If necessary, enable automatic discovery of partitions for the table employees.
ALTER TABLE enpl oyees SET TBLPROPERTI ES (' di scover.partitions' =" true');

By default, external partitioned tables already set this table property to true.
2. Configure a partition retention period of one week.

ALTER TABLE enpl oyees SET TBLPROPERTIES (' partition.retention.period =7
d);

The partition metadata as well as the actual datafor employeesin Hive is automatically dropped after a week.

Creating partitions dynamically
Apache Wiki: Discover Partitions and Partition Retention

The MSCK REPAIR TABLE command was designed to manually add partitions that are added to or removed from
the file system, but are not present in the Hive metastore.

This task assumes you created a partitioned external table named emp_part that stores partitions outside the
warehouse. Y ou remove one of the partition directories on the file system. This action renders the metastore
inconsistent with the file system. Y ou repair the discrepancy manually to synchronize the metastore with the file
system.

1. Remove the dept=sales object from the file system.
2. From the Hive command line, look at the emp_part table partitions.

SHOW PARTI TI ONS enp_part;

Thelist of partitionsis stale; it still includes the dept=sales directory.

| dept=finance |
| dept=sales |
| dept=service |

3. Repair the partition manually.

M5CK REPAI R TABLE enp_part DROP PARTI Tl ONS;

Apache Hive scheduled queriesis a simple, secure way to create, manage, and monitor scheduled jobs. Y ou can
replace OS-level schedulers like cron, Apache Oozie, or Apache Airflow with scheduled queries.

37

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-DiscoverPartitions

Cloudera Runtime Query scheduling

Using SQL statements, you can schedule Hive queries to run on arecurring basis, monitor query progress, and
optionally disable a query schedule. Y ou can run queries to ingest data periodically, refresh materialized views,
replicate data, and perform other repetitive tasks. For example, you can insert data from a stream into a transactional
table every 10 minutes, refresh amaterialized view used for Bl reporting every hour, and replicate data from one
cluster to another on a daily basis.

A Hive scheduled query consists of the following parts:

e A unigque name for the schedule
e The SQL statement to be executed
» The execution schedule defined by a Quartz cron expression.

Quartz cron expressions are expressive and flexible. For instance, expressions can describe simple schedules such as
every 10 minutes, but also an execution happening at 10 AM on the first Sunday of the month in January, February in
2021, 2022. Y ou can describe common schedules in an easily comprehensible format, for example every 20 minutes
or every day at ‘3:25:00'.

A scheduled query belongs to a namespace, which is a collection of HiveServer (HS2) instances that are responsible
for executing the query. Scheduled queries are stored in the Hive metastore. The metastore stores scheduled queries,
the status of ongoing and previously executed statements, and other information. HiveServer periodically polls

the metastore to retrieve scheduled queries that are due to be executed. If you run multiple HiveServer roles, the
metastore guarantees that only one of them executes a certain scheduled query at any given time.

Y ou create, ater, and drop scheduled queries using dedicated SQL statements.

Apache Hive Language Manual--Scheduled Queries

Y ou need to know how to enable and disable scheduled queries and understand how the default state can prevent you
from running a query unintentionally.

Scheduled queries are created in disabled mode by default in CDP. This default hel ps prevent you from running new
scheduled queries inadvertantly. Y ou must explicitly enable new scheduled queries. A scheduled query can keep
the cluster awake at the wrong time. To enable a particular schedule, for example schedulel, you run the ALTER
SCHEDULED QUERY statement:

ALTER SCHEDULED QUERY schedul el ENABLE;

To disable this schedule: ALTER SCHEDULED QUERY schedulel DISABLE;

Apache Hive Language Manual--Scheduled Queries

Using materialized views can enhance query performance. Y ou need to update materialized view contents when new
datais added to the underlying table. Instead of rebuilding the materialized view manually, you can schedule this task.
Automatic rebuilding then occurs periodically and transparently to users.

38

https://cwiki.apache.org/confluence/display/Hive/Scheduled+Queries
https://cwiki.apache.org/confluence/display/Hive/Scheduled+Queries

Cloudera Runtime Query scheduling

This task assumes you created the following schemas for storing employee and departmental information:

CREATE TABLE enps (
enpi d | NTEGER,

dept no | NTEGER,

nane VARCHAR(256),
sal ary FLQOAT,
hire_date Tl MESTAMP);

CREATE TABLE depts (
dept no | NTEGER,

dept nane VARCHAR(256) ,
| ocationid | NTEGER) ;

Imagine that you add data for a number of employees to the table. Assume many users of your database issue queries
to access to data about the employees hired during last year including the department they belong to.

Y ou perform the steps below to create a materialized view of the table to address these queries. Imagine new
employees are hired and you add their records to the table. These changes render the materialized view contents
outdated. Y ou need to update its contents. Y ou create a scheduled query to perform thistask. The scheduled
rebuilding will not occur unless there are changes to the input tables. Y ou test the scheduled query by bypassing the
schedule and executing the schedule immediately. Finally, you change the schedule to rebuild less often.

1. To handle many queries to access recently hired employee and departmental data, create a materialized view.

CREATE MATERI ALI ZED VIEW nmv_recently hired AS
SELECT enpi d, nanme, deptnane, hire_date FROM enps
JO N depts ON (enps.deptno = depts. dept no)

VWHERE hire_date >= '2020-01-01 00: 00: 00';

2. Usethe materiaized view by querying the employee data.

SELECT enpi d, name FROM enps
JO N depts ON (enps.deptno = depts. dept no)
WHERE hire_date >= '2020-03-01 00: 00: 00' AND dept name = 'finance';

3. Assuming new hiring occurred and you added new records to the emps table, rebuild the materialized view.
ALTER MATERI ALI ZED VI EW nv_recently_hi red REBU LD;

The rebuilding updates the contents of the materialized view.
4. Create a scheduled query to invoke the rebuild statement every 10 minutes.

CREATE SCHEDULED QUERY schedul ed_rebuil d
EVERY 10 M NUTES AS
ALTER MATERI ALI ZED VI EW nv_recently_hi red REBU LD;

A rebuild executes every 10 minutes, assuming changes to the emp table occur within that period. If a materialized
view can be rebuilt incrementally, the scheduled rebuild does not occur unless there are changes to the input
tables.

5. To test the schedule, run a scheduled query immediately.

ALTER SCHEDULED QUERY schedul ed_r ebui | d EXECUTE;

39

Cloudera Runtime Query scheduling

6. Change the frequency of the rebuilding.

ALTER SCHEDULED QUERY schedul ed_rebuild EVERY 20 M NUTES;

Apache Hive Language Manual--Scheduled Queries

After you create a scheduled query you can access information about it in the scheduled_queries table of the Hive
information schema. Y ou can also use the information schema to monitor scheduled query execution.

1. Query the information schemato get information about a schedule.

SELECT *
FROM i nf or mati on_schena. schedul ed_queri es
WHERE schedul e_nanme = 'schedul ed_rebuild';

The following information appears about the scheduled query:
scheduled_query id

Unigue numeric identifier for a scheduled query.
schedule_name

Name of the scheduled query.
enabled

Whether the scheduled query is currently enabled or not.
cluster_namespace

Namespace that the scheduled query belongs to.
schedule

Schedule described as a Quartz cron expression.
user

Owner of the scheduled query.
query

SQL query to be executed.
next_execution

When the next execution of this scheduled query is due.

2. Monitor the most recent scheduled query execution.

SELECT *

40

https://cwiki.apache.org/confluence/display/Hive/Scheduled+Queries

Cloudera Runtime Materialized views

FROM i nf or mati on_schena. schedul ed_execut i ons;

Y ou can configure the retention period for thisinformation in the Hive metastore.
scheduled_execution_id

Unique numeric identifier for a scheduled query execution.
schedule_name

Name of the scheduled query associated with this execution.

executor_query id
Query 1D assigned to the execution by HiveServer (HS2).

state
One of the following phases of execution.

e STARTED. A scheduled query is due and a HiveServer instance has retrieved itsinformation.

» EXECUTING. HiveServer is executing the query and reporting progress in configurable
intervals.

e FAILED. The query execution was stopped due to an error or exception.
* FINISHED. The query execution was successful.
 TIMED_OUT. HiveServer did not provide an update on the query status for more than a

configurable timeout.

start_time

Start time of execution.
end_time

End time of execution.
elapsed

Difference between start and end time.
error_message

If the scheduled query failed, it contains the error message associated with its failure.
last_update time

Time of the last update of the query status by HiveServer.

Apache Hive Language Manual--Scheduled Queries

A materialized view is a Hive-managed database object that holds a query result you can use to speed up the
execution of aquery workload. If your queries are repetitive, you can reduce latency and resource consumption by
using materialized views. Y ou create materialized views to optimize your queries automatically.

Using a materialized view, the optimizer can compare old and new tables, rewrite queries to accelerate processing,
and manage maintenance of the materialized view when data updates occur. The optimizer can use a materialized
view to fully or partially rewrite projections, filters, joins, and aggregations.

Y ou can perform the following materialized view operations:
» Create amaterialized view of queries or subqueries
» Drop amateriaized view

e Show materialized views
» Describe amaterialized view

41

https://cwiki.apache.org/confluence/display/Hive/Scheduled+Queries

Cloudera Runtime Materialized views

» Enable or disable query rewriting based on a materialized view
* Globally enable or disable rewriting based on any materialized view
« Use partitioning to improve the performance of materialized views

Materialized view commands

Y ou can create amaterialized view of a query to calculate and store results of an expensive operation, such as
aparticular join, on amanaged, ACID table that you repeatedly run. When you issue queries specified by that
materialized view, the optimizer rewrites the query based on it. This action saves reprocessing. Query performance
improves.

In the tasks that follow, you create and popul ate example tables. The tables are managed tables. Y ou cannot create
amaterialized view of an external table. Y ou create a materialized view of ajoin of the tables. Subsequently, you
run aquery to join the tables, and the query plan takes advantage of the precomputed join to accelerate processing.
These over-simplified tasks show the syntax and output of a materialized view, and do not demonstrate accel erated
processing that occurs in area-world task, processing alarge amount of data.

Materialized view commands

Y ou see how to create simple tables, insert the data, and join the tables using a materialized view. Y ou run the query,
and the optimizer takes advantage of the precomputation performed by the materialized view to speed response time.

1. Createtwo ACID tables:

CREATE TABLE enps (
enpid | NT,

dept no | NT,

name VARCHAR(256),
sal ary FLOAT,
hire_date TI MESTAWP);

CREATE TABLE depts (
dept no | NT,

dept nane VARCHAR(256) ,
| ocationid I NT);

2. Insert some datainto the tables for example purposes:

I NSERT | NTO TABLE enps VALUES (10001, 101, ' jane doe', 250000, ' 2018-01-10');
I NSERT | NTO TABLE enps VALUES (10002, 100, ' sonporn kl ai |l ee', 210000, ' 2017-12

-25");
I NSERT | NTO TABLE enps VALUES (10003, 200, 'jei ranan thongnopneua', 175000, '
2018-05-05");

| NSERT | NTO TABLE depts VALUES (100,' HR , 10);
| NSERT | NTO TABLE depts VALUES (101,' Eng', 11);
| NSERT | NTO TABLE depts VALUES (200, Sup', 20);

Tables must be ACID (managed) tables.

42

https://docs.cloudera.com/runtime/7.2.14/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html
https://docs.cloudera.com/runtime/7.2.14/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html

Cloudera Runtime Materialized views

3. Create amaterialized view to join the tables:

CREATE MATERI ALI ZED VI EW nv1

AS SELECT enpid, deptnane, hire_date
FROM enps JO N depts

ON (enps. dept no = depts. dept no)
VWHERE hire_date >= '2017-01-01";

4. Runaquery that takes advantage of the precomputation performed by the materialized view:

SELECT enpi d, deptnane

FROM enps

JO N depts

ON (enps. deptno = depts. dept no)
VHERE hire_date >= '2017-01-01'
AND hire_date <= '2019-01-01";

Output is:
foccoocooo feccoococooo +
| enmpid | deptname |
feoocooooo foococoooccoooo +
| 10003 | Sup |
| 10002 | HR [
| 10001 | Eng [
fococoocooo foccoococooo +

Y ou can use Apache Hive explain logging to check that a materialized view used a query rewrite.

By default explain logging is set to false in CDP.

1. In Cloudera Manager, enable explain logging: Navigate to Clusters HIVE_ON_TEZ-1 Configuration , search for
hive.log.explain.output, check HiveServer2 Default Group, and click Save Changes.

Q hive log @ Filters Role Groups History and Rellback

Filters Show All Descriptions
Enable Explain Logging HiveSs 12 Default Group 9
SCOPE " w When enabled, HiveServerZ logs
EXPLAIN EXTENDED output for
0 every query at INFO logdj level

2. Verify that the query rewrite used the materialized view by running an extended EXPLAIN statement:

EXPLAI N EXTENDED SELECT enpi d, dept nane
FROM enps
JO N depts
ON (enps. dept no = depts. dept no)
VWHERE hire_date >= '2017-01-01'
AND hire date <= '2019-01-01';

The output shows the alias default.mv1 for the materialized view in the TableScan section of the plan.

OPTI M ZED SQL: SELECT “enpid’, " deptnane’

43

Cloudera Runtime Materialized views

FROM “default™. nvl®

VWHERE Tl MESTAMP ' 2019-01- 01 00: 00: 00. 000000000" >=
“hire_date’
STACGE DEPENDENCI ES:

Stage-0 is a root stage
STACE PLANS:

St age: Stage-0

Fet ch QOperat or

limt: -1

Processor Tree:

Tabl eScan

alias: default.ml

filterExpr: (hire_date <= TI MESTAMP' 2019- 01-01

00: 00: 00") (type: bool ean) |

Gat her Stats: fal se

Filter Operator

i sSanpl i ngPred: false

predi cate: (hire_date <= TI MESTAMP' 2019-01-01

00: 00: 00') (type: bool ean)

Sel ect Operat or

expressions: enpid (type: int), deptnane (type: v
ar char (256))

out put Col utmmNanes: _col 0, coll

Li st Si nk

Results

What to do next

Using optimizations from a subquery

Y ou can create a query having a subquery that the optimizer rewrites based on a materialized view. Y ou create a
materialized view, and then run a query that uses the materialized view.

About this task

In thistask, you create a materialized view and use it in a subquery to return the number of destination-origin pairs.
Suppose the data resides in atable named flights _data that has the following columns:

cid dest origin

1 Chicago Hyderabad
2 London Moscow
Procedure

1. Create atable schema definition named flights _data for destination and origin data.

CREATE TABLE fli ghts_dat a(
c_id INT,
dest VARCHAR(256),
ori gi n VARCHAR(256));

Cloudera Runtime Materialized views

2. Create amaterialized view that counts destinations and origins.

CREATE MATERI ALI ZED VI EW nv1
AS
SELECT dest, origin, count(*)
FROM flights_data
GROUP BY dest, origin;
3. Take advantage of the materialized view to speed your queries when you have to count destinations and origins
again.

For example, use a subquery to select the number of destination-origin pairs like the materialized view.

SELECT count (*)/2

FROM
SELECT dest, origin, count(*)
FROM flights_data
GROUP BY dest, origin

) AS t;

Transparently, the SQL engine uses the work aready in place since creation of the materialized view instead of
reprocessing.

Materialized view commands

Y ou must understand when to drop a materialized view to successfully drop related tables.

Drop amaterialized view before performing a DROP TABLE operation on arelated table. Y ou cannot drop atable
that has a relationship with a materialized view.

In thistask, you drop a materiaized view named mv1 from the database named defaullt.

Drop amaterialized view in my_database named mv1 .
DROP MATERIALIZED VIEW default.mv;

You can list all materialized views in the current database or in another database. Y ou can filter alist of materiaized
views in a specified database using regular expression wildcards.

Y ou can use regular expression wildcards to filter the list of materialized views you want to see. The following
wildcards are supported:

.« Adterisk (*)

Represents one or more characters.
* Pipesymbol (|)

Represents a choice.

For example, mv_g* and *mv|ql* match the materialized view mv_q1. Finding no match does not cause an error.

45

https://docs.cloudera.com/runtime/7.2.14/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html

Cloudera Runtime Materialized views

1. List materialized views in the current database.
SHOW MATERIALIZED VIEWS;

2. List materialized views in a particular database.
SHOW MATERIALIZED VIEWS IN another_database;

Y ou can get summary, detailed, and formatted information about a materialized view.

This task builds on the task that creates a materialized view named mv1.

1. Get summary information about the materialized view named mv1.

DESCRI BE nv1;

feccoocococooo feccoccocoooooco fecoococooo +
| col _nanme | data_type | coment |
feoccoocococooo feccoccocoooococs fococococooo +
enpid	int	
deptnane	varchar (256)	
hire_date	tinmestanp	
feccoocococooo feccoccocoooooco fecoococooo +

2. Get detailed information about the materialized view named mv1.

DESCRI BE EXTENDED nmv1;

Focococcocococoocoocoocoocoocooooooo Focococcococococoocoocoocoocoocoocooooooo

| col _nane | data_type
feccoccococooccococoocococoooooco feccoococococoococcooococococoocococooo

| enpid | int

| dept nane | varchar (256)

| hire_date | tinmestanp
| | NULL .

| Detailed Table Information | Tabl e(tabl eNane: nvl, dbNane: default, own
er: hive, createTine: 1532466307, | ast AccessTinme:0, retention:0, sd: Storag
eDescriptor(col s:[Fi el dSschema(nane: enpid, type:int, comment:null), Field
Schenma(nane: dept nane, type:varchar(256), comment:null), Fiel dSchenma(name
:hire_date, type:timestanp, comment:null)], location:hdfs://nyserver.com
: 8020/ war ehouse/ t abl espace/ managed/ hi ve/ mv1, i nput For mat: or g. apache. hado
op. hive. gl .io.orc. Oclnput Format, output Format: org. apache. hadoop. hi ve. gl
.i0.orc. OrcCut put Format, conpressed: fal se, nunBuckets:-1, serdel nfo: SerD
el nfo(nane: null, serializationLib:org.apache. hadoop. hive.qgl.io.orc. O cSe
rde, paraneters:{}), bucketCols:[], sortCols:[], paraneters:{}, skewedln
f o: Skewedl nf o(skewedCol Names: [], skewedCol Val ues:[], skewedCol Val ueLocat
i onMaps: {}), storedAsSubDirectories:false), partitionKeys:[], paraneters
:{total Si ze=488, nunRows=4, rawDataSi ze=520, COLUMN_STATS_ACCURATE={\"BA
SI C_ STATS\":\"true\"}, nunf¥iles=1, transient | astDdl Ti ne=1532466307, buc
keting version=2}, viewOiginal Text: SELECT enpi d, deptnane, hire_date\nF
ROM enps2 JAO N dept s\ nON (enps2. deptno = depts. dept no)\ nVHERE hire_date >=
'2017-01-17', vi ewExpandedText: SELECT “enps2 . enpid , “depts’ . deptnane’
, enps2 . hire_date \nFROM “default™. enps2° JON “default” . depts \nON
(Tenps2’ . deptno = “depts . deptno)\nWHERE “enps2 . hire_date’ >='20
17-01-17', tabl eType: MATERI ALI ZED VI EW rewiteEnabl ed:true, creationMet
adat a: Cr eat i onMet adat a(cat Nanme: hi ve, dbNane: defaul t, tbl Nanme: mv1l, tables

46

Cloudera Runtime

Materialized views

Used: [def aul t. dept s,

def aul t. enps?],

cat Nane: hi ve,

owner Type: USER)

3. Get formatting details about the materialized view named mv1.

DESCRI BE FORMATTED nmv1;

col _nane
enpi d

dept nane
hire_date

Detailed Table Information
Dat abase:

Oaner Type:

Oomner :

Cr eat eTi ne:

Last AccessTi ne:

Ret enti on:

Locati on:

Tabl e Type:

Tabl e Par anet ers:

Storage Information
Ser De Library:

| nput For mat :

Cut put For mat :

Conpr essed:

Num Bucket s:

Bucket Col ums:

Sort Col ummns:
View | nfornmation
View Origi nal Text:

Vi ew Expanded Text:
Vi ew Rewri te Enabl ed:

data_t ype

i nt

var char (256)
ti mest anp
NULL
NULL
def aul t
USER

hi ve
Tue Jul
UNKNOWN
0

hdfs:// nyserver. ..
MATERI ALI ZED VI EW
NULL

24 21:05:07 UTC 2019

COLUMN_STATS_ACCURATE
bucketi ng_versi on
nunFi | es

nunmRows

rawDat aSi ze

total Si ze

transi ent | astDdl Ti ne
NUL L

NULL

or g. apache. hadoop. hive. gl .io.or...

or g. apache. hadoop. hive. gl .io.or...
or g. apache. hadoop. hive. gl .io.or. ..

-1
[]

[]
NULL

SELECT enpi d, deptnane, hire_da...

SELECT "enps2’. enpid’,
Yes

“depts. ..

val i dTxnLi st : 53%def aul t. dept s: 2: 922
3372036854775807: : $def aul t . enps2: 4: 9223372036854775807: : ,
nTi me: 1532466307861),

materializatio

47

Cloudera Runtime Materialized views

Materialized view commands

After changes to base tables, the datain a materialized view is stale. Y ou need to know how to prevent the SQL
optimizer from rewriting queries in this situation. If you want a query executed without regard to a materialized view,
for example to measure the execution time difference, you can disable rewriting and then enable it again.

As administrator, you can globally enable or disable all query rewrites based on materialized views. By default, the
optimizer rewrites a query based on amaterialized view.

1. Disablerewriting of a query based on amaterialized view named mv1 in the default database.
ALTER MATERI ALI ZED VI EW def aul t. nv1 DI SABLE REVRI TE;

2. Enable rewriting of aquery based on materialized view mv1.
ALTER MATERI ALI ZED VI EW def aul t. mv1l ENABLE REWRI TE;

3. Glabally enable rewriting of queries based on materialized views by setting a global property.

SET hive.materializedview rewiting=true;

Materialized view commands

A rewrite of aquery based on a stale materialized view does not occur automatically. If you want arewrite of astale
or possibly stale materialized view, you can force arewrite.

For example, you might want to use the contents of a materialized view of a non-transactional table because the
freshness of such atable is unknown. The optimizer cannot determine the data freshness if you use external tables.
Y ou can purposely rewrite a query based on a stale materialized views using these techniques:

» Schedule the materialized view for rebuilding. For example, schedule a rebuild to occur every x minutes.
e Adjust the rewriting time window to use stale or possibly stale data for a period of time. For example, schedule the
window within which to use stale datafor x + y minutes.

1. Create a scheduled query to invoke the rebuild statement every 10 minutes.

CREATE SCHEDULED QUERY schedul ed_rebuil d
EVERY 10 M NUTES AS
ALTER MATERI ALI ZED VI EW nv_recently_hi red REBU LD;

2. Definethe window of time for using stale data.

SET hive.materializedview rewiting.tinme. w ndow=10m n;

48

https://docs.cloudera.com/runtime/7.2.14/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html
https://docs.cloudera.com/runtime/7.2.14/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html

Cloudera Runtime

Creating and using a partitioned materialized view

When creating a materialized view, you can partition selected columns to improve performance. Partitioning
separates the view of atable into parts, which often improves query rewrites of partition-wise joins of materialized
views with tables or other materialized views.

About this task

This task assumes you created a materialized view of the emps and depts tables and assumes you created these tables.
The emps table contains the following data:

empid deptno name hire date

10001 jane doe 250000 2018-01-10
10005 100 somporn klailee 210000 2017-12-25
10006 200 jeiranan thongnopneua 175000 2018-05-05

The depts table contains the following data:

deptno deptname locationid

100 HR 10
101 Eng 11
200 Sup 20

In thistask, you create two materialized views. one partitions data on department; the other partitions data on hire
date. Y ou select data, filtered by department,from the origina table, not from either one of the materialized views.
The explain plan shows that Hive rewrites your query for efficiency to select data from the materialized view that
partitions data by department. In this task, you a so see the effects of rebuilding a materialized view.

Procedure

1. Create amaterialized view of the emps table that partitions data into departments.

CREATE MATERI ALI ZED VI EW partition_nmv_1 PARTI TI ONED ON (dept no)
AS SELECT hire_date, deptno FROM enps WHERE deptno > 100 AND deptno < 200;

2. Create asecond materialized view that partitions the data on the hire date instead of the department number.

CREATE MATERI ALI ZED VI EW partition_nv_2 PARTI TI ONED ON (hire_date)
AS SELECT deptno, hire_date FROM enps where deptno > 100 AND deptno < 2
00;

3. Generate an extended explain plan by selecting data for department 101 directly from the emps table without
using the materialized view.

EXPLAI N EXTENDED SELECT deptno, hire_date FROM enps where deptno = 101;

The explain plan shows that Hive rewrites your query for efficiency, using the better of the two materialized views
for the job: partition_mv_1.

| OPTIM ZED SQ.: SELECT CAST(101 AS INTEGER) AS "deptno’, “hire_date |
| FROM “default™. partition_nv_1° |

| WHERE 101 = " deptno’ |

| STAGE DEPENDENCI ES: [

| Stage-0 is a root stage

49

Materialized views

Cloudera Runtime Materialized views

4. Correct Jane Doe's hire date to February 12, 2018, rebuild one of the materialized views, but not the other, and
compare contents of both materialized views.

I NSERT | NTO enps VALUES (10001, 101, 'j ane doe', 250000, ' 2018- 02-12");
ALTER MATERI ALI ZED VI EW partition_mv_1 REBU LD,

SELECT * FROM partition_mv_1 where deptno 101;

SELECT * FROM partition_nv_2 where deptno 101;

The output of selecting the rebuilt partition_mv_1 includes the original row and newly inserted row because
INSERT does not perform in-place updates (overwrites).

feccoccococcoccococooccocooooo foccoccococoococococoococooo +
| partition_nv_1.hire_date | partition_nv_1.deptno |
foocococcoccooccoocoooocoocoooo focccococoocococcoccoocoocoo +
| 2018-01-10 00: 00: 00. 0 | 101 |
| 2018-02-12 00: 00: 00. O | 101 |
feccoccococcoccococooccocooooo feccoccoccocoococcocoococooo +

foccoccococoococococoococooo feccoccococcoccococooccocooooo +
| partition_nv_2.deptno | partition_mv_2.hire_date |
focccococoocococcoccoocoocoo foocococcoccooccoocoooocoocoooo +
| 101 | 2018-01-10 00: 00: 00. 0 |
feccoccococoococcocooococooo feccoccococoococococoocococooooo +

5. Create a second employees table and a materialized view of the tables joined on the department number.

CREATE TABLE enps2 AS SELECT * FROM enps;

CREATE MATERI ALI ZED VI EW partition_nmv_3 PARTI TI ONED ON (deptno) AS
SELECT enps. hire_date, enps.deptno FROM enps, enps2
VWHERE enps. dept no = enps2. dept no
AND enps. deptno > 100 AND enps. deptno < 200;

6. Generate an explain plan that joins tables emps and emps2 on department number using a query that omits the
partitioned materialized view.

EXPLAI N EXTENDED SELECT enps. hire_date, enps.deptno FROM enps, enps2
VWHERE enps. dept no = enps2. dept no
AND enps. deptno > 100 AND enps. deptno < 200;

The output shows that Hive rewrites the query to use the partitioned materialized view partition_mv_3 even
though your query omitted the materialized view.

7. Verify that the partition_mv_3 sets up the partition for deptno=101 for partition_mv_3.

SHOW PARTI TI ONS partition_mnmv_3;

Output is:
CES SIS S S +
| partition |
foccocoococoocooc +
| deptno=101 |
dommemeeeaaa +

Creating and using a materialized view

50

Cloudera Runtime Using functions

Materialized view commands

You can call abuilt-in Hive function to run one of awide-range of operations instead of performing multiple steps.

Y ou use SHOW FUNCTIONS to search for or list available functions. Y ou can create a user-defined function (UDF)
when abuilt-inis not available to do what you need. Y ou might need to reload functions to update the availability of
functions created in another session.

To determine which Hive functions and operators are available, you reload functions, and then use the SHOW
FUNCTIONS statement. An optional pattern in the statement filters the list of functions returned by the statement.

In thistask, you first reload functions to make available any user-defined functions that were registered in Hive
session after your session started. The syntax is:

RELCAD (FUNCTI ON| FUNCTI ONS) ;
Next, you use the SHOW FUNCTIONS statement. The syntax of this statement is:
SHOW FUNCTI ONS [LI KE "<pattern>"];

<pattern> represents search characters that can include regular expression wildcards.
Finally, you get more information about use by issuing the DESCRIBE FUNCTION statement.

1. Open the Hive shell.
Open aclient connection, for example:

beeline -u jdbc: hive2://nycl oudhost-3. com 10000 -n <your user nane> -p

2. Reload functionsto ensure all registered UDFs are available in your session.
RELCAD FUNCTI ONS;

Use the plural form of the command. RELOAD FUNCTION isfor backward compatibility.
3. Generate alist of available built-in and user-defined functions (UDFs).

SHOW FUNCTI ONS;

Thelist of built-in functions, operators, and UDFs appear.

51

https://docs.cloudera.com/runtime/7.2.14/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html

Cloudera Runtime

Using functions

4. Generate afiltered list of functions using the regular expression wildcard %.

SHOW FUNCTI ONS LI KE "a% ;

All available functions that begin with the character a appear.

| |
| acos |
| add_nont hs |

5. Get more information about a particular function.

DESCRI BE FUNCTI ON abs;

e mm— o — - -
| tab_nane

o e ==
| ABS(x) - returns the absol ute val ue of x
oo e m = =

6. Get more information about the function.

DESCRI BE FUNCTI ON EXTENDED abs;

ABS(x) - returns the absolute val ue of x

Synonyns: abs
Exanpl e:

5

Function cl ass: org. apache. hadoop. hi ve. gl . udf . generi c. Generi cUDFAbs |

I
I
I
I
[0
|
I
I
I

Function type: BU LTI N

> SELECT ABS(0) FROMsrc LIMT 1;

> SELECT ABS(-5) FROM src LIMT 1;

Y ou export user-defined functionality (UDF) to a JAR from a Hadoop- and Hive-compatible Java project and store
the JAR on your cluster or object store. Using Hive commands, you register the UDF based on the JAR, and call the

UDF from a Hive query.

* You have access rights to upload the JAR to the cluster to your cluster or object store.

Cloudera Manager, Minimum Required Role: Configurator (also provided by Cluster Administrator, Full

Administrator).

* Hiveon Tez or Hive LLAP isrunning on the cluster.
* You haveinstaled Java and a Javaintegrated devel opment environment (IDE) tool on the machine, or virtual

machine, where you will create the UDF.

52

Cloudera Runtime

Using functions

Y ou can create a Hive UDF in a development environment using IntelliJ, for example, and build the UDF. Y ou define
the Cloudera Maven Repository in your POM, which accesses necessary JARS hadoop-common-<version>.jar and
hive-exec-<version>.jar.

Open IntelliJ and create a new Maven-based project. Click Create New Project. Select Maven and the supported

Javaversion as the Project SDK. Click Next.

Add archetype information.
For example:

e Groupld: com.mycompany.hiveudf
» Artifactld: hiveudf

Click Next and Finish.
The generated pom.xml appears in sample-hiveudf.

To the pom.xml, add properties to facilitate versioning.
For example:

<properties>
<hadoop. ver si on>TBD</ hadoop. ver si on>
<hi ve. ver si on>TBD</ hi ve. ver si on>

</ properties>

In the pom.xml, define the repositories.
Useinterna repositoriesif you do not have internet access.

<repositories>
<r eposi tory>

<rel eases>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>al ways</ updat ePol i cy>
<checksunPol i cy>war n</ checksunPol i cy>

</rel eases>

<snapshot s>
<enabl ed>f al se</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
<checksunPol i cy>f ai | </ checksunPol i cy>

</ snapshot s>

<i d>HDPRel eases</i d>

<name>HDP Rel eases</ nane>

<url >http://repo. hort onwor ks. conf content/repositories/rel eases/</u

ri>
<l ayout >def aul t </ | ayout >
</repository>
<repository>
<i d>publ i c. repo. hort onwor ks. conx/ i d>
<name>Publ i ¢ Hort onwor ks Maven Repo</ nanme>
<url >http://repo. hort onwor ks. comf cont ent/ gr oups/ public/</url >
<snapshot s>
<enabl ed>f al se</ enabl ed>
</ snapshot s>
</repository>
<repository>
<i d>reposi tory. cl oudera. conx/id>

<url >https://repository.cloudera.confartifactory/cloudera-repos/<

[url >
</repository>
</repositories>

53

Cloudera Runtime Using functions

6. Define dependencies.
For example:

<dependenci es>
<dependency>
<gr oupl d>or g. apache. hi ve</ gr oupl d>
<artifactl|d>hive-exec</artifactld>
<versi on>%{ hi ve. ver si on} </ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. apache. hadoop</ gr oupl d>
<artifactl d>hadoop- cormon</artifactld>
<ver si on>%${ hadoop. ver si on} </ ver si on>
</ dependency>
</ dependenci es>

Y ou define the UDF logic in anew class that returns the data type of a selected column in atable.

1. InIntelliJ, click the vertical project tab, and expand hiveudf: hiveudf src main . Select the java directory, and on
the context menu, select New Java Class, and name the class, for example, TypeOf.

2. Extend the GenericUDF class to include the logic that identifies the data type of a column.
For example:

package com nyconpany. hi veudf ;

i mport org. apache. hadoop. hi ve. gl . exec. UDFAr gunment Excepti on
i mport org. apache. hadoop. hi ve. gl . net adat a. H veExcepti on
i nport org. apache. hadoop. hi ve. gl . udf . generi c. Generi cUDF
i mport org. apache. hadoop. hi ve. serde2. obj ecti nspect or. Cbj ect | nspect or
i mport org. apache. hadoop. hi ve. serde2. obj ecti nspector.primtive.\
PrimtiveQbjectlnspectorFactory;
i mport org. apache. hadoop. i o. Text;
public class TypeOF extends Generi cUDF {
private final Text output = new Text();
@verride
public Objectlnspector initialize(Qojectlnspector[] argunents) throws U
DFAr gunment Excepti on {
checkArgsSi ze(argunents, 1, 1);
checkArgPrimtive(argunents, 0);
oj ectlnspector outputd = PrimtiveQbjectlnspectorFactory.witableSt
ri ngobj ect | nspect or;
return out putd;
}

@verride
public Object eval uate(DeferredObject[] argunents) throws H veException

bj ect obj;
if ((obj = argunents[0].get()) == null) {
String res = "Type: NULL";
out put . set (res);
} else {
String res = "Type: " + obj.getC ass().getNane();
out put . set (res);

return output;

}

Cloudera Runtime Using functions

@verride
public String getDisplayString(String[] children) {
return get St andar dDi spl ayString(" TYPEOF", children, ",");
}
}

Y ou compile the UDF code into a JAR and add the JAR to the classpath on the cluster. Y ou choose one of severa
methods of configuring the cluster so Hive can find the JAR.

CDP Private Cloud Base
Use one of these methods to configure the cluster to find the JAR:

* Direct reference

Straight-forward, but recommended for development only.
» Hiveaux library directory

Prevents accidental overwriting of files or functions. Recommended for tested, stable UDFsto
prevent accidental overwriting of files or functions.

» Reloadable aux JAR

Avoids HiveServer restarts. Recommended if you anticipate making frequent changesto the
UDF logic.

CDP Public Cloud
Uset the Direct reference method only.

1. Build the IntelliJ project.

NAPSHOT. | ar

O I e e
[INFQ BU LD SUCCESS

[INFQ] --------mmmmmmmm oo m oo oo

[INFO Total tine: 14.820 s

[INFQ Finished at: 2019-04-03T16: 53: 04-07: 00

[INFQ Final Menory: 26M 397M

A O B i

Process finished with exit code 0

2. InIntelliJ, navigate to the JAR in the /target directory of the project.

55

Cloudera Runtime Using functions

3. Configure the cluster so Hive can find the JAR using one of the following methods.
» Direct JAR reference

a. Upload the JAR to HDFS (CDP Private Cloud Base) or S3 (CDP Public Cloud).
b. Movethe JAR into the Hive warehouse. For example, in CDP Private Cloud Base:

$ hdfs dfs -put TypeOf-1.0- SNAPSHOT. j ar /war ehouse/t abl espace/ manage
d/ hi veudf - 1. 0- SNAPSHOT. j ar

¢ Hiveaux JARs path (CDP Private Cloud Base only)

a. In CDP Private Cloud Base, click Cloudera Manager Clusters and select the Hive service, for example,
HIVE. Click Configuration and search for Hive Auxiliary JARs Directory.
b. Specify adirectory value for the Hive aux JARS property if necessary, or make a note of the path.
¢. Upload the JAR to the specified directory on all HiveServer instances (and all Metastore instances, if
Separate).
« Reloadable aux JAR (CDP Private Cloud Base only)

a. Upload the JAR to the /hadoop/hive-udf-dyn directory on all HiveServer instances (and all Metastore
instances, if separate). An HDFS location is not supported.
b. Inhive-site.xml, set the following property: hive.reloadable.aux.jars.path=/hadoop/hive-udf-dyn.

4. Inlintellid, click Save.
Click Actions Deploy Client Configuration .
6. Restart the Hive service. For example, restart HIVE.

o

In the cluster, you log into Hive, and run acommand from Beeline to make the UDF functional in Hive queries. The
UDF persists between HiveServer restarts.

Y ou need to set up UDF access, using a Ranger policy for example.

In thistask, the registration command differs depending on the method you choose to configure the cluster for
finding the JAR. If you use the Hive aux library directory method that involves a symbalic link, you need to restart
HiveServer after registration. If you use the Direct JAR reference or Reloadable aux JAR methods, you do not need
to restart HiveServer. Y ou must recreate the symbolic link after any patch or maintenance upgrades that deploy a new
version of Hive.

1. Using Beeline, login to HiveServer as a user who has UDF access.
HiveServer, for example:
beeline -u jdbc: hive2://mycluster.com 10000 -n hive -p

2. At the Hive prompt, select a database for use.
USE default;

56

Cloudera Runtime Using functions

3. Run the registration command that corresponds to the way you configured the cluster to find the JAR.

In the case of the direct JAR reference configuration method, you include the JAR location in the command. If
you use another method, you do not include the JAR location. The classloader can find the JAR.

* Direct JAR reference;

CREATE FUNCTI ON udftypeof AS 'com myconpany. hi veudf. TypeOf 01' USI NG JAR
' S3:///warehouse/t abl espace/ managed/ TypeOf 01- 1. 0- SNAPSHOT. j ar ' ;

» Hiveaux library directory (CDP Private Cloud Base only):

a. Set up asymbolic link on the command line of the local file system.

In -s /local -apps/hive-udf-aux <path to hive parcel >/ hive/auxlib

b. In Beeling, run the command to register the UDF.

CREATE FUNCTI ON udftypeof AS 'com myconpany. hi veudf. Typeof 01';

C. Restart HiveServer.
* Reloadable aux JAR (CDP Private Cloud Base only):

RELQAD,;
CREATE FUNCTI ON udftypeof AS 'com myconpany. hi veudf. Typeof 01';

4. Check that the UDF is registered.
SHOW FUNCTI ONS;

Y ou scroll through the output and find default.typeof.

After registration of a UDF, you do not need to restart Hive before using the UDF in aquery. In this example, you
call the UDF you created in a SELECT statement, and Hive returns the data type of a column you specify.

» For the example query in thistask, you need to create atable in Hive and insert some data.
* Asauser, you need to have permission to call a UDF, which a Ranger policy can provide.

This task assumes you have the following example table in Hive:

Focococococococoocoa Fococcoccoccoocooooe Fococcoccoccoocooooe +
| students. name | students.age | students.gpa |
feccoococcccoococooc feccooccocooooooc feccooccocooooooc +
| fred flintstone | 35 | 1.28 [
| barney rubble | 32 | 2.32 |
foccocoococoococoocoooos feccocoococoocoooos feccocoococoocoooos +

1. Usethe database in which you registered the UDF.
For example:

USE def aul t;

57

Cloudera Runtime Using functions

2. Query Hive depending on how you configured the cluster for Hive to find the JAR.
» Direct JAR reference or Hive aux library directory

For example:

SELECT students. nanme, udftypeof (students.nane) AS type FROM students WHE
RE age=35;

* Reloadable aux JAR

For example:

RELOAD;

SELECT students. name, udftypeof (students.nane) AS type FROM students WHE
RE age=35;

Y ou get the data type of the name column in the students table.

focccccccccccccccos foccccccccccccccococococococococococococococoococcccoccoccoooccoooooooe
-------- +

| students. nanme | type

+-----! ____________ o e m e e m m e e e e m e e mmm i — - =
-------- +

| fred flintstone | Type: org. apache. hadoop. hive. serde2.i o. H veVarchar Wi
table |

foccccccccccccccooe foccccccococococococoocoooooooooooooooooCCoCoCoooocoooooooooooe
-------- +

58

	Contents
	Apache Hive 3 tables
	Hive table locations
	Refer to a table using dot notation
	Creating a CRUD transactional table
	Creating an insert-only transactional table
	Creating an S3-based external table
	Dropping an external table along with data
	Converting a managed non-transactional table to external
	Accessing StorageHandler and other external tables
	Creating secure external tables
	Check for required Ranger features in Data Hub
	Enable authorization of StorageHandler-based tables in Data Hub
	Examples of creating secure external tables

	Using constraints
	Determining the table type

	Apache Hive 3 ACID transactions
	Apache Hive query basics
	Querying the information_schema database
	Inserting data into a table
	Updating data in a table
	Merging data in tables
	Deleting data from a table
	Using a subquery
	Subquery restrictions

	Use wildcards with SHOW DATABASES
	Aggregating and grouping data
	Querying correlated data
	Using common table expressions
	Use a CTE in a query

	Comparing tables using ANY/SOME/ALL
	Escaping an invalid identifier
	CHAR data type support
	ORC vs Parquet formats

	Creating a default directory for managed tables
	Configuring a table location outside the warehouse root directory

	Generating surrogate keys
	Partitions and performance
	Creating partitions dynamically
	Partition refresh and configuration
	Automating partition discovery and repair
	Managing partition retention time

	Repairing partitions manually using MSCK repair

	Query scheduling
	Enabling scheduled queries
	Periodically rebuilding a materialized view
	Getting scheduled query information and monitor the query

	Materialized views
	Creating and using a materialized view
	Creating the tables and view
	Verifing use of a query rewrite
	Using optimizations from a subquery
	Dropping a materialized view
	Showing materialized views
	Describing a materialized view
	Managing query rewrites
	Purposely using a stale materialized view
	Creating and using a partitioned materialized view

	Using functions
	Reloading, viewing, and filtering functions
	Create a user-defined function
	Setting up the development environment
	Creating the UDF class
	Building the project and upload the JAR
	Registering the UDF
	Calling the UDF in a query

