Cloudera Runtime 7.2.6

Apache Impala Reference

Date published: 2019-11-01
Date modified: 2020-09-23

CLOUD=RA

https://docs.cloudera.com/


https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.



Cloudera Runtime | Contents | iii

Performance CoNSIAEr atioNS..........ccoieerieriiiriinie e 5
PerformanCe BESt PraCliCeS.........ccoiiiieie et bbb bbbt 5

QUENY JOIN PEITOMMBNCE. ...ttt b e bbbt bbbt bbbt b e et e b e 7

Table and COlUMN SEBLISHICS. ....c.veueieeiirieierieert ettt b e bbb et se b e ebesee st b e e sreneas 8
Generating Table and ColUMN SEALISHICS.......coveirieirieeriee e e 20

RUNEIME FITTEITNG. ...ttt ettt e e et b et b et b et b e e b e se e b e se ekt seebeseenesaenesbenenreneas 23
PAITITIONING. ...ttt bt b e bt b e e b se b s e bt se Rt E bRt Rt bRt e b et bt bt b e 26
Partition Pruning fOr QUENTES.........ciuiirieiriee ettt sttt 29

HDFS CBCNING. ...ttt et e b e b e bt e bt e h e bt bt e b et e b e s e eb e se ekt se ekt seebeseebesbenesbenesbeneebeneas 32

HDFS BIOCK SKEW......ceviiitireetereete sttt ettt sttt stttk s b e bt e bt e b e s et bbb et b et b et b e neebene b e s b e 36
Understanding Performance using EXPLAIN Plan.........cooiieeeseese e 37
Understanding Performance using SUMMARY REDOM...........ccuiiriiiiiniieeiees e 38
Understanding Performance using QUENY Profile...... ..o 39
Scalability CONSIAEr @tIONS.........ccceeiiieiie e 40
Scaling Limits and GUITEIINES.........ccoiiiiie ettt e e seesesseerestesaesrenteseeneenean 45

[DTc o o (<o I @aTo (o 10 (o GO ST ST PRSP 46
Hadoop File FOrmats SUPPOIt.......ccociiiiriiieie et 49
USING TEXE DAA FIES.......oieeeeieiieee et et ettt b e bbbt b e b sb et e bese e e et e e e e eneas 51

USING ParqUEL Data FilES..... ..ottt b e sttt et e et ebe e 53

USING ORC DALA FlES......c.eiiiieieieririeieietresie ettt sttt b et b bbb b bt st e bt s bbb e et 61

USING AVIO DBEA FIIES.....cueieiieietiie ettt bbb ettt ae e b e bt e bt e b e s bt seesbesbesee s e te s 63

USING RCFIIE DEIA FIlES.......eieeeeeeeeeee ettt h bbb b b et b se e e et e e e e e nenne e 66

USING SEqUENCERTTE Data FIlES......c.coeeeieeeeieie ettt et e eneenas 66
SLOrage SYSLEIMS SUPPOITS......ueieeiiiieeeeiiiee et e et e st e s e e e ne e e e e snne e e e eanes 67
IMPEIA WITR HDFS.......ocii ettt e bt bbbt b et b e stk se b e bt e b st b 67
IMPEIA WITR KUGUL .ttt sttt b et b et b et bt beseebese b e seebeseebenneneas 69
Configuring fOr KUAU TaIES.......c.ciuiiiiiiieeee ettt e b e b e seene 70

IMPEIA DDL FOF KUAU. ...cviiiriiiiteisteeete ettt b e st b e e bbb e s b e sbe e ere e 70

Impala DML fOr KUdU TahIES... ..ottt s bbb 75

IMPEIA WITN HBESE. ...ttt bbbt b b e bbbt e bt bbb ne b e e b nn s 77
Impala with Azure Data Lake SIOTre (ADLS)......ccooiiieeenereeie sttt et 80
IMPala With AMBZON S3.... ..ottt b bbb bbbt b et b et b et b e b e b b et ne b 84
Specifying Impala Credentials t0 ACCESS S3.......cciiiiiiriireeee et 87

Ports Used by Impala..........cccooiirieee e 87
A o= 1T o] o I CTH Yo [PPSR 88

Modifying Impala Startup OPLiONS........ccoveveieiiese e 92



Setting up Data Cache for Remote Reads..........cccocceeveviceenie s 93
Managing Metadata in Impala..........cccceveeieeiie e 93
On-demand Metadata............ccceeeieiiiiiie e s aee e 93

SQL transactions in IMpala........cccceeiiriiieieceece e 94



Cloudera Runtime Performance Considerations

The following sections explain the factors affecting the performance of Impala features, and procedures for tuning,
monitoring, and benchmarking Impala queries and other SQL operations.

Use the performance guidelines and best practices during planning, experimentation, and performance tuning for an
Impala-enabled cluster.

Typically, for large volumes of data (multiple gigabytes per table or partition), the Parquet file format performs best
because of its combination of columnar storage layout, large 1/0 request size, and compression and encoding.

Note: For smaller volumes of data, afew gigabytes or less for each table or partition, you might not see

Ij significant performance differences between file formats. At small data volumes, reduced 1/0 from an
efficient compressed file format can be counterbalanced by reduced opportunity for parallel execution. When
planning for a production deployment or conducting benchmarks, always use redlistic data volumesto get a
true picture of performance and scalability.

When producing data files outside of Impala, prefer either text format or Avro, where you can build up the files row
by row. Once the dataisin Impala, you can convert it to the more efficient Parquet format and split into multiple
datafilesusing asingle INSERT ... SELECT statement. Or, if you have the infrastructure to produce multi-megabyte
Parquet files as part of your data preparation process, do that and skip the conversion step inside Impala.

Always use INSERT ... SELECT to copy significant volumes of data from table to table within Impala. Avoid INSE
RT .. VALUESfor any substantial volume of data or performance-critical tables, because each such statement
produces a separate tiny datafile.

For example, if you have thousands of partitionsin a Parquet table, each with less than 256 MB of data, consider
partitioning in aless granular way, such as by year / month rather than year / month / day. If an inefficient data
ingestion process produces thousands of data files in the same table or partition, consider compacting the data by
performing an INSERT ... SELECT to copy al the datato a different table; the datawill be reorganized into a
smaller number of larger files by this process.

Partitioning is a technique that physically divides the data based on values of one or more columns, such as by year,
month, day, region, city, section of aweb site, and so on. When you issue queries that request a specific value or
range of values for the partition key columns, Impala can avoid reading the irrelevant data, potentially yielding a huge
savingsin disk I/O.

When deciding which column(s) to use for partitioning, choose the right level of granularity. For example, should you
partition by year, month, and day, or only by year and month? Choose a partitioning strategy that puts at least 256
MB of datain each partition, to take advantage of HDFS bulk I/O and Impala distributed queries.

Over-partitioning can aso cause query planning to take longer than necessary, as Impala prunes the unnecessary
partitions. Ideally, keep the number of partitions in the table under 30 thousand.

When preparing datafilesto go in a partition directory, create severa large files rather than many small ones. If you
receive datain the form of many small files and have no control over the input format, consider using the INSERT .
.. SELECT syntax to copy data from one table or partition to another, which compacts the filesinto arelatively small
number (based on the number of nodesin the cluster).




Cloudera Runtime Performance Considerations

If you need to reduce the overall number of partitions and increase the amount of data in each partition, first look for
partition key columns that are rarely referenced or are referenced in non-critical queries (not subject to an SLA). For
example, your web site log data might be partitioned by year, month, day, and hour, but if most queriesroll up the
results by day, perhaps you only need to partition by year, month, and day.

If you need to reduce the granularity even more, consider creating “buckets’, computed values corresponding to
different sets of partition key values. For example, you can use the TRUNC() function with a TIMESTAMP column
to group date and time values based on intervals such as week or quarter.

Although it is tempting to use strings for partition key columns, since those values are turned into HDFS directory
names anyway, you can minimize memory usage by using numeric values for common partition key fields such as
YEAR, MONTH, and DAY . Use the smallest integer type that holds the appropriate range of values, typically TINY
INT for MONTH and DAY, and SMALLINT for YEAR. Use the EXTRACT() function to pull out individual date
and time fields from a TIMESTAMP value, and CAST() the return value to the appropriate integer type.

By default, the Impala INSERT ... SELECT statement creates Parquet files with a 256 MB block size. (This
default was changed in Impala 2.0. Formerly, the limit was 1 GB, but Impala made conservative estimates about
compression, resulting in files that were smaller than 1 GB.)

Each Parquet file written by Impalais asingle block, allowing the whole file to be processed as a unit by asingle
host. Asyou copy Parquet filesinto HDFS or between HDFS filesystems, use hdfs dfs -pb to preserve the original
block size.

If thereis only one or afew data block in your Parquet table, or in a partition that is the only one accessed by a query,
then you might experience a slowdown for a different reason: not enough data to take advantage of Impala's parallel
distributed queries. Each data block is processed by a single core on one of the DataNodes. In a 100-node cluster of
16-core machines, you could potentially process thousands of data files simultaneously. Y ou want to find a sweet
spot between “many tiny files” and “single giant file” that balances bulk 1/O and parallel processing. Y ou can set

the PARQUET_FILE_SIZE query option before doing an INSERT ... SELECT statement to reduce the size of each
generated Parquet file. (Specify the file size as an absolute number of bytes, or in Impala 2.0 and later, in units ending
with m for megabytes or g for gigabytes.) Run benchmarks with different file sizes to find the right balance point for
your particular data volume.

Gather the statistics with the COMPUTE STATS statement.

Use techniques such as:

» Aggregation. If you need to know how many rows match a condition, the total values of matching values from
some column, the lowest or highest matching value, and so on, call aggregate functions such as COUNTY(),
SUM(), and MAX() in the query rather than sending the result set to an application and doing those computations
there. Remember that the size of an unaggregated result set could be huge, requiring substantial time to transmit
across the network.

* Filtering. Use al applicable tests in the WHERE clause of a query to eliminate rows that are not relevant, rather
than producing a big result set and filtering it using application logic.

e LIMIT clause. If you only need to see afew sample values from aresult set, or the top or bottom values from a
query using ORDER BY, include the LIMIT clause to reduce the size of the result set rather than asking for the
full result set and then throwing most of the rows away.

« Avoid overhead from pretty-printing the result set and displaying it on the screen. When you retrieve the results
throughi npal a- shel | , usei npal a- shel | options such as-B and --output_delimiter to produce results
without special formatting, and redirect output to afile rather than printing to the screen. Consider using INSE
RT ... SELECT to write the results directly to new filesin HDFS.

6



Cloudera Runtime Performance Considerations

Examine the EXPLAIN plan for a query before actualy running it.

Verify that the low-level aspects of 1/0, memory usage, network bandwidth, CPU utilization, and so on are within
expected ranges by examining the query profile for a query after running it.

In the context of Impala, a hotspot is defined as “an Impala daemon that for a single query or aworkload is spending
afar greater amount of time processing datarelative to its neighbours’.

Before discussing the options to tackle this issue, some background isfirst required to understand how this problem
can occur.

By default, the scheduling of scan based plan fragments is deterministic. This means that for multiple queries needing
to read the same block of data, the same node will be picked to host the scan. The default scheduling logic does

not take into account node workload from prior queries. The complexity of materializing a tuple depends on afew
factors, namely: decoding and decompression. If the tuples are densely packed into data pages due to good encoding/
compression ratios, there will be more work required when reconstructing the data. Each compression codec offers
different performance tradeoffs and should be considered before writing the data. Due to the deterministic nature of
the scheduler, single nodes can become bottlenecks for highly concurrent queries that use the same tables.

If, for example, a Parquet based dataset istiny, e.g. asmall dimension table, such that it fitsinto a single HDFS block
(Impala by default will create 256 MB blocks when Parquet is used, each containing a single row group) then there
are anumber of options that can be considered to resolve the potential scheduling hotspots when querying this data:

» Tescheduler's deterministic behaviour can be changed using the following query options: REPLICA_PREFEREN
CE and RANDOM_REPLICA.

» HDFS caching can be used to cache block replicas. Thiswill cause the Impala scheduler to randomly pick a node
that is hosting a cached block replicafor the scan. Note, although HDFS caching has benefits, it serves only to
help with the reading of raw block data and not cached tuple data, but with the right number of cached replicas (by
default, HDFS only caches one replica), even load distribution can be achieved for smaller datasets.

« Do not compress the table data. The uncompressed table data spans more nodes and eliminates skew caused by
compression.

* Reduce the Parquet file size viathe PARQUET_FILE_SIZE query option when writing the table data. Using this
approach the data will span more nodes. However it's not recommended to drop the size below 32 MB.

Joins are the main class of queriesthat you can tune at the SQL level.

Queriesinvolving join operations often require more tuning than queries that refer to only one table. The maximum
size of the result set from ajoin query isthe product of the number of rowsin all the joined tables. When joining
several tables with millions or billions of rows, any missed opportunity to filter the result set, or other inefficiency in
the query, could lead to an operation that does not finish in a practical time and has to be cancelled.

The simplest technique for tuning an Impalajoin query isto collect statistics on each table involved in the join using
the COMPUTE STATS statement, and then to let Impala automatically optimize the query based on the size of each
table, number of distinct values of each column, and so on. For accurate statistics about each table, issue the COMP
UTE STATS statement after loading the data into that table, and again if the amount of data changes substantially due
to operations, such as INSERT, LOAD DATA, or adding a partition.

If statistics are not available for al the tables in the join query, or if Impala chooses ajoin order that is not the most
efficient, you can override the automatic join order optimization by specifying the STRAIGHT _JOIN keyword
immediately after the SELECT and any DISTINCT or ALL keywords. In this case, Impala uses the order the tables
appear in the query to guide how the joins are processed.




Cloudera Runtime Performance Considerations

When you use the STRAIGHT_JOIN technique, you must order the tables in the join query manually instead of
relying on the Impala optimizer. The optimizer uses sophisticated techniques to estimate the size of the result set at
each stage of the join. For manual ordering, use this heuristic approach to start with, and then experiment to fine-tune
the order:

*  Specify the largest tablefirst. Thistable isread from disk by each Impalanode and so its sizeis not significant in
terms of memory usage during the query.

» Next, specify the smallest table. The contents of the second, third, and so on tables are all transmitted across the
network. Y ou want to minimize the size of the result set from each subsequent stage of the join query. The most
likely approach involves joining a small tablefirst, so that the result set remains small even as subsequent larger
tables are processed.

» Join the next smallest table, then the next smallest, and so on.

For example, if you had tables BIG, MEDIUM, SMALL, and TINY, the logical join order to try would be BIG,
TINY, SMALL, MEDIUM.

The terms “largest” and “smallest” refersto the size of the intermediate result set based on the number of rows and
columns from each table that are part of the result set. For example, if you join one table sales with another table cust
omers, aquery might find results from 100 different customers who made atotal of 5000 purchases. In that case, you
would specify SELECT ... FROM sales JOIN customers..., putting customers on the right side because it is smaller
in the context of this query.

The Impala query planner chooses between different techniques for performing join queries, depending on the
absolute and relative sizes of the tables. Broadcast joins are the default, where the right-hand table is considered to be
smaller than the left-hand table, and its contents are sent to al the other nodes involved in the query. The dternative
technique is known as a partitioned join (not related to a partitioned table), which is more suitable for large tables

of roughly equal size. With this technique, portions of each table are sent to appropriate other nodes where those
subsets of rows can be processed in parallel. The choice of broadcast or partitioned join also depends on statistics
being available for al tablesin the join, gathered by the COMPUTE STATS statement.

To see which join strategy is used for a particular query, issue an EXPLAIN statement for the query. If you find that a
guery uses a broadcast join when you know through benchmarking that a partitioned join would be more efficient, or
vice versa, add a hint to the query to specify the precise join mechanism to use.

If table or column statistics are not available for some tablesin ajoin, Impala still reorders the tables using the
information that is available. Tables with statistics are placed on the | eft side of the join order, in descending order

of cost based on overall size and cardinality. Tables without statistics are treated as zero-size, that is, they are always
placed on the right side of the join order.

If an Impaajoin query isinefficient because of outdated statistics or unexpected data distribution, you can keep
Impalafrom reordering the joined tables by using the STRAIGHT_JOIN keyword immediately after the SELECT
and any DISTINCT or ALL keywords. The STRAIGHT_JOIN keyword turns off the reordering of join clauses that
Impaladoes internally, and produces a plan that relies on the join clauses being ordered optimally in the query text.

Note: The STRAIGHT_JOIN hint affects the join order of table references in the query block containing

B the hint. It does not affect the join order of nested queries, such as views, inline views, or WHERE-clause
subqueries. To use this hint for performance tuning of complex queries, apply the hint to all query blocks that
need afixed join order.

Impala can do better optimization for complex or multi-table queries when it has access to statistics about the volume
of data and how the values are distributed. Impala uses this information to help parallelize and distribute the work
for aquery. For example, optimizing join queries requires away of determining if one tableis“bigger” than another,




Cloudera Runtime Performance Considerations

which isafunction of the number of rows and the average row size for each table. This topic described the categories
of statistics Impala can work with, and how to produce them and keep them up to date.

The Impala query planner can make use of statistics about entire tables and partitions. This information includes
physical characteristics such as the number of rows, number of datafiles, the total size of the datafiles, and the
file format. For partitioned tables, the numbers are calculated per partition, and astotals for the whole table. This
metadata is stored in the Metastore database, and can be updated by either Impalaor Hive.

If anumber is not available, the value -1 is used as a placeholder. Some numbers, such as number and total sizes
of datafiles, are aways kept up to date because they can be calculated cheaply, as part of gathering HDFS block
metadata.

The following example shows table stats for an unpartitioned Parquet table. The values for the number and sizes of
filesare always available. Initialy, the number of rowsis not known, because it requires a potentially expensive scan
through the entire table, and so that value is displayed as-1. The COMPUTE STATS statement fillsin any unknown
table stats values.

Focoocooe Focococoocdoocccocoodmoocoocoooooo oo Focococcccoccococooooe Fococooooe +-
------------------ +.. .

| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format |
Increnental stats |...

fooocoooc fooocooooc feocococooooc feccoccccooccooas fecccoococoococooccoocooe feocococooooc dho o=

---------------- +.. .

| -1 | 96 | 23.35GB | NOT CACHED | NOT CACHED | PARQUET | f

al se ..

fecooooc feccoococac feccoocooc feccoocooccooooc feccoccccooococooooc feccoocooc +-

------------------ +,

FococococococococoocoocoocoCcoCoCcooooooooooooo +
| summary |
feccoocococcoococococoocococooocococoooococooooc +
| Updated 1 partition(s) and 6 columm(s). |
feccocoococoococooccooccoocoocoocoooocoocoocoooooc +

feccococooooc feccoococac feccoocooc feccoocooccooooc feccoccccooococooooc fecooooc

I e e I e +. ..

| #Rows | #Files | Size | Bytes Cached | Cache Replication | Fornat
| I'ncremental stats |...

Fococococoococ Fococococ Fococooooe Focococococoococ Focococcccoccococooooe Focoocooe

R +. ..

| 1000000000 | 96 | 23.35GB | NOT CACHED | NOT CACHED | PARQ

UET | false | ...

fecococoococooooc fooocooooc feocococooooc feccoccccooccooas fecccoococoococooccoocooe fooocoooc

codfcoococooccoocoocoocos +

To check that table statistics are available for atable, and see the details of those statistics, use the statement SHOW
TABLE STATS TABLE _NAME.

The Impala query planner can make use of statistics about individual columns when that metadatais available in
the metastore database. This technique is most valuable for columns compared across tablesin join queries, to help
estimate how many rows the query will retrieve from each table. These statistics are also important for correlated
subqueries using the EXISTS or IN operators, which are processed internally the same way asjoin queries.




Cloudera Runtime

Performance Considerations

The following example shows column stats for an unpartitioned Parquet table. The values for the maximum and
average sizes of some types are always available, because those figures are constant for numeric and other fixed-size
types. Initially, the number of distinct valuesis not known, because it requires a potentially expensive scan through
the entire table, and so that value is displayed as -1. The same applies to maximum and average sizes of variable-sized
types, such as STRING. The COMPUTE STATS statement fills in most unknown column stats values. (It does not
record the number of NULL values, because currently Impala does not use that figure for query optimization.)

show col um stats parquet _snappy;

foccoococooooc foccococooc feoccoocococcoococooc foccoooac foccococooc foccococooc +
| Col umm | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
feococococcooccooc feoococooccoac focococoococococooccoocos fooococoooc feoococooccoac feoococooccoac +
| id | BIGANT | -1 | -1 | 8 | 8 [
| val | I'NT | -1 | -1 | 4 | 4 [
| zerofill | STRRNG | -1 | -1 | -1 | -1 [
| name | STRING | -1 | -1 | -1 | -1 |
| assertion | BOOLEAN | -1 | -1 | 1 | 1 [
| location_id | SMALLINT | -1 | -1 | 2 | 2 |
Fococcoccoccooooe Focococococ Focococococococoococ Fococococ Focococococ Focococococ +
conput e stats parquet_snappy;
foccoocococcoocococcoocococooocococoooococooooc +
| summary [
foccocoocococcoccooccooccooccoocoooocoocooocoooooc +
| Updated 1 partition(s) and 6 colum(s). |
ccoocococooococoooococoooococoooooocooooc +
show col um stats parquet _snappy;
foccoococooooc foccococooc feoccoocococcoococooc foccoooac foccococooc foccoooac
----------- +
| Col um | Type | #Distinct Values | #Nulls | Max Size | Avg Size

|
feccoococooooc feccococooc feccoococcoccoococooc feccoocooc feccococooc feccoocooc
----------- +
| id | BIGNT | 183861280 | -1 | 8 | 8

|
| val | I'NT | 139017 | -1 | 4 | 4
| zerofill | STRRING | 101761 | -1 | 6 | 6

I

name STRING | 145636240 | -1 | 22 | 13.0002
0027160645 |
| assertion | BOOLEAN | 2 | -1 | 1 | 1
| location_id | SMALLINT | 339 | -1 | 2 | 2
I

foccoococoocooc foccococooc feoccoocococcoococooc foccoooac foccococooc foccococooc

Note:

For column statistics to be effectivein Impala, you also need to have table statistics for the applicable tables.

When you use the Impala COMPUTE STATS statement, both table and column statistics are automatically
gathered at the same time, for al columnsin thetable.

K

Note: Because Impala does not currently use the NULL count during query planning, |mpala speeds up the
COMPUTE STATS statement by skipping this NULL counting.

To check whether column statistics are available for a particular set of columns, use the SHOW COLUMN STATS
TABLE_NAME statement, or check the extended EXPLAIN output for a query against that table that refers to those

columns.

10



Cloudera Runtime Performance Considerations

When you use Impalafor “big data”, you are highly likely to use partitioning for your biggest tables, the ones
representing data that can be logically divided based on dates, geographic regions, or similar criteria. The table and
column statistics are especially useful for optimizing queries on such tables. For example, a query involving one year
might involve substantially more or less data than a query involving a different year, or arange of several years. Each
query might be optimized differently as aresult.

The following examples show how table and column stats work with a partitioned table. The table for this example

is partitioned by year, month, and day. For simplicity, the sample data consists of 5 partitions, all from the same year
and month. Table stats are collected independently for each partition. (In fact, the SHOW PARTITIONS statement
displays exactly the same information as SHOW TABLE STATS for a partitioned table.) Column stats apply to the
entire table, not to individua partitions. Because the partition key column values are represented as HDFS directories,
their characteristics are typically known in advance, even when the values for non-key columns are shown as -1.

show partitions year nonth_day;

CT CT +- - - - CT CT T N CTE N

--------- S L

| year | nonth | day | #Rows | #Files | Size | Bytes Cached | Cache Repl

ication | Format |...

+--mmm - +--mmm - +----- +--mmm - H--m - Hmmmmmm- - o e e mm - H--m -

----------- B

| 2013 | 12 | 1 | -1 | 1 | 2.51MB | NOT CACHED | NOT CACHED
| PARQUET | ...

| 2013 | 12 | 2 | -1 | 1 | 2.53MB | NOT CACHED | NOT CACHED
| PARQUET | ...

| 2013 | 12 | 3 | -1 | 1 | 2.52MB | NOT CACHED | NOT CACHED
| PARQUET | ...

| 2013 | 12 | 4 | -1 | 1 | 2.51MB | NOT CACHED | NOT CAC

HED | PARQUET | ...

| 2013 | 12 | 5 | -1 | 1 | 2.52MB | NOT CACHED | NOT CACHED
| PARQUET | ...

| Total | [ | -1 | 5 | 12.58MB | OB [

CT L ------- +-!---+ ------- CT T N T S

-------- Fococooooodk

fecooooc fecooooc feoooc fecooooc feccoocooc feccooocooc feccoocooccooooc feccococooc

--------- docccosccody, ;.

| year | nonth | day | #Rows | #Files | Size | Bytes Cached | Cache Repl

ication | Format |...

foocoooc foocoooc occoe foocoooc fooococoooc feoococooooc feococococcooccooas fooococoooc

----------- e T S

| 2013 | 12 | 1 | -1 | 1 | 2.51MB | NOT CACHED | NOT CACHED
| PARQUET |...

| 2013 | 12 | 2 | -1 | 1 | 2.53MB | NOT CACHED | NOT CACHED
| PARQUET |...

| 2013 | 12 | 3 | -1 | 1 | 2.52MB | NOT CACHED | NOT CACHED
| PARQUET |...

| 2013 | 12 | 4 | -1 | 1 | 2.51MB | NOT CACHED | NOT CAC

HED | PARQUET |...

| 2013 | 12 | 5 | -1 | 1 | 2.52MB | NOT CACHED | NOT CACHED
| PARQUET |...

| Total | | | -1 | 5 | 12.58MB | OB |

fecooooc L ------- +-!---+ ------- feccoocooc feccooocooc feccoocooccooooc feccoococooc

-------- feccoococodb

| Col um | Type | #Distinct Values | #Nulls | Max Size | Avg Size |

11



Cloudera Runtime

Performance Considerations

feccoococooc fecocooocooc feccoocococcooococooc
| id | INT | -1
| val | INT | -1
| zfill | STRING | -1
| nane | STRING | -1
| assertion | BOOLEAN | -1
| year | I'NT | 1
| nonth | INT | 1
| day | INT | 5
fecococoococooas feocococooooc feccooococoococoococoocos
comput e stats year _nont h_day;
o e e e e e e e e e e e e e e e e e e e e e e e mm e — . — =
| summary
o e e e e e e e e e e e e e e e e e e e e e e e e e e m e e e m ==
| Updated 5 partition(s) and 5 col um(s).
o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e = =
show t abl e stats year nont h_day;
fecooooc fecooooc ocooc feccoococac feccoococac
———————————— R il S
| year | nonth | day | #Rows | #Files
Replication | Format |...
Focoocooe Focoocooe Focooe Fococococ Fococococ
------------ R i S
| 2013 | 12 | 1 | 93606 | 1 [
CHED | PARQUET |...
| 2013 | 12 | 2 | 94158 | 1 [
CHED | PARQUET |...
| 2013 | 12 | 3 | 94122 | 1 |
CHED | PARQUET | ..
| 2013 | 12 | 4 | 93559 | 1 [
CHED | PARQUET |...
| 2013 | 12 | 5 | 93845 | 1 [
CHED | PARQUET |...
| Total | | | 469290 | 5 |
[ [ ...
fecooooc fecooooc ocooc feccoococac feccoococac
------------ Foccoocoooods,
show col um stats year_nont h_day;
Fococcoccooooe Fococooooe Focococococococoococ
------- +
| Col um | Type | #Distinct Val ues
I
fecococoococooas feocococooooc feccooococoococoococoocos
----- +
| id | INT | 511129
I
| val | I'NT | 364853
I
| zfill | STRING | 311430
I
| nane | STRING | 471975
0293 |
| assertion | BOOLEAN | 2
I
| year | I'NT | 1
I
| nonth | INT | 1
I
| day | INT | 5

51MB
53MB
52MB

| #Nulls

CACHED
CACHED
CACHED
CACHED
CACHED

22

[

~ B~ b

| NOT CA

| NOT CA
| NOT CA

13. 0016002655

~ B~ b

12



Cloudera Runtime Performance Considerations

If you run the Hive statement ANALYZE TABLE COMPUTE STATISTICS FOR COLUMNS, Impala can only use
the resulting column statistics if the table is unpartitioned. Impala cannot use Hive-generated column statistics for a
partitioned table.

Y ou can check whether a specific table has statistics using the SHOW TABLE STATS statement (for any table) or
the SHOW PARTITIONS statement (for a partitioned table). Both statements display the same information. If atable
or a partition does not have any statistics, the #Rows field contains -1. Once you compute statistics for the table or
partition, the #Rows field changes to an accurate value.

The following example shows atable that initially does not have any statistics. The SHOW TABLE STATS statement
displays different values for #Rows before and after the COMPUTE STATS operation.

[l ocal host:21000] > create table no_stats (x int);
[l ocal host:21000] > show table stats no_stats;

fecooooc feccoococac e ccooc feccoocooccooooc feccoococac feccoccccooococooooc +
| #Rows | #Files | Size | Bytes Cached | Format | Increnental stats |
fooocoooc fooocooooc dhoccooc feccoccccooccooas fooocooooc fecccoococoococooccoocooe +
| -1 | O | OB | NOT CACHED | TEXT | false |
Focoocooe Fococococ Focococ Focococococoococ Fococococ Focococcccoccococooooe +
[l ocal host:21000] > conpute stats no_stats;
feccoocococcoococococoocococooocococoooococooooc +

| summary |
feccocoococoococooccooccoocoocoocoooocoocoocoooooc +

| Updated 1 partition(s) and 1 columm(s). |
FococococococococoocoocoocoCcoCoCcooooooooooooo +

[l ocal host:21000] > show table stats no_stats;

fecooooc feccoococac e ccooc feccoocooccooooc feccoococac feccoccccooococooooc +
| #Rows | #Files | Size | Bytes Cached | Format | Increnental stats |
fooocoooc fooocooooc dhoccooc feccoccccooccooas fooocooooc fecccoococoococooccoocooe +
| O | O | OB | NOT CACHED | TEXT | false |
Focoocooe Fococococ Focococ Focococococoococ Fococococ Focococcccoccococooooe +

The following example shows a similar progression with a partitioned table. Initialy, #Rowsis-1. After a COMP
UTE STATS operation, #Rows changes to an accurate value. Any newly added partition starts with no statistics,
meaning that you must collect statistics after adding a new partition.

[l ocal host:21000] > create table no_stats_partitioned (x int) partitioned by
(year smallint);
[l ocal host:21000] > show table stats no_stats _partitioned;

fooocoooc fooocoooc fooocooooc dhoccooc feccoccccooccooas fooocooooc fecccoococoococooccoocooe
+

| year | #Rows | #Files | Size | Bytes Cached | Format | Increnental stats
I

demmaoo- demmaoo- R E R E R R
+

| Total | -1 | O | oB | OB

|

Focoocooe Focoocooe Fococococ Focococ Focococococoococ Fococococ Focococcccoccococooooe
+

[l ocal host:21000] > show partitions no_stats_partitioned;

ool ool oo oo S S oo SIS A S S
+

| year | #Rows | #Files | Size | Bytes Cached | Format | Increnental stats
|

emmaaa- emmaaa eemeaaa- eemaan demmeemeaeaaas eemeaaa- dommemmeeeeea
+

13



Cloudera Runtime Performance Considerations

| Total | -1 | O | oB | OB
I
Focooooc Focooooc foccoooac foccooc feccoocococooooc foccoooac feccoccoccooococooooc
+
[l ocal host:21000] > alter table no_stats_partitioned add partition (year=
2013);
[l ocal host:21000] > conpute stats no_stats_partitioned;
feccoocococcoococococoocococooocococoooococooooc +
| summary |
feccocoococoococooccooccoocoocoocoooocoocoocoooooc +
| Updated 1 partition(s) and 1 columm(s). |
FococococococococoocoocoocoCcoCoCcooooooooooooo +
[l ocal host:21000] > alter table no_stats_partitioned add partition (year=
2014);
[l ocal host:21000] > show partitions no_stats _partitioned;
fooocoooc fooocoooc fooocooooc dhoccooc feccoccccooccooas fooocooooc fecccoococoococooccoocooe
+
| year | #Rows | #Files | Size | Bytes Cached | Format | Increnental stats
I
fecooooc fecooooc feccoococac e ccooc feccoocooccooooc feccoococac feccoccccooococooooc
+
| 2013 | O | O | OB | NOT CACHED | TEXT | false
| 2014 | -1 | O | OB | NOT CACHED | TEXT | false
I
| Total | O | O | OB | OB [ [
I
fooocoooc fooocoooc fooocooooc dhoccooc feccoccccooccooas fooocooooc fecccoococoococooccoocooe
+

Note: Because the default COMPUTE STATS statement creates and updates statistics for all partitionsin a

E table, if you expect to frequently add new partitions, use the COMPUTE INCREMENTAL STATS syntax
instead, which lets you compute stats for a single specified partition, or only for those partitions that do not
aready have incrementa stats.

If checking each individual table isimpractical, due to alarge number of tables or views that hide the underlying base
tables, you can also check for missing statistics for a particular query. Use the EXPLAIN statement to preview query
efficiency before actually running the query. Use the query profile output available through the PROFILE command
ini npal a- shel | or theweb Ul to verify query execution and timing after running the query. Both the EXPLAIN
plan and the PROFILE output display awarning if any tables or partitionsinvolved in the query do not have statistics.

[l ocal host:21000] > create table no_stats (x int);
[l ocal host:21000] > explain select count(*) fromno_stats;

| Estimated Per-Host Requirenents: Menory=10. 00MB VCor es=1

| WARNI NG The followi ng tables are mi ssing rel evant table and/or colum s
tatistics. |
| incremental stats.no_stats

I
| 03: AGGREGATE [ FI NALI ZE]
|

| | output: count:merge(*)
I

||
I

14



Cloudera Runtime Performance Considerations

| 02: EXCHANGE [ UNPARTI TI ONED]
I

|| |

| 01: AGGREGATE

| | output: count(*)

|| |
| 00: SCAN HDFS [i ncrenental stats.no_stats]

|
| partitions=1/1 fil es=0 size=0B

Because Impala uses the partition pruning technique when possible to only evaluate certain partitions, if you have a

partitioned table with statistics for some partitions and not others, whether or not the EXPLAIN statement shows the
warning depends on the actual partitions used by the query. For example, you might see warnings or not for different
gueries against the same table;

-- No warning because all the partitions for the year 2012 have stats.
EXPLAIN SELECT ... FROMt1l WHERE year = 2012;

-- Mssing stats warni ng because one or nore partitions in this range
-- do not have stats.
EXPLAI N SELECT ... FROM t1 WHERE year BETWEEN 2006 AND 2009;

To confirm if any partitions at al in the table are missing statistics, you might explain a query that scans the entire
table, such as SELECT COUNT(*) FROM TABLE_NAME.

The most crucia piece of datain all the statistics is the number of rows in the table (for an unpartitioned or
partitioned table) and for each partition (for a partitioned table). The COMPUTE STATS statement always gathers
statistics about all columns, aswell as overall table statistics. If it isnot practical to do afull COMPUTE STATS or
COMPUTE INCREMENTAL STATS operation after adding a partition or inserting data, or if you can see that
Impalawould produce a more efficient plan if the number of rows was different, you can manually set the number of
rows through an ALTER TABLE statement:

-- Set total number of rows. Applies to both unpartitioned and partitioned
t abl es.

alter table TABLE _NAME set tbl properties(’' numRows' =" NEW VALUE , ' STATS CE
NERATED VI A STATS TASK' ='true');

-- Set total nunmber of rows for a specific partition. Applies to partitioned
tabl es only.

-- You nust specify all the partition key columms in the PARTI TI ON cl ause.

alter table TABLE NAME partition (KEYCOL1=VAL1, KEYCOL2=VAL2...) set thl prop

erties(' numRows' =' NEW VALUE' , ' STATS_GENERATED VI A STATS TASK ='true');

This statement avoids re-scanning any data files. For example:

alter table analysis _data set tblproperties(' numRows' ="' 1001000000, ' STATS
GENERATED VI A_STATS TASK' ='true');

15



Cloudera Runtime Performance Considerations

For a partitioned table, update both the per-partition number of rows and the number of rows for the whole table. For
example:

alter table partitioned data partition(year=2009, nonth=4) set tblproperties
(' nunRows' =' 30000' , ' STATS GENERATED VI A STATS TASK ='true');

alter table partitioned data set tblproperties ('nunRows'='1030000', 'STA

TS_GENERATED VI A STATS TASK' ='true');

In practice, the COMPUTE STATS statement, or COMPUTE INCREMENTAL STATS for a partitioned table,
should be fast and convenient enough that this technique is only useful for the very largest partitioned tables. Because
the column statistics might be left in a stale state, do not use this technique as a replacement for COMPUTE STATS.
Only use thistechnique if all other means of collecting statistics are impractical, or as alow-overhead operation that
you run in between periodic COMPUTE STATSor COMPUTE INCREMENTAL STATS operations.

Y ou can use the SET COLUMN STATS clause of ALTER TABLE to manually set or change column statistics. Only
use this technique in cases whereit isimpractical to run COMPUTE STATS or COMPUTE INCREMENTAL ST
ATS frequently enough to keep up with data changes for a huge table.

Y ou specify a case-insensitive symbolic name for the kind of statistics: numDV's, numNulls, avgSize, maxSize. The
key names and values are both quoted. This operation applies to an entire table, not a specific partition.

For example:

alter table t1 set colum stats x ('nunDVs'="2',"'nunNulls'="0");

The following examples walk through a sequence of SHOW TABLE STATS, SHOW COLUMN STATS, ALTE
R TABLE, and SELECT and INSERT statements to illustrate various aspects of how Impala uses statistics to help
optimize queries.

This example shows table and column statistics for the STORE column used in the TPC-DS benchmarks for decision
support systems. It isatiny table holding datafor 12 stores. Initially, before any statistics are gathered by a COMP
UTE STATS statement, most of the numeric fields show placeholder values of -1, indicating that the figures are
unknown. The figures that arefilled in are values that are easily countable or deducible at the physical level, such as
the number of files, total data size of the files, and the maximum and average sizes for data types that have a constant
sizesuch asINT, FLOAT, and TIMESTAMP.

[l ocal host:21000] > show table stats store;

fecooooc feccoococac feccoococac feccoococac +
| #Rows | #Files | Size | Format |
fooocoooc fooocooooc fooocooooc fooocooooc +
| -1 | 1 | 3.08KB | TEXT |
Focoocooe Fococococ Fococococ Fococococ +

Returned 1 row(s) in 0.03s
[l ocal host:21000] > show columm stats store;

TS S S S S S oo oS S S oo CES S S +-

-------- +

| Col um | Type | #Distinct Values | #Nulls | Max Size |

Avg Size |

dommemeeeeeeiaaaas dommeemea o mmemeeeeeea eemeaaa- dommemeea +

---------- +

| s_store_sk | I'NT | -1 | -1 | 4 | 4
|

| s_store_id | STRI NG | -1 | -1 | -1 | -1
|

| s_rec_start_date | TIMESTAMP | -1 | -1 | 16 | 16

16


http://www.tpc.org/tpcds/
http://www.tpc.org/tpcds/

Cloudera Runtime

Performance Considerations

| s_rec_end date | TIMESTAMP | -1 -1 16 [
|lg_closed_date_sk | INT | -1 -1 4 | 4
| s_stokiﬁane | STRI NG | -1 -1 -1 | -1
[ s_nunLer_enployees | INT | -1 -1 4 | 4
[ s_roLr_space | INT | -1 -1 4 | 4
| s_hourls | STRNG | -1 -1 -1 | -1
| s_nanLger | STRI NG | -1 -1 -1 | -1
[ s_mﬂLeLjd | INT | -1 -1 4 | 4
| s_geography_class | STRI NG | -1 -1 -1 |
|-i_narket_desc | STRI NG | -1 -1 -1 | -1
[ s_narLet_nanager | STRI NG | -1 -1 -1 | -1
[ s_div!sion_id | INT | -1 -1 4 | 4
| s_div!sion_nane | STRI NG | -1 -1 -1 [
|_:_conpanL_id | INT | -1 -1 4 | 4
| s_conLany_nane | STRI NG | -1 -1 -1 | -1
| s_strLet_nunber | STRI NG | -1 -1 -1 | -1
[ s_strLet_nane | STRI NG | -1 -1 -1 |
|_g_streetltype | STRI NG | -1 -1 -1 | -1
| s_sui{e_nunber | STRI NG | -1 -1 -1 | -1
| s_citly | STRING | -1 -4 -4 | -1
| s_coulnty | STRNG | -1 -1 -1 |
|-i_state| | STRNG | -1 -1 -l | -1
[ s_zipI | STRI NG | -1 -1 -1 | -1
| s_couLtry | STRI NG | -1 -1 -1 | -1
[ s_gntLoffset | FLOAT | -1 -1 4 | 4
[ s_tax_Lercentage | FLOAT | -1 -1 4 | 4
+------! ------------- Fooccooooooo. Foocoooooocooooooos Fooccooooc Fooccooooooc +- -

Returned 29 rowm(s) in 0.04s

With the Hive ANALY ZE TABLE statement for column statistics, you had to specify each column for which to
gather statistics. The Impala COMPUTE STATS statement automatically gathers statistics for all columns, because
it reads through the entire table relatively quickly and can efficiently compute the values for all the columns. This
example shows how after running the COMPUTE STATS statement, statistics arefilled in for both the table and all
its columns:

[l ocal host:21000] > conpute stats store;

17



Cloudera Runtime Performance Considerations

feccoococococooococcooococcooooococoooooocooooc +
| summary |
feccoococccocoococcooococcooocococoooooocooooc +
| Updated 1 partition(s) and 29 colum(s).

fococcocococcoccooccoccoocoocoooocoocoocooooocs +

Returned 1 row(s) in 1.88s
[l ocal host:21000] > show table stats store;

fecooooc feccoococac feccoococac feccoococac +
| #Rows | #Files | Size | For mat

fooocoooc fooocooooc fooocooooc fooocooooc +
| 12 | 1 | 3.08KB | TEXT |
Focoocooe Fococococ Fococococ Fococococ +

Returned 1 row(s) in 0.02s
[l ocal host:21000] > show columm stats store;

foccoocococcoococooooc foccoococooc feoccoocococcoococooc foccoooac foccococooc +-

__________________ +

| Col um | Type | #Distinct Values | #Nulls | Max Size | Av

g Size |

feccoocococooococooooc feccoococooc feccoococcoccoococooc feccoocooc feccococooc +-

__________________ +

| s_store_sk | INT | 12 | -1 | 4 | 4
I

| s_store_id | STRI NG | 6 | -1 | 16 | 16
I

| s_rec_start_date | TIMESTAMP | 4 | -1 | 16 | 16
I

| s_rec_end date | TIMESTAMP | 3 | -1 | 16 | 16
I

| s_closed_date_ sk | INT | 3 | -1 | 4 | 4
I

| s_store_nane | STRI NG | 8 | -1 | 5 |

4,25 |

| s_nunber _enpl oyees | | NT | 9 | -1 | 4 | 4
I

| s_floor_space | INT | 10 | -1 | 4 | 4
I

| s_hours | STRI NG | 2 | -1 | 8 | 7

083300113677979

| s_manager | STRI NG | 7 | -1 | 15 | 12
I

| s_market_id | INT | 7 | -1 | 4 | 4
I

| s_geography class | STRING | 1 | -1 | 7 | 7

| s_market desc | STRI NG | 10 | -1 | 94 | 55

.5 [

| s_market _manager | STRI NG | 7 | -1 | 16 | 14
I

| s division_id | INT | 1 | -1 | 4 | 4
I

| s_division_nane | STRI NG | 1 | -1 | 7 | 7
I

| s_company_id | INT | 1 | -1 | 4 | 4
I

| s_conpany_nane | STRI NG | 1 | -1 | 7 | 7
I

| s_street_ nunber | STRI NG | 9 | -1 | 3 | 2

833300113677979

| s_street_nane | STRI NG | 12 | -1 | 11 |

6.583300113677979

| s_street_type | STRI NG | 8 | -1 | 9 | 4.

833300113677979

| s_suite_ nunber | STRI NG | 11 | -1 | 9 |

8.25 [

18



Cloudera Runtime Performance Considerations

| s city | STRI NG | 2 | -1 | 8 | 6.
? s_county l | STRI NG | 1 | -1 | 17 | 17
| s_state | | STRI NG | 1 | -1 | 2 | 2
| s_zip | | STRI NG | 2 | -1 | 5 | 5
| s_country l | STRI NG | 1 | -1 | 13 | 13
| s_gnt_offset | | FLQAT | 1 | -1 | 4 | 4
| s_tax_percent alge | FLOAT | 5 | -1 | 4 | 4
+|+ ----------- focccccccoooooooooc foccocoooc focccoooooc +-
__________________ +

Returned 29 rowms) in 0.04s

The following example shows how statistics are represented for a partitioned table. In this case, we have set up a
table to hold the world's most trivial census data, asingle STRING field, partitioned by a' Y EAR column. The table
statistics include a separate entry for each partition, plusfinal totals for the numeric fields. The column statistics
include some easily deducible facts for the partitioning column, such as the number of distinct values (the number of
partition subdirectories).

| ocal host: 21000] > descri be census;

| nane | string [ [
| year | smallint | |

Returned 2 row(s) in 0.02s
[l ocal host:21000] > show table stats census;

Focooooc Focooooc foccoooac foccooc Foccooocooc +
| year | #Rows | #Files | Size | Format |
foocoooc foocoooc fooococoooc occooc feoococooooc +
| 2000 | -1 | O | OB | TEXT |
| 2004 | -1 | O | OB | TEXT |
| 2008 | -1 | O | OB | TEXT |
| 2010 | -1 | O | OB | TEXT |
| 2011 | O | 1 | 22B | TEXT |
| 2012 | -1 | 1 | 22B | TEXT |
| 2013 | -1 | 1 | 231B | PARQUET

| Total | O | 3 | 275B | |
fecooooc fecooooc feccoococac e ccooc feccoocooc +

Returned 8 row(s) in 0.02s
[l ocal host:21000] > show col unmm stats census;

fooococoooc feoococooccoac focococoococococooccoocos fooococoooc feoococooccoac feoococooccoac +
| Columm | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
R dommeeeea e e e eeea R demmemeea dommemeea +
| nane | STRING | -1 | -1 | -1 | -1 [
| year | SMALLINT | 7 | -1 | 2 | 2 |
fooocooooc fesccocoooooc feccooococoococoococoocos fooocooooc fesccocoooooc fesccocoooooc +

Returned 2 row(s) in 0.02s
The following example shows how the statistics are filled in by a COMPUTE STATS statement in Impala.

[l ocal host:21000] > conpute stats census;

| Updated 3 partition(s) and 1 colum(s). |

19



Cloudera Runtime Performance Considerations

Returned 1 row(s) in 2.16s
[l ocal host:21000] > show table stats census;

Feoccooas Feoccooas Fococoooc Focoooc Foccocasos +
| year | #Rows | #Files | Size | Format |
Foococooc Foococooc Fooocooooe Fooocooc Fooocooocococ +
| 2000 | -1 | O | OB | TEXT [
| 2004 | -1 | O | OB | TEXT [
| 2008 | -1 | O | OB | TEXT [
| 2010 | -1 | O | OB | TEXT [
| 2011 | 4 | 1 | 22B | TEXT [
| 2012 | 4 | 1 | 22B | TEXT [
| 2013 | 1 | 1 | 231B | PARQUET |
| Total | 9 | 3 | 275B | |
CT CT CT C T T +

Returned 8 row(s) in 0.02s
[l ocal host:21000] > show col utm stats census;

Fococococ Focococococ Focococococococoococ Fococococ Focococococ Focococococ +
| Colum | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
deemaaoo R e deemaaoo R A +
| name | STRRNG | 4 | -1 | 5 | 4.5 [
| year | SMALLINT | 7 | -1 | 2 | 2 [
fooococoooc feoococooccoac focococoococococooccoocos fooococoooc feoococooccoac feoococooccoac +

Returned 2 row(s) in 0.02s

Y ou can see how Impala executes a query differently in each case by observing the EXPLAIN output before and after
collecting statistics. Measure the before and after query times, and examine the throughput numbers in before and
after SUMMARY or PROFILE output, to verify how much the improved plan speeds up performance.

Use the COMPUTE STATS statement to collect table and column statistics. The COMPUTE STATS variants offer
different tradeoffs between computation cost, staleness, and maintenance workflows.

i Important:
For a particular table, use either COMPUTE STATS or COMPUTE INCREMENTAL STATS, but never
combine the two or aternate between them. If you switch from COMPUTE STATS to COMPUTE INCR
EMENTAL STATSduring the lifetime of atable, or vice versa, drop all statistics by running DROP STA
TS before making the switch.

The COMPUTE STATS command collects and sets the table-level and partition-level row counts aswell asal
column statistics for a given table. The collection process is CPU-intensive and can take along time to compl ete for
very large tables.

To speed up COMPUTE STATS consider the following options which can be combined.

¢ Limit the number of columns for which statistics are collected to increase the efficiency of COMPUTE STATS.
Queries benefit from statistics for those columns involved in filters, join conditions, group by or partition by
clauses. Other columns are good candidates to exclude from COMPUTE STATS. Thisfeature is available since
Impala2.12.

« Setthe MT_DOP query option to use more threads within each participating impalad to compute the statistics
faster - but not more efficiently. Note that computing stats on alarge table with ahigh MT_DOP value can
negatively affect other queries running at the same time if the COMPUTE STATS claims most CPU cycles.

« Consider the experimental extrapolation and sampling features (see below) to further increase the efficiency of
computing stats.

COMPUTE STATS sintended to be run periodicaly, e.g. weekly, or on-demand when the contents of atable have
changed significantly. Due to the high resource utilization and long response time of COMPUTE STATS, it is most
practical to run it in a scheduled maintenance window where the Impala cluster is idle enough to accommodate

20



Cloudera Runtime Performance Considerations

the expensive operation. The degree of change that qualifies as “significant” depends on the query workload, but
typicaly, if 30% of the rows have changed then it is recommended to recompute statistics.

If you reload a complete new set of datafor atable, but the number of rows and number of distinct values for each
column isrelatively unchanged from before, you do not need to recompute stats for the table.

Impala supports extrapolation and sampling to alleviate the following common issues for computing and maintaining
statistics on very large tables:

» Newly added partitions do not have row count statistics. Table scans that only access those new partitions
aretreated as not having stats. Similarly, table scans that access both new and old partitions estimate the scan
cardinality based on those old partitions that have stats, and the new partitions without stats are treated as having 0
rows.

« Therow counts of existing partitions become stale when datais added or dropped.

« Computing stats for tables with a 100,000 or more partitions might fail or be very slow due to the high cost of
updating the partition metadata in the Hive Metastore.

« With transient compute resources it isimportant to minimize the time from starting a new cluster to successfully
running queries. Since the cluster might be relatively short-lived, users might prefer to quickly collect stats that
are "good enough” as opposed to spending alot of time and resources on computing full-fidelity stats.

For very large tables, it is often wasteful or impractical to run afull COMPUTE STATS to address the scenarios
above on afrequent basis.

The sampling feature makes COMPUTE STATS more efficient by processing a fraction of the table data, and the
extrapolation feature aims to reduce the frequency at which COMPUTE STATS needs to be re-run by estimating the
row count of new and modified partitions.

The sampling and extrapolation features are disabled by default. They can be enabled globally or for specific tables,
asfollows.

» Settheimpalad start-up configuration --enable_stats extrapolation to enable the features globally.

« Toenablethem only for a specific table, set the impala.enable.stats.extrapolation table property to true for
the table. The table-level property overrides the global setting, so it is aso possible to enable sampling and
extrapolation globally, but disable it for specific tables by setting the table property to false. For example:

ALTER TABLE nytabl e test table SET TBLPROPERTI ES("i npal a. enabl e. stats. ex
trapol ati on"="true");

Note: Why are these features experimental ? Due to their probabilistic nature it is possible that these features
perform pathologically poorly on tables with extreme data/file/size distributions. Since it is not feasible for
usto test all possible scenarios we only cautiously advertise these new capabilities. That said, the features
have been thoroughly tested and are considered functionally stable. If you decide to give these features atry,
please tell us about your experience at user@impala.apache.org! We rely on user feedback to guide future
improvements in statistics collection.

Stats Extrapolation

The main idea of stats extrapolation isto estimate the row count of new and modified partitions
based on the result of the last COMPUTE STATS. Enabling stats extrapol ation changes the
behavior of COMPUTE STATS, aswell asthe cardinality estimation of table scans. COMPUTE
STATS no longer computes and stores per-partition row counts, and instead, only computes
atable-level row count together with the total number of file bytesin the table at that time. No
partition metadatais modified. The input cardinality of atable scan is estimated by converting
the data volume of relevant partitionsto arow count, based on the table-level row count and file
bytes statistics. It is assumed that within the same table, different sets of files with the same data
volume correspond to the similar number of rows on average. With extrapolation enabled, the scan
cardinality estimation ignores per-partition row counts. It only relies on the table-level statistics and
the scanned data volume.

21



Cloudera Runtime Performance Considerations

The SHOW TABLE STATS and EXPLAIN commands distinguish between row counts stored in
the Hive Metastore, and the row counts extrapol ated based on the above process.

Sampling

A TABLESAMPLE clause may be added to COMPUTE STATS to limit the percentage of datato
be processed. The final statistics are obtained by extrapolating the statistics from the data sample
over the entire table. The extrapolated statistics are stored in the Hive Metastore, just asif no
sampling was used. The following example runs COMPUTE STATS over a 10 percent data sample.

COWPUTE STATS test_table TABLESAMPLE SYSTEM 10) ;

We have found that a 10 percent sampling rate typically offers a good tradeoff between statistics
accuracy and execution cost. A sampling rate well below 10 percent has shown poor resultsand is
not recommended.

Important: Sampling-based techniques sacrifice result accuracy for execution

& efficiency, so your mileage may vary for different tables and columns depending on
their data distribution. The extrapolation procedure Impala uses for estimating the
number of distinct values per column isinherently non-detetministic, so your results
may even vary between runs of COMPUTE STATS TABLESAMPLE, evenif no
data has changed.

In Impala 2.1.0 and higher, you can usethe COMPUTE INCREMENTAL STATS and DROP INCREMENTAL
STATS commands. The INCREMENTAL clauses work with incremental statistics, a specialized feature for
partitioned tables.

When you compute incremental statistics for a partitioned table, by default Impala only processes those partitions that
do not yet have incremental statistics. By processing only newly added partitions, you can keep statistics up to date
without incurring the overhead of reprocessing the entire table each time.

Y ou can also compute or drop statistics for a specified subset of partitions by including a PARTITION clausein the
COMPUTE INCREMENTAL STATSor DROPINCREMENTAL STATS statement.

i Important:
When you run COMPUTE INCREMENTAL STATS on atable for the first time, the statistics are
computed again from scratch regardless of whether the table already has statistics. Therefore, expect a one-
time resource-intensive operation for scanning the entire table when running COMPUTE INCREMENTAL
STATSfor the first time on agiven table.

The metadata for incremental statistics is handled differently from the original style of statistics:

e IssuingaCOMPUTE INCREMENTAL STATS without a partition clause causes Impalato compute incremental
stats for all partitions that do not already have incremental stats. This might be the entire table when running the
command for the first time, but subsequent runs should only update new partitions. Y ou can force updating a
partition that already has incremental stats by issuing a DROP INCREMENTAL STATS before running COMP
UTE INCREMENTAL STATS.

e TheSHOW TABLE STATSand SHOW PARTITIONS statements now include an additional column showing
whether incremental statistics are available for each column. A partition could already be covered by the original
type of statistics based on aprior COMPUTE STATS statement, as indicated by a value other than -1 under the
#Rows column. Impala query planning uses either kind of statistics when available.

* COMPUTE INCREMENTAL STATS takes more time than COMPUTE STATS for the same volume of data.
Therefore it is most suitable for tables with large data volume where new partitions are added frequently, making
it impractical to run afull COMPUTE STATS operation for each new partition. For unpartitioned tables, or
partitioned tables that are loaded once and not updated with new partitions, use the original COMPUTE STATS
syntax.

e COMPUTE INCREMENTAL STATS uses some memory in the cat al ogd process, proportional to the number
of partitions and number of columns in the applicable table. The memory overhead is approximately 400 bytes for

22



Cloudera Runtime Performance Considerations

each column in each partition. This memory isreserved in the cat al ogd daemon, the st at est or ed daemon,
and in each instance of thei nmpal ad daemon.

* Incases where new files are added to an existing partition, issue a REFRESH statement for the table, followed
by aDROP INCREMENTAL STATSand COMPUTE INCREMENTAL STATS sequence for the changed
partition.

e The DROPINCREMENTAL STATS statement operates only on a single partition at atime. To remove statistics
(whether incremental or not) from all partitions of atable, issue aDROP STATS statement with no INCREMEN
TAL or PARTITION clauses.

The following considerations apply to incremental statistics when the structure of an existing table is changed (known
as schema evolution):

e |f youusean ALTER TABLE statement to drop a column, the existing statistics remain valid and COMPUTE
INCREMENTAL STATS does not rescan any partitions.

e |If youusean ALTER TABLE statement to add a column, Impalarescans al partitions and fillsin the appropriate
column-level values the next timeyou run COMPUTE INCREMENTAL STATS.

» If youusean ALTER TABLE statement to change the data type of a column, Impalarescans all partitions and
fillsin the appropriate column-level values the next time you run COMPUTE INCREMENTAL STATS.

« If youusean ALTER TABLE statement to change the file format of atable, the existing statistics remain valid
and a subseguent COMPUTE INCREMENTAL STATS does not rescan any partitions.

Runtime filtering is a wide-ranging optimization feature available in Impala. When only a fraction of the data

in atableis needed for a query against a partitioned table or to evaluate ajoin condition, Impala determines the
appropriate conditions while the query is running, and broadcasts that information to al thei npal ad nodes that
are reading the table so that they can avoid unnecessary 1/O to read partition data, and avoid unnecessary network
transmission by sending only the subset of rows that match the join keys across the network.

Runtime filtering is primarily used:

» To optimize queries against large partitioned tables (under the name dynamic partition pruning)
e Tooptimizejoins of large tables

The following terms are used in this topic to describe runtime filtering.
plan fragment

Impal a decomposes each query into smaller units of work that are distributed across the cluster.
Wherever possible, a data block is read, filtered, and aggregated by plan fragments executing on the
same host. For some operations, such as joins and combining intermediate results into afinal result
set, datais transmitted across the network from one Impala daemon to another.

SCAN and HASH JOIN plan nodes

In the Impala query plan, a scan node performsthe 1/0 to read from the underlying datafiles.
Although thisis an expensive operation from the traditional database perspective, Hadoop clusters
and Impala are optimized to do thiskind of I/0O in ahighly parallel fashion. The major potential
cost savings come from using the columnar Parquet format (where Impala can avoid reading data
for unneeded columns) and partitioned tables (where Impala can avoid reading data for unneeded
partitions).

Most Impalajoins use the hash join mechanism. (It is only fairly recently that Impala started using
the nested-loop join technique, for certain kinds of non-equijoin queries.) In a hash join, when
evaluating join conditions from two tables, Impala constructs a hash table in memory with all the
different column values from the table on one side of the join. Then, for each row from the table on
the other side of the join, Impala tests whether the relevant column values are in this hash table or
not.

hash join

23



Cloudera Runtime

Performance Considerations

In ahash join, when evaluating join conditions from two tables, Impala constructs a hash table in
memory with all the different column values from the table on one side of the join. Then, for each
row from the table on the other side of the join, Impala tests whether the relevant column values are
in this hash table or not.

* A hash join node constructs such an in-memory hash table, then performs the comparisonsto
identify which rows match the relevant join conditions and should be included in the result set
(or at least sent on to the subsequent intermediate stage of query processing). Because some
of the input for a hash join might be transmitted across the network from another host, it is
especially important from a performance perspective to prune out ahead of time any datathat is
known to be irrelevant.

The more distinct values are in the columns used as join keys, the larger the in-memory hash
table and thus the more memory required to process the query.

broadcast join vs shufflejoin

In abroadcast join, the table from one side of the join (typically the smaller table) is sent in its
entirety to al the hostsinvolved in the query. Then each host can compare its portion of the data
from the other (larger) table against the full set of possible join keys. In ashufflejoin, thereis
no obvious “smaller” table, and so the contents of both tables are divided up, and corresponding
portions of the data are transmitted to each host involved in the query.

A shufflejoin is sometimes referred to in Impala as a partitioned join.

build and probe phases

When Impala processes ajoin query, the build phase is where the rows containing the join key
columns, typically for the smaller table, are transmitted across the network and built into an in-
memory hash table data structure on one or more destination nodes. The probe phase is where data
isread locally (typically from the larger table) and the join key columns are compared to the values
in the in-memory hash table. The corresponding input sources (tables, subqueries, and so on) for
these phases are referred to as the build side and the probe side.

Thefilter that is transmitted between plan fragmentsis essentially alist of valuesfor join key columns. When thislist
of valuesis transmitted in time to a scan node, Impala can filter out non-matching values immediately after reading
them, rather than transmitting the raw data to another host to compare against the in-memory hash table on that host.

Impala supports the following types of filters based on the payload:

Bloom filter: For HDFS-based tables, the Bloom filter uses a probability-based algorithm to determine all possible
matching values. The probability-based aspects means that the filter might include some non-matching values, but
if so, that does not cause any inaccuracy in the final results.

Min-max filter: Thefilter is a data structure representing a minimum and maximum value. These filters are passed
to Kudu to reduce the number of rows returned to Impala when scanning the probe side of the join. Thisfilter
currently only applies to Kudu tables.

Based on how filters from all join instances are aggregated, each of the above filters can be categorized as one of the
following:

Broadcast filter: A broadcast filter reflects the complete list of relevant values and can be immediately evaluated
by a scan node.

Broadcast filters are also classified aslocal or global. With alocal broadcast filter, the information in the filter

is used by a subsequent query fragment that is running on the same host that produced the filter. A non-local
broadcast filter must be transmitted across the network to a query fragment that is running on a different host.
Impala designates 3 hosts to each produce non-local broadcast filters, to guard against the possibility of asingle
slow host taking too long. Depending on the setting of the RUNTIME_FILTER_MODE query option (LOCAL
or GLOBAL), Impala either uses a conservative optimization strategy where filters are only consumed on the
same host that produced them, or a more aggressive strategy where filters are eligible to be transmitted across the
network. The default for runtimefiltering is the GLOBAL setting.

24



Cloudera Runtime Performance Considerations

» Partitioned filter: A partitioned filter reflects only the values processed by one host in the cluster; all the
partitioned filters must be combined into one (by the coordinator node) before the scan nodes can use the results to
accurately filter the data asit isread from storage.

Parquet tables get the most benefit from the runtime filtering optimizations. Runtime filtering can speed up join
queries against partitioned or unpartitioned Parquet tables, and single-table queries against partitioned Parquet tables.

For other file formats (text, Avro, RCFile, and SequenceFile), runtime filtering speeds up queries against partitioned
tables only. Because partitioned tables can use a mixture of formats, |mpala produces the filtersin all cases, even if
they are not ultimately used to optimize the query.

Because it takes time to produce runtime filters, especially for partitioned filters that must be combined by the
coordinator node, there is atimeinterval above which it is more efficient for the scan nodes to go ahead and construct
their intermediate result sets, even if that intermediate datais larger than optimal. If it only takes a few seconds to
produce the filters, it is worth the extratime if pruning the unnecessary data can save minutesin the overall query
time. Y ou can specify the maximum wait time in milliseconds using the RUNTIME_FILTER_WAIT_TIME_MS
query option.

By default, each scan node waits for up to 1 second (1000 milliseconds) for filtersto arrive. If all filters have not
arrived within the specified interval, the scan node proceeds, using whatever filters did arrive to help avoid reading

unnecessary data. If afilter arrives after the scan node begins reading data, the scan node applies that filter to the data
that isread after the filter arrives, but not to the data that was already read.

If the cluster isrelatively busy and your workload contains many resource-intensive or long-running queries, consider
increasing the wait time so that complicated queries do not miss opportunities for optimization. If the cluster is lightly
loaded and your workload contains many small queries taking only afew seconds, consider decreasing the wait time
to avoid the 1 second delay for each query.

The following query options control runtime filtering.
e RUNTIME_FILTER_MODE

This query option controls how extensively the filters are transmitted between hosts. By defaullt, it is set to the
highest level (GLOBAL).

» The other query options are tuning knobs that you typically only adjust after doing performance testing, and that
you might want to change only for the duration of a single expensive query.

* MAX_NUM_RUNTIME_FILTERS
 DISABLE_ROW_RUNTIME_FILTERING
* RUNTIME_FILTER_MAX_SIZE

* RUNTIME_FILTER_MIN_SIZE

* RUNTIME_BLOOM_FILTER_SIZE

In the same way the query plan displayed by the EXPLAIN statement includes information about predicates used by
each plan fragment, it a so includes annotations showing whether a plan fragment produces or consumes a runtime

filter.

« A plan fragment that produces afilter includes an annotation such as runtime filters: FILTER ID <-
TABLE.COLUMN

* A plan fragment that consumes afilter includes an annotation such as runtime filters: FILTER _ID ->
TABLE.COLUMN

25



Cloudera Runtime Performance Considerations

Setting the query option EXPLAIN_L EVEL =2 adds additional annotations showing the type of the filter:

e FILTER ID[bloom] (for HDFS-based tables)
e FILTER ID[min_max] (for Kudu tables)

The query profile (displayed by the PROFILE command ini npal a- shel | ) contains both the EXPLAIN plan and
more detailed information about the internal workings of the query. The profile output includes the Filter routing table
section with information about each filter based onitsID.

These tuning and troubleshooting procedures apply to queries that are resource-intensive enough, long-running
enough, and frequent enough that you can devote special attention to optimizing them individually.

Use the EXPLAIN statement and examine the runtime filters: lines to determine whether runtime filters are being
applied to the WHERE predicates and join clauses that you expect. For example, runtime filtering does not apply to
queries that use the nested loop join mechanism due to non-equijoin operators.

Make sure statistics are up-to-date for al tables involved in the queries. Use the COMPUTE STATS statement after
loading data into non-partitioned tables, and COMPUTE INCREMENTAL STATS after adding new partitions to
partitioned tables.

If join queriesinvolving large tables use unique columns as the join keys, for example joining a primary key column
with aforeign key column, the overhead of producing and transmitting the filter might outweigh the performance
benefit because not much data could be pruned during the early stages of the query. For such queries, consider setting
the query option RUNTIME_FILTER_MODE=0OFF.

Use partitioning to speed up queries that retrieve data based on values from one or more columns.

Partitioning is atechnique for physically dividing the data during loading based on values from one or more columns.
For example, with a school_records table partitioned on ayear column, there is a separate data directory for each
different year value, and all the data for that year is stored in adatafilein that directory. A query that includes a
WHERE condition such as YEAR=1966, Y EAR IN (1989,1999), or YEAR BETWEEN 1984 AND 1989 can
examine only the data files from the appropriate directory or directories, greatly reducing the amount of datato read
and test.

Parquet is a popular format for partitioned Impala tables because it is well suited to handle huge data volumes.

Y ou can add, drop, set the expected file format, or set the HDFS location of the datafiles for individual partitions
within an Impalatable.

Partitioning is typically appropriate for:

» Tablesthat are very large, where reading the entire data set takes an impractical amount of time.

» Tablesthat are dways or almost always queried with conditions on the partitioning columns. In our example of
atable partitioned by year, SELECT COUNT(*) FROM school _records WHERE year = 1985 is efficient, only
examining asmall fraction of the data; but SELECT COUNT(*) FROM school_records has to process a separate
datafile for each year, resulting in more overall work than in an unpartitioned table. Y ou would probably not
partition thisway if you frequently queried the table based on last name, student ID, and so on without testing the
year.

e Columnsthat have reasonable cardinality (number of different values). If a column only has a small number
of values, for example Male or Female, you do not gain much efficiency by eliminating only about 50% of the
datato read for each query. If a column has only afew rows matching each value, the number of directoriesto
process can become alimiting factor, and the data file in each directory could be too small to take advantage of
the Hadoop mechanism for transmitting data in multi-megabyte blocks. For example, you might partition census

26



Cloudera Runtime Performance Considerations

data by year, store sales data by year and month, and web traffic data by year, month, and day. (Some users with
high volumes of incoming data might even partition down to the individual hour and minute.)

» Datathat already passes through an extract, transform, and load (ETL) pipeline. The values of the partitioning
columns are stripped from the original data files and represented by directory names, so loading datainto a
partitioned table involves some sort of transformation or preprocessing.

In terms of Impala SQL syntax, partitioning affects these statements:

e CREATE TABLE: You specify aPARTITIONED BY clause when creating the table to identify names and data
types of the partitioning columns. These columns are not included in the main list of columns for the table.

e CREATE TABLE AS SELECT: Usethe PARTITIONED BY clauseto create a partitioned table, copy datainto
it, and create new partitions based on the values in the inserted data.

« ALTER TABLE: Add or drop partitions, to work with different portions of a huge data set. Y ou can designate the
HDFS directory that holds the data files for a specific partition. With data partitioned by date values, you might
“age out” datathat is no longer relevant.

If you are creating a partition for the first time and specifying its location, for maximum efficiency, use asingle
ALTER TABLE statement including both the ADD PARTITION and LOCATIONCclauses, rather than separate
statements with ADD PARTITION and SET LOCATION clauses.

« INSERT: When you insert data into a partitioned table, you identify the partitioning columns. One or more values
from each inserted row are not stored in data files, but instead determine the directory where that row value is
stored. Y ou can aso specify which partition to load a set of datainto, with INSERT OVERWRITE statements;
you can replace the contents of a specific partition but you cannot append data to a specific partition.

By default, if an INSERT statement creates any new subdirectories underneath a partitioned table, those
subdirectories are assigned default HDFS permissions for the impala user. To make each subdirectory have the
same permissions as its parent directory in HDFS, specify the ##insert_inherit_permissions startup option for the
Impala Daemon.

« Although the syntax of the SELECT statement is the same whether or not the table is partitioned, the way queries
interact with partitioned tables can have a dramatic impact on performance and scalability. The mechanism that
lets queries skip certain partitions during a query is known as partition pruning.

e SHOW PARTITIONS: Displays information about each partition in atable.

Specifying all the partition columnsin a SQL statement is called static partitioning, because the statement affects a
single predictable partition. For example, you use static partitioning with an ALTER TABLE statement that affects
only one partition, or with an INSERT statement that inserts all values into the same partition:

I NSERT | NTO t1 PARTI TI ON(x=10, y='"a') SELECT cl1 FROM sone_ot her t abl e;

When you specify some partition key columns in an INSERT statement, but leave out the values, Impala determines
which partition to insert. This technique is called dynamic partitioning.

| NTSERT I NTO t1 PARTITI ON(x, y='b') SELECT cl1, c2 FROM sone_ot her _t abl e;

-- Create new partition if necessary based on vari able year, nonth, and day;
insert a single val ue.

I NSERT | NTO weat her PARTI TI ON (year, nonth, day) SELECT 'cloudy', 2014, 4, 21;

-- Create new partition if necessary for specified year and nonth but variab

| e day; insert a single value.

I NSERT | NTO weat her PARTI TI ON (year=2014, nont h=04, day) SELECT 'sunny', 22;

The more key columns you specify in the PARTITION clause, the fewer columns you need in the SELECT list. The
trailing columnsin the SELECT list are substituted in order for the partition key columns with no specified value.

27



Cloudera Runtime Performance Considerations

The REFRESH statement is typically used with partitioned tables when new data files are loaded into a partition by
some non-Impala mechanism, such as a Hive or Spark job. The REFRESH statement makes Impala aware of the new
datafiles so that they can be used in Impala queries. Because partitioned tables typically contain a high volume of
data, the REFRESH operation for afull partitioned table can take significant time.

You caninclude a PARTITION (PARTITION_SPEC) clause in the REFRESH statement so that only asingle
partition is refreshed. For example, REFRESH big_table PARTITION (year=2017, month=9, day=30). The
partition spec must include all the partition key columns.

The columns you choose as the partition keys should be ones that are frequently used to filter query resultsin
important, large-scal e queries. Popular examples are some combination of year, month, and day when the data has
associated time values, and geographic region when the data is associated with some place.

« For time-based data, split out the separate parts into their own columns, because Impala cannot partition based on
aTIMESTAMP column.

« The datatype of the partition columns does not have a significant effect on the storage required, because the
values from those columns are not stored in the data files, rather they are represented as strings inside HDFS
directory names.

* You can enable the OPTIMIZE_PARTITION_KEY_SCANS query option to speed up queries that only refer
to partition key columns, such as SELECT MAX(year). This setting is not enabled by default because the query
behavior is slightly different if the table contains partition directories without actual datainside.

e All the partition key columns must be scalar types.

«  When Impala queries data stored in HDFS, it is most efficient to use multi-megabyte files to take advantage of
the HDFS block size. For Parquet tables, the block size (and ideal size of the datafiles) is 256 MB.. Therefore,
avoid specifying too many partition key columns, which could result in individua partitions containing only small
amounts of data. For example, if you receive 1 GB of data per day, you might partition by year, month, and day;
whileif you receive 5 GB of data per minute, you might partition by year, month, day, hour, and minute. If you
have data with a geographic component, you might partition based on postal code if you have many megabytes of
data for each postal code, but if not, you might partition by some larger region such as city, state, or country. state

If you frequently run aggregate functions such as MIN(), MAX (), and COUNT(DISTINCT) on partition key columns,
consider enabling the OPTIMIZE_PARTITION_KEY_SCANS query option, which optimizes such queries.

Partitioned tables have the flexibility to use different file formats for different partitions. For example, if you
originally received data in text format, then received new datain RCFile format, and eventually began receiving data
in Parquet format, al that data could reside in the same table for queries. Y ou just need to ensure that the tableis
structured so that the data files that use different file formats reside in separate partitions.

For example, hereis how you might switch from text to Parquet data as you receive data for different years:

[l ocal host:21000] > CREATE TABLE census (nane STRI NG PARTITI ONED BY (year S

MALLI NT) ;

[l ocal host:21000] > ALTER TABLE census ADD PARTI TI ON (year=2012); -- Text
format;

[l ocal host:21000] > ALTER TABLE census ADD PARTI TI ON (year =2013); -- Text f

ormat switches to Parquet before data | oaded;
[l ocal host: 21000] > ALTER TABLE census PARTI TI ON (year =2013) SET FI LEFORVAT

PARQUET;

[l ocal host:21000] > I NSERT | NTO census PARTI TI ON (year=2012) VALUES (' Snmith'
), (" Jones"), ('Lee'), (' Singh);

[l ocal host:21000] > I NSERT | NTO census PARTI TI ON (year=2013) VALUES ('Flo
res'), (' Bogonol ov'), (' Cooper'), (' Appi ah');

28



Cloudera Runtime Performance Considerations

At this point, the HDFS directory for year=2012 contains a text-format datafile, while the HDFS directory for year
=2013 contains a Parquet datafile. As always, when loading non-trivial data, you would use INSERT ... SELECT
or LOAD DATA to import datain large batches, rather than INSERT ... VALUES which produces small files that are
inefficient for real-world queries.

For other file types that Impala cannot create natively, you can switch into Hive and issue the ALTER TABLE ...
SET FILEFORMAT statements and INSERT or LOAD DATA statements there. After switching back to Impala,
issue a REFRESH TABLE_NAME statement so that Impala recognizes any partitions or new data added through Hive.

What happens to the data files when a partition is dropped depends on whether the partitioned table is designated as
internal or external. For an internal (managed) table, the data files are deleted. For example, if datain the partitioned
tableis acopy of raw datafiles stored elsewhere, you might save disk space by dropping older partitions that are no
longer required for reporting, knowing that the original datais still available if needed later. For an external table, the
datafiles are left alone. For example, dropping a partition without deleting the associated files lets Impala consider
asmaller set of partitions, improving query efficiency and reducing overhead for DDL operations on the table; if the
datais needed again later, you can add the partition again.

Kudu tables use a more fine-grained partitioning scheme than tables containing HDFS data files. Y ou specify a PART
ITION BY clause with the CREATE TABLE statement to identify how to divide the values from the partition key
columns.

Because the COMPUTE STATS statement can be resource-intensive to run on a partitioned table as new partitions
are added, Impalaincludes a variation of this statement that allows computing statistics on a per-partition basis such
that stats can be incrementally updated when new partitions are added.

The COMPUTE INCREMENTAL STATS variation computes statistics only for partitions that were added or
changed since the last COMPUTE INCREMENTAL STATS statement, rather than the entire table. It istypically
used for tableswhere afull COMPUTE STATS operation takes too long to be practical each time a partition is added
or dropped.

Partition pruning refers to the mechanism where a query can skip reading the data files corresponding to one or more
partitions.

If you can arrange for queries to prune large numbers of unnecessary partitions from the query execution plan, the
queries use fewer resources and are thus proportionally faster and more scalable.

For example, if atableis partitioned by columns YEAR, MONTH, and DAY, then WHERE clauses such as WHER
E year = 2013, WHERE year < 2010, or WHERE year BETWEEN 1995 AND 1998 allow Impalato skip the data
filesin all partitions outside the specified range. Likewise, WHERE year = 2013 AND month BETWEEN 1 AND 3
could prune even more partitions, reading the data files for only a portion of one year.

If aview applies to a partitioned table, any partition pruning considers the clauses on both the original query and any
additional WHERE predicates in the query that refersto the view.

In queriesinvolving both analytic functions and partitioned tables, partition pruning only occurs for columns named
inthe PARTITION BY clause of the analytic function call. For example, if an analytic function query has a clause
such as WHERE year=2016, the way to make the query prune al other YEAR partitionsisto include PART
ITION BY year inthe analytic function call; for example, OVER (PARTITION BY year, OTHER_COLUMNS
OTHER_ANALYTIC_CLAUSES).

29



Cloudera Runtime Performance Considerations

To check the effectiveness of partition pruning for a query, check the EXPLAIN output for the query before running
it. For example, this example shows a table with 3 partitions, where the query only reads 1 of them. The notation #par
titions=1/3 in the EXPLAIN plan confirms that Impala can do the appropriate partition pruning.

| ocal host: 21000] > I NSERT | NTO census PARTI TI ON (year=2010) VALUES (' Smith'
, (" Jones');

| ocal host: 21000] > | NSERT | NTO census PARTI TI ON (year=2011) VALUES (' Snith
), (" Jones'), (' Doe');

| ocal host: 21000] > | NSERT | NTO census PARTI TI ON (year =2012) VALUES (' Smit
;),('Doe'):

[
)
.[
[
h
[l ocal host:21000] > EXPLAIN sel ect nanme from census where year=2010;

PLAN FRAGVENT 1
PARTI TI ON:  RANDOM

I
I
STREAM DATA SI NK |
EXCHANGE I D 1 |
UNPARTI TI ONED |
I

I

I

+

0: SCAN HDFS
t abl e=pr edi cat e_propagati on. census #partitions=1/3 size=12B

For areport of the volume of datathat was actually read and processed at each stage of the query, check the output of
the SUMMARY command immediately after running the query. For a more detailed analysis, ook at the output of
the PROFILE command; it includes this same summary report near the start of the profile output.

Impala can do partition pruning in cases where the partition key column is not directly compared to a constant. Using
the predicate propagation technique, Impala applies the transitive property to other parts of the WHERE clause.

In this example, the census table includes another column indicating when the data was collected, which happensin
10-year intervals. Even though the query does not compare the partition key column (Y EAR) to a constant value,
Impala can deduce that only the partition Y EAR=2010 is required, and again only reads 1 out of 3 partitions.

| ocal host: 21000] > CREATE TABLE census (name STRI NG census_year |NT) PARTI
| ONED BY (year |NT);

| ocal host: 21000] > I NSERT | NTO census PARTI TI ON (year=2010) VALUES (' Smi
h',2010), (' Jones', 2010);

| ocal host: 21000] > | NSERT | NTO census PARTI TI ON (year=2011) VALUES (' Smi
h',2020), (' Jones', 2020), (' Doe', 2020);

| ocal host: 21000] > | NSERT | NTO census PARTI TI ON (year=2012) VALUES ('Sm
th',2020), (' Doe', 2020);

[l ocal host:21000] >

[l ocal host:21000] > EXPLAIN sel ect nane from census where year = census_year
and census_year =2010;

PARTI TI ON:  RANDOM

STREAM DATA SI NK
EXCHANGE I D: 1

+

|

+

| PLAN FRAGVENT 1
I

|

|

| UNPARTI TI ONED
I

I

0: SCAN HDFS

30



Cloudera Runtime Performance Considerations

| t abl e=pr edi cat e_propagati on. census #partitions=1/3 size=22B |
| predi cates: census_year = 2010, year = census_year |

Impala supports two types of partition pruning.

e Satic partition pruning: The conditionsin the WHERE clause are analyzed to determine in advance which
partitions can be safely skipped.

« Dynamic partition pruning: Information about the partitionsis collected during the query execution, and Impala
prunes unnecessary partitions. The information is not available in advance before runtime.

For example, if partition key columns are compared to literal valuesin a WHERE clause, Impala can perform static
partition pruning during the planning phase to only read the relevant partitions:

-- The query only needs to read 3 partitions whose key val ues are known ahe
ad of tine.

-- That's static partition pruning.

SELECT COUNT(*) FROM sal es_tabl e WVHERE year | N (2005, 2010, 2015);

Dynamic partition pruning involves using information only available at run time, such asthe result of a subquery. The
following example shows a simple dynamic partition pruning.

CREATE TABLE yy (s STRING PARTI TI ONED BY (year |NT);

I NSERT | NTO yy PARTI TI ON (year) VALUES (' 1999', 1999), ('2000', 2000),
(' 2001', 2001), ('2010', 2010), ('2018', 2018);

COWPUTE STATS yy;

CREATE TABLE yy2 (s STRING year |NT);

I NSERT | NTO yy2 VALUES ('1999', 1999), ('2000', 2000), ('=2001', 2001);
COVWPUTE STATS yy2;

-- The foll owi ng query reads an unknown nunber of partitions, whose key val
ues

-- are only known at run time. The runtinme filters Iine shows the

-- information used in query fragnent 02 to decide which partitions to skip.

EXPLAI N SELECT s FROM yy WHERE year |N (SELECT year FROM yy2);

fccocoococoococooccoccoocooooooCooCoOCOCCooCoCCoCoOCoOCoCCoCCooCoSCoooCooCooooooc +
| PLAN- ROOT SI NK |
| | |
| 04: EXCHANGE [ UNPARTI TI ONED] [
| | I
| 02: HASH JO N [LEFT SEM JA N, BROADCAST] |
| | hash predicates: year = year [
| | runtine filters: RFOOO <- year

| | |
| |--03: EXCHANGE [ BROADCAST] |
[ | | I
| | O1l: SCAN HDFS [defaul t.yy2] |
| | partitions=1/1 files=1 si ze=620B [
| | |
| 00: SCAN HDFS [default.yy] [
| partitions=5/5 files=5 size=1. 71KB

[ runtime filters: RFO0O0 -> year [
o CcooCoCoCOOCOCoCOOCOCCCOOCOCCCoOSOCOCCCoOCOCCCoSNCOCCSoSCOCCooSCOCCooSoOoooC +
SELECT s FROM yy WHERE year |IN (SELECT year FROM yy2); -- Returns 3 rows fro
myy

31



Cloudera Runtime Performance Considerations

PROCFI LE;

In the above example, Impala evaluates the subquery, sends the subquery resultsto all Impala nodes participating
in the query, and then each i npal ad daemon uses the dynamic partition pruning optimization to read only the
partitions with the relevant key values.

The output query plan from the EXPLAIN statement shows that runtime filters are enabled. The plan also shows that
it expectsto read all 5 partitions of the yy table, indicating that static partition pruning will not happen.

The Filter summary in the PROFILE output shows that the scan node filtered out based on a runtime filter of dynamic
partition pruning.

Filter 0 (1.00 MB):

- Files processed: 3

- Files rejected: 1 (1)
- Files total: 3 (3)

Dynamic partition pruning is especialy effective for queriesinvolving joins of several large partitioned tables.
Evaluating the ON clauses of the join predicates might normally require reading data from all partitions of certain
tables. If the WHERE clauses of the query refer to the partition key columns, Impala can now often skip reading
many of the partitions while evaluating the ON clauses. The dynamic partition pruning optimization reduces the
amount of /O and the amount of intermediate data stored and transmitted across the network during the query.

Dynamic partition pruning is part of the runtime filtering feature, which applies to other kinds of queriesin addition
to queries against partitioned tables.

Impala can use the HDFS caching feature to make more effective use of RAM so that repeated queries can take
advantage of data“pinned” in memory regardless of how much datais processed overall.

The HDFS caching feature lets you designate a subset of frequently accessed data to be pinned permanently in
memory, remaining in the cache across multiple queries and never being evicted. This technique is suitable for tables
or partitions that are frequently accessed and are small enough to fit entirely within the HDFS memory cache. For
example, you might designate several dimension tables to be pinned in the cache, to speed up many different join
queriesthat reference them. Or in a partitioned table, you might pin a partition holding data from the most recent
time period because that data will be queried intensively; then when the next set of data arrives, you could unpin the
previous partition and pin the partition holding the new data.

The performance gain comes from two aspects:

» Reading from RAM instead of disk
» Accessing the data straight from the cache areainstead of copying from one RAM areato another

Thisyields further performance improvement over the standard OS caching mechanism, which still resultsin
memory-to-memory copying of cached data. Because accessing HDFS cached data avoids a memory-to-memory
copy operation, queries involving cached data require less memory on the Impala side than the equivalent queries
on uncached data

Dueto alimitation of HDFS, zero-copy reads are not supported with encryption. Cloudera recommends not using
HDFS caching for Impala data files in encryption zones. The queries fall back to the normal read path during query
execution, which might cause some performance overhead.

Because this Impala performance feature relies on HDFS infrastructure, it only applies to Impala tables that use
HDFS data files. HDFS caching for Impala does not apply to HBase tables, S3 tables, Kudu tables, or Isilon tables.

32



Cloudera Runtime Performance Considerations

Begin by choosing which tables or partitions to cache. For example, these might be lookup tables that are accessed by
many different join queries, or partitions corresponding to the most recent time period that are analyzed by different
reports or ad-hoc queries.

In your SQL statements, you specify logical divisions such as tables and partitions to be cached. Impala translates
these requests into HDFS-level directives that apply to particular directories and files. For example, given a
partitioned table CENSUS with a partition key column YEAR, you could choose to cache all or part of the data as
follows.

-- Cache the entire table (all partitions).
ALTER TABLE census SET CACHED | N ' POOL_NAME' ;

-- Renove the entire table fromthe cache.

ALTER TABLE census SET UNCACHED;

-- Cache a portion of the table (a single partition).

-- If the table is partitioned by nultiple colums (such as year, nonth,
day),

-- the ALTER TABLE command nust specify values for all those col umms.
ALTER TABLE census PARTI TI ON (year=1960) SET CACHED | N ' POOL_NAME' ;

-- Cache the data fromone partition on up to 4 hosts, to mnimze CPU | oad
on any

-- single host when the sane data block is processed nultiple tines.

ALTER TABLE census PARTI TI ON (year =1970)
SET CACHED I N ' POOL_NAME' W TH REPLI CATI ON = 4;

-- At each stage, check the volune of cached dat a.

-- For large tables or partitions, the background |oading m ght take sone t
i me,

-- so you might have to wait and reissue the statenent until all the data
-- has finished being | oaded into the cache.

SHOW TABLE STATS census;

Focoocooe Focoocooe Fococococ Focococ Focococococoococ Fococococ +
| year | #Rows | #Files | Size | Bytes Cached | Format |
fecooooc fecooooc feccoococac e ccooc feccoocooccooooc feccoococac +
| 1900 | -1 | 1 | 11B | NOT CACHED | TEXT |
| 1940 | -1 | 1 | 11B | NOT CACHED | TEXT |
| 1960 | -1 | 1 | 11B | 11B | TEXT |
| 1970 | -1 | 1 | 11B | NOT CACHED | TEXT |
| Total | -1 | 4 | 44B | 11B | |
fecooooc fecooooc feccoococac e ccooc feccoocooccooooc feccoococac +

CREATE TABLE and ALTER TABLE considerations:
The HDFS caching feature affectsthe Impala CREATE TABLE statement as follows:

* YoucanputaCACHED IN 'POOL_NAME' clause and optionally aWITH REPLICATION =
NUMBER_OF HOSTS clause at the end of a CREATE TABLE statement to automatically cache the entire
contents of the table, including any partitions added later.

The POOL_NAME is a pool that you previously set up with the hdf s cacheadni n command in HDFS.

e Onceatableisdesignated for HDFS caching through the CREATE TABLE statement, if new partitions are added
later through ALTER TABLE ... ADD PARTITION statements, the data in those new partitions is automatically
cached in the same pool.

« If you want to perform repetitive queries on a subset of data from alarge table, and it is not practical to designate
the entire table or specific partitions for HDFS caching, you can create a new cached table with just a subset of the
databy using CREATE TABLE ... CACHED IN 'POOL_NAME' AS SELECT ... WHERE .... Whenyou are
finished with generating reports from this subset of data, drop the table and both the data files and the data cached
in RAM are automatically deleted.

33



Cloudera Runtime Performance Considerations

» |If you have designated a table or partition as cached through the CREATE TABLE or ALTER TABLE
statements, subsequent attempts to relocate the table or partition through an ALTER TABLE ... SET LOCATION
statement will fail. You must issuean ALTER TABLE ... SET UNCACHED statement for the table or partition
first. Otherwise, Impalawould lose track of some cached data files and have no way to uncache them later.

e Theoptiona WITH REPLICATION clause for CREATE TABLE and ALTER TABLE lets you specify a
replication factor, the number of hosts on which to cache the same data blocks. When Impala processes a cached
data block, where the cache replication factor is greater than 1, Impala randomly selects a host that has a cached
copy of that data block. This optimization avoids excessive CPU usage on a single host when the same cached
data block is processed multiple times. Cloudera recommends specifying a value greater than or equal to the
HDFS block replication factor.

INSERT and LOAD DATA considerations:

*  When HDFS caching is enabled for atable or partition, new data files are cached automatically when they are
added to the appropriate directory in HDFS, without the need for a REFRESH statement in Impala. Impala
automatically performs a REFRESH once the new dataisloaded into the HDFS cache.

» If you perform an INSERT or LOAD DATA through Hive, Impalaonly recognizes the new datafiles after a
REFRESH TABLE _NAME statement in Impala.

 |f the cache pool isentirely full, or becomes full before all the requested data can be cached, the Impala DDL
statement returns an error. Thisisto avoid situations where only some of the requested data could be cached.

DROP TABLE and ALTER TABLE DROP PARTITION considerations:

The HDFS caching feature interacts with the Impala DROP TABLE and ALTER TABLE ... DROP PARTITION
statements as follows:

 WhenyouissueaDROP TABLE or ALTER TABLE ... DROPPARTITION for atablethat is entirely cached,
or has some partitions cached, the DROP TABLE succeeds and all the cache directives Impala submitted for that
table are removed from the HDFS cache system.

* Theunderlying datafiles are removed if the dropped table is an internal table, or the dropped partition isin its
default location underneath an internal table. The datafiles are left aloneif the dropped table is an external table,
or if the dropped partition isin a non-default location.

» If you drop an HDFS cache pool through the hdf s cacheadni n command, al the Impala datafiles are
preserved, just no longer cached. After a subsequent REFRESH, SHOW TABLE STATS reports O bytes cached
for each associated Impalatable or partition.

» If you designated the data files as cached through the hdf s cacheadni n command, and the data files are | eft
behind as described in the previous item, the data files remain cached.

Impala only removes the cache directives submitted by Impalathrough the CREATE TABLE or ALTER
TABLE statements.

« Onefile can have multiple redundant cache directives. The directives al have unique I Ds, and owners so that the
system can tell them apart.

SHOW TABLE STATS and SHOW PARTITIONS considerations:

For each table or partition, the SHOW TABLE STATS or SHOW PARTITIONS statement displays the number of
bytes currently cached by the HDFS caching feature.

A value of 0, or asmaller number than the overall size of the table or partition, indicates that the cache request has
been submitted but the data has not been entirely loaded into memory yet.

If there are no cache directives in place for that table or partition, the result set displays NOT CACHED.
SELECT considerations:
The Impala HDFS caching feature interacts with the SELECT statement and query performance as follows:

e |Impaaautomatically reads from memory any data that has been designated as cached and actually loaded into the
HDFS cache. (It could take some time after the initial request to fully populate the cache for atable with large size
or many partitions.)




Cloudera Runtime Performance Considerations

» Impala queriestake advantage of HDFS cached data regardless of whether the cache directive was issued by
Impalaor externally through the hdf s cacheadm n command, for example for an external table where the
cached data files might be accessed by several different Hadoop components.

» If your query returns alarge result set, the time reported for the query could be dominated by the time needed to
print the results on the screen. To measure the time for the underlying query processing, query the COUNT() of
the big result set, which does all the same processing but only prints asingle line to the screen.

* Impalaautomatically randomizes which host processes a cached HDFS block, to avoid CPU hotspots. For
tables where HDFS caching is not applied, Impala designates which host to process a data block using an
algorithm that estimates the load on each host. If CPU hotspots still arise during queries, you can enable additional
randomization for the scheduling algorithm for non-HDFS cached data by setting the SCHEDULE_RANDOM _
REPLICA query option.

« |f you drop acache pool withthehdf s cacheadm n command, Impala queries against the associated datafiles
will still work, by falling back to reading the files from disk. After performing a REFRESH on the table, Impala
reports the number of bytes cached as O for all associated tables and partitions.

Impala supports efficient reads from data that is pinned in memory through HDFS caching. Impala takes advantage of
the HDFS API and reads the data from memory rather than from disk whether the data files are pinned using Impala
DDL statements, or using the command-line mechanism where you specify HDFS paths.

When you examine the output of thei nmpal a- shel | SUMVARY command, or ook in the metrics report for the

i mpal ad daemon, you see how many bytes are read from the HDFS cache. For example, this excerpt from a query
profileillustrates that all the data read during a particular phase of the query came from the HDFS cache, because the
BytesRead and BytesReadDataNodeCache values are identical .

HDFS_SCAN_NCDE (i d=0): (Total: 11s114ns, non-child: 11s114ms, % non-child: 10
0. 00%

- Aver ageHdf sReadThr eadConcurrency: 0.00

- Aver ageScanner Thr eadConcurrency: 32.75

- BytesRead: 10.47 GB (11240756479)

- Byt esReadDat aNodeCache: 10.47 GB (11240756479)

- BytesReadLocal : 10.47 GB (11240756479)

- BytesReadShortCircuit: 10.47 GB (11240756479)

- DeconpressionTi ne: 27s572ns

For queriesinvolving smaller amounts of data, or in single-user workloads, you might not notice a significant
difference in query response time with or without HDFS caching. Even with HDFS caching turned off, the data for
the query might till be in the Linux OS buffer cache. The benefits become clearer as data volume increases, and
especialy as the system processes more concurrent queries. HDFS caching improves the scalability of the overall
system. That is, it prevents query performance from declining when the workload outstrips the capacity of the Linux
OS cache.

« For small amounts of data, the query speedup might not be noticeable in terms of wall clock time. The
performance might be roughly the same with HDFS caching turned on or off, due to recently used data being held
in the OS cache. The difference is more pronounced with:

« Datavolumes (for al queries running concurrently) that exceed the size of the OS cache.

* A busy cluster running many concurrent queries, where the reduction in memory-to-memory copying and
overall memory usage during queries resultsin greater scalability and throughput.

When data is requested to be pinned in memory, that process happens in the background without blocking access to
the data while the caching isin progress. Loading the data from disk could take some time. Impala reads each HDFS
data block from memory if it has been pinned already, or from disk if it has not been pinned yet.

35



Cloudera Runtime Performance Considerations

The amount of datathat you can pin on each node through the HDFS caching mechanism is subject to a quota that is
enforced by the underlying HDFS service. Before requesting to pin an Impalatable or partition in memory, check that
its size does not exceed this quota.

Note: Because the HDFS cache consists of combined memory from all the DataNodes in the cluster, cached
E tables or partitions can be bigger than the amount of HDFS cache memory on any single host.

The Impala HDFS caching feature interacts with the Impala memory limits as follows:

« The maximum size of each HDFS cache pooal is specified externally to Impala, through thehdf s cacheadmi n
command.

e All the memory used for HDFS caching is separate from the i npal ad daemon address space and does not
count towards the limits of the --mem_limit startup option, MEM_LIMIT query option, or further limits imposed
through Y ARN resource management or the Linux cgroups mechanism.

For best performance of Impala parallel queries, the work is divided equally across hosts in the cluster, and all hosts
take approximately equal time to finish their work. If one host takes substantially longer than others, the extratime
needed for the dlow host can become the dominant factor in query performance. Therefore, one of the first stepsin
performance tuning for Impalais to detect and correct such conditions.

The main cause of uneven performance that you can correct within Impalais skew in the number of HDFS data
blocks processed by each host, where some hosts process substantially more data blocks than others. This condition
can occur because of uneven distribution of the data values themselves, for example causing certain datafiles or
partitions to be large while others are very small. (Although it is possible to have unevenly distributed data without
any problems with the distribution of HDFS blocks.) Block skew could also be due to the underlying block allocation
policies within HDFS, the replication factor of the datafiles, and the way that Impala chooses the host to process each
data block.

The most convenient way to detect block skew, or slow-host issuesin general, is to examine the “ executive summary”
information from the query profile after running a query:

e Ini npal a- shel | , issuethe SUMMARY command immediately after the query is complete, to see just the
summary information. If you detect issues involving skew, you might switch to issuing the PROFILE command,
which displays the summary information followed by a detailed performance analysis.

* Inthe Cloudera Manager interface or the Impala debug web Ul, click on the Profile link associated with the query
after it is complete. The executive summary information is displayed early in the profile output.

For each phase of the query, you see an Avg Time and a Max Time value, along with #Hosts indicating how many
hosts are involved in that query phase. For all the phases with #Hosts greater than one, look for cases where the
maximum time is substantially greater than the average time. Focus on the phases that took the longest, for example,
those taking multiple seconds rather than milliseconds or microseconds.

If you detect that some hosts take longer than others, first rule out non-Impala causes. One reason that some hosts
could be slower than othersisif those hosts have less capacity than the others, or if they are substantially busier due
to unevenly distributed non-Impala workloads:

» For clusters running Impala, keep the relative capacities of all hosts roughly equal. Any cost savings from
including some underpowered hosts in the cluster will likely be outweighed by poor or uneven performance, and
the time spent diagnosing performance issues.

« |f non-Impalaworkloads cause slowdowns on some hosts but not others, use the appropriate load-balancing
techniques for the non-Impala components to smooth out the load across the cluster.

If the hosts on your cluster are evenly powered and evenly loaded, examine the detailed profile output to determine
which host is taking longer than others for the query phase in question. Examine how many bytes are processed
during that phase on that host, how much memory is used, and how many bytes are transmitted across the network.

36



Cloudera Runtime Performance Considerations

The most common symptom is a higher number of bytes read on one host than others, due to one host being requested
to process a higher number of HDFS data blocks. This condition is more likely to occur when the number of blocks
accessed by the query isrelatively small. For example, if you have a 10-node cluster and the query processes 10
HDFS blocks, each node might not process exactly one block. If one node sitsidle while another node processes two
blocks, the query could take twice as long asif the data was perfectly distributed.

Possible solutions in this case include:

« If the query isartificially small, perhaps for benchmarking purposes, scale it up to process a larger data set.

For example, if some nodes read 10 HDFS data blocks while others read 11, the overall effect of the uneven
distribution is much lower than when some nodes did twice as much work as others. Asaguideline, aim for a
“sweet spot” where each node reads 2 GB or more from HDFS per query. Queries that process lower volumes
than that could experience inconsistent performance that smooths out as queries become more data-intensive.

« |If the query processes only afew large blocks, so that many nodes sit idle and cannot help to parallelize the query,
consider reducing the overall block size. For example, you might adjust the PARQUET_FILE_SIZE query option
before copying or converting datainto a Parquet table. Or you might adjust the granularity of data files produced
earlier in the ETL pipeline by non-Impala components. In Impala 2.0 and later, the default Parquet block sizeis
256 MB, reduced from 1 GB, to improve parallelism for common cluster sizes and data volumes.

» Reduce the amount of compression applied to the data. For text data files, the highest degree of compression
(gzip) produces unsplittable files that are more difficult for Impalato processin parallel, and require extra
memory during processing to hold the compressed and uncompressed data simultaneously. For binary formats
such as Parquet and Avro, compression can result in fewer data blocks overall, but remember that when queries
process relatively few blocks, there is less opportunity for parallel execution and many nodes in the cluster might
sitidle. Note that when Impala writes Parquet data with the query option COMPRESSION_CODEC=NONE
enabled, the datais till typically compact due to the encoding schemes used by Parquet, independent of the final
compression step.

To understand the high-level performance considerations for Impala queries, read the output of the EXPLAIN
statement for the query. Y ou can get the EXPLAIN plan without actually running the query itself.

The EXPLAIN statement gives you an outline of the logical steps that a query will perform, such as how the work
will be distributed among the nodes and how intermediate results will be combined to produce the final result set.

Y ou can see these details before actually running the query. Y ou can use this information to check that the query will
not operate in some very unexpected or inefficient way.

Read the EXPLAIN plan from bottom to top:

* Thelast part of the plan shows the low-level details such as the expected amount of data that will be read, where
you can judge the effectiveness of your partitioning strategy and estimate how long it will take to scan atable
based on total data size and the size of the cluster.

e Asyou work your way up, next you see the operations that will be parallelized and performed on each Impala
node.

e At the higher levels, you see how data flows when intermediate result sets are combined and transmitted from one
node to another.

 The EXPLAIN_LEVEL query option lets you customize how much detail to show in the EXPLAIN plan
depending on whether you are doing high-level or low-level tuning, dealing with logical or physical aspects of the
query.

Read the EXPLAIN plan from bottom to top:

» Thelast part of the plan shows the low-level details such as the expected amount of data that will be read, where
you can judge the effectiveness of your partitioning strategy and estimate how long it will take to scan atable
based on total data size and the size of the cluster.

» Asyou work your way up, hext you see the operations that will be parallelized and performed on each Impala
node.

37



Cloudera Runtime Performance Considerations

« At the higher levels, you see how data flows when intermediate result sets are combined and transmitted from one
node to another.

e The EXPLAIN_LEVEL query option lets you customize how much detail to show in the EXPLAIN plan
depending on whether you are doing high-level or low-level tuning, dealing with logical or physical aspects of the

query.

The example below shows how the standard EXPLAIN output moves from the lowest (physical) level to the higher
(logical) levels. The query begins by scanning a certain amount of data; each node performs an aggregation operation
(evaluating COUNT(*)) on some subset of datathat islocal to that node; the intermediate results are transmitted
back to the coordinator node (Iabelled here as the EXCHANGE node); lastly, the intermediate results are summed to
display the final result.

[ npal ad- host: 21000] > EXPLAI N sel ect count(*) from custoner_address;

Esti mat ed Per-Host Requirenments: Menory=42. 00MB VCores=1 |

03: AGCREGATE [ MERCE FI NALI ZE]
| output: sum(count(*))

|
02: EXCHANCE [ PARTI TI ON=UNPARTI T1 ONED|

|
I I
I I
I I
| |
R |
| 01: AGCREGATE [
| | output: count(*) |
I I
| |
| |

00: SCAN HDFS [defaul t.custoner_address]
partitions=1/1 size=5.25M8

The EXPLAIN plan is also printed at the beginning of the query PROFILE report to provide convenience in
examining both the logical and physical aspects of the query side-by-side.

The amount of detail displayed in the EXPLAIN output is controlled by the EXPLAIN_LEVEL query option. You
customize how much detail to show in the EXPLAIN plan depending on whether you are doing high-level or low-

level tuning, dealing with logical or physical aspects of the query. Y ou typically increase this setting from standard
to extended when double-checking the presence of table and column statistics during performance tuning, or when
estimating query resource usage in conjunction with the resource management features.

For an overview of the physical performance characteristics for a query, issue the SUMMARY command in impala-s
hell immediately after executing a query. This condensed information shows which phases of execution took the most
time, and how the estimates for memory usage and number of rows at each phase compare to the actual values.

Likethe EXPLAIN plan, it is easy to see potential performance bottlenecksin the SUMMARY report. Like the PROF
ILE output, the SUMMARY report is available after the query isrun, and it displays actual timing statistics.

The SUMMARY report is also printed at the beginning of the query profile report described in the PROFILE output,
for convenience in examining high-level and low-level aspects of the query side-by-side.

When the MT_DOP query option is set to avalue larger than 0, the #Inst column in the output shows the number of
fragment instances. Impala decomposes each query into smaller units of work that are distributed across the cluster,
and these units are referred as fragments.

When the MT_DOP query option is set to 0, the #lnst column in the output shows the same value as the #Hosts
column, since there is exactly one fragment for each host.

For example, hereis a query involving an aggregate function on a single-node. The different stages of the query and
their timings are shown (rolled up for al nodes), along with estimated and actual values used in planning the query.
In this case, the AVG() function is computed for a subset of data on each node (stage 01) and then the aggregated

38



Cloudera Runtime Performance Considerations

results from all nodes are combined at the end (stage 03). Y ou can see which stages took the most time, and whether
any estimates were substantially different than the actual data distribution. (When examining the time values, be sure
to consider the suffixes such as us for microseconds and ms for milliseconds, rather than just looking for the largest
numbers.)

> SELECT AV ss_sal es_price) FROM store_sal es WHERE ss_coupon_amt = 0;

> SUWVARY;
feccoocococooooc foccoooac foccoooac foccococooc foccococooc Focooooc foccocococoooc
Focococoooc Fooccoccococosasos Foccoccocococosaoos +
| Operator | #Hosts | #lnst | Avg Tine | Max Tinme | #Rows | Est. #Rows
| Peak Mem | Est. Peak Mem | Detail |
feccoocooccooooc feccoocooc feccoocooc feccococooc feccococooc fecooooc feccococooooc
feccococooc feccoccocoooooac feccoccocooocosooc +
| 03: AGCGREGATE | 1 | 1 | 1.03ns | 1.03ns | 1 | 1
| 48.00 KB| -1 B | MERGE FI NALI ZE |
| 02: EXCHANGE | 1 | 1 | Ons | Ons | 1 | 1
0B -1 B | UNPARTI TIONED |
| 01: AGCREGATE | 1 1 | 30. 7918 | 30.79m8 | 1 | 1
| 80.00 KB | 10.00 MB [ [
| 00: SCAN HDFS | 1 | 1 | 5.45s | 5.45s | 2.21M| -1
| 64.05 MB | 432.00 MB | tpc.store_sales |
ocococococococ Fococococ Fococococ Focococococ Focococococ Feccooas ococococococ
Foocoocoooc dooccooocoooooooe dooccocococooocooooooc +

Notice how the longest initial phase of the query is measured in seconds (s), while later phases working on smaller
intermediate results are measured in milliseconds (ms) or even nanoseconds (ns).

To understand the detailed performance characteristics for a query, issue the PROFILE command ini npal a-
shel | immediately after executing aquery. Thislow-level information includes physical details about memory,
CPU, 1/0, and network usage, and thusis only available after the query is actually run.

The PROFILE command, availableini npal a- shel | , produces a detailed low-level report showing how the most
recent query was executed. Unlike the EXPLAIN plan, thisinformation is only available after the query has finished.
It shows physical details such as the number of bytes read, maximum memory usage, and so on for each node. Y ou
can use thisinformation to determine if the query is 1/0O-bound or CPU-bound, whether some network condition is
imposing a bottleneck, whether a slowdown is affecting some nodes but not others, and to check that recommended
configuration settings such as short-circuit local reads are in effect.

By default, time values in the profile output reflect the wall-clock time taken by an operation. For values denoting
system time or user time, the measurement unit is reflected in the metric name, such as Scanner ThreadsSysTime or
ScannerThreadsUserTime. For example, a multi-threaded 1/O operation might show a small figure for wall-clock
time, while the corresponding system time islarger, representing the sum of the CPU time taken by each thread. Or a
wall-clock time figure might be larger because it counts time spent waiting, while the corresponding system and user
time figures only measure the time while the operation is actively using CPU cycles.

The EXPLAIN planisaso printed at the beginning of the query profile report, for convenience in examining both
the logical and physical aspects of the query side-by-side. The EXPLAIN_LEVEL query option aso controls the
verbosity of the EXPLAIN output printed by the PROFILE command.

The Per Node Profiles section in the profile output includes the following metrics that can be controlled by the RESO
URCE_TRACE_RATIO query option.

¢ CpuloWaitPercentage
e CpuSysPercentage
¢ CpuUserPercentage

» HostDiskReadThroughput: All dataread by the host as part of the execution of this query (spilling), by the HDFS
data node, and by other processes running on the same system.

39



Cloudera Runtime Scalahility Considerations

» HostDiskWriteThroughput: All data written by the host as part of the execution of this query (spilling), by the
HDFS data node, and by other processes running on the same system.

» HostNetworkRx: All data received by the host as part of the execution of this query, other queries, and other
processes running on the same system.

« HostNetworkTx: All datatransmitted by the host as part of the execution of this query, other queries, and other
processes running on the same system.

The size of your cluster and the volume of data influences query performance. Typically, adding more cluster
capacity reduces problems due to memory limits or disk throughput. On the other hand, larger clusters are more likely
to have other kinds of scalability issues, such as asingle slow node that causes performance problems for queries.

Because Hadoop 1/0 is optimized for reading and writing large files, Impalais optimized for tables containing
relatively few, large datafiles. Schemas containing thousands of tables, or tables containing thousands of partitions,
can encounter performance issues during startup or during DDL operations such as ALTER TABLE statements.

If it takes avery long time for a cluster to start up with the message, This Impala daemon is not ready to accept user

requests, the StateStore might be taking too long to send the entire catalog topic to the cluster. In this case, consider
setting the Load Catalog in Background field to false in your Catalog Service configuration. This setting stops the
StateStore from loading the entire catalog into memory at cluster startup. Instead, metadata for each table is loaded
when the table is accessed for the first time.

Most of the memory needed is reserved at the beginning of the query, avoiding cases where a query might run for a
long time before failing with an out-of-memory error. The actual memory estimates and memory buffers are typically
smaller than before, so that more queries can run concurrently or process larger volumes of data than previously.

Increase the MAX_ROW_SIZE query option setting when querying tables with columns containing long strings,
many columns, or other combinations of factors that produce very large rows. If Impala encounters rows that are too
large to process with the default query option settings, the query fails with an error message suggesting to increase the
MAX_ROW_SIZE setting.

Certain memory-intensive operations write temporary data to disk (known as spilling to disk) when Impalais close to
exceeding its memory limit on a particular host.

What kinds of queries might spill to disk:
Several SQL clauses and constructs require memory allocations that could trigger spilling to disk:

* when aquery usesa GROUPBY clause for columns with millions or billions of distinct values, Impala keeps a
similar number of temporary results in memory, to accumulate the aggregate results for each value in the group.

« When large tables are joined together, Impala keeps the values of the join columns from one table in memory, to
compare them to incoming values from the other table.

*  When alargeresult set is sorted by the ORDER BY clause, each node sorts its portion of the result set in memory.

e TheDISTINCT and UNION operators build in-memory data structures to represent all values found so far, to
eliminate duplicates as the query progresses.

When the spill-to-disk feature is activated for ajoin node within a query, Impala does not produce any runtime filters
for that join operation on that host. Other join nodes within the query are not affected.

40



Cloudera Runtime Scalahility Considerations

The amount data depends on the portion of the data being handled by that host, and thus the operator may end up
consuming different amounts of memory on different hosts.

How Impala handles scratch disk space for spilling:

Impala uses intermediate files during large sorts, joins, aggregations, or analytic function operations Thefiles are
removed when the operation finishes. By default, intermediate files are stored in the directory /tmp/impal a-scratch.

Y ou can specify locations of the intermediate files in one of the following ways:

« By dtarting thei npal ad daemon with the ##scratch_dirs="PATH_TO_DIRECTORY" configuration option.
» By specifying adifferent location in the Cloudera Manager in the Impala Daemon Scratch Directoriesfield.
With either option above:

* You can specify asingle directory or acomma-separated list of directories.
« You can specify an optional a capacity quota per scratch directory using the colon (:) as the delimiter.

The capacity quota of -1 or 0 is the same as no quota for the directory.

e The scratch directories must be on the local filesystem, not in HDFS.

* You might specify different directory paths for different hosts, depending on the capacity and speed of the
available storage devices.

If thereislessthan 1 GB free on the filesystem where that directory resides, Impala still runs, but writes a warning
message to itslog.

Impala successfully starts (with awarning written to the log) if it cannot create or read and write filesin one of the
scratch directories.

The following are examples for specifying scratch directories.

--scratch_dirs=/dir1,/dir2 Use/dirl and /dir2 as scratch directories with no capacity quota.

--scratch_dirs=/dirl,/dir2:25G Use/dirl and /dir2 as scratch directories with no capacity quotaon /
dirl and the 25GB quota on /dir2.

--scratch_dirs=/dir1:5MB,/dir2 Use/dirl and /dir2 as scratch directories with the capacity quota of
5MB on /dirl and no quotaon /dir2.

--scratch_dirs=/dirl:-1,/dir2:0 Use/dirl and /dir2 as scratch directories with no capacity quota.

Allocation from a scratch directory will fail if the specified limit for the directory is exceeded.

If Impala encounters an error reading or writing filesin a scratch directory during a query, Impalalogs the error, and
the query fails.

Memory usage for SQL operators:

The memory required to spill to disk is reserved up front, and you can examineit in the EXPLAIN plan when the
EXPLAIN_LEVEL query optionisset to 2 or higher.

If an operator accumulates more data than can fit in the reserved memory, it can either reserve more memory to
continue processing datain memory or start spilling data to temporary scratch files on disk. Thus, operators with
spill-to-disk support can adapt to different memory constraints by using however much memory is available to speed
up execution, yet tolerate low memory conditions by spilling data to disk.

The amount of data depends on the portion of the data being handled by that host, and thus the operator may end up
consuming different amounts of memory on different hosts.

Avoiding queries that spill to disk:

Because the extra |/O can impose significant performance overhead on these types of queries, try to avoid this
situation by using the following steps:

41



Cloudera Runtime Scalahility Considerations

1. Detect how often queries spill to disk, and how much temporary datais written. Refer to the following sources:

* The output of the PROFILE command inthei npal a- shel | interpreter. This data shows the memory usage
for each host and in total across the cluster. The Writel oBytes counter reports how much data was written to
disk for each operator during the query.

* InImpalaQueriesin Cloudera Manager, you can see the peak memory usage for a query, combined across all
nodesin the cluster.

* Inthe Queriestab in the Impala debug web user interface, select the query to examine and click the
corresponding Profile link. This data breaks down the memory usage for a single host within the cluster, the
host whose web interface you are connected to.

2. Use one or more techniques to reduce the possihility of the queries spilling to disk:

 Increase the Impala memory limit if practical. For example, using the SET MEM_LIMIT SQL statement,
increase the available memory by more than the amount of temporary data written to disk on a particular node.

» Increase the number of nodes in the cluster, to increase the aggregate memory available to Impala and reduce
the amount of memory required on each node.

e On acluster with resources shared between Impala and other Hadoop components, use resource management
featuresto alocate more memory for Impala.

» If thememory pressure is due to running many concurrent queries rather than a few memory-intensive ones,
consider using the Impala admission control feature to lower the limit on the number of concurrent queries. By
spacing out the most resource-intensive queries, you can avoid spikes in memory usage and improve overall
response times.

« Tunethe queries with the highest memory requirements, using one or more of the following techniques:

* Runthe COMPUTE STATS statement for all tables involved in large-scale joins and aggregation queries.

¢ Minimize your use of STRING columnsin join columns. Prefer numeric values instead.

e Examinethe EXPLAIN plan to understand the execution strategy being used for the most resource-
intensive queries.

< |f Impalastill chooses a suboptimal execution strategy even with statistics available, or if it isimpractical
to keep the statistics up to date for huge or rapidly changing tables, add hints to the most resource-intensive
gueriesto select the right execution strategy.

« If your queries experience substantial performance overhead due to spilling, enable the DISABLE_UNSA
FE_SPILLS query option. This option prevents queries whose memory usage is likely to be exorbitant from
spilling to disk. As you tune problematic queries using the preceding steps, fewer and fewer will be cancelled
by this option setting.

When to use DISABLE_UNSAFE_SPILLS:

The DISABLE_UNSAFE_SPILLS query option is suitable for an environment with ad hoc queries whose
performance characteristics and memory usage are not known in advance. It prevents “worst-case scenario” queries
that use large amounts of memory unnecessarily. Thus, you might turn this option on within a session while
developing new SQL code, even though it isturned off for existing applications.

Organizations where table and column statistics are generally up-to-date might leave this option turned on all the
time, again to avoid worst-case scenarios for untested queries or if aproblem inthe ETL pipelineresultsin atable
with no statistics. Turning on DISABLE_UNSAFE_SPILL S letsyou “fail fast” in this case and immediately gather
statistics or tune the problematic queries.

Some organi zations might leave this option turned off. For example, you might have tables large enough that the
COMPUTE STATStakes substantial time to run, making it impractical to re-run after loading new data. If you have
examined the EXPLAIN plans of your queries and know that they are operating efficiently, you might leave DISA
BLE _UNSAFE_SPILLSturned off. In that case, you know that any queries that spill will not go overboard with their
memory consumption.

42



Cloudera Runtime Scalahility Considerations

There are hard-coded limits on the maximum size and complexity of queries. Currently, the maximum number of
expressionsin aquery is 2000. Y ou might exceed the limits with large or deeply nested queries produced by business
intelligence tools or other query generators.

If you have the ability to customize such queries or the query generation logic that produces them, replace sequences
of repetitive expressions with single operators such as IN or BETWEEN that can represent multiple values or ranges.
For example, instead of alarge number of OR clauses:

WHERE val =1 ORval =2 ORval =6 ORval = 100 ...
useasingleIN clause:

WHERE val IN (1,286,100, ...)

Impala parallelizesits 1/0O operations aggressively, therefore the more disks you can attach to each host, the better.
Impalaretrieves data from disk so quickly using bulk read operations on large blocks, that most queries are CPU-
bound rather than 1/0O-bound.

Because the kind of sequential scanning typically done by Impala queries does not benefit much from the random-
access capabilities of SSDs, spinning disks typically provide the most cost-effective kind of storage for Impala data,
with little or no performance penalty as compared to SSDs.

Resource management features such as Y ARN, Llama, and admission control typically constrain the amount of
memory, CPU, or overall number of queriesin a high-concurrency environment. Currently, there is no throttling
mechanism for Impala /0.

Due to the overhead of retrieving and updating table metadata in the Metastore database, try to limit the number of
columns in atable to a maximum of approximately 2000. Although Impala can handle wider tables than this, the
Metastore overhead can become significant, leading to query performance that is slower than expected based on the
actual data volume.

To minimize overhead related to the M etastore database and Impala query planning, try to limit the number of
partitions for any partitioned table to a few tens of thousands.

If the volume of data within atable makesit impractical to run exploratory queries, consider using the TABLESAM
PLE clause to limit query processing to only a percentage of data within the table. This technique reduces the
overhead for query startup, 1/0 to read the data, and the amount of network, CPU, and memory needed to process
intermediate results during the query.

When Impala starts up, or after each kinit refresh, Impala sends a number of simultaneous requests to the KDC. For
acluster with 100 hosts, the KDC might be able to process all the requests within roughly 5 seconds. For a cluster
with 1000 hosts, the time to process the requests would be roughly 500 seconds. Impala also makes a number of DNS
requests at the same time as these Kerberos-related requests.

While these authentication requests are being processed, any submitted Impala queries will fail. During this period,
the KDC and DNS may be slow to respond to requests from components other than Impala, so other secure services
might be affected temporarily.

Y ou can use the HDFS caching feature to reduce 1/0 and memory-to-memory copying for frequently accessed tables
or partitions.

43



Cloudera Runtime Scalahility Considerations

To avoid hotspots, include the WITH REPLICATION clause with the CREATE TABLE or ALTER TABLE
statements for tables that use HDFS caching. This clause allows more than one host to cache the relevant data blocks,
so the CPU load can be shared, reducing the load on any one host.

The work for HDFS cached datais divided better among all the hosts that have cached replicas for a particular data
block. When more than one host has a cached replica for a data block, Impala assigns the work of processing that
block to whichever host has done the least work (in terms of number of bytes read) for the current query. If hotspots
persist even with this load-based scheduling algorithm, you can enable the query option SCHEDULE_RANDOM _
REPLICA=TRUE to further distribute the CPU load. This setting causes Impalato randomly pick a host to process a
cached data block if the scheduling algorithm encounters atie when deciding which host has done the least work.

One scalability aspect that affects heavily loaded clustersis the load on the metadata layer from looking up the details
as each fileis opened. On HDFS, that can lead to increased |oad on the NameNode, and on S3, this can lead to an
excessive humber of S3 metadata requests. For example, a query that does a full table scan on a partitioned table may
need to read thousands of partitions, each partition containing multiple data files. Accessing each column of a Parquet
fileaso involves a separate “open” call, further increasing the load on the NameNode. High NameNode overhead can
add startup time (that is, increase latency) to Impala queries, and reduce overall throughput for non-Impalaworkloads
that also require accessing HDFSfiles.

Y ou can reduce the number of calls made to your file system's metadata layer by enabling the file handle caching
feature. Datafiles that are accessed by different queries, or even multiple times within the same query, can be
accessed without a new “open” call and without fetching the file details multiple times.

Impala supports file handle caching for the following file systems:
« HDFS

The cache remote file_handles flag controls local and remote file handle caching for an impalad. Itis
recommended that you use the default value of true as this caching prevents your NameNode from overloading
when your cluster has many remote HDFS reads.

« S3

The cache s3 file_handlesimpalad flag controls the S3 file handle caching. The feature is enabled by default with
the flag set to true.

The feature is enabled by default with 20,000 file handles to be cached. To change the value, set the configuration
option Maximum Cached File Handles (max_cached file_handles) to a non-zero value for each Impala daemon
(impalad). From the initial default value of 20000, adjust upward if NameNode request load is still significant, or
downward if it is more important to reduce the extra memory usage on each host. Each cache entry consumes 6 KB,
meaning that caching 20,000 file handles requires up to 120 MB on each Impala executor. The exact memory usage
varies depending on how many file handles have actually been cached; memory is freed as file handles are evicted
from the cache.

If amanual operation moves afile to the trashcan while the file handle is cached, Impala still accesses the contents

of that file. Thisis a change from prior behavior. Previously, accessing afile that was in the trashcan would cause an
error. This behavior only applies to non-Impala methods of removing files, not the Impala mechanisms such as TRUN
CATE TABLE or DROP TABLE.

If files are removed, replaced, or appended by operations outside of Impala, the way to bring the file information up
to date is to run the REFRESH statement on the table.

File handle cache entries are evicted as the cache fills up, or based on atimeout period when they have not been
accessed for sometime.

To evaluate the effectiveness of file handle caching for a particular workload, issue the PROFILE statement in

i mpal a- shel | or examine query profilesin the ImpalaWeb Ul. Look for the ratio of CachedFileHandlesHitCount
(ideally, should be high) to CachedFileHandlesMissCount (ideally, should be low). Before starting any evaluation,
run several representative queries to “warm up” the cache because the first time each datafile is accessed is aways
recorded as a cache miss.




Cloudera Runtime Scalahility Considerations

To see metrics about file handle caching for each i npal ad instance, examine the following fields on the /metrics
pagein the Impala Web Ul:

» impala-server.io.mgr.cached-file-handles-miss-count
* impala-server.io.mgr.num-cached-file-handles

Consider and respect the scalability limitations provided in thistopic in order to achieve optimal scalability and
performance in Impala. For example, while you might be able to create a table with 2000 columns, you will
experience performance problems while querying the table. This topic does not cover functional limitations in Impala.

Unless noted otherwise, the limits listed in this topic were tested and certified.

The limits noted as "generally safe" are not certified, but recommended as generally safe. A safe rangeis not a hard
limit as unforeseen errors or troubles in your particular environment can affect the range.

e Number of Impalad Executors: 150 nodes
¢ Number of Impalad Coordinators. 1 coordinator for at most every 50 executors

There are no hard limits for the following, but you will experience gradual performance degradation as you increase
these numbers.

*  Number of databases

« Number of tables - total, per database

e Number of partitions - total, per table

* Number of files - total, per table, per table per partition
* Number of views - total, per database

*  Number of user-defined functions - total, per database
e Parquet

¢ Number of columns per row group
* Number of row groups per block
e Number of HDFS blocks per file

¢ Number of columns

» 300 for Kudu tables
« 1000 for other types of tables

¢ Number of roles; 10,000

e Maximum number of columnsin aquery, included in a SELECT list, INSERT, and in an expression: no limit
*  Number of tables referenced: no limit

*  Number of plan nodes: no limit

¢ Number of plan fragments. no limit

» Depth of expression tree: 1000 hard limit

45



Cloudera Runtime Scalahility Considerations

* Width of expression tree: 10,000 hard limit

« Codegen: Very deeply nested expressions within queries can exceed internal Impalalimits, leading to excessive
memory usage. Setting the query option disable_codegen=true may reduce the impact, at a cost of longer query
runtime.

When scalability bottlenecks occur, you can assign one dedicated role to each Impala daemon host, either asa
coordinator or as an executor, to address the issues.

Each host that runs the Impala Daemon acts as both a coordinator and as an executor, by default, managing metadata
caching, query compilation, and query execution. In this configuration, Impala clients can connect to any Impala
daemon and send query requests.

During highly concurrent workloads for large-scal e queries, the dual roles can cause scalability issues because:

» The extrawork required for a host to act as the coordinator could interfere with its capacity to perform other
work for the later phases of the query. For example, coordinators can experience significant network and CPU
overhead with queries containing alarge number of query fragments. Each coordinator caches metadata for all
table partitions and data files, which requires coordinators to be configured with alarge VM heap. Executor-
only Impala daemons should be configured with the default VM heaps, which leaves more memory available to
process joins, aggregations, and other operations performed by query executors.

« Having alarge number of hosts act as coordinators can cause unnecessary network overhead, or even timeout
errors, as each of those hosts communi cates with the StateStore daemon for metadata updates.

e The"soft limits" imposed by the admission control feature are more likely to be exceeded when there are alarge
number of heavily loaded hosts acting as coordinators.

The following factors can further exacerbate the above issues:

« High number of concurrent query fragments due to query concurrency and/or query complexity
» Large metadatatopic size related to the number of partitions/files/blocks

* High number of coordinator nodes

« High number of coordinators used in the same resource pool

If such scalability bottlenecks occur, you can assign one dedicated role to each Impala daemon host, either asa
coordinator or as an executor, to address the issues.

« All explicit or load-balanced client connections must go to the coordinator hosts. These hosts perform the network
communication to keep metadata up-to-date and route query results to the appropriate clients. The dedicated
coordinator hosts do not participate in I/O-intensive operations such as scans, and CPU-intensive operations such
as aggregations.

« The executor hosts perform the intensive 1/0, CPU, and memory operations that make up the bulk of the work for
each query. The executors do communicate with the Statestored daemon for membership status, but the dedicated
executor hosts do not process the final result sets for queries.

Using dedicated coordinators offers the following benefits:

¢ Reduces memory usage by limiting the number of Impalanodes that need to cache metadata.

» Provides better concurrency by avoiding coordinator bottleneck.

» Eliminates query over-admission.

» Reducesresource, especially network, utilization on the StateStore daemon by limiting metadata broadcast to a
subset of nodes.

« Improvesreliability and performance for highly concurrent workloads by reducing workload stress on
coordinators. Dedicated coordinators reguire 50% or fewer connections and threads.

» Reduces the number of explicit metadata refreshes required.

46



Cloudera Runtime Scalahility Considerations

» Improves diagnosability if a bottleneck or other performance issue arises on a specific host, you can narrow down
the cause more easily because each host is dedicated to specific operations within the overall Impala workload.

In this configuration with dedicated coordinators / executors, you cannot connect to the dedicated executor hosts
through clients such as impala-shell or business intelligence tools as only the coordinator nodes support client
connections.

Y ou should have the smallest number of coordinators that will still satisfy your workload requirementsin a cluster. A
rough estimation is 1 coordinator for every 50 executors.

To maintain a healthy state and optimal performance, it is recommended that you keep the peak utilization of all
resources used by Impala, including CPU, the number of threads, the number of connections, and RPCs, under 80%.

Consider the following factors to determine the right number of coordinatorsin your cluster:

e What isthe number of concurrent queries?

» What percentage of the workload is DDL?

* What isthe average query resource usage at the various stages (merge, runtime filter, result set size, etc.)?
* How many Impala Daemons (impalad) isin the cluster?

» |Isthere ahigh availability requirement?

« Compute/storage capacity reduction factor

Start with the below set of steps to determine theinitial number of coordinators:

1. If your cluster has less than 10 nodes, we recommend that you configure one dedicated coordinator. Deploy
the dedicated coordinator on a DataNode to avoid losing storage capacity. In most of the cases, one dedicated
coordinator is enough to support all workloads on a cluster.

2. Add more coordinatorsif the dedicated coordinator CPU or network peak utilization is 80% or higher. Y ou might
need 1 coordinator for every 50 executors.

3. If the Impala serviceis shared by multiple workgroups with a dynamic resource pool assigned, use one
coordinator per pool to avoid admission control over admission.

4. If high availability is required, double the number of coordinators. One set as an active set and the other asa
backup set.

Use the following guidelines to further tune the throughput and stability.

1. Theconcurrency of DML statements does not typically depend on the number of coordinators or size of the
cluster. Queriesthat return large result sets (10,000+ rows) consume more CPU and memory resources on the
coordinator. Add one or two coordinators if the workload has many such queries.

2. DDL queries, excluding COMPUTE STATS and CREATE TABLE AS SELECT, are executed only on
coordinators. If your workload contains many DDL queries running concurrently, you could add one coordinator.

3. The CPU contention on coordinators can slow down query executions when concurrency is high, especialy for
very short queries (<10s). Add more coordinators to avoid CPU contention.

4. On alarge cluster with 50+ nodes, the number of network connections from a coordinator to executors can grow
quickly as query complexity increases. The growth is much greater on coordinators than executors. Add afew
more coordinators if workloads are complex, i.e. (an average number of fragments* number of Impalad) > 500,
but with the low memory/CPU usage to share the load. Watch IMPALA-4603 and IMPALA-7213 to track the
progress on fixing this issue.

5. When using multiple coordinators for DML statements, divide queries to different groups (number of groups =
number of coordinators). Configure a separate dynamic resource pool for each group and direct each group of
query requests to a specific coordinator. Thisisto avoid query over admission.

6. The front-end connection requirement is not a factor in determining the number of dedicated coordinators.
Consider setting up a connection pool at the client side instead of adding coordinators. For a short-term solution,
you could increase the value of fe_service threads on coordinators to allow more client connections.

47



Cloudera Runtime Scalahility Considerations

7. Ingeneral, you should have avery small number of coordinators so storage capacity reduction is not a concern.
On avery small cluster (less than 10 nodes), deploy a dedicated coordinator on a DataNode to avoid storage
capacity reduction.

Resource Saferange Notes/ CM tsguery to monitor

Memory (Max VM heap setting + Memory usage:

query concurrency * SELECT mem_rss WHERE entityName =
very mem_limit) "Coordinator Instance ID" AND category =
query mem_ ROLE

<= VM heap usage (metadata cache):

SELECT
impala_jvm_heap_current_usage bytes
WHERE entityName = "Coordinator Instance
ID" AND category = ROLE (only in release
5.15 and above)

80% of Impala process memory allocation

TCP Connection Incomi ng + OUthi ng < 16K |ncoming connection usage:

SELECT
thrift_server_backend_connections_in_use
WHERE entityName = "Coordinator Instance
ID" AND category = ROLE

Outgoing connection usage:

SELECT

backends client_cache clients_in_use
WHERE entityName = "Coordinator Instance
ID" AND category = ROLE

Threads < 32K SELECT thread_manager_running_threads
WHERE entityName = "Coordinator Instance
ID" AND category = ROLE

CPU Concurrency = CPU usage estimation should be based on how
many cores are allocated to Impala per node,

non-DDL query concurrency <= not asum of all cores of the cluster.

number of virtual cores allocated to Impala per

node It is recommended that concurrency should

not be more than the number of virtual cores
allocated to Impala per node.

Query concurrency:

SELECT
total_impala_num_queries_registered_across impalads
WHERE entityName = "IMPALA-1" AND

category = SERVICE

If usage of any of the above resources exceeds the safe range, add one more coordinator.

Using Cloudera Manager, monitor the coordinator resource usage to understand your workload and adjust the number
of coordinators according to the guidelines above. The available options are;

« Impaa Queries tab: Monitor such attributes as DDL queries and Rows produced.

e Custom charts: Monitor activities, such as query complexity which is an average fragment count per query (total
fragments/ total queries).

» tsguery: Build the custom charts to monitor and estimate the amount of resource the coordinator needs.

The following are sample queries for common resource usage monitoring. Replace entityName values with your
coordinator instanceid.

48



Cloudera Runtime Hadoop File Formats Support

Per coordinator tsquery

Resour ce Usage Tsquery

Memory usage SELECT impala_memory_total_used, mem_tracker_process_limit
WHERE entityName = "Coordinator Instance ID" AND category =
ROLE

JVM heap usage (metadata cache) SELECT impala_jvm_heap_current_usage bytes WHERE entityName
="Coordinator Instance ID" AND category = ROLE (only in release
5.15 and above)

CPU usage SELECT cpu_user_rate/ getHostFact(numCores, 1) * 100,
cpu_system_rate/ getHostFact(numCores, 1) * 100 WHERE
entityName="Coordinator |nstance ID"

Network usage (host level) SELECT total_bytes receive rate across_network_interfaces,
total_bytes transmit_rate _across network_interfaces WHERE
entityName="Coordinator |nstance ID"

Incoming connection usage SELECT thrift_server_backend_connections_in_use WHERE
entityName = "Coordinator Instance ID" AND category = ROLE

Qutgoing connection usage SELECT backends_client_cache clients in_use WHERE entityName
="Coordinator Instance ID" AND category = ROLE

Thread usage SELECT thread_manager_running_threads WHERE entityName =
"Coordinator Instance ID" AND category = ROLE

Cluster wide tsquery

Resour ce usage

Front-end connection usage SELECT
total_thrift_server_beeswax_frontend_connections in_use _across impalads,
total_thrift_server_hiveserver2_frontend_connections in_use across impalads

Query concurrency SELECT total_impala_num_queries registered_across_impalads
WHERE entityName = "IMPALA-1" AND category = SERVICE

Related Information
Managing Metadatain Impala

Hadoop File Formats Support

Impala supports a number of file formats used in Apache Hadoop.

Impala can load and query data files produced by other Hadoop components such as Spark, and data files produced
by Impala can be used by other components also. The following sections discuss the procedures, limitations, and
performance considerations for using each file format with Impala.

Thefile format used for an Impala table has significant performance consequences. Some file formats include
compression support that affects the size of data on the disk and, consequently, the amount of 1/0O and CPU resources
required to deserialize data. The amounts of 1/0 and CPU resources required can be alimiting factor in query
performance since querying often begins with moving and decompressing data. To reduce the potential impact of this
part of the process, data is often compressed. By compressing data, a smaller total number of bytes are transferred
from disk to memory. This reduces the amount of time taken to transfer the data, but a tradeoff occurs when the CPU
decompresses the content.

For the file formats that Impala cannot write to, create the table from within Impala whenever possible and insert data
using another component such as Hive or Spark. See the table below for specific file formats.

The following table lists the file formats that |mpala supports.

49


https://docs.cloudera.com/runtime/7.2.6/impala-manage/topics/impala-metadata.html

Cloudera Runtime

Hadoop File Formats Support

FileType | Format Compression Codecs

Impala Can CREATE? Impala Can INSERT?
Yes. Yes.

Parquet Structured | Snappy, gzip, zstd, LZ4;
3‘;;3'?:'3’ Snappy by CREATE TABLE, INSERT, LOAD
DATA, and query.
ORC Structured | gzip, Snappy, LZ4; Yes. By default, ORC reads are enabled | No.
currently gzip by default | in Impala Import data by using LOAD DATA on
3.4.0 and higher. To disable, set--enable | datafilesaready in the right format, or
orc scanner to false when starti ng the use INSERT in Hive followed by REFR
cluster. ESH TABLE_NAME inImpala
Text Unstructured | bzip2, deflate, gzip, Yes. Yesif uncompressed.
Snappy.zstd CREATE TABLE with no STORED CREATE TABLE, INSERT, LOAD
AS clause. DATA, and query.
The default file format isuncompressed | No if compressed.
text, with values separated by ASCI|
0x01 characters (typically represented as | If other kinds of compression are used,
Ctrl-A). you must load datathrough LOAD D
ATA, Hive, or manually in HDFS.
Avro Structured | Snappy, gzip, deflate Yes. No.
Import data by using LOAD DATA on
datafiles aready in the right format, or
use INSERT in Hive followed by REFR
ESH TABLE_NAME inImpaa
RCFile Structured | Snappy, gzip, deflate, Yes. No.
bzip2 Import data by using LOAD DATA on
datafiles already in the right format, or
use INSERT in Hive followed by REFR
ESH TABLE_NAME in Impala
SequenceFile Structured | Snappy, gzip, deflate, Yes. No.
bzip2 Import data by using LOAD DATA on
datafiles already in the right format, or
use INSERT in Hive followed by REFR
ESH TABLE _NAMEinImpala

Impala supports the following compression codecs:

Snappy

Gzip

Deflate

Bzip2

Zsd

Lz4

Recommended for its effective balance between compression ratio and decompression speed.
Snappy compression is very fast, but gzip provides greater space savings. Supported for text, RC,
Sequence, and Avro filesin Impala 2.0 and higher.

Recommended when achieving the highest level of compression (and therefore greatest disk-space
savings) is desired. Supported for text, RC, Sequence and Avro filesin Impala 2.0 and higher.

Supported for AVRO, RC, Sequence, and text files.

Supported for text, RC, and Sequence filesin Impala 2.0 and higher.

For Parquet and text files only.

50




Cloudera Runtime Hadoop File Formats Support

For Parquet files only.

Different file formats and compression codecs work better for different data sets. Choosing the proper format for
your data can yield performance improvements. Use the following considerations to decide which combination of file
format and compression to use for a particular table.

» If you are working with existing files that are already in a supported file format, use the same format for the
Impalatable if performance is acceptable. If the original format does not yield acceptable query performance or
resource usage, consider creating a new Impala table with different file format or compression characteristics, and
doing a one-time conversion by rewriting the data to the new table.

e Text files are convenient to produce through many different tools and are human-readable for ease of verification
and debugging. Those characteristics are why text is the default format for an Impala CREATE TABLE statement.
However, when performance and resource usage are the primary considerations, use one of the structured file
formats that include metadata and built-in compression.

A typical workflow might involve bringing datainto an Impalatable by copying CSV or TSV filesinto the
appropriate data directory, and then using the INSERT ... SELECT syntax to rewrite the datainto a table using
adifferent, more compact file format.

Impala supports using text files as the storage format for input and output. Text files are a convenient format to use
for interchange with other applications or scripts that produce or read delimited text files, such as CSV or TSV with
commas or tabs for delimiters.

Text filesare flexible in their column definitions. For example, atext file could have more fields than the Impala
table, and those extra fields are ignored during queries. Or it could have fewer fields than the Impala table, and those
missing fields are treated as NULL valuesin queries.

Y ou could have fields that were treated as numbers or timestampsin atable, then use ALTER TABLE ... REPLACE
COLUMNS to switch them to strings, or the reverse.

Y ou can create tables with specific separator charactersto import text filesin familiar formats such as CSV, TSV, or
pipe-separated with the FIELDS TERMINATED BY clause preceded by the ROW FORMAT DELIMITED clause.
For example:

CREATE TABLE tsv(id INT, s STRING n INT, t TIMESTAMP, b BOCOLEAN)
ROW FORVAT DELI M TED
FI ELDS TERM NATED BY '\t';

Y ou can specify a delimiter character \O' to use the ASCII 0 (nul) character for text tables.

Y ou can also use these tables to produce output datafiles, by copying datainto them through the INSERT ... SELECT
syntax and then extracting the data files from the Impala data directory.

The datafiles created by any INSERT statements uses the Ctrl-A character (hex 01) as a separator between each
column value.

Issue a DESCRIBE FORMATTED TABLE_NAME statement to see the details of how each table is represented
internally in Impala.

Complex type considerations: Although you can create tables in thisfile format using the complex types (ARRAY,,
STRUCT, and MAP), currently, Impala cannot query these typesin text tables.

51



Cloudera Runtime Hadoop File Formats Support

When Impala queries atable with datain text format, it consults all the data filesin the data directory for that table,
with some exceptions:

* Impalaignores any hidden files, that is, files whose names start with a dot or an underscore.

« Impaaqueriesignore files with extensions commonly used for temporary work files by Hadoop tools. Any
files with extensions .tmp or .copying are not considered part of the Impalatable. The suffix matching is case-
insensitive, so for example Impalaignores both .copying and .COPY ING suffixes.

« Impala uses suffixesto recognize when text data files are compressed text. For Impalato recognize the
compressed text files, they must have the appropriate file extension corresponding to the compression codec,
either .bz2, .gz, .snappy, or .zst, .deflate. The extensions can be in uppercase or lowercase.

» Otherwise, the file names are not significant. When you put files into an HDFS directory through ETL jobs, or
point Impalato an existing HDFS directory with the CREATE EXTERNAL TABLE statement, or move data
files under external control with the LOAD DATA statement, Impala preserves the original filenames.

AN INSERT ... SELECT statement produces one data file from each node that processes the SELECT part of the
statement. An INSERT ... VALUES statement produces a separate data file for each statement; because Impalais
more efficient querying a small number of huge files than alarge number of tiny files, the INSERT ... VALUES
syntax is not recommended for loading a substantial volume of data. If you find yourself with atable that is inefficient
due to too many small data files, reorganize the datainto afew large files by doing INSERT ... SELECT to transfer
the datato anew table.

Do not surround string values with quotation marks in text data files that you construct. If you need to include the
separator character inside afield value, for example to put a string value with acommainside a CSV-format data
file, specify an escape character on the CREATE TABLE statement with the ESCAPED BY clause, and insert that
character immediately before any separator characters that need escaping.

Special values within text datafiles:

« Impalarecognizesthe literal stringsinf for infinity and nan for “Not a Number”, for FLOAT and DOUBLE
columns.

» Impalarecognizesthe literal string \N to represent NULL. When using Sgoop, specify the options --null-non-s
tring and --null-string to ensure all NULL values are represented correctly in the Sqoop output files. \N needsto
be escaped asin the below example:

--null-string "\\N --null-non-string "\\N

» By default, Sqoop writes NULL values using the string null, which causes a conversion error when such rows are
evauated by Impala. (A workaround for existing tables and data files isto change the table properties through
ALTER TABLE NAME SET TBLPROPERTIES("serialization.null.format"="null").)

e Impalacan optionally skip an arbitrary number of header lines from text input files on HDFS based on the skip
.header line.count value in the TBLPROPERTIES field of the table metadata.

To load an existing text file into an Impalatext table, use the LOAD DATA statement and specify the path of the file
in HDFS. That fileis moved into the appropriate |mpala data directory.

To load multiple existing text files into an Impala text table, use the LOAD DATA statement and specify the HDFS
path of the directory containing the files. All non-hidden files are moved into the appropriate |mpal a data directory.

Use the DESCRIBE FORMATTED statement to see the HDFS directory where the data files are stored, then use
Linux commands such as hdfs dfs-IsHDFS DIRECTORY and hdfs dfs -cat HDFS FILE to display the contents of an
Impal a-created text file.

When you create atext file for use with an Impalatext table, specify \N to represent aNULL value.

If atext file has fewer fields than the columnsin the corresponding Impalatable, all the corresponding columns are
set to NULL when the datain that fileisread by an Impala query.

52



Cloudera Runtime Hadoop File Formats Support

If atext file has more fields than the columns in the corresponding Impala table, the extrafields are ignored when the
datain that fileisread by an Impala query.

Y ou can aso use manual HDFS operations such as hdfs dfs -put or hdfs dfs -cp to put datafilesin the data directory
for an Impala table. When you copy or move new data files into the HDFS directory for the Impalatable, issue a
REFRESH TABLE_NAME statement ini nmpal a- shel | beforeissuing the next query against that table, to make
Impala recognize the newly added files.

Data stored in text format is relatively bulky, and not as efficient to query as binary formats such as Parquet. For the
tables used in your most performance-critical queries, look into using more efficient aternate file formats.

For frequently queried data, you might load the original text data filesinto one Impalatable, then use an INSERT
statement to transfer the data to another table that uses the Parquet file format. The datais converted automatically as
it isstored in the destination table.

For more compact data. consider using text data compressed in the gzip, bzip2, or Snappy formats. However, these
compressed formats are not “ splittable” so there is|ess opportunity for Impalato paralelize queries on them. You
also have the choice to convert the data to Parquet using an INSERT ... SELECT statement to copy the original data
into a Parquet table.

Impala supports using text data files that employ bzip2, deflate, gzip, Snappy, or zstd compression. These
compression types are primarily for convenience within an existing ETL pipeline rather than maximum performance.
Although it requires less I/O to read compressed text than the equivalent uncompressed text, files compressed by
these codecs are not “ splittable” and therefore cannot take full advantage of the Impala parallel query capability.
Impala can read compressed text files written by Hive.

As each Snappy-compressed file is processed, the node doing the work reads the entire file into memory and then
decompressesit. Therefore, the node must have enough memory to hold both the compressed and uncompressed data
from the text file. The memory required to hold the uncompressed data is difficult to estimate in advance, potentially
causing problems on systems with low memory limits or with resource management enabled. This memory overhead
isreduced for bzip2-, deflate-, gzip-, and zstd-compressed text files. The compressed data is decompressed asit is
read, rather than all at once.

To create atable to hold compressed text, create a text table with no special compression options. Specify the
delimiter and escape character if required, usingthe ROW FORMAT clause.

Because Impala can query compressed text files but currently cannot write them, produce the compressed text files
outside Impalaand use the LOAD DATA statement, manual HDFS commands to move them to the appropriate
Impala data directory. (Or, you can use CREATE EXTERNAL TABLE and point the LOCATION attribute at a
directory containing existing compressed text files.)

Impala alows you to create, manage, and query Parquet tables. Parquet is a column-oriented binary file format
intended to be highly efficient for the types of large-scale queries.

Parquet is suitable for queries scanning particular columns within atable, for example, to query “wide” tables with
many columns, or to perform aggregation operations such as SUM() and AV G() that need to process most or all of the
values from a column.

Each Parquet data file written by Impala contains the values for a set of rows (referred to as the “row group™). Within
adatafile, the values from each column are organized so that they are all adjacent, enabling good compression for
the values from that column. Queries against a Parquet table can retrieve and analyze these values from any column
quickly and with minimal 1/0.

53



Cloudera Runtime Hadoop File Formats Support

To create atable in the Parquet format, use the STORED AS PARQUET clause in the CREATE TABLE statement.
For example:

CREATE TABLE PARQUET_TABLE NAME (x INT, y STRING STORED AS PARQUET;

Or, to clone the column names and data types of an existing table, use the LIKE with the STORED AS PARQUET
clause. For example:

CREATE TABLE PARQUET_TABLE NAME LI KE OTHER TABLE NAME STORED AS PARQUET;

Y ou can derive column definitions from araw Parquet datafile, even without an existing Impala table. For example,
you can create an external table pointing to an HDFS directory, and base the column definitions on one of thefilesin
that directory:

CREATE EXTERNAL TABLE i ngest _existing_files LIKE PARQUET '/user/etl/destinat
ion/datafilel. dat’

STORED AS PARQUET

LOCATI ON '/ user/etl/destination';

Or, you can refer to an existing data file and create a new empty table with suitable column definitions. Then you can
use INSERT to create new datafilesor LOAD DATA to transfer existing data files into the new table.

CREATE TABLE columms_from data file LI KE PARQUET '/user/etl/destination/data
filel.dat'
STORED AS PARQUET;

In this example, the new table is partitioned by year, month, and day. These partition key columns are not part of the
datafile, so you specify them in the CREATE TABLE statement:

CREATE TABLE colums_fromdata_file LI KE PARQUET '/user/etl/destination/data
filel. dat’

PARTI TI ON (year | NT, nonth TINYINT, day TI NYI NT)

STORED AS PARQUET;

If the Parquet table has a different number of columns or different column names than the other table, specify the
names of columns from the other table rather than * in the SELECT statement.

The Parquet format defines a set of data types whose names differ from the names of the corresponding Impala data
types. If you are preparing Parquet files using other Hadoop components such as Pig or MapReduce, you might
need to work with the type names defined by Parquet. The following tables list the Parquet-defined types and the
equivalent typesin Impala.

Primitive types
Par quet type Impalatype
BINARY STRING
BOOLEAN BOOLEAN
DOUBLE DOUBLE
FLOAT FLOAT
INT32 INT
INT64 BIGINT




Cloudera Runtime

Hadoop File Formats Support

Par quet type Impalatype
INT96 TIMESTAMP
Logical types

Parquet uses type annotations to extend the types that it can store, by specifying how the primitive types should be
interpreted.

Par quet primitive type and annotation Impalatype
BINARY annotated with the UTF8 Original Type STRING
BINARY annotated with the STRING Logica Type STRING
BINARY annotated with the ENUM Origina Type STRING
BINARY annotated with the DECIMAL OriginaType |DECIMAL
INT64 annotated with the TIMESTAMP_MILLIS TIMESTAMP

Origina Type or

BIGINT (for backward compatibility)
TIMESTAMP

INT64 annotated with the TIMESTAMP_MICROS
Origina Type or
BIGINT (for backward compatibility)

TIMESTAMP

INT64 annotated with the TIMESTAMP Logica Type
or

BIGINT (for backward compatibility)

Complex types:
Impalaonly supports queries against the complex types (ARRAY, MAP, and STRUCT) in Parquet tables.

Choose from the following process to load data into Parquet tables based on whether the original dataisalready in an
Impalatable, or exists as raw datafiles outside Impala.

If you aready have datain an Impala or Hive table, perhaps in a different file format or partitioning scheme:
e Transfer the data to a Parquet table using the Impala INSERT...SELECT statement.

For example:
| NSERT OVERWRI TE TABLE par quet _tabl e_nane SELECT * FROM ot her _t abl e_nane;

Y ou can convert, filter, repartition, and do other things to the data as part of this same INSERT statement.

When inserting into partitioned tables, especially using the Parquet file format, you can include ahint in the INSE
RT statement to fine-tune the overall performance of the operation and its resource usage.

Any INSERT statement for a Parquet table requires enough free space in the HDFS filesystem to write one block.
Because Parquet data files use ablock size of 1 GB by default, an INSERT might fail (even for avery small amount
of data) if your HDFS s running low on space.

Avoid the INSERT...VALUES syntax for Parquet tables, because INSERT...VALUES produces a separate tiny
datafilefor each INSERT...VALUES statement, and the strength of Parquet isin its handling of data (compressing,
parallelizing, and so on) in large chunks.

55



Cloudera Runtime Hadoop File Formats Support

If you have one or more Parquet data files produced outside of Impala, you can quickly make the data query-able
through Impala by one of the following methods:

* TheLOAD DATA statement moves asingle datafile or adirectory full of datafilesinto the data directory for an
Impalatable. It does no validation or conversion of the data.

The original data files must be somewhere in HDFS, not the local filesystem.
* The CREATE TABLE statement with the LOCATION clause creates a table where the data continues to reside
outside the Impala data directory.

The original data files must be somewhere in HDFS, not the local filesystem.

For extrasafety, if the datais intended to be long-lived and reused by other applications, you can use the CREA
TE EXTERNAL TABLE syntax so that the data files are not deleted by an Impala DROP TABLE statement.

« |f the Parquet table already exists, you can copy Parquet data files directly into it using the hadoop distcp -pb
command, then use the REFRESH statement to make Impala recognize the newly added data.

Y ou must preserve the block size of the Parquet datafiles by using the hadoop distcp  -pb command rather than a
-put or -cp operation on the Parquet files.

Note:

B Currently, Impala always decodes the column datain Parquet files based on the ordinal position of the
columns, not by looking up the position of each column based on its name. Parquet files produced outside
of Impala must write column data in the same order as the columns are declared in the Impalatable. Any
optional columns that are omitted from the data files must be the rightmost columnsin the Impaatable
definition.

If you created compressed Parquet files through some tool other than Impala, make sure that any compression
codecs are supported in Parquet by Impala. For example, Impala does not currently support LZO compression
in Parquet files. Also doublecheck that you used any recommended compatibility settingsin the other tool,
such as spark.sqgl.parquet.binaryAsString when writing Parquet files through Spark.

Recent versions of Sqoop can produce Parquet output files using the --as-parquetfile option.

If the data exists outside Impala and is in some other format, combine both of the preceding techniques. First, use a
LOAD DATA or CREATE EXTERNAL TABLE ... LOCATION statement to bring the datainto an Impalatable
that uses the appropriate file format. Then, use an INSERT...SELECT statement to copy the data to the Parquet table,
converting to Parquet format as part of the process.

Loading data into Parquet tables is a memory-intensive operation, because the incoming data is buffered until it
reaches one data block in size, then that chunk of datais organized and compressed in memory before being written
out. The memory consumption can be larger when inserting data into partitioned Parquet tables, because a separate
datafileiswritten for each combination of partition key column values, potentially requiring severa large chunksto
be manipulated in memory at once.

When inserting into a partitioned Parquet table, Impala redistributes the data among the nodes to reduce memory
consumption. Y ou might still need to temporarily increase the memory dedicated to Impala during the insert
operation, or break up the load operation into several INSERT statements, or both.

Query performance for Parquet tables depends on the number of columns needed to process the SELECT list and
WHERE clauses of the query, the way datais divided into large data files with block size equal to file size, the
reduction in 1/O by reading the data for each column in compressed format, which data files can be skipped (for
partitioned tables), and the CPU overhead of decompressing the data for each column.

For example, the following is an efficient query for a Parquet table:
SELECT AV i ncone) FROM census_data WHERE state = ' CA';

The query processes only 2 columns out of alarge number of total columns. If the table is partitioned by the STATE
column, it is even more efficient because the query only hasto read and decode 1 column from each datafile, and it

56



Cloudera Runtime Hadoop File Formats Support

can read only the datafiles in the partition directory for the state 'CA’, skipping the data filesfor all the other states,
which will be physically located in other directories.

Thefollowing is arelatively inefficient query for a Parquet table:
SELECT * FROM census_dat a;

Impalawould have to read the entire contents of each large data file, and decompress the contents of each column
for each row group, negating the 1/0O optimizations of the column-oriented format. This query might still be faster
for a Parquet table than a table with some other file format, but it does not take advantage of the unique strengths of
Parquet datafiles.

Impala can optimize queries on Parquet tables, especially join queries, better when statistics are available for al the
tables. Issue the COMPUTE STATS statement for each table after substantial amounts of data are loaded into or
appended to it.

The runtime filtering feature works best with Parquet tables. The per-row filtering aspect only appliesto Parquet
tables.

Impala queries are optimized for files stored in Amazon S3. For Impala tables that use the Parquet file formats, the
PARQUET_OBJECT_STORE_SPLIT_SIZE query option determines how Impala divides the 1/0 work of reading
the datafiles. By default, thisvalueis 256 MB. Impala parallelizes S3 read operations on the files asif they were
made up of 256 MB blocks to match the row group size produced by Impala.

Parquet files written by Impalainclude embedded metadata specifying the minimum and maximum values for each
column, within each row group and each data page within the row group. Impala-written Parquet files typically
contain a single row group; arow group can contain many data pages. |mpala uses this information (currently, only
the metadata for each row group) when reading each Parquet data file during a query, to quickly determine whether
each row group within the file potentially includes any rows that match the conditions in the WHERE clause.

For example, if the column X within a particular Parquet file has a minimum value of 1 and a maximum value of 100,
then a query including the clause WHERE x > 200 can quickly determine that it is safe to skip that particular file,
instead of scanning all the associated column values.

This optimization technique is especially effective for tables that use the SORT BY clause for the columns most
frequently checked in WHERE clauses, because any INSERT operation on such tables produces Parquet data files
with relatively narrow ranges of column values within each file.

To disable Impala from writing the Parquet page index when creating Parquet files, set the PARQUET _WRITE_PA
GE_INDEX query option to FALSE.

Partitioning is an important performance technique for Impala generally. This section explains some of the
performance considerations for partitioned Parquet tables.

The Parquet file format isideal for tables containing many columns, where most queries only refer to a small subset
of the columns. The physical layout of Parquet data files lets Impalaread only a small fraction of the datafor many
gueries. The performance benefits of this approach are amplified when you use Parquet tables in combination with
partitioning. Impala can skip the data files for certain partitions entirely, based on the comparisonsin the WHERE
clause that refer to the partition key columns. For example, queries on partitioned tables often analyze data for time
intervals based on columns such as YEAR, MONTH, and/or DAY, or for geographic regions.

As Parquet data files use alarge block size, when deciding how finely to partition the data, try to find a granularity
where each partition contains 256 MB or more of data, rather than creating a large number of smaller files split
among many partitions.

Inserting into a partitioned Parquet table can be a resource-intensive operation, because each Impala node could
potentially be writing a separate data file to HDFS for each combination of different values for the partition key
columns. The large number of simultaneous open files could exceed the HDFS “transceivers’ limit. To avoid
exceeding thislimit, consider the following techniques:

57



Cloudera Runtime Hadoop File Formats Support

» Load different subsets of data using separate INSERT statements with specific values for the PARTITION clause,
such as PARTITION (year=2010).

* Increasethe “transceivers’ value for HDFS, sometimes spelled “xcievers’ (sic). The property valuein the hdfs-
sitexml configuration file is dfs.datanode.max.transfer.threads.

For example, if you were loading 12 years of data partitioned by year, month, and day, even a value of 4096 might
not be high enough.

* Usethe COMPUTE STATS statement to collect column statistics on the source table from which datais being
copied, so that the Impala query can estimate the number of different valuesin the partition key columns and
distribute the work accordingly.

When Impala writes Parquet data files using the INSERT statement, the underlying compression is controlled by the
COMPRESSION_CODEC query option. The allowed values for this query option are snappy (the default), gzip, zstd,
1z4, and none, the compression codecs that Impala supports for Parquet.

Snappy
By default, the underlying data files for a Parquet table are compressed with Snappy. The
combination of fast compression and decompression makes it a good choice for many data sets.
GZip
If you need more intensive compression (at the expense of more CPU cycles for uncompressing
during queries), set the COMPRESSION_CODEC query option to gzip before inserting the data.
Zstd
Zstd is areal-time compression agorithm offering a tradeoff between speed and ratio of
compression. Compression levels from 1 up to 22 are supported. The lower the level, the faster the
speed at the cost of compression ratio.
Lz4
Lz4 is alossless compression algorithm providing extremely fast and scalable compression and
decompression.
None

If your data compresses very poorly, or you want to avoid the CPU overhead of compression and
decompression entirely, set the COMPRESSION_CODEC query option to none before inserting the
data.

The actual compression ratios, and relative insert and query speeds, will vary depending on the characteristics of the
actual data.

Because Parquet datafiles are typicaly large, each directory will have a different number of data files and the row
groups will be arranged differently.

At the same time, the less aggressive the compression, the faster the data can be decompressed.

For example, using a table with abillion rows, switching from Snappy to GZip compression shrinks the data by an
additional 40% or so, while switching from Snappy compression to no compression expands the data also by about
40%. A query that evaluates all the values for a particular column runs faster with no compression than with Snappy
compression, and faster with Snappy compression than with Gzip compression.

The data files using the various compression codecs are all compatible with each other for read operations. The
metadata about the compression format is written into each data file, and can be decoded during queries regardless of
the COMPRESSION_CODEC setting in effect at the time.

Y ou can read and write Parquet data files from other Cloudera components, such as Hive.

58



Cloudera Runtime Hadoop File Formats Support

Impala supports the scalar data types that you can encode in a Parquet data file, but not composite or nested types
such as maps or arrays. Impala can query Parquet data files that include composite or nested types, aslong as the
query only refers to columns with scalar types.

If you copy Parquet data files between nodes, or even between different directories on the same node, make sure to
preserve the block size by using the command hadoop distcp -pb. To verify that the block size was preserved, issue
the command hdfsfsck -blocks HDFS PATH_OF IMPALA TABLE_DIR and check that the average block sizeis at
or near 256 MB (or whatever other size is defined by the PARQUET_FILE_SIZE query option).. (The hadoop distcp
operation typically leaves some directories behind, with names matching _distcp_logs_*, that you can delete from the
destination directory afterward.)

Issue the command hadoop di st cp for details about di st cp command syntax.

Impala can query Parquet files that use the PLAIN, PLAIN_DICTIONARY, BIT_PACKED, and RLE encodings.
Currently, Impala does not support RLE_DICTIONARY encoding. When creating files outside of Impalafor use by
Impala, make sure to use one of the supported encodings.

In particular, for MapReduce jobs, parquet.writer.version must not be defined (especially as PARQUET_2_0) for
writing the configurations of Parquet MR jobs.

Data using the version 2.0 of Parquet writer might not be consumable by Impala, due to use of the RLE_DICTIONA
RY encoding.

Use the default version of the Parquet writer and refrain from overriding the default writer version by setting the parq
uet.writer.version property or via WriterVersion.PARQUET_2 0inthe Parquet API.

Although Parquet is a column-oriented file format, Parquet keeps all the data for a row within the same data file, to
ensure that the columns for arow are always available on the same node for processing. Parquet sets alarge HDFS
block size and a matching maximum data file size to ensure that 1/0 and network transfer requests apply to large
batches of data.

Within that datafile, the datafor a set of rows s rearranged so that al the values from the first column are organized
in one contiguous block, then al the values from the second column, and so on. Putting the values from the same
column next to each other lets Impala use effective compression techniques on the values in that column.

Note:

B Impala INSERT statements write Parquet data files using an HDFS block size that matches the datafile size,
to ensure that each datafile is represented by asingle HDFS block, and the entire file can be processed on a
single node without requiring any remote reads.

If you create Parquet data files outside of Impala, such as through a MapReduce or Pig job, ensure that

the HDFS block sizeis greater than or equal to thefile size, so that the “one file per block” relationship is
maintained. Set the dfs.block.size or the dfs.blocksize property large enough that each file fits within asingle
HDFS block, even if that size islarger than the norma HDFS block size.

If the block sizeis reset to alower value during afile copy, you will see lower performance for queries
involving those files, and the PROFILE statement will reveal that some 1/O is being done suboptimally,
through remote reads.

When Impalaretrieves or tests the data for a particular column, it opens al the data files, but only reads the portion
of each file containing the values for that column. The column values are stored consecutively, minimizing the 1/0
required to process the values within a single column. If other columns are named in the SELECT list or WHERE
clauses, the datafor al columnsin the same row is available within that same datafile.

If an INSERT statement brings in less than one Parquet block's worth of data, the resulting data fileis smaller than
ideal. Thus, if you do split up an ETL job to use multiple INSERT statements, try to keep the volume of data for each
INSERT statement to approximately 256 MB, or a multiple of 256 MB.

59



Cloudera Runtime Hadoop File Formats Support

Parquet uses some automatic compression techniques, such as run-length encoding (RLE) and dictionary encoding,
based on analysis of the actual data values. Once the data values are encoded in a compact form, the encoded data can
optionally be further compressed using a compression algorithm. Parquet data files created by Impala can use Snappy,
GZip, or no compression; the Parquet spec also allows LZO compression, but currently Impala does not support LZO-
compressed Parquet files.

RLE and dictionary encoding are compression techniques that Impala applies automatically to groups of Parquet data
values, in addition to any Snappy or GZip compression applied to the entire data files. These automatic optimizations
can save you time and planning that are normally needed for atraditional data warehouse. For example, dictionary
encoding reduces the need to create numeric IDs as abbreviations for longer string values.

Run-length encoding condenses sequences of repeated data values. For example, if many consecutive rows all contain
the same value for a country code, those repeating values can be represented by the value followed by a count of how
many times it appears consecutively.

Dictionary encoding takes the different values present in a column, and represents each one in compact 2-byte form
rather than the original value, which could be several bytes. (Additional compression is applied to the compacted
values, for extra space savings.) This type of encoding applies when the number of different values for acolumnis
less than 2** 16 (16,384). It does not apply to columns of datatype BOOLEAN, which are already very short. TIME
STAMP columns sometimes have a unique value for each row, in which case they can quickly exceed the 2** 16
limit on distinct values. The 2** 16 limit on different values within a column isreset for each datafile, so if several
different data files each contained 10,000 different city names, the city name column in each datafile could still be
condensed using dictionary encoding.

If you reuse existing table structures or ETL processes for Parquet tables, you might encounter a“many small files’
situation, which is suboptimal for query efficiency.

Here are techniques to help you produce large data filesin Parquet INSERT operations, and to compact existing too-
small datafiles:

*  Wheninserting into a partitioned Parquet table, use statically partitioned INSERT statements where the partition
key values are specified as constant values. Ideally, use a separate INSERT statement for each partition.

e You might set the NUM_NODES option to 1 briefly, during INSERT or CREATE TABLE AS SELECT
statements. Normally, those statements produce one or more data files per data node. If the write operation
involves small amounts of data, a Parquet table, and/or a partitioned table, the default behavior could produce
many small files when intuitively you might expect only a single output file. SET NUM_NODES=1 turns off the
“distributed” aspect of the write operation, making it more likely to produce only one or afew datafiles.

* Beprepared to reduce the number of partition key columns from what you are used to with traditional analytic
database systems.

» Do not expect Impala-written Parquet files to fill up the entire Parquet block size. Impala estimates on the
conservative side when figuring out how much data to write to each Parquet file. Typically, the uncompressed
datain memory is substantially reduced on disk by the compression and encoding techniques in the Parquet
fileformat. The final datafile size varies depending on the compressibility of the data. Therefore, it isnot an
indication of aproblem if 256 MB of text dataisturned into 2 Parquet data files, each less than 256 MB.

« |f you accidentally end up with atable with many small datafiles, consider using one or more of the preceding
techniques and copying all the datainto a new Parquet table, either through CREATE TABLE AS SELECT or
INSERT ... SELECT statements.

To avoid rewriting queries to change table names, you can adopt a convention of always running important
queries against aview. Changing the view definition immediately switches any subsequent queries to use the new
underlying tables:

Schema evolution refers to using the statement ALTER TABLE ... REPLACE COLUMNS to change the names,
data type, or number of columnsin atable. Y ou can perform schema evolution for Parquet tables as follows:

60



Cloudera Runtime Hadoop File Formats Support

e Thelmpala ALTER TABLE statement never changes any data filesin the tables. From the Impala side, schema
evolution involves interpreting the same data filesin terms of a new table definition. Some types of schema
changes make sense and are represented correctly. Other types of changes cannot be represented in a sensible way,
and produce special result values or conversion errors during queries.

« TheINSERT statement always creates data using the latest table definition. Y ou might end up with data files with
different numbers of columns or interna data representations if you do a sequence of INSERT and ALTER TA
BLE.. REPLACE COLUMNS statements.

e Ifyouuse ALTER TABLE ... REPLACE COLUMNS to define additiona columns at the end, when the origina
datafiles are used in aquery, these final columns are considered to be all NULL values.

e |fyouuse ALTER TABLE ... REPLACE COLUMNS to define fewer columns than before, when the original data
files are used in a query, the unused columns still present in the datafile are ignored.

e Parquet representsthe TINYINT, SMALLINT, and INT types the same internally, all stored in 32-bit integers.

e That meansitiseasy to promotea TINYINT column to SMALLINT or INT, or aSMALLINT columnto INT.
The numbers are represented exactly the same in the data file, and the columns being promoted would not
contain any out-of-range values.

« |If you change any of these column types to a smaller type, any values that are out-of-range for the new type
arereturned incorrectly, typically as negative numbers.

* Youcannot changea TINYINT, SMALLINT, or INT column to BIGINT, or the other way around. Although
the ALTER TABLE succeeds, any attempt to query those columns results in conversion errors.

« Any other type conversion for columns produces a conversion error during queries. For example, INT to STRI
NG, FLOAT to DOUBLE, TIMESTAMP to STRING, DECIMAL(9,0) to DECIMAL(5,2), and so on.

Y ou might find that you have Parquet files where the columns do not line up in the same order as in your Impala
table. For example, you might have a Parquet file that was part of atable with columns C1,C2,C3,C4, and now you
want to reuse the same Parquet file in a table with columns C4,C2. By default, | mpala expects the columnsin the data
file to appear in the same order as the columns defined for the table, making it impractical to do some kinds of file
reuse or schema evolution.

The query option PARQUET _FALLBACK_SCHEMA_RESOLUTION=name lets Impala resolve columns by name,
and therefore handle out-of-order or extra columnsin the datafile.

Impala can read ORC datafiles.

By default, ORC reads are enabled in Impala 3.4.0. To disable the support of ORC datafiles:

1. In Cloudera Manager, navigateto ClustersImpala.

2. Inthe Configuration tab, set --enable_orc_scanner=false in the Impala Command Line Argument Advanced
Configuration Snippet (Safety Valve)field.

To enable ORC reads, set the property to true.
3. Restart the cluster.

To create atable in the ORC format, use the STORED AS ORC clausein the CREATE TABLE statement.

Because Impala can query ORC tables but cannot currently write to, after creating ORC tables, use the Hive shell to
load the data.

After loading datainto atable through Hive or other mechanism outside of Impala, issue a REFRESH
TABLE_NAME statement the next time you connect to the Impala node, before querying the table, to make Impala
recognize the new data.

61



Cloudera Runtime

For example, hereis how you might create some ORC tablesin Impala (by specifying the columns explicitly, or
cloning the structure of another table), load data through Hive, and query them through Impala:

$ inpal a-shell -i |ocal host

[l ocal host:21000] default> CREATE TABLE orc_table (x |INT) STORED AS ORC;

[l ocal host:21000] default> CREATE TABLE orc_clone LIKE sone_ot her table STO
RED AS ORC,

[l ocal host:21000] default> quit;

$ hive

hi ve> | NSERT | NTO TABLE orc_tabl e SELECT x FROM sone_ot her _t abl e;

3 Rows | oaded to orc_table

Ti me taken: 4.169 seconds

hi ve> quit;

$ inpal a-shell -i Iocal host

[l ocal host:21000] default> -- Mke |Inpala recognize the data | oaded through
H ve;

[l ocal host:21000] default> REFRESH orc_t abl e;

[l ocal host:21000] default> SELECT * FROM orc_table

Fetched 3 row(s) in 0.11s

The ORC format defines a set of data types whose names differ from the names of the corresponding Impala data
types. The following figure lists the ORC-defined types and the equivalent typesin Impala.

Hadoop File Formats Support

Primitive types:
ORC type Impalatype
BINARY STRING
BOOLEAN BOOLEAN
DOUBLE DOUBLE
FLOAT FLOAT
TINYINT TINYINT
SMALLINT SMALLINT
INT INT
BIGINT BIGINT
TIMESTAMP TIMESTAMP
DATE Not supported
Complex types:

Impala supports the complex types ARRAY, STRUCT, and MAP in ORC files. Because Impala has better
performance on Parquet than ORC, if you plan to use complex types, become familiar with the performance and
storage aspects of Parquet first.

ORC tablesarein ZLIB (Deflate in Impala) compression by default. The supported compressions for ORC tables are
NONE, ZLIB, and SNAPPY.

Set the compression when you load ORC tablesin Hive.

62



Cloudera Runtime Hadoop File Formats Support

Impal a supports creating and querying Avro tables. Y ou need to use Hive to insert datainto Avro tables.

To create anew table using the Avro file format, use the STORED AS AVRO clause in the CREATE TABLE
statement. If you create the table through Impala, you must include column definitions that match the fields specified
in the Avro schema. With Hive, you can omit the columns and just specify the Avro schema.

The following examples demonstrate creating an Avro table in Impala, using either an inline column specification or
one taken from a JSON file stored in HDFS:

\%

[l ocal host:21000] CREATE TABLE avro_only_sql _col ums
(col 1 BOOLEAN, col 2 | NT)

STORED AS AVRO

vV V

{"nanme":"col 2", "type":"int"}]1}"');
CREATE TABLE avro_exanpl es_of _all _types
(col 1 BOOLEAN, col 2 INT)
STORED AS AVRO
>  TBLPROPERTI ES (' avro.schema. url'="hdfs://| ocal host: 802
0/ avro_schemas/al | types.json');

[l ocal host:21000] > CREATE TABLE inpal a_avro_tabl e
> (col 1 BOOLEAN, col 2 I NT)
> STORED AS AVRO
> TBLPROPERTI ES (' avro.schema.literal'="{
> "name": "ny_record",
> "type": "record",
> "fields": [
> {"name":"col 1", "type":"bool ean"},
>
>

[l ocal host:21000]

\%

Each field of the record becomes a column of the table. Note that any other information, such as the record name, is
ignored.

Note: For nullable Avro columns, make sure to put the "null" entry before the actual type name. In Impala,
al columns are nullable; Impala currently does not have a NOT NULL clause. Any non-nullable property is
only enforced on the Avro side.

If you create the table through Hive, switch back toi nmpal a- shel | andissuean INVALIDATE METADATA
TABLE_NAME statement. Then you can run queries for that table through i npal a- shel | .

In rare instances, a mismatch could occur between the Avro schema and the column definitionsin the Metastore
database. Impala checks for such inconsistencies during a CREATE TABLE statement and each time it loads the
metadata for atable (for example, after INVALIDATE METADATA). Impala uses the following rules to determine
how to treat mismatching columns, a process known as schema reconciliation:

e |f thereisamismatch in the number of columns, Impala uses the column definitions from the Avro schema.

« If thereisamismatch in column name or type, Impala uses the column definition from the Avro schema. Because
aCHAR or VARCHAR column in Impala mapsto an Avro STRING, this case is not considered a mismatch and
the column is preserved as CHAR or VARCHAR in the reconciled schema.

e AnlImpala TIMESTAMP column definition maps to an Avro STRING and is presented asa STRING in the
reconciled schema, because Avro has no binary TIMESTAMP representation.

Specifying the Avro Schema through JSON:

While you can embed a schemadirectly in your CREATE TABLE statement, as shown above, column width
restrictions in the Hive Metastore limit the length of schema you can specify. If you encounter problems with long

63



Cloudera Runtime

schemaliteras, try storing your schemaas a JSON filein HDFS instead. Specify your schemain HDFS using table
properties in the following format using the avro.schema.url in TBLPROPERTIES clause.

TBLPROPERTI ES (' avro. schema. url' =" hdf s//your - nane- node: port/ pat h/to/ schema. j
son');

Data Type Considerations for Avro Tables

The Avro format defines a set of data types whose names differ from the names of the corresponding Impala data
types. If you are preparing Avro files using other Hadoop components such as Pig or MapReduce, you might need to
work with the type names defined by Avro. The following figure lists the Avro-defined types and the equivalent types
inImpaa

Primitive types:

Avrotype Impalatype
STRING STRING
STRING CHAR
STRING VARCHAR
INT INT
BOOLEAN BOOLEAN
LONG BIGINT
FLOAT FLOAT
DOUBLE DOUBLE

The Avro specification allows string values up to 2** 64 bytesin length:

* Impalaqueriesfor Avro tables use 32-bit integers to hold string lengths.
e Impaatruncates CHAR and VARCHAR valuesin Avro tablesto (2**31)-1 bytes.
« |f aquery encounters a STRING value longer than (2**31)-1 bytesin an Avro table, the query fails.

Logical types:
Avro type Impalatype
BY TES annotated DECIMAL
INT32 annotated DATE

Avro types not supported by Impala

» RECORD
MAP
ARRAY
UNION
ENUM
FIXED

« NULL

Impalatypes not supported by Avro:
e TIMESTAMP

Impalaissues warning messages if there are any mismatches between the types specified in the SQL column
definitions and the underlying types; for example, any TINYINT or SMALLINT columns are treated as INT in the
underlying Avro files, and therefore are displayed as INT in any DESCRIBE or SHOW CREATE TABLE output.

Hadoop File Formats Support



Cloudera Runtime Hadoop File Formats Support

Note:

E Currently, Avro tables cannot contain TIMESTAMP columns. If you need to store date and time valuesin
Avro tables, as aworkaround you can use a STRING representation of the values, convert the values to BIGI
NT with the UNIX_TIMESTAMP() function, or create separate numeric columns for individual date and time
fields using the EXTRACT() function.

If you have an Avro table created through Hive, you can useit in Impalaaslong asit contains only Impala
compatible data types. It cannot contain Avro types not supported by Impala, such as ENUM and FIXED Because
Impala and Hive share the same metastore database, Impala can directly access the table definitions and data for
tables that were created in Hive.

If you create an Avro tablein Hive, issuean INVALIDATE METADATA inImpala Thisis aone-time operation
to make Impala aware of the new table. Y ou can issue the statement while connected to any Impala node, and the
catal og service broadcasts the change to al other Impala nodes.

If you load new datainto an Avro table through Hive, either through a Hive LOAD DATA or INSERT statement, or
by manually copying or moving filesinto the data directory for the table, issue a REFRESH TABLE_NAME statement
the next time you connect to Impalathrough i npal a- shel | .

If you issue the LOAD DATA statement through Impala, you do not need a REFRESH afterward.

Impaaonly supportsfields of type BOOLEAN, INT, LONG, FLOAT, DOUBLE, and STRING, or unions of these
types with null, for example, ["string”, "null"]. Unions with null essentially create a nullable type.

Currently, Impala cannot write Avro data files. Therefore, an Avro table cannot be used as the destination of an
Impala INSERT statement or CREATE TABLE AS  SELECT.

To copy data from another table, issue any INSERT statements through Hive.

After loading datainto atable through Hive or other mechanism outside of Impala, issue a REFRESH
TABLE_NAME statement the next time you connect to the Impala node, before querying the table, to make Impala
recognize the new data.

If you already have datafilesin Avro format, you can also issue LOAD DATA in either Impala or Hive. Impala can
move existing Avro datafilesinto an Avro table, it just cannot create new Avro datafiles.

To enable compression for Avro tables, specify settings in the Hive shell to enable compression and to specify a
codec, then issue a CREATE TABLE statement as in the preceding examples. Impala supports the snappy and deflate
codecs for Avro tables.

For example:

hi ve> set hive. exec. conpress. out put =t r ue;
hi ve> set avro. out put.codec=snappy;

Impala can handle with Avro data files that employ schema evolution, where different data files within the same table
use dightly different type definitions. (Y ou would perform the schema evolution operation by issuing an ALTER TA
BLE statement in the Hive shell.) The old and new types for any changed columns must be compatible, for example a
column might start asan INT and later changeto aBIGINT or FLOAT.

Aswith any other tables where the definitions are changed or datais added outside of the current i npal ad node,
ensure that Impala loads the latest metadata for the table if the Avro schemais modified through Hive. Issue a REFR

65



Cloudera Runtime Hadoop File Formats Support

ESH TABLE _NAME or INVALIDATE METADATA TABLE_NAME statement. REFRESH reloads the metadata
immediately, INVALIDATE METADATA reloads the metadata the next time the table is accessed.

When Avro datafiles or columns are not consulted during a query, Impala does not check for consistency. Thus, if
you issue SELECT c1, c2 FROM t1, Impala does not return any error if the column ¢3 changed in an incompatible
way. If aquery retrieves data from some partitions but not others, Impala does not check the data files for the unused
partitions.

In the Hive DDL statements, you can specify an avro.schemalliteral table property (if the schema definition is short)
or an avro.schema.url property (if the schema definition islong, or to allow convenient editing for the definition).

In general, expect query performance with Avro tables to be faster than with tables using text data, but slower than
with Parquet tables.

Impala supports creating and querying RCFile tables.

To create atable in the RCFile format, use the STORED AS RCFILE clause in the CREATE TABLE statement.

Because Impala can query RCFile tables but cannot currently write to, after creating RCFile tables, use the Hive shell
to load the data.

After loading datainto a table through Hive or other mechanism outside of Impala, issue a REFRESH
TABLE_NAME statement the next time you connect to the Impala node, before querying the table, to make Impala
recognize the new data.

In general, expect query performance with RCFile tables to be faster than with tables using text data, but slower than
with Parquet tables.

Y ou may want to enable compression on existing tables. Enabling compression provides performance gainsin most
cases and is supported for RCFile tables.

The compression type is specified in the SET mapred.output.compression.codec command.
For example, to enable Snappy compression, you would specify the following additional settings when loading data
through the Hive shell.

SET mapr ed. out put . conpr essi on. codec=or g. apache. hadoop. i 0. conpr ess. SnappyCode
C,

Impala supports creating and querying SequenceFile tables.

To create atable in the SequenceFile format, usethe STORED AS SEQUENCEFILE clauseinthe CREATE T
ABLE statement.

66



Cloudera Runtime Storage Systems Supports

Because Impala can query SequenceFile tables but cannot currently write to, after creating SequenceFile tables, use
the Hive shell to load the data.

After loading datainto atable through Hive or other mechanism outside of Impala, issue a REFRESH
TABLE_NAME statement the next time you connect to the Impala node, before querying the table, to make Impala
recognize the new data.

Y ou may want to enable compression on existing tables. Enabling compression provides performance gainsin most
cases and is supported for SequenceFile tables.

The compression type is specified inthe SET  mapred.output.compression.codec command.

For exampl e, to enable Snappy compression, you would specify the following additional settings when loading data
through the Hive shell.

SET napr ed. out put . conpr essi on. codec=or g. apache. hadoop. i 0. conpr ess. SnappyCode
C;

In general, expect query performance with SequenceFile tables to be faster than with tables using text data, but slower
than with Parquet tables.

This section describes the storage systems that |mpala supports.

Although Impalatypically works well with many large filesin an HDFS storage system, there are times when you
might perform some file cleanup to reclaim space, or advise developers on techniques to minimize space consumption
and file duplication.

» Use compact binary file formats where practical. Numeric and time-based data in particular can be stored in more
compact form in binary datafiles. Depending on the file format, various compression and encoding features
can reduce file size even further. Y ou can specify the STORED AS clause as part of the CREATE TABLE
statement, or ALTER TABLE with the SET FILEFORMAT clause for an existing table or partition within a
partitioned table.

* You manage underlying datafiles differently depending on whether the corresponding Impalatable is defined as
aninternal or externa table:

* Usethe DESCRIBE FORMATTED statement to check if a particular table isinterna (managed by Impala) or
external, and to see the physical location of the datafilesin HDFS.

e For Impalamanaged (“internal”) tables, use DROP TABLE statements to remove datafiles.

» For tables not managed by Impala (“ external”) tables, use appropriate HDFS-related commands such as hado
op fs, hdfsdfs, or distcp, to create, move, copy, or delete files within HDFS directories that are accessible by

67



Cloudera Runtime Storage Systems Supports

the impala user. Issue a REFRESH TABLE_NAME statement after adding or removing any files from the data
directory of an external table.

* Useexterna tablesto reference HDFS datafilesin their original location. With this technique, you avoid
copying the files, and you can map more than one Impala table to the same set of datafiles. When you drop the
Impalatable, the datafiles are left undisturbed.

e Usethe LOAD DATA statement to move HDFSfiles into the data directory for an Impala table from inside
Impala, without the need to specify the HDFS path of the destination directory. This technique works for both
internal and external tables.

e Make sure that the HDFS trashcan is configured correctly. When you remove files from HDFS, the space might
not be reclaimed for use by other files until sometime later, when the trashcan is emptied.

« Drop al tablesin a database before dropping the database itself.

e |f anINSERT statement encounters an error, and you see a directory named .impala_insert_staging or
_impala_insert_staging left behind in the data directory for the table, it might contain temporary data files taking
up spacein HDFS. Y ou might be able to salvage these data files.

For example, delete those files through commands such as hadoop fs or hdfs dfs to reclaim space before re-
trying the INSERT. Issue DESCRIBE FORMATTED TABLE_NAME to see the HDFS path where you can
check for temporary files.

Impala uses intermediate files during large sorts, joins, aggregations, or analytic function operations Thefiles are
removed when the operation finishes. By default, intermediate files are stored in the directory /tmp/impal a-scratch.

Y ou can specify locations of the intermediate filesin one of the following ways:

e By starting thei npal ad daemon with the ##scratch_dirs="PATH_TO_DIRECTORY" configuration option.
» By specifying a different location in the Cloudera Manager in the Impala Daemon Scratch Directories field.

With either option above:

* You can specify asingle directory or acomma-separated list of directories.
* You can specify an optional a capacity quota per scratch directory using the colon (:) as the delimiter.

The capacity quota of -1 or 0 is the same as no quota for the directory.
» Thescratch directories must be on the local filesystem, not in HDFS.

« You might specify different directory paths for different hosts, depending on the capacity and speed of the
available storage devices.

If thereislessthan 1 GB free on the filesystem where that directory resides, Impala still runs, but writes a warning
message to itslog.

Impala successfully starts (with awarning written to the log) if it cannot create or read and write filesin one of the
scratch directories.

The following are examples for specifying scratch directories.

--scratch_dirs=/dirl,/dir2 Use/dirl and /dir2 as scratch directories with no capacity quota.

--scratch_dirs=/dirl,/dir2:25G Use/dirl and /dir2 as scratch directories with no capacity quotaon/
dirl and the 25GB quota on /dir2.

--scratch_dirs=/dir1:5MB,/dir2 Use/dirl and /dir2 as scratch directories with the capacity quota of
5MB on /dirl and no quota on /dir2.

--scratch_dirs=/dirl:-1,/dir2:0 Use/dirl and /dir2 as scratch directories with no capacity quota.

Allocation from a scratch directory will fail if the specified limit for the directory is exceeded.

If Impala encounters an error reading or writing filesin a scratch directory during a query, Impalalogs the error, and
the query fails.

68



Cloudera Runtime Storage Systems Supports

Y ou can compress the data spilled to disk to increase the effective scratch capacity. Y ou typically more than
double capacity using compression and reduce spilling to disk. Use the --disk_spill_compression_codec and —
disk_spill_punch_holes startup options. The --disk_spill_compression_codec takes any value supported by the
COMPRESSION_CODEC query option. The value is not case-sensitive. A value of ZSTD or LZ4 is recommended
(default is NONE).

For example:
--di sk_spill _conpressi on_codec=LZ4
--di sk_spill _punch_hol es=true

If you set --disk_spill_compression_codec to avalue other than NONE, you must set --disk_spill_punch_holesto
true.

The hole punching feature supported by many file systemsis used to reclaim space in scratch files during execution of
aquery that spillsto disk. Thisresultsin lower scratch space requirementsin many cases, especially when combined
with disk spill compression. When this option is not enabled, scratch spaceis still recycled by a query, but less
effectively in many cases.

Y ou can specify acompression level for ZSTD only. For example:

--disk_spill _conpressi on_codec=ZSTD: 10
--di sk_spill _punch_hol es=true

Compression levels from 1 up to 22 (default 3) are supported for ZSTD. The lower the compression level, the faster
the speed at the cost of compression ratio.

Y ou can use Impalato query tables stored by Apache Kudu. This capability allows convenient access to a storage
system that istuned for different kinds of workloads than the default with Impala.

By default, Impalatables are stored on HDFS. HDFSfiles are ideal for bulk loads (append operations) and queries
using full-table scans, but do not support in-place updates or deletes. Kudu is an alternative storage engine used by
Impalawhich can do both in-place updates (for mixed read/write workloads) and fast scans (for data-warehouse/
analytic operations). Using Kudu tables with Impala can simplify the ETL pipeline by avoiding extra stepsto
segregate and reorganize newly arrived data.

The underlying storage is managed and organized by Kudu, not represented as HDFS datafiles.

The combination of Kudu and Impala works best for tables where scan performance isimportant, but data arrives
continuoudly, in small batches, or needs to be updated without being completely replaced. HDFS-backed tables can
require substantial overhead to replace or reorganize data files as new data arrives. Impala can perform efficient
lookups and scans within Kudu tables, and Impala can also perform update or delete operations efficiently. Y ou can
also use the Kudu Java, C++, and Python APIs to do ingestion or transformation operations outside of Impala, and
Impalacan query the current data at any time.

With HDFS-backed tables, you are typically concerned with the number of DataNodes in the cluster, how many and
how large HDFS datafiles are read during a query, and therefore the amount of work performed by each DataNode
and the network communication to combine intermediate results and produce the final result set.

Certain Impala SQL statements and clauses, such as DELETE, UPDATE, UPSERT, and PRIMARY KEY work only
with Kudu tables.

Other statements and clauses, such as LOAD DATA, TRUNCATE TABLE, and INSERT OVERWRITE, are not
applicable to Kudu tables.

69



Cloudera Runtime Storage Systems Supports

For queriesinvolving Kudu tables, Impala can delegate much of the work of filtering the result set to Kudu, avoiding
some of the I/O involved in full table scans of tables containing HDFS datafiles. This type of optimization is
especialy effective for partitioned Kudu tables, where the Impala query WHERE clause refers to one or more
primary key columns that are also used as partition key columns. For example, if a partitioned Kudu table uses a
HASH clause for col1 and a RANGE clause for col2, a query using a clause such as WHERE col1 IN (1,2,3) AN

D col2 > 100 can determine exactly which tablet servers contain relevant data, and therefore parallelize the query
efficiently.

Impala can push down additional information to optimize join queries involving Kudu tables. If the join clause
contains predicates of the form COLUMN = EXPRESS ON, after Impala constructs a hash table of possible
matching values for the join columns from the bigger table (either an HDFS table or a Kudu table), Impala can “ push
down” the minimum and maximum matching column values to Kudu, so that Kudu can more efficiently locate
matching rowsin the second (smaller) table. These min/max filters are affected by the RUNTIME_FILTER_MODE,
RUNTIME_FILTER_WAIT_TIME_MS, and DISABLE_ROW_RUNTIME_FILTERING query options; the min/
max filters are not affected by the RUNTIME_BLOOM_FILTER_SIZE, RUNTIME_FILTER_MIN_SIZE, RUNT
IME_FILTER_MAX_SIZE, and MAX_NUM_RUNTIME_FILTERS query options.

The TABLESAMPLE clause of the SELECT statement does not apply to atable reference derived from aview, a
subquery, or anything other than areal base table. This clause only works for tables backed by HDFS or HDFS-like
datafiles, therefore it does not apply to Kudu tables.

The Kudu configuration property must be set for Impalato connect to the appropriate Kudu server.

1. In Cloudera Manager, navigate to Clustersimpala Service.
2. Inthe Configuration tab, specify the Kudu service you want to usein the Kudu Service field.

Typically, the required value for this setting is KUDU_HOST:7051. In a high-availability Kudu deployment,
specify the names of multiple Kudu hosts separated by commas.

3. If the Kudu Servicefield is not set, you can still associate the appropriate value for each table by specifying a
TBLPROPERTIES('kudu.master_addresses) clause in the CREATE TABLE statement or changing the TBLP
ROPERTIES('kudu.master_addresses) value with an ALTER TABLE statement.

You can use the Impala CREATE TABLE and ALTER TABLE statements to create and fine-tune the characteristics
of Kudu tables. Impala supports specific features and properties that only apply to Kudu tables.

To create a Kudu table, use the STORED AS KUDU clausein the CREATE TABLE statement.

The column list in a CREATE TABLE statement can include the following attributes, which only apply to Kudu
tables:

PRI MARY KEY
[ NOT] NULL

ENCODI NG CODEC

COVPRESS| ON ALGORI THM
DEFAULT CONSTANT EXPRESS| ON
BLOCK_SI ZE NUVBER

The primary key for aKudu table isacolumn, or set of columns, that uniquely identifies every row. The primary key
value also is used as the natural sort order for the values from the table.

70



Cloudera Runtime Storage Systems Supports

The notion of primary key only appliesto Kudu tables. Every Kudu table requires a primary key.

Because al of the primary key columns must have non-null values, specifying a columnin the PRIMARY KEY
clauseimplicitly addsthe NOT NULL attribute to that column.

The primary key columns must be the first ones specified in the CREATE TABLE statement.

When the primary key is a single column, you can specify the PRIMARY KEY attribute either inlinein asingle
column definition, or as a separate clause at the end of the column list.

For example:

CREATE TABLE pk_inline

(
col 1 BIG NT PRI MARY KEY,

col 2 STRI NG
col 3 BOOLEAN
) PARTI TI ON BY HASH(col 1) PARTI TI ONS 2 STORED AS KUDU,

CREATE TABLE pk_at end

(
col 1 Bl G NT,

col 2 STRI NG
col 3 BOOLEAN,
PRI MARY KEY (col 1)
) PARTI TI ON BY HASH(col 1) PARTI TIONS 2 STORED AS KUDUY;

If the primary key consists of more than one column, you must specify the primary key using a separate entry in the
column list.

CREATE TABLE pk_mul ti pl e_col ums

(
col 1 Bl G NT,

col 2 STRI NG
col 3 BOOLEAN,
PRI MARY KEY (col 1, col 2)
) PARTI TI ON BY HASH(col 2) PARTI TIONS 2 STORED AS KUDUY;

The contents of the primary key columns cannot be changed by an UPDATE or UPSERT statement.

Including too many columnsin the primary key (more than 5 or 6) can reduce the performance of write operations.
Therefore, pick the most selective and most frequently tested non-null columns for the primary key specification. If a
column must always have avalue, but that value might change later, leave it out of the primary key and use aNOT
NULL clause for that column instead.

For Kudu tables, you can specify which columns can contain nulls or not. This constraint offers an extralevel of
consistency enforcement for Kudu tables. If an application requires afield to aways be specified, include aNOT
NULL clausein the corresponding column definition, and Kudu prevents rows from being inserted with aNULL in
that column.

For example, atable containing geographic information might require the latitude and longitude coordinates to always
be specified. Other attributes might be allowed to be NULL. For example, alocation might not have a designated
place name, its altitude might be unimportant, and its population might be initially unknown, to be filled in later.

For non-Kudu tables, Impala allows any column to contain NULL values, because it is not practical to enforce a*“ not
null” constraint on HDFS data files that could be prepared using external tools and ETL processes.

CREATE TABLE required_col umms

71



Cloudera Runtime Storage Systems Supports

id BIG NT PRI MARY KEY,
| atitude DOUBLE NOT NULL,
| ongi t ude DOUBLE NOT NULL,
pl ace_name STRI NG
al titude DOUBLE,
popul ati on Bl G NT
) PARTI TI ON BY HASH(i d) PARTI TIONS 2 STORED AS KUDU,

During performance optimization, Kudu can use the knowledge that nulls are not allowed to skip certain checks
on each input row, speeding up queries and join operations. Therefore, specify NOT NULL constraints when

appropriate.

The NULL clause isthe default condition for all columnsthat are not part of the primary key. Y ou can omit it, or
specify it to clarify that you have made a conscious design decision to alow nullsin acolumn.

Because primary key columns cannot contain any NULL values, the NOT NULL clauseis not required for the
primary key columns, but you might still specify it to make your code self-describing.

Y ou can specify adefault value for columns in Kudu tables. The default value can be any constant expression, for
example, acombination of literal values, arithmetic and string operations. It cannot contain references to columns or
non-deterministic function calls.

The following example shows different kinds of expressions for the DEFAULT clause. The requirement to use a
constant value means that you can fill in a placeholder value such as NULL, empty string, O, -1, ‘'N/A' and so on,

but you cannot reference functions or column names. Therefore, you cannot use DEFAULT to do things such as
automatically making an uppercase copy of a string value, storing Boolean values based on tests of other columns, or
add or subtract one from another column representing a sequence number.

CREATE TABLE default vals

(
id BIG NT PRI MARY KEY,

name STRI NG NOT NULL DEFAULT 'unknown',
address STRI NG DEFAULT upper (' no fixed address'),
age | NT DEFAULT -1,
eart hl i ng BOOLEAN DEFAULT TRUE,
pl anet _of _origin STRING DEFAULT ' Earth',
optional _col STRI NG DEFAULT NULL
) PARTI TI ON BY HASH(id) PARTITIONS 2 STORED AS KUDU,

Note:

E When designing an entirely new schema, prefer to use NULL as the placeholder for any unknown or
missing values, because that is the universal convention among database systems. Null values can be stored
efficiently, and easily checked with the ISNULL or ISNOT NULL operators. The DEFAULT attribute
is appropriate when ingesting data that already has an established convention for representing unknown or
missing values, or where the vast majority of rows have some common non-null value.

Each column in a Kudu table can optionally use an encoding, alow-overhead form of compression that reduces the
size on disk, then requires additional CPU cycles to reconstruct the original values during queries. Typicaly, highly
compressible data benefits from the reduced 1/0 to read the data back from disk.

The encoding keywords that |mpala recognizes are:

* AUTO_ENCODING: Usethe default encoding based on the column type, which are bitshuffle for the numeric
type columns and dictionary for the string type columns.
 PLAIN_ENCODING: Leavethevaueinitsoriginal binary format.

72



Cloudera Runtime Storage Systems Supports

* RLE: Compress repeated values (when sorted in primary key order) by including a count.

« DICT_ENCODING: When the number of different string values is low, replace the original string with a numeric
ID.

e BIT_SHUFFLE: Rearrange the bits of the values to efficiently compress sequences of values that are identical or
vary only dlightly based on primary key order. The resulting encoded datais aso compressed with LZ4.

e PREFIX_ENCODING: Compress common prefixesin string values; mainly for use internally within Kudu.

Y ou can specify a compression algorithm to use for each column in a Kudu table. This attribute imposes more CPU
overhead when retrieving the values than the ENCODING attribute does. Therefore, use it primarily for columns with
long strings that do not benefit much from the less-expensive ENCODING attribute.

The choices for COMPRESSION are LZ4, SNAPPY, and ZLIB.

Note:
Ij Columns that use the BITSHUFFLE encoding are already compressed using LZ4, and so typically do not
need any additional COMPRESSION attribute.

Although Kudu does not use HDFSfilesinternally, and thus is not affected by the HDFS block size, it does have an
underlying unit of 1/O called the block size. The BLOCK _SIZE attribute lets you set the block size for any column.

The block size attribute is arelatively advanced feature. Thisis an unsupported feature and is considered
experimental .

By default, Kudu tables created through Impala use a tablet replication factor of 3. To change the replication factor
for a Kudu table, specify the replication factor using the TBLPROPERTIES in the CREATE TABLE statement as
below where N isthe replication factor you want to use:

TBLPROPERTI ES (' kudu. num tablet_replicas' = 'n")

The number of replicas for a Kudu table must be odd.
Altering the kudu.num_tablet_replicas property after table creation currently has no effect.

Much of the metadata for Kudu tables is handled by the underlying storage layer. Kudu tables have less reliance
on the Metastore database, and require less metadata caching on the Impala side. For example, information about
partitions in Kudu tables is managed by Kudu, and Impala does not cache any block locality metadata for Kudu
tables.

The REFRESH and INVALIDATE METADATA statements are needed less frequently for Kudu tables than for
HDFS-backed tables. Neither statement is needed when data is added to, removed, or updated in a Kudu table, even if
the changes are made directly to Kudu through a client program using the Kudu API.

Run REFRESH TABLE_NAME or INVALIDATE METADATA TABLE_NAME for aKudu table only after making a
change to the Kudu table schema, such as adding or dropping a column.

Because Kudu manages the metadata for its own tables separately from the Metastore database, there is atable
name stored in the Metastore database for Impalato use, and a table name on the Kudu side, and these names can be
modified independently through ALTER TABLE statements.

To avoid potential name conflicts, the prefix impala:: and the Impala database name are encoded into the underlying
Kudu table name.

73



Cloudera Runtime Storage Systems Supports

Kudu tables use special mechanismsto distribute data among the underlying tablet servers. Although referred as
partitioned tables, they are distinguished from traditional Impala partitioned tables with the different syntax in CREA
TE TABLE statement.

Kudu tables use PARTITION BY, HASH, RANGE, and range specification clauses rather than the PARTITIONED
BY clause for HDFS-backed tables, which specifies only a column name and creates a new partition for each different
value.

To see the current partitioning scheme for a Kudu table, you can use the SHOW CREATE TABLE statement or the
SHOW PARTITIONS statement. The CREATE TABLE syntax displayed by this statement includes all the hash,
range, or both clauses that reflect the original table structure plus any subsequent ALTER TABLE statements that
changed the table structure.

To see the underlying buckets and partitions for a Kudu table, use the SHOW TABLE STATS or SHOW PARTITI
ONS statement.

Hash partitioning is the simplest type of partitioning for Kudu tables. For hash-partitioned Kudu tables, inserted
rows are divided up between afixed number of “buckets’ by applying a hash function to the values of the columns
specified in the HASH clause. Hashing ensures that rows with similar values are evenly distributed, instead of
clumping together all in the same bucket. Spreading new rows across the buckets this way |ets insertion operations
work in parallel across multiple tablet servers. Separating the hashed values can impose additional overhead on
gueries, where queries with range-based predicates might have to read multiple tablets to retrieve al the relevant
values.

-- IMrows with 50 hash partitions = approxi mately 20,000 rows per partitio
n.

-- The values in each partition are not sequential, but rather based on a

hash functi on.
-- Rows 1, 99999, and 123456 might be in the sane partition.
CREATE TABLE nmillion_rows (id string primary key, s string)

PARTI TI ON BY HASH(i d) PARTI TI ONS 50
STORED AS KUDUY;

-- Because the ID val ues are uni que, we expect the rows to be roughly
-- evenly distributed between the buckets in the destination table.
I NSERT INTO million rows SELECT * FROM billion rows ORDER BY id LIMT 1e6;

The largest number of buckets that you can create with a PARTITIONS clause varies depending on the number of
tablet serversin the cluster, while the smallest is 2. For large tables, prefer to use roughly 10 partitions per server in
the cluster.

Range partitioning lets you specify partitioning precisely, based on single values or ranges of values within one or
more columns. Y ou add one or more RANGE clausesto the CREATE TABLE statement, following the PARTITIO
N BY clause. The RANGE clause includes a combination of constant expressions, VALUE or VALUES keywords,
and comparison operators.

CREATE TABLE t1 (id STRING PRI MARY KEY, s STRI NG

PARTI TI ON BY RANGE (PARTITION '"a' <= VALUES < '{', PARTITION ' A" <= VAL
UES < '[', PARTITION VALUES = ' 00000")

STORED AS KUDUY;

74



Cloudera Runtime Storage Systems Supports

Note:
E When defining ranges, be careful to avoid “fencepost errors’ where values at the extreme ends might be
included or omitted by accident. For example, in the tables defined in the preceding code listings, the range
"a' <= VALUES<"{" ensuresthat any values starting with z, such as za or zzz or zzz-Z7Z, are all
included, by using aless-than operator for the smallest value after all the values starting with z.

For range-partitioned Kudu tables, an appropriate range must exist before a data value can be created in the table.
Any INSERT, UPDATE, or UPSERT statements fail if they try to create column values that fall outside the specified
ranges. The error checking for ranges is performed on the Kudu side. Impala passes the specified range information to
Kudu, and passes back any error or warning if the ranges are not valid. (A nonsensical range specification causes an
error for aDDL statement, but only awarning for aDML statement.)

Partition ranges can be non-contiguous:

PARTI TI ON BY RANGE (year) (PARTITION 1885 <= VALUES <= 1889, PARTI TI ON 1893
<= VALUES <= 1897)

The ALTER TABLE statement withthe ADD PARTITION or DROP PARTITION clauses can be used to add or
remove ranges from an existing Kudu table.

ALTER TABLE foo ADD PARTI TI ON 30 <= VALUES < 50;
ALTER TABLE foo DROP PARTITION 1 <= VALUES < 5;

When arange is added, the new range must not overlap with any of the previous ranges; that is, it can only fill in gaps
within the previous ranges.

When arange isremoved, all the associated rows in the table are deleted regardless whether the table isinternal or
external.

Kudu tables can also use a combination of hash and range partitioning. For example:

PARTI TI ON BY HASH (school) PARTI TI ONS 10,
RANGE (l etter_grade) (PARTITION VALUE = 'A', PARTITION VALUE = 'B',
PARTI TI ON VALUE = 'C, PARTITION VALUE = 'D, PARTITION VALUE = 'F')

In DML statements, Impala supports specific features and properties that only apply to Kudu tables.

The UPDATE and DEL ETE statements let you modify data within Kudu tables without rewriting substantial amounts
of table data.

The UPSERT statement acts as a combination of INSERT and UPDATE, inserting rows where the primary key does
not already exist, and updating the non-primary key columns where the primary key does already exist in the table.

The INSERT statement for Kudu tables honors the unique and NOT NULL requirements for the primary key
columns.

Because Impala and Kudu do not support transactions, the effects of any INSERT, UPDATE, or DELETE statement
areimmediately visible. For example, you cannot do a sequence of UPDATE statements and only make the changes
visible after all the statements are finished. Also, if aDML statement fails partway through, any rows that were
already inserted, deleted, or changed remain in the table; there is no rollback mechanism to undo the changes.

In particular, an INSERT ... SELECT statement that refers to the table being inserted into might insert more rows than
expected, because the SELECT part of the statement sees some of the new rows being inserted and processes them
again.

Query hints:

75



Cloudera Runtime Storage Systems Supports

The INSERT or UPSERT operations into Kudu tables automatically add an exchange and a sort node to the plan that
partitions and sorts the rows according to the partitioning/primary key scheme of the target table (unless the number
of rowsto be inserted is small enough to trigger single node execution). Since Kudu partitions and sorts rows on
write, pre-partitioning and sorting takes some of the load off of Kudu and helpslarge INSERT operations to complete
without timing out. However, this default behavior may slow down the end-to-end performance of the INSERT or
UPSERT operations.

You can usethe /* +NOCLUSTERED */ and /* +NOSHUFFLE */ hints together to disable partitioning and sorting
before the rows are sent to Kudu. Additionally, since sorting may consume a large amount of memory, consider
setting the MEM_LIMIT query option for those queries.

Kudu tables are well-suited to use cases where data arrives continuously, in small or moderate volumes. To bring data
into Kudu tables, use the Impala INSERT and UPSERT statements.

The LOAD DATA statement does hot support Kudu tables.

Because Kudu manages its own storage layer that is optimized for smaller block sizes than HDFS, and performsiits
own housekeeping to keep data evenly distributed, it is not subject to the “many small files’ issue and does not need
explicit reorganization and compaction as the data grows over time.

The partitions within a Kudu table can be specified to cover avariety of possible data distributions, instead of
hardcoding a new partition for each new day, hour, and so on, which can lead to inefficient, hard-to-scale, and hard-
to-manage partition schemes with HDFS tables.

Y our strategy for performing ETL or bulk updates on Kudu tables should take into account the limitations on
consistency for DML operations.

e ThelINSERT, UPDATE, and UPSERT operations should produce an identical result even when executed multiple
times.

« |f abulk operation isin danger of exceeding capacity limits due to timeouts or high memory usage, splititinto a
series of smaller operations.

« Avoid running concurrent ETL operations where the end results depend on precise ordering. In particular, do
not rely on an INSERT ... SELECT statement that selects from the same table into which it isinserting, unless
you include extra conditions in the WHERE clause to avoid reading the newly inserted rows within the same
Statement.

» Because relationships between tables cannot be enforced by Impala and Kudu, and cannot be committed or rolled
back together, do not expect transactional semantics for multi-table operations.

Kudu tables have consistency characteristics such as uniqueness, controlled by the primary key columns and non-
nullable columns. The emphasis for consistency is on preventing duplicate or incomplete data from being stored in a
table.

Currently, Kudu does not enforce strong consistency for order of operations, total success or total failure of amuilti-
row statement, or data that is read while awrite operation isin progress. Changes are applied atomically to each row,
but not applied as asingle unit to all rows affected by a multi-row DML statement. That is, Kudu does not currently
have atomic multi-row statements or isolation between statements.

If some rows are rejected during a DML operation because of a mismatch with duplicate primary key values, NOT
NULL constraints, and so on, the statement succeeds with awarning. Impala still inserts, deletes, or updates the other
rows that are not affected by the constraint violation.

Consequently, the number of rows affected by a DML operation on a Kudu table might be different than you expect.

Because there is no strong consistency guarantee for information being inserted into, deleted from, or updated across
multiple tables ssimultaneously, consider denormalizing the data where practical. That is, if you run separate INSE
RT statements to insert related rows into two different tables, one INSERT might fail while the other succeeds,
leaving the datain an inconsistent state. Even if both inserts succeed, ajoin query might happen during the interval

76



Cloudera Runtime Storage Systems Supports

between the compl etion of the first and second statements, and the query would encounter incomplete inconsi stent
data. Denormalizing the data into a single wide table can reduce the possibility of inconsistency due to multi-table
operations.

Information about the number of rows affected by a DML operation isreported ini nmpal a- shel | output, and in
the PROFILE output, but is not currently reported to HiveServer?2 clients such as JDBC or ODBC applications.

Y ou can include TIMESTAMP columns in Kudu tables. The behavior of TIMESTAMP for Kudu tables has some
special considerations:

« Any nanoseconds in the original 96-bit value produced by Impala are not stored, because Kudu represents date/
time columns using 64-bit values. The nanosecond portion of the value is rounded, not truncated. Therefore, a
TIMESTAMP value that you store in a Kudu table might not be bit-for-bit identical to the value returned by a
query.

» The conversion between the Impala 96-bit representation and the Kudu 64-bit representation introduces some
performance overhead when reading or writing TIMESTAMP columns. Y ou can minimize the overhead during
writes by performing inserts through the Kudu API. Because the overhead during reads applies to each query, you
might continue to use aBIGINT column to represent date/time values in performance-critical applications.

e Thelmpala TIMESTAMP type has a narrower range for years than the underlying Kudu data type. Impala can
represent years 1400-9999. If year values outside this range are written to a Kudu table by a non-Impalaclient,
Impalareturns NULL by default when reading those TIMESTAMP values during a query. Or, if the ABORT_ON
_ERROR query option is enabled, the query fails when it encounters a value with an out-of-range year.

Y ou can use Impaato query dataresiding in HBase tables, a key-value data store where the value consists of multiple
fields. The key is mapped to one column in the Impalatable, and the various fields of the value are mapped to the
other columnsin the Impalatable.

HBase tables are the best suited in Impalain the following use cases.

« Storing rapidly incrementing counters, such as how many times a web page has been viewed, or on a social
network, how many connections a user has or how many votes a post received.

The append-only storage mechanism of HBase is efficient for writing each change to disk, and a query aways
returns the latest value. An application could query specific totals like these from HBase, and combine the results
with abroader set of data queried from Impala.

e Storing very wide tablesin HBase.

Wide tables have many columns, possibly thousands, typically recording many attributes for an important subject
such asa user of an online service. These tables are a so often sparse, that is, most of the columns values are
NULL, O, false, empty string, or other blank or placeholder value. (For example, any particular web site user
might have never used some site feature, filled in a certain field in their profile, visited a particular part of the site,
and so on.) A typical query against thiskind of tableisto look up asingle row to retrieve all the information about
a specific subject, rather than summing, averaging, or filtering millions of rows asin typical Impala-managed
tables.

HBase works out of the box with Impala. There is no mandatory configuration needed to use these two components
together.

For efficient queries, use WHERE clausesto find asingle key value or arange of key values wherever practical, by
testing the Impala column corresponding to the HBase row key. Avoid queries that do full-table scans, which are
efficient for regular Impala tables but inefficient in HBase.

To work with an HBase table from Impala, ensure that the impala user has read/write privileges for the HBase table,
using the GRANT command in the HBase shell.

77



Cloudera Runtime Storage Systems Supports

Y ou create the tables on the Impala side using the Hive shell, because the Impala CREATE TABLE statement
currently does not support custom SerDes and some other syntax needed for HBase tables.

* You create the new table as an HBase table using the STORED BY 'org.apache.hadoop.hive.hbase. HBaseStora
geHandler' clause on the Hive CREATE TABLE statement.

* You map these specially created tables to corresponding tables that exist in HBase, with the clause TBL PROPE
RTIES("hbase.table.name’ = "TABLE_NAME_IN_HBASE") on the Hive CREATE TABLE statement.

* You define the column corresponding to the HBase row key as a string with the #string keyword, or map it to a
STRING column.

« After creating a new table through Hive, issue the INVALIDATE METADATA statement in Impalato make
Impala aware of the new table.

Because Impala and Hive share the same Metastore database, once you create the table in Hive, you can query or
insert into it through Impala.

HBase does not enforce any typing for the key or value fields. All the type enforcement is done on the Impala side.

HBaserow key
When creating the table through the Hive shell, use the STRING data type for the column that
corresponds to the HBase row key.

For best performance of Impala queries against HBase tables, most queries will perform
comparisonsin the WHERE clause against the column that corresponds to the HBase row key.

Impala can trand ate predicates (through operators such as =, <, and BETWEEN) against this
column into fast lookups in HBase, but this optimization (“predicate pushdown) only works when
that column is defined as STRING.

HBase numeric column

Define HBase numeric columns as the binary datatype in Hive CREATE TABLE statement using
the #binary (#b) keyword.

Defining numeric columns as binary can reduce the overall data volume in the HBase tables.

Impala also supports reading and writing to columns that are defined in the Hive CREATE TABLE statement using
binary datatypes, represented in the Hive table definition using the #binary keyword, often abbreviated as #b.

The Impala INSERT statement supports HBase tables. The INSERT ... VALUES syntax isideally suited to HBase
tables, because inserting a single row is an efficient operation for an HBase table.

When you use the INSERT ... SELECT syntax, the result in the HBase table could be fewer rows than you expect.
HBase only stores the most recent version of each unique row key, so if an INSERT ... SELECT statement copies
over multiple rows containing the same value for the key column, subsequent queries will only return one row with
each key column value.

Successive INSERT statements using the same value for the key column achieves the same result as UPDATE.

The following examples create an HBase table with four column families, create a corresponding table through Hive,
then insert and query the table through Impala.

In HBase, create atable. Table names are quoted in the CREATE statement in HBase.

hbase(nai n): 001: 0> CREATE ' hbaseal | typessmal|', 'boolsCF , '"intsCF, 'floats
CF', 'stringsCF

78



Cloudera Runtime Storage Systems Supports

Issue the following CREATE TABLE statement in the Hive shell.

This example creates an external table mapped to the HBase table, usable by both Impala and Hive. It is defined as an
external table so that when dropped by Impala or Hive, the original HBase table is not touched at all.

The WITH SERDEPROPERTIES clause specifies that the first column (1D) represents the row key, and maps the
remaining columns of the SQL table to HBase column families. The mapping relies on the ordinal order of the
columns in the table, not the column namesin the CREATE TABLE statement. The first column is defined to be the
lookup key; the STRING data type produces the fastest key-based |ookups for HBase tables.

Note: For Impalawith HBase tables, the most important aspect to ensure good performanceisto use a STRI
NG column as the row key, as shown in this example.

hi ve> CREATE EXTERNAL TABLE hbasestringi ds (
> id string,
bool _col bool ean
tinyint_col tinyint,
smal lint_col snallint,
int _col int,
bi gi nt _col bigint,
float _col float,
doubl e_col doubl e,
date_string_col string,
string_col string,
ti mestanp_col tinestanp)
STORED BY ' or g. apache. hadoop. hi ve. hbase. HBaseSt or ageHandl er
W TH SERDEPROPERTI ES (
"hbase. col ums. mappi ng" =
": key, bool sCF: bool col,intsCF:.tinyint col,intsCF:.smallint _col,intsCF
;int_col,intsCr:\
> bi gi nt_col, fl oatsCF: fl oat_col, fl oat sCF: doubl e _col , stringsCF: date_s
tring_col,\
> stringsCF:string_col,stringsCF:tinestanp_col "
> )
> TBLPROPERTI ES( " hbase. t abl e. nane" = "hbaseal | typessmal | ");

VVVVVVVVVYVVVYVYV

Once you have established the mapping to an HBase table, you can issue DML statements and queries from Impala.
The following example shows a series of INSERT statements followed by aquery. Theideal kind of query from a
performance standpoint retrieves a row from the table based on a row key mapped to a string column.

The INVALIDATE METADATA statement makes the table created through Hive visible to Impala.
[inpal a] > | NVALI DATE METADATA hbasestri ngi ds;

[impal a] > I NSERT I NTO hbasestringi ds VALUES (' 0001', true, 3. 141, 9. 94, 1234567
, 32768, 4000, 76, ' 2014-12-31"'," ' Hel l o worl d', NOA));

[impala] > | MSERT | NTO hbasestringi ds VALUES (' 0002', fal se, 2. 004, 6. 196, 15
00, 8000, 129, 127, "' 2014-01-01',"' Foo bar', NOW));

[inpal a] > SELECT * FROM hbasestringids WHERE id = ' 0001';

Focococ Focococococ Fococococoococ Focococcccoccococooooe Fococococoococ Fococooooe

feccoocoocooooc feccoococooooc froccoccocooocosoac feccoococooooc feccoococooooc

__________________ +

| id | bool col | double col | float_col | bigint _col | int_col |

smallint_col | tinyint_col | date_string_col | string_col | timestanp_col

Focococ +-------!--+ ------------ Focococcccoccococooooe Fococococoococ Fococooooe +

-------------- frccoccococoocodoooccccooocococooitococooocococoodEocoooooocooooe

________________ +

| 0001 | true | 3.141 | 9.939999580383301 | 1234567 | 32768 [
4000 | 76 | 2014-12-31 | Hello world | 2015-02-10 16

1 36: 59. 764838000 |

79



Cloudera Runtime Storage Systems Supports

Impala uses the HBase client API via Java Native Interface (INI) to query data stored in HBase. This querying does
not read HFiles directly. The extra communication overhead makes it important to choose what data to store in HBase
or in HDFS, and construct efficient queries that can retrieve the HBase data efficiently:

» UseHBasetable for queries that return a single row or asmall range of rows, not queriesthat perform afull table
scan of an entire table. (If a query has a HBase table and no WHERE clause referencing that table, that is a strong
indicator that it is an inefficient query for an HBase table.)

» HBase may offer acceptable performance for storing small dimension tables where the table is small enough
that executing a full table scan for every query is efficient enough. However, Kudu is almost always a superior
aternative for storing dimension tables. HDFS tables are also appropriate for dimension tables that do not need to
support update queries, delete queries or insert queries with small numbers of rows.

Query predicates are applied to row keys as start and stop keys, thereby limiting the scope of a particular lookup. If
row keys are not mapped to string columns, then ordering is typically incorrect and comparison operations do not
work. For example, if row keys are not mapped to string columns, evaluating for greater than (>) or less than (<)
cannot be completed.

Predicates on non-key columns can be sent to HBase to scan as SingleColumnV alueFilters, providing some
performance gains. In such a case, HBase returns fewer rows than if those same predicates were applied using Impala.
While there is some improvement, it is not as great when start and stop rows are used. Thisis because the number

of rows that HBase must examineis not limited asit is when start and stop rows are used. Aslong as the row key
predicate only appliesto a single row, HBase will locate and return that row. Conversely, if anon-key predicateis
used, evenif it only appliesto asingle row, HBase must still scan the entire table to find the correct result.

The Impalaintegration with HBase has the following limitations and restrictions, some inherited from the integration
between HBase and Hive, and some unique to Impaa

e |f youissueaDROP TABLE for aninternal (Impala-managed) table that is mapped to an HBase table, the
underlying table is not removed in HBase. The Hive DROP TABLE statement removes the HBase table in this
case.

e TheINSERT OVERWRITE statement is not available for HBase tables. Y ou can insert new data, or modify an
existing row by inserting a new row with the same key value, but not replace the entire contents of the table. You
candoan INSERT OVERWRITE in Hiveif you need this capability.

* |If youissuea CREATE TABLE LIKE statement for atable mapped to an HBase table, the new tableis also an
HBase table, but inherits the same underlying HBase table name as the original. The new table is effectively an
aliasfor the old one, not a new table with identical column structure. Avoid using CREATE TABLE LIKE for
HBase tables, to avoid any confusion.

e Copying datainto an HBase table using the ImpalaINSERT ... SELECT syntax might produce fewer new
rowsthan arein the query result set. If the result set contains multiple rows with the same value for the key
column, each row supercedes any previous rows with the same key value. Because the order of the inserted rows
is unpredictable, you cannot rely on this technique to preserve the “latest” version of a particular key value.

e TheLOAD DATA statement cannot be used with HBase tables.

e The TABLESAMPLE clause of the SELECT statement does not suppport HBase tables.

Y ou can use Impaato query dataresiding on the Azure Data Lake Store (ADLS) filesystem and Azure Blob File
System (ABFS). This capability allows convenient access to a storage system that is remotely managed, accessible
from anywhere, and integrated with various cloud-based services.

80



Cloudera Runtime Storage Systems Supports

Impala can query filesin any supported file format from ADLS. The ADLS storage location can be for an entire table
or individual partitions in a partitioned table.

The default Impalatables use data files stored on HDFS, which areideal for bulk loads and queries using full-table
scans. In contrast, queries against ADL S data are less performant, making ADL S suitable for holding “cold” data
that is only queried occasionally, while more frequently accessed “hot” dataresidesin HDFS. In a partitioned table,
you can set the LOCATION attribute for individual partitions to put some partitions on HDFS and others on ADLS,
typically depending on the age of the data.

Impalarequires that the default filesystem for the cluster be HDFS. Y ou cannot use ADL S as the only filesystem in
the cluster.

To be ableto access ADLS, first set up an Azure account, configure an ADL S store, and configure your cluster with
appropriate credentials.

To create atable that resides on ADLS, specify the ADLS detailsin the LOCATION clause of the CREATE TAB
LE or ALTER TABLE statement. The syntax for the LOCATION clauseis:

e For ADLS Genl:

LOCATI ON ' adl : / / ACCOUNT. azur edat al akest or e. net / PATH FI LE'
e For ADLS Gen2:

LOCATI ON ' abf s: // CONTAI NER@ACCOUNT. df s. cor e. wi ndows. net / PATH FI LE
or
LOCATI ON ' abf ss: // CONTAI NER@GACCOUNT. df s. cor e. wi ndows. net/ PATH FI LE
CONTAINER denotes the parent location that holds the files and folders, which is the Containersin the Azure Storage
Blobs service.

ACCOUNT isthe name given for your storage account.

Any reference to an ADL S location must be fully qualified. (This rule applies when ADL S is not designated as the
default filesystem.)

Once atable or partition is designated as residing on ADLS, the SELECT statement transparently accesses the data
files from the appropriate storage layer.

ALTER TABLE can aso set the LOCATION property for an individual partition so that some datain atable resides
on ADL S and other data in the same table resides on HDFS.

Ij Note:
By default, TLSis enabled both with abfs:// and abfss://.

When you set the fs.azure.always.use.https=fal se property, TLSis disabled with abfs//, and TLSis enabled
with abfss.//

For a partitioned table, either specify a separate LOCATION clause for each new partition, or specify abase LOCA
TION for the table and set up adirectory structurein ADLS to mirror the way Impala partitioned tables are structured
in HDFS.

Although, strictly speaking, ADLS filenames do not have directory paths, Impalatreats ADLS filenames with /
characters the same as HDFS pathnames that include directories.

To point a nonpartitioned table or an individual partition at ADLS, specify asingle directory path in ADLS, which
could be any arbitrary directory.

81



Cloudera Runtime Storage Systems Supports

To replicate the structure of an entire Impala partitioned table or database in ADLS requires more care, with
directories and subdirectories nested and named to match the equivalent directory tree in HDFS. Consider setting up
an empty staging areaif necessary in HDFS, and recording the complete directory structure so that you can replicate
itin ADLS.

For example, the following session creates a partitioned table where only a single partition resideson ADLS. The
partitions for years 2013 and 2014 are located on HDFS. The partition for year 2015 includes aLOCATION attribute
with an adl:// URL, and so refers to dataresiding on ADLS, under a specific path underneath the store impalademo.

CREATE TABLE nostly_on_hdfs (x I NT) PARTI TI ONED BY (year | NT);
ALTER TABLE nostly_on_hdfs ADD PARTI TI ON (year =2013);
ALTER TABLE nostly on_hdfs ADD PARTI TI ON (year =2014);
ALTER TABLE nostly on_hdfs ADD PARTI TI ON (year =2015)
LOCATI ON ' adl : / /i npal adeno. azur edat al akestore.net/dir1/dir2/dir3/t1";

When working with multiple tables with datafiles stored in ADLS, you can create a database with the LOCATION
attribute pointing to an ADLS path. Specify a URL of the form as shown above. Any tables created inside that
database automatically create directories underneath the one specified by the database LOCATION attribute.

Use the standard ADL S file upload methods to actually put the data files into the right locations. Y ou can also put
the directory paths and datafilesin place before creating the associated |mpala databases or tables, and Impala
automatically uses the data from the appropriate location after the associated databases and tables are created.

Y ou can switch whether an existing table or partition pointsto datain HDFS or ADLS. For example, if you have
an Impalatable or partition pointing to datafilesin HDFS or ADLS, and you later transfer those data files to the
other filesystem, use an ALTER TABLE statement to adjust the LOCATION attribute of the corresponding table
or partition to reflect that change. This location-switching technique is not practical for entire databases that have a
custom LOCATION attribute.

Y ou cannot usethe ALTER TABLE ... SET CACHED statement for tables or partitions that are located in ADLS.

Just as with tables located on HDFS storage, you can designate ADL S-based tables as either internal (managed by
Impald) or external, by using the syntax CREATE TABLE or CREATE EXTERNAL TABLE respectively.

When you drop an internal table, the files associated with the table are removed, even if they are on ADLS storage.
When you drop an external table, the files associated with the table are left alone, and are still available for access by
other tools or components.

If the data on ADL S isintended to be long-lived and accessed by other tools in addition to Impala, create any
associated ADL S tables with the CREATE EXTERNAL TABLE syntax, so that the files are not deleted from ADLS
when the table is dropped.

If the data on ADL S is only needed for querying by Impala and can be safely discarded once the Impala workflow
is complete, create the associated ADL S tables using the CREATE TABLE syntax so that dropping the table also
deletes the corresponding data fileson ADLS.

If your ETL pipeline involves moving datainto ADL S and then querying through Impala, you can either use Impala
DML statements to create, move, or copy the data, or use the same data |l oading techniques as you would for non-
Impala data.

Using ImpalaDML Statements for ADLS Data:

The Impala DML statements (INSERT, LOAD DATA, and CREATE TABLE AS SELECT) can write datainto a
table or partition that residesin the Azure Data Lake Store (ADLS) or ADLS Gen2.

Manually Loading Datainto Impala Tables on ADLS:

Y ou can use the Microsoft-provided methods to bring data filesinto ADL S for querying through Impala. See the
Microsoft ADL S documentation for details.

82


https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-copy-data-azure-storage-blob
https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-copy-data-azure-storage-blob

Cloudera Runtime Storage Systems Supports

After you upload datafiles to alocation already mapped to an Impalatable or partition, or if you deletefilesin ADLS
from such alocation, issue the REFRESH statement to make Impala aware of the new set of datafiles.

Once the appropriate LOCATION attributes are set up at the table or partition level, you query datastored in ADLS
the same as data stored on HDFS or in HBase:

e Queriesagainst ADLS data support all the same file formats as for HDFS data.

» Tables can be unpartitioned or partitioned. For partitioned tables, either manually construct pathsin ADLS
corresponding to the HDFS directories representing partition key values, or use ALTER TABLE ... ADD PART
ITION to set up the appropriate pathsin ADLS.

e HDFS, Kudu, and HBase tables can be joined to ADL S tables, or ADLS tables can be joined with each other.

« Authorization to control access to databases, tables, or columns works the same whether the dataisin HDFS or in
ADLS.

e Thecat al ogd daemon caches metadata for both HDFS and ADL S tables. Use REFRESH and INVALIDATE
METADATA for ADL S tables in the same situations where you would issue those statements for HDFS tables.

» Queriesagainst ADLS tables are subject to the same kinds of admission control and resource management as
HDFStables.

* Metadata about ADL S tablesis stored in the same Metastore database as for HDFS tables.

e You can set up views referring to ADL S tables, the same as for HDFS tables.

e The COMPUTE STATS, SHOW TABLE STATS, and SHOW COLUMN STATS statements support ADLS
tables.

Although Impala queries for data stored in ADLS might be less performant than queries against the equivalent data
stored in HDFS, you can still do some tuning. Here are techniques you can use to interpret explain plans and profiles
for queries against ADL S data, and tips to achieve the best performance possible for such queries.

All else being equal, performance is expected to be lower for queries running against data on ADL S rather than
HDFS. The actual mechanics of the SELECT statement are somewhat different when the dataisin ADLS. Although
the work is till distributed across the datanodes of the cluster, Impala might parallelize the work for a distributed
query differently for dataon HDFS and ADLS. ADL S does not have the same block notion as HDFS, so Impala
uses heuristics to determine how to split up large ADLSfiles for processing in parallel. Because all hosts can access
any ADL S datafile with equal efficiency, the distribution of work might be different than for HDFS data, where the
data blocks are physically read using short-circuit local reads by hosts that contain the appropriate block replicas.
Although the 1/0 to read the ADL S data might be spread evenly across the hosts of the cluster, the fact that all data
isinitialy retrieved across the network means that the overall query performance islikely to be lower for ADLS data
than for HDFS data.

Because datafiles written to ADLS do not have a default block size the way HDFS data files do, any Impala INSE
RT or CREATE TABLEAS SELECT statements use the PARQUET_FILE_SIZE query option setting to define the
size of Parquet datafiles. (Using alarge block sizeis more important for Parquet tables than for tables that use other
file formats.)

When optimizing aspects of for complex queries such as the join order, Impala treats tables on HDFS and ADL S the
same way.

In query profile reports, the numbers for BytesReadL ocal, BytesReadShortCircuit, BytesReadDataNodeCached, and
BytesReadRemoteUnexpected are blank because those metrics come from HDFS.

All the I/O for ADL Stables involves remote reads, and they will appear as“remote read” operations in the query
profile.

83



Cloudera Runtime Storage Systems Supports

Y ou can use Impalato query data residing on the Amazon S3 object store. This capability allows convenient access
to astorage system that is remotely managed, accessible from anywhere, and integrated with various cloud-based
Services.

Impala can query filesin any supported file format from S3. The S3 storage location can be for an entire table, or
individual partitionsin a partitioned table.

The following guidelines summarize the best practices described in the rest of thistopic:

« Any reference to an S3 location must be fully qualified when S3 is not designated as the default storage, for
example, s3a:://[s3-bucket-name].

«  Set the fs.s3a.connection.maximum safety valve setting, to 1500 for i npal ad.

* Set thefs.s3a.block.size safety valve setting to 134217728 (128 MB in bytes) if most Parquet files queried by
Impalawere written by Hive or ParquetMR jobs.

e Setthe PARQUET_OBJECT_STORE_SPLIT_SIZE query option to 268435456 (256 MB in bytes) if most
Parquet files queried by Impala were written by Impala.

« DROPTABLE .. PURGE is much faster than the default DROP TABLE. The same appliesto ALTER TA
BLE ... DROP PARTITION PURGE versus the default DROP PARTITION operation. However, due to the
eventually consistent nature of S3, the files for that table or partition could remain for some unbounded time when
using PURGE. The default DROP TABLE/PARTITION is slow because Impala copies the files to the S3A
trashcan, and Impalawaits until al the datais moved. DROP TABLE/PARTITION .. PURGE isafast delete
operation, and the Impala statement finishes quickly even though the change might not have propagated fully
throughout S3.

e INSERT statements are faster than INSERT OVERWRITE for S3. The S3_SKIP_INSERT_STAGING query
option, which is set to true by default, skips the staging step for regular INSERT (but not INSERT OVERW
RITE). This makes the operation much faster, but consistency is not guaranteed: if a node fails during execution,
the table could end up with inconsistent data. Set this option to false if stronger consistency is required, but this
setting will make the INSERT operations slower.

e For ImpalaACID tables, both INSERT and INSERT OVERWRITE tables for S3 are fast, regardless of the
setting of S3_SKIP_INSERT_STAGING. Plus, consistency is guaranteed with ACID tables.

» Enable data cache for remote reads.
» Enable S3Guard in your cluster for data consistency.

e Too many filesin atable can make metadata loading and updating slow in S3. If too many requests are made to
S3, S3 has a back-off mechanism and responds slower than usual.

« |If you have many small files due to over-granular partitioning, configure partitions with many megabytes of
data so that even a query against a single partition can be parallelized effectively.

« |f you have many small files because of many small INSERT queries, use bulk INSERTSs so that more datais
written to fewer files.

To create atable that residesin S3, runthe CREATE TABLE or ALTER TABLE statement with the LOCATION
clause.

ALTER TABLE can set the LOCATION property for an individual partition, so that some datain atableresidesin
S3 and other datain the same table resides on HDFS.

The syntax for the LOCATION clauseis:
LOCATI ON ' s3a: // BUCKET_NAME/ PATH TQ FI LE

Thefile system prefix is always s3a://. Impala does not support the s3:// or s3n:// prefixes.

84


https://hadoop.apache.org/docs/current/hadoop-aws/tools/hadoop-aws/s3guard.html

Cloudera Runtime Storage Systems Supports

For a partitioned table, either specify a separate LOCATION clause for each new partition, or specify abase LOCA
TION for the table and set up adirectory structure in S3 to mirror the way Impala partitioned tables are structured in
S3.

Y ou point a nonpartitioned table or an individual partition at S3 by specifying asingle directory path in S3, which
could be any arbitrary directory. To replicate the structure of an entire Impala partitioned table or databasein S3
reguires more care, with directories and subdirectories nested and named to match the equivalent directory tree

in HDFS. Consider setting up an empty staging area if necessary in HDFS, and recording the complete directory
structure so that you can replicate it in S3.

When working with multiple tables with data files stored in S3, you can create a database with aLOCATION
attribute pointing to an S3 path. Specify a URL of the form s3a:///BUCKET/ROOT/PATH/FOR/DATABASE for
the LOCATION attribute of the database. Any tables created inside that database automatically create directories
underneath the one specified by the database LOCATION attribute.

The following example creates a table with one partition for the year 2017 resides on HDFS and one partition for the
year 2018 residesin S3.

The partition for year 2018 includes a LOCATION attribute with an s3a:// URL, and so refersto dataresiding in S3,
under a specific path underneath the bucket impala-demo.

CREATE TABLE nostly_on_hdfs (x int) PARTITI ONED BY (year |NT);
ALTER TABLE nostly_on_hdfs ADD PARTI TI ON (year =2017);
ALTER TABLE nostly on_hdfs ADD PARTI TI ON (year =2018)

LOCATION 's3a://inpal a-deno/dirl/dir2/dir3/tl";

The following session creates a database and two partitioned tables residing entirely in S3, one partitioned by asingle
column and the other partitioned by multiple columns.

» BecauseaLOCATION attribute with an s3a:// URL is specified for the database, the tables inside that database
are automatically created in S3 underneath the database directory.

* To see the names of the associated subdirectories, including the partition key values, use an S3 client tool to
examine how the directory structureis organized in S3.

CREATE DATABASE db_on_s3 LOCATI ON 's3a://i npal a-denmo/ dir1/dir2/dir3";
CREATE TABLE partitioned_multiple_keys (x INT)
PARTI TI ONED BY (year SMALLINT, nonth TINYINT, day TINYINT);
ALTER TABLE partitioned nultiple_keys
ADD PARTI Tl ON (year=2015, nont h=1, day=1) ;
ALTER TABLE partitioned_nultiple_keys
ADD PARTI TI ON (year =2015, nont h=1, day=31) ;

lhdfs dfs -Is -R s3a://inpal a-deno/dir1/dir2/dir3

2015- 03-17 13:56: 34 0 dird/dir2/dir3/

2015-03-17 16:47: 13 0 dirl/dir2/dir3/partitioned nmultiple keys/
2015-03-17 16:47: 44 0 dirl/dir2/dir3/partitioned _multiple_keys/yea
r =2015/ nont h=1/ day=1/

2015-03-17 16:47:50 0 dirl/dir2/dir3/partitioned _rmultiple keys/ye

ar =2015/ nont h=1/ day=31/

The CREATE DATABASE and CREATE TABLE statements create the associated directory pathsif they do not
already exist. Y ou can specify multiple levels of directories, and the CREATE statement creates all appropriate levels,
similar to using mkdir -p.

Use the standard S3 file upload methods to put the actual data filesinto the right locations. Y ou can also put
the directory paths and data filesin place before creating the associated Impala databases or tables, and Impala
automatically uses the data from the appropriate location after the associated databases and tables are created.

Usethe ALTER TABLE statement with the LOCATION clause to switch whether an existing table or partition points
to datain HDFS or S3. For example, if you have an Impalatable or partition pointing to datafilesin HDFS or S3, and
you later transfer those data files to the other filesystem, use the ALTER TABLE statement to adjust the LOCATION
attribute of the corresponding table or partition to reflect that change.

85



Cloudera Runtime Storage Systems Supports

Just as with tables located on HDFS storage, you can designate S3-based tables as either internal (managed by
Impala) or external with the CREATE TABLE or CREATE EXTERNAL TABLE statement respectively.

When you drop an internal table, the files associated with the table are removed, even if they arein S3 storage. When
you drop an external table, the files associated with the table are |eft alone, and are still available for access by other
tools or components.

If the datain S3 isintended to be long-lived and accessed by other tools in addition to Impala, create any associated
S3 tables with the CREATE EXTERNAL TABLE statement, so that the files are not deleted from S3 when the table
is dropped.

If the datain S3 is only needed for querying by Impala and can be safely discarded once the Impalaworkflow is
complete, create the associated S3 tables using the CREATE TABLE statement, so that dropping the table also
deletes the corresponding data filesin S3.

If your ETL pipeline involves moving datainto S3 and then querying through Impala, you can either use Impala
DML statements to create, move, or copy the data, or use the same data | oading techniques as you would for non-
Impala data.

Using Impala DML Statements for S3 Data:

ImpalaDML statements (INSERT, LOAD DATA, and CREATE TABLE AS SELECT) can write datainto atable
or partition that residesin S3.

Because of differences between S3 and traditional filesystems, DML operations for S3 tables can take longer than
for tables on HDFS. For example, both the LOAD DATA statement and the final stage of the INSERT and CREA
TE TABLE AS SELECT statements involve moving files from one directory to another. (In the case of INSERT and
CREATE TABLE AS SELECT, thefilesare moved from atemporary staging directory to the final destination
directory.) Because S3 does not support a“rename” operation for existing objects, in these cases, Impala copies the
data files from one location to another and then removes the original files.

Manually Loading Datainto Impala Tablesin S3:
Y ou can use the Amazon-provided methods to bring data files into S3 for querying through Impala.

After you upload datafiles to alocation already mapped to an Impalatable or partition, or if you delete filesin S3
from such alocation outside of Impala, issue the REFRESH statement to make Impala aware of the new set of data
files.

Once atable or partition is designated asresiding in S3, the SELECT statement transparently accesses the data files
from the appropriate storage layer.

* Queriesagainst S3 data support al the same file formats as HDFS data.

» Tables can be unpartitioned or partitioned. For partitioned tables, either manually construct paths in S3 based on
partition key values, or use ALTER TABLE ... ADD PARTITION to set up the appropriate pathsin S3.

« HDFS and HBase tables can be joined to S3 tables, or S3 tables can be joined with each other.

» Authorization to control access to databases, tables, or columns works the same whether the dataisin HDFS or in
S3.

* The Catalog Server (cat al ogd) daemon caches metadata for both HDFS and S3 tables.

* Queries against S3 tables are subject to the same kinds of admission control and resource management as HDFS
tables.

* Metadata about S3 tablesis stored in the same Metastore database as for HDFS tables.

e You can set up viewsreferring to S3 tables.

e TheCOMPUTE STATS, SHOW TABLE STATS, and SHOW COLUMN STATS statements work for S3
tables.

86



Cloudera Runtime Ports Used by Impala

All else being equal, performance is expected to be lower for queries running against datain S3 than HDFS. The
actual mechanics of the SELECT statement are different when the dataisin S3. Although the work is still distributed
across the DataNodes of the cluster, Impala might parallelize the work for a distributed query differently for data on
HDFS and S3.

S3 does not have the same block notion as HDFS, so Impala uses heuristics to determine how to split up large S3 files
for processing in parallel. Because all hosts can access any S3 data file with equal efficiency, the distribution of work
might be different than for HDFS data, where the data blocks are physically read using short-circuit local reads by
hosts that contain the appropriate block replicas. Although the 1/0 to read the S3 data might be spread evenly across
the hosts of the cluster, the fact that all dataisinitially retrieved across the network means that the overall query
performanceislikely to be lower for S3 data than for HDFS data.

Use the PARQUET_OBJECT_STORE_SPLIT_SIZE query option to control the Parquet-specific split size. The
default value is 256 MB.

When optimizing aspects of complex queries such as the join order, Impala treats tables on HDFS and S3 the same
way. Therefore, follow all the same tuning recommendations for S3 tables as for HDFS ones, such as using the
COMPUTE STATS statement to help Impala construct accurate estimates of row counts and cardinality.

In query profile reports, the numbers for BytesReadL ocal, BytesReadShortCircuit, BytesReadDataNodeCached, and
BytesReadRemoteUnexpected are blank because those metrics come from HDFS. By definition, all the 1/O for S3
tables involves remote reads.

The following restrictions apply when using Impalawith S3:

« Impaladoes not support the old s3:// block-based and s3n:// filesystem schemes, and it only supports s3a://.

« Although S3 is often used to store JSON-formatted data, the current Impala support for S3 does not include
directly querying JSON data. For Impala queries, use data filesin one of the file formats listed in Hadoop File
Formats Support on page 49. If you have datain JSON format, you can prepare a flattened version of that data
for querying by Impala as part of your ETL cycle.

e You cannot usethe ALTER TABLE ... SET CACHED statement for tables or partitions that are located in S3.

Specify an Impala credentia to access datain Amazon S3.

In Cloudera Manager, navigate to AdministrationExternal Accounts.
Inthe AWS Credentials tab, click Add Access Key Credentials.
Enter a Name of your choosing for this account.

Enter the AWS Access Key ID.

Enter the AWS Secret Key.

Click Add.

Click Saveto finish adding the AWS Credential.

Select Cluster Accessto S3.

© NSO g~ wDN R

Impala uses the TCP ports listed in the following table.

Before deploying Impala, ensure these ports are open on each system. Y ou can use the corresponding settingsin
Cloudera Manager to overwrite the default port numbers.

87



Cloudera Runtime

Migration Guide

Scope Cloudera Manager Setting/ Startup Flag | Default Comment
Port

Impala Daemon Impala Daemon Frontend Port 21000 Port on which Beeswax client requests are served
= ax_port by Impala Daemons.
Impala Daemon Impala Daemon Frontend Port 21050 Port on which HiveServer2 client requests are
served by Impala Daemons.
--hs2_port
Impala Daemon Impala Daemon Backend Port 22000 Interna use only. Impala daemons use this port to
communicate with each other.
--be_port
Impala Daemon StateStoreSubscriber Service Port 23000 Internal use only. Impala daemons listen on this
—-state_store subscriber_port port for updates from the StateStore daemon.
Catalog Daemon StateStoreSubscriber Service Port 23020 Internal use only. The catalog daemon listens on
—-state_store_subscriber_port this port for updates from the StateStore daemon.
Impala Daemon Impala Daemon HTTP Server Port 25000 Impala debug Web Ul for administrators to
monitor and troubleshoot.
--webserver_port
Impala StateStore Daemon StateStore HTTP Server Port 25010 StateStore debug Web Ul for administrators to
monitor and troubl eshoot.
--webserver_port
Impala Catalog Daemon Catalog HTTP Server Port 25020 Catalog Server debug Web Ul for administrators
to monitor and troubleshoot.
--webserver_port
Impala StateStore Daemon StateStore Service Port 24000 Internal use only. The StateStore daemon listens
~ on this port for registration/unregistration
state_store_port requests.
Impala Catalog Daemon Catalog Service Port 26000 Internal use only. The catalog service uses this
—catalog_service port port to communicate with the Impala daemons.
Impala Daemon KRPC Port 27000 Interna use only. Impala daemons use this port
for KRPC based communication with each other.
--krpc_port
Impala Daemon HiveServer2 HTTP Port 28000 Used to transmit commands and receive results
_ by client applications over HTTP viathe
hs2_hitp_port HiveServer2 protocol.

Related Information

Modifying Impala Startup Options

Migration Guide

This topic describes the important differences between Impalain CDH and Impalain CDP. These changes were

made in CDP for the optimal interoperability between Hive and Impala for the improved user experience. Review the

changes before you migrate your Impala workload from CDH to CDP.

Default Value Changes in Configuration Options

Configuration Option

Scope Default in CDH 6.x

DEFAULT_FILE_FORMAT Query TEXT PARQ
hms_event_polling_interval_s Catalogd 0 2
ENABLE_ORC_SCANNER Query TRUE FALSI
use_local_catalog Coordinator / Catalogd false true

88



Cloudera Runtime Migration Guide

Configuration Option Scope Default in CDH 6.x

catalog_topic_mode Coordinator full minim

New Configuration Options

Configuration Option Scope Default Value

default_transactional_type Coordinator insert_only
DEFAULT_TRANSACTIONAL_TYPE Query insert_only
disable_hdfs num_rows_estimate Impalad false
disconnected_session_timeout Coordinator 900
PARQUET_OBJECT_STORE_SPLIT_SIZE Query 256 MB
SPOOL_QUERY_RESULTS Query FALSE
MAX_RESULT_SPOOLING_MEM Query 100 MB
MAX_SPILLED _RESULT_SPOOLING_MEM Query 1GB
FETCH_ROWS TIMEOUT_MS Query 10s
DISABLE_HBASE_NUM_ROWS_ESTIMATE Query FALSE

Default File Format
New default behavior:
In CDP, the defaullt file format of the tablesis Parquet.

When you issue the CREATE TABLE statement without the STORED  AS clause, Impala creates a Parquet table
instead of a Text table asin CDH.

For example, if you create an external table based on atext file without providing stored as clause and then tries to
issue a select query, the query will fail, in CDP, since Impala expects the file to be in the Parquet file format.

Steps to switch to the CDH behavior:

* Addtheexplicitly STORED AS clause to in the CREATE TABLE statementsif the file format is not Parquet.
« Start Coordinator with the default_transactional_type flag set to text for all tablesto be created.

e Setthe DEFAULT_FILE FORMAT query option to TEXT to revert to the default of the Text format for one or
more CREATE TABLE statements.

Default Insert-only Transactional Tables
New default behavior:
By default, managed tables are transactional tables with the insert_only property in CDP.

* You can no longer perform file system modifications (add/remove files) on a managed table in CDP. The
directory structure for transactional tablesis different than non-transactional tables, and any out-of-band files
which are added may or may not be picked up by Hive and Impala.

* Theinsert_only transactiona tables cannot be currently altered in Impala. The ALTER TABLE statement on a
transactional table currently throws an error.

« Impaladoes not currently support compaction on transaction tables. Y ou should use Hive to compact the tables as
needed.

e TheSELECT, INSERT, INSERT OVERWRITE, TRUNCATE statements are supported on the insert-only
transactional tables.

Steps to switch to the CDH behavior:

 If you do not want transactional tables, set the DEFAULT_TRANSACTIONAL_TY PE query option to NONE so
that any newly created managed tables are not transactional by defaullt.

89



Cloudera Runtime Migration Guide

» External tables do not drop the data files when the table is dropped. If you wish to purge the data along with table
when table is dropped, add external .table.purge = true in the table properties. When external .table.purgeis set to
true, the data is removed when the DROP TABLE statement is executed.

New default behavior:
In CDP, there are separate HDFS directories for managed and external tables.

« The datafiles for managed tables are located in warehouse | ocation specified by the Cloudera Manager
configuration setting, hive_warehouse_directory.

» Thedatafilesfor external tables are located in warehouse location specified by the Cloudera Manager
configuration setting, hive warehouse external_directory.

If you perform file system level operations for adding/removing files on the table, you need to consider if its an
external table or managed table to find the location of the table directory.

Steps to switch to the CDH behavior:
Check the output of the DESCRIBE FORMATTED command to find the table location.

New default behavior:

The managed tables created by Hive are of ORC file format, by default, and support full transactional capabilities.
If you create a table without specifying the STROED AS clause and load data from Hive, then such tables are not
readable or writable by Impala.

Steps to switch to the CDH behavior:

* Youmust usethe STORED AS PARQUET clause when you create tablesin Hive if you want interoperability
with Impala on those tables.

» If you want to change this default file format at the system level, in the Hive_on_Tez service configuration in
Cloudera Manager, set the hive_default_fileformat_managed field to parquet.

New default behavior:

Statistics for tables are engine specific, namely, Hive or Impala, so that each engine could use its own statistics and
not overwrite the statistics generated by the other engine.

When you issue the COMPUTE STATS statement on Impala, you need to issue the corresponding statement on Hive
to ensure both Hive and Impala statistics are accurate.

Impala COMPUTE STATS command does not overwrite the Hive stats for the same table.
Steps to switch to the CDH behavior:

There is no workaround.

New default behavior:

ORC table support is disabled by default. The CDH queries against ORC tables will fail in CDP.
Steps to switch to the CDH behavior:

Set the query option ENABLE_ORC_SCANNER to TRUE to re-enable ORC table support.

Note that this option does not work on afull transactional ORC table, and the queries will till return an error.

90



Cloudera Runtime Migration Guide

New default behavior:

Clients can disconnect from Impala while keeping the session running. Clients can reconnect to the same session by
presenting the session_token. By default, disconnected sessions are terminated after 15 min.

* Your end users will not notice adifference in behaviour.

« If clients are disconnected without the driver explicitly closing the session (e.g. because of a network fault),
disconnected sessions and the queries associated with them may remain open and continue consuming resources
until the disconnected session is timed out. Administrators may notice these disconnected sessions and/or the
associated resource consumption.

Steps to switch to the CDH behavior:

Y ou can adjust the --disconnected session_timeout flag to alower value so that disconnected sessions are cleaned up
more quickly.

New default behavior:

If there are no statistics available on atable, Impalawill try to estimate the cardinality by estimating the size of table
based on the number of rows in the table. This behavior isturned on by default and should result in better plans for
most cases when stats are not present.

For some edge cases, it is possible that Impalawill generate a bad plan (when compared to the same query in CDH)
when the statistics are not present on that table and could negatively affect the query performance.

Steps to switch to the CDH behavior:
Set the DISABLE_ HDFS NUM_ROWS ESTIMATE query option to TRUE to disable this optimization.

All catalog metadata improvements are enabled by default in CDP, resulting in many performance and scal ability
improvements, such as reduced memory footprint on coordinators and automatic cache eviction.

See Impala Metadata M anagement for the details about catal og improvements.

Impala Data Hub clustersin CDP are created using the Data Mart cluster type. The recommended EC2 instance type
for Impala Data Mart Data Hub clustersis r5d.2xlarge. This instance type provides a good balance of memory vs
CPU and also includes fast ephemeral SSD storage which is used by Impala data cache and spill.

When provisioning a Data Mart Data Hub cluster with the Cluster Definition option in the Ul (or the --cluster-defini
tion-name option in the CL1), the r5d.2xlarge instance type will be selected by default.

If you choose the Custom option to provision a cluster with the Data Mart blueprint, you should explicitly specify the
r5d.2xlarge instance type since thisisn’t the default type for Custom clusters.

ImpalaDWX clusters use the r5d.2xlarge instance type for executor instances and it’s not possible to override this.

In CDP, Ranger is the authorization provider for Impala.
New behavior:

e The CREATE ROLE, GRANT ROLE, SHOW ROLE statements are not supported as Ranger currently does not
support roles.

« When aparticular resource is renamed, currently, the policy is not automatically transferred to the newly renamed
resource.

91


https://docs.cloudera.com/runtime/7.2.6/impala-manage/topics/impala-metadata.html

Cloudera Runtime Modifying Impala Startup Options

*  SHOW GRANT with an invalid user/group does not return an error.

The following table lists the different access type requirements to run SQL statements in Hive and Impala.

SQL Statement Impala Access Reguirement Hive Access Requir ement

|

DESCRIBE VIEW VIEW_METADATA on the underlying tables | SELECT on the view

ALTER TABLE RENAME ALL on the target table / view ALTER on the source table / view
ALTERVIEW RENAME ALTER on the source table / view

SHOW DATABASES VIEW_METADATA USE

SHOW  TABLES

Governance Support by Atlas

Both CDH and CDP environments support governance functionality for Impala operations. The two environments
collect similar information to describe Impala activities, including:

e Auditsfor Impala access requests
* Metadata describing Impala queries
» Metadata describing any new data assets created or updated by |mpala operations

The services that support these operations are different in the two environment. Functionality is distributed across
services as follows:

Feature CDH CDP

Auditing
«  Access reguests Audit tab in Navigator console Audit page in Ranger console
. Service operan onsthat create or update Audit tab in Navi gator console Audit tab for each a']tlty in Atlas dashboard
metadata catalog entries
«  Service operationsin general Audit tab in Navigator console No other audits collected.
Metadata Catalog
+  Impalaoperations; Process and Process Execution entities Process and Process Execution entities
« CREATE TABLE ASSELECT Column- and table-level lineage Column- and table-level lineage
¢ CREATEVIEW
e ALTERVIEW AS SELECT
e INSERTINTO
e INSERT
¢ OVERWRITE

Related Information
On-demand Metadata
Impala Authorization
Impala metadata collection
SQL transactionsin Impala

Modifying Impala Startup Options

Y ou can view and edit the configuration options for the Impala daemons to customize your Impala environment, such
as to specify which hosts and ports to use, to assign directories for logging,and to control resource usage and security.

92


https://docs.cloudera.com/runtime/7.2.6/impala-manage/topics/impala-authorization.html
https://docs.cloudera.com/runtime/7.2.6/atlas-reference/topics/atlas-impala-metadata-collection.html

Cloudera Runtime Setting up Data Cache for Remote Reads

Navigate to the following page to configure the settings for all the Impala-related daemons:
ClustersimpalaConfiguration.

If the Cloudera Manager interface does not yet have aform field for a newly added option, or if you need to use
special options for debugging and troubleshooting, the Advanced category page for each daemon includes one or
more Safety Valve fields where you can enter option names directly.

Y ou can check the current runtime value of all these settings through the Impala Web Ul, available by default at:

e http://IMPALA_HOSTNAME:25000/varz for thei npal ad daemon
e http://IMPALA_HOSTNAME:25010/varz for the st at est or ed daemon
e http://IMPALA_HOSTNAME:25020/varz for the cat al ogd daemon

When Impala compute nodes and its storage are not co-located, the network bandwidth requirement goes up as the
network traffic includes the data fetch as well as the shuffling exchange traffic of intermediate results. To mitigate the
pressure on the network, you can enable the compute nodes to cache the working set read from remote filesystems,
such as, remote HDFS data node, S3, ABFS, ADLS.

To enable remote data cache as follows.

1. In Cloudera Manager, navigate to Clusterslmpala Service.

2. Inthe Configuration tab, select Enable Local Data Cache to enable the local Impala Daemon data cache for
caching of remote reads.

3. InImpala Daemon Data Cache Directories, add the directories Impala Daemon will use for caching of remote read
data.

4. InImpala Daemon Data Cache Per Directory Capacity, specify the maximum amount of local disk space Impala
will use per daemon in each of the configured directrories for caching of remote read data.

5. Click Save Changes and restart the Impala service.

This section describes various knobs you can use to control how Impala manages its metadata in order to improve
performance and scalability.

With the on-demand metadata feature, the Impala coordinators pull metadata as needed from catalogd and cache it
locally. The cached metadata gets evicted automatically under memory pressure.

The granularity of on-demand metadata fetchesis at the partition level between the coordinator and catal ogd.
Common use cases like add/drop partitions do not trigger unnecessary serialization/deserialization of large metadata.

The feature can be used in either of the following modes.

93



Cloudera Runtime SQL transactionsin Impala

M etadata on-demand mode
In this mode, all coordinators use the metadata on-demand.

Set the following on catalogd:
--cat al og_t opi ¢c_node=ni ni nal
Set the following on al impalad coordinators:
--use_|l ocal _catal og=t rue

Mixed mode
In this mode, only some coordinators are enabled to use the metadata on-demand.

We recommend that you use the mixed mode only for testing local catalog’simpact on heap usage.
Set the following on catal ogd:

--cat al og_t opi c_node=ni xed
Set the following on impalad coordinators with metdadata on-demand:
--use_|l ocal _catal og=t rue
Limitation:

HDFS caching is not supported in On-demand metadata mode coordinators.

Note:
IE In Impala 3.4.0 and above, global INVALIDATE METADATA statement is supported when On-demand
feature is enabled.

INVALIDATE METADATA Usage Notes:

To return accurate query results, Impala needs to keep the metadata current for the databases and tables queried.
Through "automatic invalidation” or "HMS event polling" support, Impala automatically picks up most changesin
metadata from the underlying systems. However there are some scenarios where you might need to run INVALIDA
TE METADATA or REFRESH.

 if some other entity modifies information used by Impalain the metastore, the information cached by Impala must
be updated viaINVALIDATE METADATA or REFRESH,

« if you have"local catalog" enabled without "HM S event polling" and need to pick up metadata changes that were
done outside of Impalain Hive and other Hive client, such as SparkSQL,

e andsoon.

. Note: Asthisisavery expensive operation compared to the incremental metadata update done by the
REFRESH statement, when possible, prefer REFRESH rather than INVALIDATE METADATA.

A transaction isasingle logical operation on the data. Impala supports transactions that satisfy alevel of consistency
that improves the integrity and reliability of the data before and after atransaction.

Specifically, Impala provides atomicity and isolation of insert operations on transactional tables. A single table insert
is either committed in full or not committed, and the results of the insert operation are not visible to other query
operations until the operation is committed.

94



Cloudera Runtime SQL transactionsin Impala

For single table, the inserts are ordered, so if Impala doesn't see a committed insert, it won't see any insert committed
after it.

For insert-only transactional tables, you can perform the following statements: CREATE TABLE, DROP TABLE,
TRUNCATE, INSERT, SELECT

All transactions in Impala automatically commit at the end of the statement. Currently, Impala does not support multi-
statement transactions.

Insert-only tables must be the managed and file-format based tables, such as Parquet, Avro, and text.

Note: Impaladoes not support changing transactional properties of tables. For example, you cannot alter a
E transactional table to a non-transactional table.

95



	Contents
	Performance Considerations
	Performance Best Practices
	Query Join Performance
	Table and Column Statistics
	Generating Table and Column Statistics

	Runtime Filtering
	Partitioning
	Partition Pruning for Queries

	HDFS Caching
	HDFS Block Skew
	Understanding Performance using EXPLAIN Plan
	Understanding Performance using SUMMARY Report
	Understanding Performance using Query Profile

	Scalability Considerations
	Scaling Limits and Guidelines
	Dedicated Coordinator

	Hadoop File Formats Support
	Using Text Data Files
	Using Parquet Data Files
	Using ORC Data Files
	Using Avro Data Files
	Using RCFile Data Files
	Using SequenceFile Data Files

	Storage Systems Supports
	Impala with HDFS
	Impala with Kudu
	Configuring for Kudu Tables
	Impala DDL for Kudu
	Partitioning for Kudu Tables

	Impala DML for Kudu Tables

	Impala with HBase
	Impala with Azure Data Lake Store (ADLS)
	Impala with Amazon S3
	Specifying Impala Credentials to Access S3


	Ports Used by Impala
	Migration Guide
	Modifying Impala Startup Options
	Setting up Data Cache for Remote Reads
	Managing Metadata in Impala
	On-demand Metadata
	SQL transactions in Impala

