
Cloudera Runtime 7.2.6

Integrating Apache Hive with Spark and BI
Date published: 2020-10-07
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Introduction to HWC...4
Introduction to HWC execution modes... 6

Spark Direct Reader mode... 9
JDBC execution mode..11

Automating mode selection..13
Configuring Spark Direct Reader mode...14
Configuring JDBC execution mode... 15
Kerberos configurations for HWC... 15
Configuring external file authorization.. 16
Reading managed tables through HWC...17
Writing managed tables through HWC..18
API operations.. 19

HWC supported types mapping... 20
Catalog operations.. 21
Read and write operations..22
Commit transaction in Spark Direct Reader mode.. 24
Close HiveWarehouseSession operations...24
Use HWC for streaming...25
HWC API Examples...25
Hive Warehouse Connector Interfaces...26

Submit a Scala or Java application.. 28
Submit a Python app.. 29

Apache Hive-Kafka integration.. 30
Create a table for a Kafka stream..30
Querying Kafka data...31

Query live data from Kafka... 32
Perform ETL by ingesting data from Kafka into Hive..33
Writing data to Kafka...34

Write transformed Hive data to Kafka...35
Set consumer and producer properties as table properties...35
Kafka storage handler and table properties..36

Connecting Hive to BI tools using a JDBC/ODBC driver..................................37
Specify the JDBC connection string.. 38
JDBC connection string syntax..39

Using JdbcStorageHandler to query RDBMS...41

Set up JDBCStorageHandler for Postgres...42

Cloudera Runtime Introduction to HWC

Introduction to HWC

You need to understand Hive Warehouse Connector (HWC) to query Apache Hive tables from Apache Spark.
Examples of supported APIs, such as Spark SQL, show some operations you can perform, including how to write to a
Hive ACID table or write a DataFrame from Spark.

HWC is software for securely accessing Hive tables from Spark. You need to use the HWC if you want to access
Hive managed tables from Spark. You explicitly use HWC by calling the HiveWarehouseConnector API to write to
managed tables. You might use HWC without even realizing it. HWC implicitly reads tables when you run a Spark
SQL query on a Hive managed table.

You do not need HWC to read or write Hive external tables. You can use native Spark SQL. You might want to use
HWC to purge external table files. From Spark, using HWC you can read Hive external tables in ORC or Parquet
formats. From Spark, using HWC you can write Hive external tables in ORC format only.

Creating an external table stores only the metadata in HMS. If you use HWC to create the external table, HMS keeps
track of the location of table names and columns. Dropping an external table deletes the metadata from HMS. You
can set an option to also drop the actual data in files, or not, from the file system.

If you do not use HWC, dropping an external table deletes only the metadata from HMS. If you do not have
permission to access the file system, and you want to purge table data in addition to metadata, you need to use HWC.

Supported APIs

• Spark SQL

Supports native Spark SQL query read (only) patterns. Output conforms to native spark.sql conventions.
• HWC

Supports HiveWarehouse Session API operations using the HWC sql API.
• DataFrames

Supports accessing a Hive ACID table from Scala, or pySpark, directly using DataFrames. Use the short name
HiveAcid. Direct reads and writes from the file are not supported.

Spark SQL Example

$ spark-shell <parameters to specify HWC jar and config settings>
scala> sql("select * from managedTable").show
scala> spark.read.table("managedTable").show

HWC API Example

scala> val hive = com.hortonworks.hwc.HiveWarehouseSession.session(spark
).build()
scala> hive.executeQuery("select * from emp_acid").show

4

Cloudera Runtime Introduction to HWC

scala> hive.executeQuery("select e.emp_id, e.first_name, d.name department
 from emp_acid e join dept_ext d on e.dept_id = d.id").show

DataFrames Example

Hive ACID tables are tables in Hive metastore and must be formatted using DataFrames as follows:

Syntax:

format("HiveAcid").option("table", "<table name>"")

Example:

scala> val df = spark.read.format("HiveAcid").options(Map("table" -> "de
fault.acidtbl")).load()
scala> df.collect()

HWC Limitations

Kerberos users of HWC and Spark Direct Reader must observe the following requirements:

• Do specify spark.sql.hive.hiveserver2.jdbc.url.principal in configurations. For example,

--conf "spark.sql.hive.hiveserver2.jdbc.url.principal=hive/_HOST@VPC.CLO
UDERA.COM"

• Do not specify the spark.sql.hive.hiveserver2.jdbc.url.principal in the JDBC URL to invoke Hive. Do specify prin
cipal=hive.server2.authentication.kerberos.principal as shown in the following syntax:

jdbc:hive://<host>:<port>/<dbName>;principal=<HiveServer2_kerberos_princ
ipal>;<otherSessionConfs>?<hiveConfs>#<hiveVars>

For example:

jdbc:hive://<host>:<port>/<dbName>;principal=hive.server2.authentication
.kerberos.principal;<otherSessionConfs>?<hiveConfs>#<hiveVars>

• Ensure that the keystore specified in the JDBC URL is in the same location on all hosts.

Other HWC limitations are:

• You cannot write data using Spark Direct Reader.
• HWC supports reading tables in any format, but currently supports writing tables in ORC format only.
• The spark thrift server is not supported.
• Transaction semantics of Spark RDDs are not ensured when using Spark Direct Reader to read ACID tables.
• Table stats (basic stats and column stats) are not generated when you write a DataFrame to Hive.
• The Hive Union types are not supported.
• When the HWC API save mode is overwrite, writes are limited.

You cannot read from and overwrite the same table. If your query accesses only one table and you try to overwrite
that table using an HWC API write method, a deadlock state might occur. Do not attempt this operation.

Example: Operation Not Supported

scala> val df = hive.executeQuery("select * from t1")
scala> df.write.format("com.hortonworks.spark.sql.hive.llap.HiveWarehouseC
onnector"). \
 mode("overwrite").option("table", "t1").save

Workaround for using the Hive Warehouse Connector with Oozie Spark action

5

Cloudera Runtime Introduction to HWC

Hive and Spark use different Thrift versions and are incompatible with each other. Upgrading Thrift in Hive is
complicated and may not be resolved in the near future. Therefore, Thrift packages are shaded inside the HWC JAR
to make Hive Warehouse Connector work with Spark and Oozie Spark action. See the workaround in Cloudera Oozie
documentation (link below).

Supported applications and operations

The Hive Warehouse Connector supports the following applications:

• Spark shell
• PySpark
• The spark-submit script

The following list describes a few of the operations supported by the Hive Warehouse Connector:

• Describing a table
• Creating a table in ORC using .createTable() or in any format using .executeUpdate()
• Writing to a table in ORC format
• Selecting Hive data and retrieving a DataFrame
• Writing a DataFrame to a Hive-managed ORC table in batch
• Executing a Hive update statement
• Reading table data, transforming it in Spark, and writing it to a new Hive table
• Writing a DataFrame or Spark stream to Hive using HiveStreaming
• Partitioning data when writing a DataFrame

Related Information
HMS storage

Orc vs Parquet

Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

Using Hive Warehouse Connector with Oozie Spark Action

Union Types

Introduction to HWC execution modes
A comparison of each execution mode helps you make HWC configuration choices. You can see, graphically, how
the configuration affects the query authorization process and your security. You read about which configuration
provides fine-grained access control, such as column masking.

In CDP Public Cloud, HWC is available by default in provisioned clusters. In CDP Private Cloud Base, you need to
configure an HWC execution mode. HWC executes reads in the modes shown in the following table:

Table 1:

Capabilities JDBC mode Spark Direct Reader mode

Ranger integration (fine-grained access
control)

N/A

Hive ACID reads # #

Workloads handled Small datasets ETL without fine-grained access control

These read modes require connections to different Hive components:

• Spark Direct Reader mode: Connects to Hive Metastore (HMS)
• JDBC execution mode: Connects to HiveServer (HS2)

The read execution mode determines the type of query authorization for reads. Ranger authorizes access to Hive
tables from Spark through HiveServer (HS2) or the Hive metastore API (HMS API).

6

https://docs.cloudera.com/runtime/7.2.6/hive-metastore/topics/hive-hms-table-storage.html
https://docs.cloudera.com/runtime/7.2.6/using-hiveql/topics/hive-orc-parquet-compare.html
https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/
https://docs.cloudera.com/runtime/7.2.6/configuring-oozie/topics/oozie-using-hive-warehouse-connector.html
https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/language_manual/datatypes.html#LanguageManualTypes-UnionTypes

Cloudera Runtime Introduction to HWC

To write ACID managed tables from Spark to Hive, use HWC. To write external tables from Spark to Hive, use
native Spark.

The following diagram shows the typical read authorization process:

The following diagram shows the typical write authorization process:

7

Cloudera Runtime Introduction to HWC

You need to use HWC to read or write managed tables from Spark. Spark Direct Reader mode does not support
writing to managed tables. Managed table queries go through HiveServer, which is integrated with Ranger. External
table queries go through the HMS API, which is also integrated with Ranger.

In Spark Direct Reader mode, SparkSQL queries read managed table metadata directly from the HMS, but only if you
have permission to access files on the file system.

If you do not use HWC, the Hive metastore (HMS) API, integrated with Ranger, authorizes external table access.
HMS API-Ranger integration enforces the Ranger Hive ACL in this case. When you use HWC, queries such as
DROP TABLE affect file system data as well as metadata in HMS.

Managed tables

A Spark job impersonates the end user when attempting to access an Apache Hive managed table. As an end user,
you do not have permission to secure, managed files in the Hive warehouse. Managed tables have default file system
permissions that disallow end user access, including Spark user access.

As Administrator, you set permissions in Ranger to access the managed tables in JDBC mode. You can fine-tune
Ranger to protect specific data. For example, you can mask data in certain columns, or set up tag-based access
control.

8

Cloudera Runtime Introduction to HWC

In Spark Direct Reader mode, you cannot use Ranger. You must set read access to the file system location for
managed tables. You must have Read and Execute permissions on the Hive warehouse location (hive.metastore.wareh
ouse.dir).

External tables

Ranger authorization of external table reads and writes is supported. You need to configure a few properties in
Cloudera Manager for authorization of external table writes. You must be granted file system permissions on external
table files to allow Spark direct access to the actual table data instead of just the table metadata. For example, to purge
actual data you need access to the file system.

Spark Direct Reader mode vs JDBC mode

As Spark allows users to run arbitrary code, fine grained access control, such as row level filtering or column level
masking, is not possible within Spark itself. This limitation extends to data read in Spark Direct Reader mode.

To restrict data access at a fine-grained level, consider using Ranger and HWC in JDBC execution mode if your
datasets are small. If you do not require fine-grained access, consider using HWC Spark Direct Reader mode. For
example, use Spark Direct Reader mode for ETL use cases. Spark Direct Reader mode is the recommended read
mode for production. Using HWC is the recommended write mode for production.

Related Information
Configuring Spark Direct Reader mode

Configuring JDBC execution mode

HMS storage

Apache Hive Wiki: JDBC URL information

Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

Spark Direct Reader mode
A detailed description of Spark Direct Reader mode includes how the Hive Warehouse Connector (HWC)
transparently connects to Apache Hive metastore (HMS) to get transaction information, and then reads the data
directly from the managed table location using the transaction snapshot. The properties you need to set, and when you
need to set them, in the context of the Apache Spark session helps you successfully work in this mode.

Requirements and recommendations

Spark Direct Reader mode requires a connection to Hive metastore. A HiveServer (HS2) connection is not needed.

Spark Direct Reader for reading Hive ACID, transactional tables from Spark is supported for production use. Use
Spark Direct Reader mode if your ETL jobs do not require authorization and run as super user.

Component interaction

The following diagram shows component interaction in HWC Spark Direct Reader mode.

9

https://docs.cloudera.com/runtime/7.2.6/hive-metastore/topics/hive-hms-table-storage.html
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/

Cloudera Runtime Introduction to HWC

Spark Direct Reader Mode configuration

In configuration/spark-defaults.conf, or using the --conf option in spark-submit/spark-shell set the following
properties:

Name: spark.sql.extensions

Value: com.qubole.spark.hiveacid.HiveAcidAutoConvertExtension

Required for using Spark SQL in auto-translate direct reader mode. Set before creating the spark
session.

Name: spark.kryo.registrator

Value: com.qubole.spark.hiveacid.util.HiveAcidKyroRegistrator

Set before the spark session. Required if serialization = kryo.

Name: spark.sql.hive.hwc.execution.mode

Value: spark

Required only if you are using the HWC API for execution. Cannot be any other value.

Name: spark.hadoop.hive.metastore.uris

Value: thrift://<host>:<port>

Hive metastore URI.

Name: --jars

Value: HWC jar

Pass the HWC jar to spark-shell or spark-submit using the --jars option while launching the
application. For example, launch spark-shell as follows.

10

Cloudera Runtime Introduction to HWC

Example: Launch a spark-shell

spark-shell --jars \
/opt/cloudera/parcels/CDH/lib/hive_warehouse_connector/hive-warehouse-conne
ctor-assembly-<version>.jar \
--conf "spark.sql.extensions=com.qubole.spark.hiveacid.HiveAcidAutoConvert
Extension" \
--conf "spark.kryo.registrator=com.qubole.spark.hiveacid.util.HiveAcidKyroR
egistrator" \
--conf "spark.hadoop.hive.metastore.uris=<metastore_uri>"

Unsupported functionality

Spark Direct Reader does not support the following functionality:

• Writes
• Streaming inserts
• CTAS statements

Limitations

• Does not enforce authorization; hence, you must configure read access to the HDFS, or other, location for
managed tables. You must have Read and Execute permissions on hive warehouse location (hive.metastore.wareh
ouse.dir).

• Supports only single-table transaction consistency. The direct reader does not guarantee that multiple tables
referenced in a query read the same snapshot of data.

• Does not auto-commit transactions submitted by rdd APIs. Explicitly close transactions to release locks.
• Requires read and execute access on the hive-managed table locations.
• Does not support Ranger column masking and fine-grained access control.
• Blocks compaction on open read transactions.

The way Spark handles null and empty strings can cause a discrepancy between metadata and actual data when
writing the data read by Spark Direct Reader to a CSV file.

Related Information
Configuring Spark Direct Reader mode

Configuring JDBC execution mode

Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

JDBC execution mode
You need to understand how JDBC mode interacts with Apache Hive components to read Hive tables from Spark
through HWC. Where your queries are executed affects configuration. Understanding execution locations and
recommendations help you configure JDBC execution mode for your use case.

Component Interaction

Only one JDBC connection to HiveServer (HS2) is a potential bottleneck in data transfer to Spark. The following
diagram shows interaction when you configure HWC in JDBC mode with Hive metastore (HMS), TEZ, and HDFS.

11

https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/

Cloudera Runtime Introduction to HWC

HWC does not use JDBC mode during a write. HWC writes to an intermediate location from Spark, and then
executes a LOAD DATA query to write the data. Using HWC to write data is recommended for production.

Configuration

In JDBC mode, execution takes place in these locations:

• Driver: Using the Hive JDBC url, connects to Hive and executes the query on the driver side.
• Cluster: From Spark executors, connects to Hive through JDBC and executes the query.

Authorization occurs on the server.

JDBC mode runs in the client or cluster:

• Client (Driver)

In client mode, any failures to connect to HiveServer (HS2) will not be retried.
• Cluster (Executor)--recommended

In cluster mode any failures to connect to HS2 will be retried automatically.

JDBC mode is not recommended for production reads due to slow performance when reading huge data sets. Where
your queries are executed affects the Kerberos configurations for HWC.

In configuration/spark-defaults.conf, or using the --conf option in spark-submit/spark-shell set the following
properties:

Name: spark.datasource.hive.warehouse.read.jdbc.mode

Value: client or cluster

Configures the driver location.

12

Cloudera Runtime Introduction to HWC

Name: spark.sql.hive.hiveserver2.jdbc.url

Value:

The JDBC endpoint for HiveServer. For more information, see the Apache Hive Wiki (link below).
For Knox, provide the HiveServer, not Knox, endpoint.

Name: spark.datasource.hive.warehouse.load.staging.dir

Value: Temporary staging location required by HWC. Set the value to a file system location where
the HWC user has write permission.

Name: spark.hadoop.hive.zookeeper.quorum

JDBC Mode Limitations

• If you configured Auto Translate, run JDBC in cluster mode.
• JDBC mode, which is used for reads only, is not recommended for production because bottlenecks develop in data

transfer to Spark.

Writes through HWC do not use JDBC mode and are recommended for production.

Related Information
Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

Automating mode selection
You need to know the prerequisites for using Auto Translate to select an execution mode transparently, based on your
query. In a single step, you configure Auto Translate and submit an application.

About this task
You configure the spark.sql.extensions property to enable auto translation. When you enable Auto Translate, Spark
implicitly selects HWC, or native Apache Spark to run your query. Spark selects HWC when you query an Apache
Hive managed (ACID) table and falls back to native Spark for reading external tables. You can use the same Spark
APIs to access either managed or external tables.

Before you begin

• Configure Spark Direct Reader mode and JDBC execution mode.
• Configure Kerberos.

Procedure

1. Submit the Spark application, including spark.sql.extensions property to enable Auto Translate.

2. If you use the kyro serializer, include -- conf spark.sql.extensions=com.qubole.spark.hiveacid.HiveAcidAutoC
onvertExtension
For example:

sudo -u hive spark-shell --jars /opt/cloudera/parcels/CDH/jars/hive-ware
house-connector-assembly-<version>.jar \
--conf "spark.sql.extensions=com.qubole.spark.hiveacid.HiveAcidAutoConv
ertExtension" \
--conf spark.kryo.registrator="com.qubole.spark.hiveacid.util.HiveAcidKy
roRegistrator"

3. Read employee data in table emp_acid.
View employee data in table emp_acid.

scala> spark.sql("select * from emp_acid").show(1000, false)

13

https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/

Cloudera Runtime Introduction to HWC

+------+----------+--------------------+-------------+--------------+-----
+-----+-------+
|emp_id|first_name| e_mail|date_of_birth| city|st
ate| zip|dept_id|
+------+----------+--------------------+-------------+--------------+-----
+-----+-------+
|677509| Lois|lois.walker@hotma… | 3/29/1981| Denver|
 CO|80224| 4|
|940761| Brenda|brenda.robinson@g...| 7/31/1970| Stonewall| L
A|71078| 5|
|428945| Joe|joe.robinson@gmai… | 6/16/1963| Michigantown|
 IN|46057| 3|
……….
……….
……….

You do not need to specify an execution mode. You simply submit the query. Using the HWC API, to use hive
.execute to execute a read. This command processes queries through HWC in either JDBC and Spark Direct
Reader modes.

Related Information
Configuring Spark Direct Reader mode

Configuring JDBC execution mode

Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

Configuring Spark Direct Reader mode
In a two-step procedure, you see how to configure Apache Spark to connect to the Apache Hive metastore. An
example shows how to configure Spark Direct Reader mode while launching the Spark shell.

About this task
This procedure assumes you are not using Auto Translate and do not require serialization.

Before you begin
Set Kerberos configurations for HWC, or for an unsecured cluster, set spark.security.credentials.hiveserver2.enabl
ed=false.

Procedure

1. In Cloudera Manager, in Hosts > Roles, if Hive Metastore appears in the list of roles, copy the host name or IP
address.

You use the host name or IP address in the next step to set the host value.

2. Launch the Spark shell and include the configuration of the spark.hadoop.hive.metastore.uris property to thrift://
<host>:<port>.
For example:

spark-shell --jars /opt/cloudera/parcels/CDH/jars/hive-warehouse-connect
or-assembly-<version>.jar \
--conf "spark.hadoop.hive.metastore.uris=thrift://172.27.74.137:9083"
... <other conf strings>

If you use the HWC API, configure spark.sql.hive.hwc.execution.mode=spark

14

https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/

Cloudera Runtime Introduction to HWC

Configuring JDBC execution mode
In two steps, you configure Apache Spark to connect to HiveServer (HS2). An example shows how to configure this
mode while launching the Spark shell.

Before you begin

• Accept the default and recommended spark.datasource.hive.warehouse.read.jdbc.mode=cluster for the location of
query execution.

• Accept the default spark.datasource.hive.warehouse.load.staging.dir for the temporary staging location required by
HWC.

• Check that spark.hadoop.hive.zookeeper.quorum is configured.
• Set Kerberos configurations for HWC, or for an unsecured cluster, set spark.security.credentials.hiveserver2.enabl

ed=false.

Procedure

1. Find the HiveServer (HS2) JDBC URL in /etc/hive/conf.cloudera.HIVE_ON_TEZ-1/beeline-site.xml
The value of beeline.hs2.jdbc.url.HIVE_ON_TEZ-1 is the HS2 JDBC URL in this sample file.

...
<configuration>
 <property>
 <name>beeline.hs2.jdbc.url.default</name>
 <value>HIVE_ON_TEZ-1</value>
 </property>
 <property>
 <name>beeline.hs2.jdbc.url.HIVE_ON_TEZ-1</name>
 <value>jdbc:hive2://nightly7x-unsecure-1.nightly7x-unsecure.root.hwx.sit
e:2181/;serviceDiscoveryMode=zooKeeper; \
 zooKeeperNamespace=hiveserver2;retries=5</value>
 </property>
</configuration>

2. Set the Spark property to the value of the HS2 JDBC URL.
For example, in /opt/cloudera/parcels/CDH-7.2.1-1.cdh7.2.1.p0.4847773/etc/spark/conf.dist/spark-defaults.conf,
add the JDBC URL:

...
spark.sql.hive.hiveserver2.jdbc.url spark.sql.hive.hiveserver2.jdbc.url
jdbc:hive2://nightly7x-unsecure-1.nightly7x-unsecure.root.hwx.site:2181/
;serviceDiscoveryMode=zooKeeper; \
 zooKeeperNamespace=hiveserver2;retries=5

Kerberos configurations for HWC
You learn how to configure and which parameters to set for a Kerberos-secure HWC connection for querying the
Hive metastore from Spark.

The Hive Warehouse Connector (HWC) must connect to HiveServer (HS2) to execute writes or to execute reads in
read modes other than Direct Reader. You need to set the following configuration properties to connect HWC to a
Kerberos-enabled HiveServer:

• Property: spark.sql.hive.hiveserver2.jdbc.url.principal

Value: Set this value to the value of "hive.server2.authentication.kerberos.principal".

15

Cloudera Runtime Introduction to HWC

• Property: spark.security.credentials.hiveserver2.enabled

Value: Set this value to "true".

You do not need to explicitly provide other authentication configurations, such as auth type and principal. When
Spark opens a secure connection to Hive metastore, Spark automatically picks the authentication configurations from
the hive-site.xml that is present on the Spark app classpath. For example, to execute queries in direct reader mode
through HWC, Spark opens a secure connection to Hive metastore and this authentication occurs automatically.

You can set the properties using the spark-submit/spark-shell --conf option.

Configuring external file authorization
As Administrator, you need to know how to configure properties in Cloudera Manager for read and write
authorization to Apache Hive external tables from Apache Spark. You also need to configure file level permissions on
tables for users.

About this task

You set the following properties and values for HMS API-Ranger integration:
hive.metastore.pre.event.listeners

Value:

org.apache.hadoop.hive.ql.security.authorization.plugin.metastor
e.HiveMetaStoreAuthorizer

Configures HMS writes.

hive.security.authenticator.manager

Value: org.apache.hadoop.hive.ql.security.SessionStateUserAuthenticator

Add properties to hive-site.xml using the Cloudera Manager Safety Valve as described in the next section.

Procedure

1. In Cloudera Manager, to configure Hive Metastore properties click Clusters Hive-1 Configuration .

2. Search for hive-site.

3. In Hive Metastore Server Advanced Configuration Snippet (Safety Valve) for hive-site.xml, click +.

4. Add a property name and value.

5. Repeat steps to add other properties.

6. Save changes.

7. Configure file level permissions on tables for users.

Only users who have file level permissions on external tables can access external tables.

16

Cloudera Runtime Introduction to HWC

Reading managed tables through HWC
A step-by-step procedure walks you through choosing one mode or another, starting the Apache Spark session, and
executing a read of Apache Hive ACID, managed tables.

Before you begin

• Configure Spark Direct Reader Mode or JDBC execution mode.
• Set Kerberos for HWC.

Procedure

1. Choose a configuration based on your execution mode.

• Spark Direct Reader mode:

--conf spark.sql.extensions=com.qubole.spark.hiveacid.HiveAcidAutoConver
tExtension

• JDBC mode:

--conf spark.sql.extensions=com.hortonworks.spark.sql.rule.Extensions
--conf spark.datasource.hive.warehouse.read.via.llap=false

Also set a location for running the application in JDBC mode. For example, set the recommended cluster
location for example:

spark.datasource.hive.warehouse.read.jdbc.mode=cluster

2. Start the Spark session using the execution mode you chose in the last step.
For example, start the Spark session using Spark Direct Reader mode and configure for kyro serialization:

sudo -u hive spark-shell --jars /opt/cloudera/parcels/CDH/jars/hive-ware
house-connector-assembly-<version>.jar \
--conf "spark.sql.extensions=com.qubole.spark.hiveacid.HiveAcidAutoConv
ertExtension" \
--conf spark.kryo.registrator="com.qubole.spark.hiveacid.util.HiveAcidKy
roRegistrator"

For example, start the Spark session using JDBC execution mode:

sudo -u hive spark-shell --jars /opt/cloudera/parcels/CDH/jars/hive-ware
house-connector-assembly-<version>.jar \
--conf spark.sql.hive.hwc.execution.mode=spark \
--conf spark.datasource.hive.warehouse.read.via.llap=false

You must start the Spark session after setting Spark Direct Reader mode, so include the configurations in the
launch string.

3. Read Apache Hive managed tables.
For example:

scala> sql("select * from managedTable").show
scala> spark.read.table("managedTable").show

Related Information
Configuring Spark Direct Reader mode

Configuring JDBC execution mode

Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

17

https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/

Cloudera Runtime Introduction to HWC

Writing managed tables through HWC
A step-by-step procedure walks you through connecting to HiveServer (HS2) to write tables from Spark, which is
recommended for production. You launch the Spark session, and write ACID, managed tables to Apache Hive.

Before you begin

• Accept the default spark.datasource.hive.warehouse.load.staging.dir for the temporary staging location required by
HWC.

• Check that spark.hadoop.hive.zookeeper.quorum is configured.
• Set Kerberos configurations for HWC, or for an unsecured cluster, set spark.security.credentials.hiveserver2.enabl

ed=false.

About this task
Limitation: Only the ORC format is supported for writes.

The way data is written from HWC is not impacted by the read modes configured for HWC. For write operations,
HWC writes to an intermediate location (as defined by the value of config spark.datasource.hive.warehouse.load
.staging.dir) from Spark, followed by executing a "LOAD DATA" query in hive via JDBC. Exception: writing to
dynamic partitions creates and intermediate temporary external table.

Using HWC to write data is recommended for production in CDP.

Procedure

1. Start the Apache Spark session and include the URL for HiveServer.

spark-shell --jars /opt/cloudera/parcels/CDH/jars/hive-warehouse-connect
or-assembly-<version>.jar \
-- conf spark.sql.hive.hiveserver2.jdbc.url=<JDBC endpoint for HiveServer>
...

2. Include in the launch string a configuration of the intermediate location to use as a staging directory.
Example syntax:

...
--conf spark.sql.hive.hwc.execution.mode=spark \
--conf spark.datasource.hive.warehouse.read.via.llap=false \
--conf spark.datasource.hive.warehouse.load.staging.dir=<path to direc
tory>

3. Write a Hive managed table.
For example, in Scala:

import com.hortonworks.hwc.HiveWarehouseSession
import com.hortonworks.hwc.HiveWarehouseSession._

val hive = HiveWarehouseSession.session(spark).build();
hive.setDatabase("tpcds_bin_partitioned_orc_1000");
val df = hive.executeQuery("select * from web_sales");
df.createOrReplaceTempView("web_sales");
hive.setDatabase("testDatabase");

hive.createTable("newTable").ifNotExists()
.column("ws_sold_time_sk", "bigint")
.column("ws_ship_date_sk", "bigint")
.create();

sql("SELECT ws_sold_time_sk, ws_ship_date_sk FROM web_sales WHERE ws_sold
_time_sk > 80000)

18

Cloudera Runtime Introduction to HWC

.write.format(HIVE_WAREHOUSE_CONNECTOR)

.mode("append")

.option("table", "newTable")

.save();

HWC internally fires the following query to Hive through JDBC:

LOAD DATA INPATH '<spark.datasource.hive.warehouse.load.staging.dir>' INTO
 TABLE tpcds_bin_partitioned_orc_1000.newTable

4. Write to a statically partitioned, Hive managed table named t1 having two partitioned columns c1 and c2.

df.write.format(HIVE_WAREHOUSE_CONNECTOR).mode("append").option("partiti
on", "c1='val1',c2='val2'").option("table", "t1").save();

HWC internally fires the following query to Hive through JDBC after writing data to a temporary location.

LOAD DATA INPATH '<spark.datasource.hive.warehouse.load.staging.dir>' [O
VERWRITE] INTO TABLE db.t1 PARTITION (c1='val1',c2='val2');

5. Write to a dynamically partitioned table named t1 having two partitioned cols c1 and c2.

df.write.format(HIVE_WAREHOUSE_CONNECTOR).mode("append").option("partiti
on", "c1='val1',c2").option("table", "t1").save();

HWC internally fires the following query to Hive through JDBC after writing data to a temporary location.

CREATE TEMPORARY EXTERNAL TABLE db.job_id_table(cols....) STORED AS ORC
LOCATION '<spark.datasource.hive.warehouse.load.staging.dir>';

INSERT INTO TABLE t1 PARTITION (c1='val1',c2) SELECT <cols> FROM db.job
_id_table;

where <cols> should have comma separated list of columns in the table with dynamic partition columns being the
last in the list and in the same order as the partition definition.

Related Information
Configuring Spark Direct Reader mode

Configuring JDBC execution mode

Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

API operations
As an Apache Spark developer, you learn the code constructs for executing Apache Hive queries using the
HiveWarehouseSession API. In Spark source code, you see how to create an instance of HiveWarehouseSession.

Import statements and variables

The following string constants are defined by the API:

• HIVE_WAREHOUSE_CONNECTOR
• DATAFRAME_TO_STREAM
• STREAM_TO_STREAM

Assuming spark is running in an existing SparkSession, use this code for imports:

• Scala

import com.hortonworks.hwc.HiveWarehouseSession

19

https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/

Cloudera Runtime Introduction to HWC

import com.hortonworks.hwc.HiveWarehouseSession._
val hive = HiveWarehouseSession.session(spark).build()

• Java

import com.hortonworks.hwc.HiveWarehouseSession;
import static com.hortonworks.hwc.HiveWarehouseSession.*;
HiveWarehouseSession hive = HiveWarehouseSession.session(spark).build();

• Python

from pyspark_llap import HiveWarehouseSession
hive = HiveWarehouseSession.session(spark).build()

Executing queries

HWC supports three methods for executing queries:

• .sql()

• Executes queries in any HWC mode.
• Consistent with the Spark sql interface.
• Masks the internal implementation based on the cluster type you configured, either JDBC_CLIENT or

JDBC_CLUSTER.
• .execute()

• Required for executing queries if spark.datasource.hive.warehouse.read.mode=JDBC_CLUSTER.
• Uses a driver side JDBC connection.
• Provided for backward compatibility where the method defaults to reading in JDBC client mode irrespective of

the value of JDBC client or cluster mode configuration.
• Recommended for catalog queries.

• .executeQuery()

• Executes queries, except catalog queries, in LLAP mode (spark.datasource.hive.warehouse.read.via.llap= true)
• If LLAP is not enabled in the cluster, .executeQuery() does not work. CDP Data Center does not support

LLAP.
• Provided for backward compatibility.

Results are returned as a DataFrame to Spark.

Related Information
HMS storage

Orc vs Parquet

Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

HWC supported types mapping
To create HWC API apps, you must know how Hive Warehouse Connector maps Apache Hive types to Apache
Spark types, and vice versa. Awareness of a few unsupported types helps you avoid problems.

Spark-Hive supported types mapping

The following types are supported by the HiveWareHouseConnector library:

Spark Type Hive Type

ByteType TinyInt

ShortType SmallInt

IntegerType Integer

20

https://docs.cloudera.com/runtime/7.2.6/hive-metastore/topics/hive-hms-table-storage.html
https://docs.cloudera.com/runtime/7.2.6/using-hiveql/topics/hive-orc-parquet-compare.html
https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/

Cloudera Runtime Introduction to HWC

Spark Type Hive Type

LongType BigInt

FloatType Float

DoubleType Double

DecimalType Decimal

StringType* String, Varchar*

BinaryType Binary

BooleanType Boolean

TimestampType** Timestamp**

DateType Date

ArrayType Array

StructType Struct

Notes:

* StringType (Spark) and String, Varchar (Hive)

A Hive String or Varchar column is converted to a Spark StringType column. When a Spark StringType column has
maxLength metadata, it is converted to a Hive Varchar column; otherwise, it is converted to a Hive String column.

** Timestamp (Hive)

The Hive Timestamp column loses submicrosecond precision when converted to a Spark TimestampType column
because a Spark TimestampType column has microsecond precision, while a Hive Timestamp column has
nanosecond precision.

Hive timestamps are interpreted as UTC. When reading data from Hive, timestamps are adjusted according to the
local timezone of the Spark session. For example, if Spark is running in the America/New_York timezone, a Hive
timestamp 2018-06-21 09:00:00 is imported into Spark as 2018-06-21 05:00:00 due to the 4-hour time difference
between America/New_York and UTC.

Spark-Hive unsupported types

Spark Type Hive Type

CalendarIntervalType Interval

N/A Char

MapType Map

N/A Union

NullType N/A

TimestampType Timestamp With Timezone

Related Information
HMS storage

Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

Catalog operations
Short descriptions and the syntax of catalog operations, which include creating, dropping, and describing an Apache
Hive database and table from Apache Spark, helps you write HWC API apps.

21

https://docs.cloudera.com/runtime/7.2.6/hive-metastore/topics/hive-hms-table-storage.html
https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/

Cloudera Runtime Introduction to HWC

Catalog operations

Three methods of executing catalog operations are supported: .sql (recommended), .execute() (spark.datasource.hiv
e.warehouse.read.jdbc.mode = client), or .executeQuery() for backward compatibility in LLAP mode.

• Set the current database for unqualified Hive table references

hive.setDatabase(<database>)
• Execute a catalog operation and return a DataFrame

hive.execute("describe extended web_sales").show()
• Show databases

hive.showDatabases().show(100)
• Show tables for the current database

hive.showTables().show(100)
• Describe a table

hive.describeTable(<table_name>).show(100)
• Create a database

hive.createDatabase(<database_name>,<ifNotExists>)
• Create an ORC table

hive.createTable("web_sales").ifNotExists().column("sold_time_sk", "bigi
nt").column("ws_ship_date_sk", "bigint").create()

See the CreateTableBuilder interface section below for additional table creation options. You can also create Hive
tables using hive.executeUpdate.

• Drop a database

hive.dropDatabase(<databaseName>, <ifExists>, <useCascade>)
• Drop a table

hive.dropTable(<tableName>, <ifExists>, <usePurge>)

Related Information
HMS storage

Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

Read and write operations
Brief descriptions of HWC API operations and examples cover how to read and write Apache Hive tables from
Apache Spark. You learn how to update statements and write DataFrames to partitioned Hive tables, perform batch
writes, and use HiveStreaming.

Read operations

Execute a Hive SELECT query and return a DataFrame.

hive.sql("select * from web_sales")

HWC supports push-downs of DataFrame filters and projections applied to .sql().

Alternatively, you can use .execute or .executeQuery as previously described.

Execute a Hive update statement

Execute CREATE, UPDATE, DELETE, INSERT, and MERGE statements in this way:

hive.executeUpdate("ALTER TABLE old_name RENAME TO new_name")

22

https://docs.cloudera.com/runtime/7.2.6/hive-metastore/topics/hive-hms-table-storage.html
https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/

Cloudera Runtime Introduction to HWC

Write a DataFrame to Hive in batch

This operation uses LOAD DATA INTO TABLE.

Java/Scala:

df.write.format(HIVE_WAREHOUSE_CONNECTOR).option("table", <tableName>).s
ave()

Python:

df.write.format(HiveWarehouseSession().HIVE_WAREHOUSE_CONNECTOR).option("tab
le", &tableName>).save()

Write a DataFrame to Hive, specifying partitions

HWC follows Hive semantics for overwriting data with and without partitions and is not affected by the setting of
spark.sql.sources.partitionOverwriteMode to static or dynamic. This behavior mimics the latest Spark Community
trend reflected in Spark-20236 (link below).

Java/Scala:

df.write.format(HIVE_WAREHOUSE_CONNECTOR).option("table", <tableName>).optio
n("partition", <partition_spec>).save()

Python:

df.write.format(HiveWarehouseSession().HIVE_WAREHOUSE_CONNECTOR).option("tab
le", &tableName>).option("partition", <partition_spec>).save()

Where <partition_spec> is in one of the following forms:

• option("partition", "c1='val1',c2=val2") // static
• option("partition", "c1='val1',c2") // static followed by dynamic
• option("partition", "c1,c2") // dynamic

Depending on the partition spec, HWC generates queries in one of the following forms for writing data to Hive.

• No partitions specified = LOAD DATA
• Only static partitions specified = LOAD DATA...PARTITION
• Some dynamic partition present = CREATE TEMP TABLE + INSERT INTO/OVERWRITE query.

Note: Writing static partitions is faster than writing dynamic partitions.

Write a DataFrame to Hive using HiveStreaming

When using HiveStreaming to write a DataFrame to Hive or a Spark Stream to Hive, you need to escape any commas
in the stream, as shown in Use the Hive Warehouse Connector for Streaming (link below).

Java/Scala:

//Using dynamic partitioning
df.write.format(DATAFRAME_TO_STREAM).option("table", <tableName>).save()

//Or, writing to a static partition
df.write.format(DATAFRAME_TO_STREAM).option("table", <tableName>).option("p
artition", <partition>).save()

Python:

//Using dynamic partitioning

23

Cloudera Runtime Introduction to HWC

df.write.format(HiveWarehouseSession().DATAFRAME_TO_STREAM).option("table",
 <tableName>).save()

//Or, writing to a static partition
df.write.format(HiveWarehouseSession().DATAFRAME_TO_STREAM).option("table",
<tableName>).option("partition", <partition>).save()

Write a Spark Stream to Hive using HiveStreaming

Java/Scala:

stream.writeStream.format(STREAM_TO_STREAM).option("table", "web_sales").sta
rt()

Python:

stream.writeStream.format(HiveWarehouseSession().STREAM_TO_STREAM).option("t
able", "web_sales").start()

Related Information
HMS storage

SPARK-20236

Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

Commit transaction in Spark Direct Reader mode
In Spark Direct Reader mode, you need to know how to commit or abort transactions.

About this task
A sql listener normally handles this task automatically when a dataframe operation or spark sql query finishes. In
some cases when .explain() , .rdd() , or .cache() are invoked on a dataframe, the transaction is not automatically
closed. In Spark Direct Reader mode, commit or abort a transaction as follows:

scala> com.qubole.spark.hiveacid.transaction.HiveAcidTxnManagerObject.commit
Txn(spark)
scala> hive.commitTxn

Or, if you are using Hive Warehouse Connector with Direct Reader Mode enabled, you can invoke following API to
commit transaction:

 scala> hive.commitTxn

Close HiveWarehouseSession operations
You need to know how to release locks that Apache Spark operations puts on Apache Hive resources. A example
shows how and when to release these locks.

About this task

Spark can invoke operations, such as cache(), persist(), and rdd(), on a DataFrame you obtain from running a
HiveWarehouseSession .table() or .sql() (or alternatively, .execute() or .executeQuery()). The Spark operations
can lock Hive resources. You can release any locks and resources by calling the HiveWarehouseSession close().
Calling close() invalidates the HiveWarehouseSession instance and you cannot perform any further operations on the
instance.

24

https://docs.cloudera.com/runtime/7.2.6/hive-metastore/topics/hive-hms-table-storage.html
https://issues.apache.org/jira/browse/SPARK-20236
https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/

Cloudera Runtime Introduction to HWC

Procedure

Call close() when you finish running all other operations on the instance of HiveWarehouseSession.

import com.hortonworks.hwc.HiveWarehouseSession
import com.hortonworks.hwc.HiveWarehouseSession._
val hive = HiveWarehouseSession.session(spark).build()
hive.setDatabase("tpcds_bin_partitioned_orc_1000")
val df = hive.sql("select * from web_sales")
. . . //Any other operations
.close()

You can also call close() at the end of an iteration if the application is designed to run in a microbatch, or iterative,
manner that does not need to share previous states.

No more operations can occur on the DataFrame obtained by table() or sql() (or alternatively, .execute() or .execute
Query()).

Related Information
Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

Use HWC for streaming
When using HiveStreaming to write a DataFrame to Apache Hive or an Apache Spark Stream to Hive, you need to
know how to escape any commas in the stream because the Hive Warehouse Connector uses the commas as the field
delimiter.

Procedure

Change the value of the default delimiter property escape.delim to a backslash that the Hive Warehouse Connector
uses to write streams to mytable.
ALTER TABLE mytable SET TBLPROPERTIES ('escape.delim' = '\\');

Related Information
HMS storage

Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

HWC API Examples
Examples of using the HWC API include how to create the DataFrame from any data source and include an option to
write the DataFrame to an Apache Hive table.

Write a DataFrame from Spark to Hive example

You specify one of the following Spark SaveMode modes to write a DataFrame to Hive:

• Append
• ErrorIfExists
• Ignore
• Overwrite

In Overwrite mode, HWC does not explicitly drop and recreate the table. HWC queries Hive to overwrite an existing
table using LOAD DATA...OVERWRITE or INSERT OVERWRITE...

When you write the DataFrame, the Hive Warehouse Connector creates the Hive table if it does not exist.

The following example uses Append mode.

df = //Create DataFrame from any source

val hive = com.hortonworks.hwc.HiveWarehouseSession.session(spark).build()

25

https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/
https://docs.cloudera.com/runtime/7.2.6/hive-metastore/topics/hive-hms-table-storage.html
https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/
https://spark.apache.org/docs/2.3.1/api/java/org/apache/spark/sql/SaveMode.html

Cloudera Runtime Introduction to HWC

df.write.format(HIVE_WAREHOUSE_CONNECTOR)
.mode("append")
.option("table", "my_Table")
.save()

ETL example (Scala)

Read table data from Hive, transform it in Spark, and write to a new Hive table.

import com.hortonworks.hwc.HiveWarehouseSession
import com.hortonworks.hwc.HiveWarehouseSession._
val hive = HiveWarehouseSession.session(spark).build()
hive.setDatabase("tpcds_bin_partitioned_orc_1000")
val df = hive.sql("select * from web_sales")
df.createOrReplaceTempView("web_sales")
hive.setDatabase("testDatabase")
hive.createTable("newTable")
.ifNotExists()
.column("ws_sold_time_sk", "bigint")
.column("ws_ship_date_sk", "bigint")
.create()
sql("SELECT ws_sold_time_sk, ws_ship_date_sk FROM web_sales WHERE ws_sold_
time_sk > 80000)
.write.format(HIVE_WAREHOUSE_CONNECTOR)
.mode("append")
.option("table", "newTable")
.save()

Related Information
HMS storage

Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

Hive Warehouse Connector Interfaces
The HiveWarehouseSession, CreateTableBuilder, and MergeBuilder interfaces present available HWC operations.

HiveWarehouseSession interface

package com.hortonworks.hwc;

public interface HiveWarehouseSession {

//Execute Hive SELECT query and return DataFrame (recommended)
Dataset<Row> sql(String sql);
//Execute Hive SELECT query and return DataFrame in JDBC client mode
//Execute Hive catalog-browsing operation and return DataFrame
Dataset<Row> execute(String sql);

//Execute Hive SELECT query and return DataFrame in LLAP mode (not available
 in this release)
Dataset<Row> executeQuery(String sql);

//Execute Hive update statement
boolean executeUpdate(String sql);

//Reference a Hive table as a DataFrame
Dataset<Row> table(String sql);

//Return the SparkSession attached to this HiveWarehouseSession
SparkSession session();

26

https://docs.cloudera.com/runtime/7.2.6/hive-metastore/topics/hive-hms-table-storage.html
https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/

Cloudera Runtime Introduction to HWC

//Set the current database for unqualified Hive table references
void setDatabase(String name);

/**
* Helpers: wrapper functions over execute or executeUpdate
*/

//Helper for show databases
Dataset<Row> showDatabases();

//Helper for show tables
Dataset<Row> showTables();

//Helper for describeTable
Dataset<Row> describeTable(String table);

//Helper for create database
void createDatabase(String database, boolean ifNotExists);

//Helper for create table stored as ORC
CreateTableBuilder createTable(String tableName);

//Helper for drop database
void dropDatabase(String database, boolean ifExists, boolean cascade);

//Helper for drop table
void dropTable(String table, boolean ifExists, boolean purge);

//Helper for merge query
MergeBuilder mergeBuilder();

//Closes the HWC session. Session cannot be reused after being closed.
void close();

// Closes the transaction started by the direct reader. The transaction is
 not committed if user
// uses rdd APIs.
void commitTxn();
}

CreateTableBuilder interface

package com.hortonworks.hwc;

public interface CreateTableBuilder {

//Silently skip table creation if table name exists
CreateTableBuilder ifNotExists();

//Add a column with the specific name and Hive type
//Use more than once to add multiple columns
CreateTableBuilder column(String name, String type);

//Specific a column as table partition
//Use more than once to specify multiple partitions
CreateTableBuilder partition(String name, String type);

//Add a table property
//Use more than once to add multiple properties
CreateTableBuilder prop(String key, String value);

//Make table bucketed, with given number of buckets and bucket columns

27

Cloudera Runtime Introduction to HWC

CreateTableBuilder clusterBy(long numBuckets, String ... columns);

//Creates ORC table in Hive from builder instance
void create();
}

MergeBuilder interface

package com.hortonworks.hwc;

public interface MergeBuilder {

//Specify the target table to merge
MergeBuilder mergeInto(tring targetTable, String alias);

//Specify the source table or expression, such as (select * from some_table)
// Enclose expression in braces if specified.
MergeBuilder using(String sourceTableOrExpr, String alias);

//Specify the condition expression for merging
MergeBuilder on(String expr);

//Specify fields to update for rows affected by merge condition and match
Expr
MergeBuilder whenMatchedThenUpdate(String matchExpr, String... nameValuePa
irs);

//Delete rows affected by the merge condition and matchExpr
MergeBuilder whenMatchedThenDelete(String matchExpr);

//Insert rows into target table affected by merge condition and matchExpr
MergeBuilder whenNotMatchedInsert(String matchExpr, String... values);

//Execute the merge operation
void merge();
}

Related Information
HMS storage

Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

Submit a Scala or Java application
A step-by-step procedure shows you how to submit an app based on the HiveWarehouseConnector library to run on
Apache Spark Shell.

Procedure

1. Choose an execution mode, for example the HWC JDBC execution mode, for your application and check that you
meet the configuration requirements, described earlier.

2. Configure a Spark-HiveServer connection, described earlier or, in your app submission include the appropriate --
conf in step 4.

3. Locate the hive-warehouse-connector-assembly jar in the /hive_warehouse_connector/ directory.
For example, find hive-warehouse-connector-assembly-<version>.jar in the following location:

/opt/cloudera/parcels/CDH/jars

28

https://docs.cloudera.com/runtime/7.2.6/hive-metastore/topics/hive-hms-table-storage.html
https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/

Cloudera Runtime Introduction to HWC

4. Add the connector jar and configurations to the app submission using the --jars option.
Example syntax:

spark-shell --jars <path to jars>/hive_warehouse_connector/hive-warehouse-
connector-assembly-<version>.jar \
--conf <configuration properties>

5. Add the path to app you wrote based on the HiveWarehouseConnector API.
Example syntax:

 <path to app>

For example:

spark-shell --jars /opt/cloudera/parcels/CDH/jars/hive-warehouse-connect
or-assembly-<version>.jar \
--conf spark.sql.hive.hwc.execution.mode=spark \
--conf spark.datasource.hive.warehouse.read.via.llap=false \
--conf spark.datasource.hive.warehouse.load.staging.dir=<path to directory
> \
/home/myapps/myapp.jar

PySpark and spark-submit are also supported.

Related Information
Configuring Spark Direct Reader mode

Configuring JDBC execution mode

HMS storage

Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

Submit a Python app
A step-by-step procedure shows you how submit a Python app based on the HiveWarehouseConnector library by
submitting an application, and then adding a Python package.

Procedure

1. Choose an execution mode, for example the HWC JDBC execution mode, for your application and check that you
meet the configuration requirements, described earlier.

2. Configure a Spark-HiveServer connection, described earlier or, in your app submission include the appropriate --
conf in step 4.

3. Locate the hive-warehouse-connector-assembly jar in the /hive_warehouse_connector/ directory.
For example, find hive-warehouse-connector-assembly-<version>.jar in the following location:

/opt/cloudera/parcels/CDH/jars

4. Add the connector jar and configurations to the app submission using the --jars option.
Example syntax:

pyspark --jars <path to jars>/hive_warehouse_connector/hive-warehouse-co
nnector-assembly-<version>.jar \
--conf <configuration properties>

5. Locate the pyspark_hwc zip package in the /hive_warehouse_connector/ directory.

29

https://docs.cloudera.com/runtime/7.2.6/hive-metastore/topics/hive-hms-table-storage.html
https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/

Cloudera Runtime Apache Hive-Kafka integration

6. Add the Python package for the connector to the app submission.
Example syntax:

--py-files <path>/hive_warehouse_connector/pyspark_hwc-<version>.zip

Example submission in JDBC execution mode:

pyspark --jars /opt/cloudera/parcels/CDH/jars/hive-warehouse-connector-a
ssembly-<version>.jar \
--conf spark.sql.hive.hwc.execution.mode=spark \
--conf spark.datasource.hive.warehouse.read.via.llap=false \
--conf spark.datasource.hive.warehouse.load.staging.dir=<path to directory
> \
--py-files /opt/cloudera/parcels/CDH/lib/hive_warehouse_connector/pyspar
k_hwc-<version>.zip

Related Information
Configuring Spark Direct Reader mode

Configuring JDBC execution mode

HMS storage

Blog: Enabling high-speed Spark direct reader for Apache Hive ACID tables

Apache Hive-Kafka integration

As an Apache Hive user, you can connect to, analyze, and transform data in Apache Kafka from Hive. You can
offload data from Kafka to the Hive warehouse. Using Hive-Kafka integration, you can perform actions on real-time
data and incorporate streamed data into your application.

You connect to Kafka data from Hive by creating an external table that maps to a Kafka topic. The table definition
includes a reference to a Kafka storage handler that connects to Kafka. On the external table, Hive-Kafka integration
supports ad hoc queries, such as questions about data changes in the stream over a period of time. You can transform
Kafka data in the following ways:

• Perform data masking
• Join dimension tables or any stream
• Aggregate data
• Change the SerDe encoding of the original stream
• Create a persistent stream in a Kafka topic

You can achieve data offloading by controlling its position in the stream. The Hive-Kafka connector supports the
following serialization and deserialization formats:

• JsonSerDe (default)
• OpenCSVSerde
• AvroSerDe

Related Information
Apache Kafka Documentation

Create a table for a Kafka stream
You can create an external table in Apache Hive that represents an Apache Kafka stream to query real-time data in
Kafka. You use a storage handler and table properties that map the Hive database to a Kafka topic and broker. If the
Kafka data is not in JSON format, you alter the table to specify a serializer-deserializer for another format.

30

https://docs.cloudera.com/runtime/7.2.6/hive-metastore/topics/hive-hms-table-storage.html
https://blog.cloudera.com/enabling-high-speed-spark-direct-reader-for-apache-hive-acid-tables/
https://kafka.apache.org/0110/documentation.html

Cloudera Runtime Apache Hive-Kafka integration

Procedure

1. Get the name of the Kafka topic you want to query to use as a table property.
For example: "kafka.topic" = "wiki-hive-topic"

2. Construct the Kafka broker connection string.
For example: "kafka.bootstrap.servers"="kafka.hostname.com:9092"

3. Create an external table named kafka_table by using 'org.apache.hadoop.hive.kafka.KafkaStorageHandler', as
shown in the following example:

CREATE EXTERNAL TABLE kafka_table
 (`timestamp` timestamp , `page` string, `newPage` boolean,
 added int, deleted bigint, delta double)
 STORED BY 'org.apache.hadoop.hive.kafka.KafkaStorageHandler'
 TBLPROPERTIES
 ("kafka.topic" = "test-topic", "kafka.bootstrap.servers"="node2:9092");

4. If the default JSON serializer-deserializer is incompatible with your data, choose another format in one of the
following ways:

• Alter the table to use another supported serializer-deserializer. For example, if your data is in Avro format, use
the Kafka serializer-deserializer for Avro:

ALTER TABLE kafka_table SET TBLPROPERTIES ("kafka.serde.class"="org.apac
he.hadoop.hive.serde2.avro.AvroSerDe");

• Create an external table that specifies the table in another format. For example, create a table named that
specifies the Avro format in the table definition:

CREATE EXTERNAL TABLE kafka_t_avro
 (`timestamp` timestamp , `page` string, `newPage` boolean,
 added int, deleted bigint, delta double)
 STORED BY 'org.apache.hadoop.hive.kafka.KafkaStorageHandler'
 TBLPROPERTIES
 ("kafka.topic" = "test-topic",
 "kafka.bootstrap.servers"="node2:9092"
 -- STORE AS AVRO IN KAFKA
 "kafka.serde.class"="org.apache.hadoop.hive.serde2.avro.AvroSerDe");

Related Information
Apache Kafka Documentation

Querying Kafka data
You can get useful information, including Kafka record metadata from a table of Kafka data by using typical Hive
queries.

Each Kafka record consists of a user payload key (byte []) and value (byte[]), plus the following metadata fields:

• Partition int32
• Offset int64
• Timestamp int64

The Hive row represents the dual composition of Kafka data:

• The user payload serialized in the value byte array
• The metadata: key byte array, partition, offset, and timestamp fields

31

https://kafka.apache.org/0110/documentation.html

Cloudera Runtime Apache Hive-Kafka integration

In the Hive representation of the Kafka record, the key byte array is called __key and is of type binary. You can cast
__key at query time. Hive appends __key to the last column derived from value byte array, and appends the partition,
offset, and timestamp to __key columns that are named accordingly.

Related Information
Apache Kafka Documentation

Query live data from Kafka
You can get useful information from a table of Kafka data by running typical queries, such as counting the number of
records streamed within an interval of time or defining a view of streamed data over a period of time.

Before you begin
This task requires Kafka 0.11 or later to support time-based lookups and prevent full stream scans.

About this task
This task assumes you created a table named kafka_table for a Kafka stream.

Procedure

1. List the table properties and all the partition or offset information for the topic.
DESCRIBE EXTENDED kafka_table;

2. Count the number of Kafka records that have timestamps within the past 10 minutes.

SELECT COUNT(*) FROM kafka_table
 WHERE `__timestamp` > 1000 * to_unix_timestamp(CURRENT_TIMESTAMP - inte
rval '10' MINUTES);

Such a time-based seek requires Kafka 0.11 or later, which has a Kafka broker that supports time-based lookups;
otherwise, this query leads to a full stream scan.

3. Define a view of data consumed within the past 15 minutes and mask specific columns.

CREATE VIEW last_15_minutes_of_kafka_table AS SELECT `timestamp`, `user`,
 delta,
 ADDED FROM kafka_table
 WHERE `__timestamp` > 1000 * to_unix_timestamp(CURRENT_TIMESTAMP - i
nterval '15' MINUTES) ;

4. Create a dimension table.

CREATE TABLE user_table (`user` string, `first_name` string , age int, g
ender string, comments string) STORED as ORC ;

5. Join the view of the stream over the past 15 minutes to user_table, group by gender, and compute aggregates over
metrics from fact table and dimension tables.

SELECT SUM(added) AS added, SUM(deleted) AS deleted, AVG(delta) AS delta,
 AVG(age) AS avg_age , gender
 FROM last_15_minutes_of_kafka_table
 JOIN user_table ON `last_15_minutes_of_kafka_table`.`user` = `user_tab
le`.`user`
 GROUP BY gender LIMIT 10;

6. Perform a classical user retention analysis over the Kafka stream consisting of a stream-to-stream join that runs
adhoc queries on a view defined over the past 15 minutes.

-- Stream join over the view itself
-- Assuming l15min_wiki is a view of the last 15 minutes
SELECT COUNT(DISTINCT activity.`user`) AS active_users,

32

https://kafka.apache.org/0110/documentation.html

Cloudera Runtime Apache Hive-Kafka integration

COUNT(DISTINCT future_activity.`user`) AS retained_users
FROM l15min_wiki AS activity
LEFT JOIN l15min_wiki AS future_activity ON activity.`user` = future_activ
ity.`user`
AND activity.`timestamp` = future_activity.`timestamp` - interval '5' min
utes ;

-- Stream-to-stream join
-- Assuming wiki_kafka_hive is the entire stream.
SELECT floor_hour(activity.`timestamp`), COUNT(DISTINCT activity.`user`)
 AS active_users,
COUNT(DISTINCT future_activity.`user`) as retained_users
FROM wiki_kafka_hive AS activity
LEFT JOIN wiki_kafka_hive AS future_activity ON activity.`user` = future_
activity.`user`
AND activity.`timestamp` = future_activity.`timestamp` - interval '1' ho
ur
GROUP BY floor_hour(activity.`timestamp`);

Related Information
Apache Kafka Documentation

Perform ETL by ingesting data from Kafka into Hive
You can extract, transform, and load a Kafka record into Hive in a single transaction.

Procedure

1. Create a table to represent source Kafka record offsets.

CREATE TABLE kafka_table_offsets(partition_id int, max_offset bigint, in
sert_time timestamp);

2. Initialize the table.

INSERT OVERWRITE TABLE kafka_table_offsets
SELECT `__partition`, min(`__offset`) - 1, CURRENT_TIMESTAMP
FROM wiki_kafka_hive
GROUP BY `__partition`, CURRENT_TIMESTAMP;

3. Create the destination table.

CREATE TABLE orc_kafka_table (partition_id int, koffset bigint, ktimestamp
 bigint,
 `timestamp` timestamp , `page` string, `user` string, `diffurl` string,
 `isrobot` boolean, added int, deleted int, delta bigint
) STORED AS ORC;

4. Insert Kafka data into the ORC table.

FROM wiki_kafka_hive ktable JOIN kafka_table_offsets offset_table
ON (ktable.`__partition` = offset_table.partition_id
AND ktable.`__offset` > offset_table.max_offset)
INSERT INTO TABLE orc_kafka_table
SELECT `__partition`, `__offset`, `__timestamp`,
 `timestamp`, `page`, `user`, `diffurl`, `isrobot`, added , deleted , del
ta
INSERT OVERWRITE TABLE kafka_table_offsets
SELECT `__partition`, max(`__offset`), CURRENT_TIMESTAMP
GROUP BY `__partition`, CURRENT_TIMESTAMP;

33

https://kafka.apache.org/0110/documentation.html

Cloudera Runtime Apache Hive-Kafka integration

5. Check the insertion.

SELECT MAX(`koffset`) FROM orc_kafka_table LIMIT 10;

SELECT COUNT(*) AS c FROM orc_kafka_table
GROUP BY partition_id, koffset HAVING c > 1;

6. Repeat step 4 periodically until all the data is loaded into Hive.

Writing data to Kafka
You can extract, transform, and load a Hive table to a Kafka topic for real-time streaming of a large volume of Hive
data. You need some understanding of write semantics and the metadata columns required for writing data to Kafka.

Write semantics

The Hive-Kafka connector supports the following write semantics:

• At least once (default)
• Exactly once

At least once (default)

The default semantic. At least once is the most common write semantic used by streaming engines.
The internal Kafka producer retries on errors. If a message is not delivered, the exception is raised
to the task level, which causes a restart, and more retries. The At least once semantic leads to one of
the following conclusions:

• If the job succeeds, each record is guaranteed to be delivered at least once.
• If the job fails, some of the records might be lost and some might not be sent.

In this case, you can retry the query, which eventually leads to the delivery of each record at
least once.

Exactly once

Following the exactly once semantic, the Hive job ensures that either every record is delivered
exactly once, or nothing is delivered. You can use only Kafka brokers supporting the Transaction
API (0.11.0.x or later). To use this semantic, you must set the table property "kafka.write.semanti
c"="EXACTLY_ONCE".

Metadata columns

In addition to the user row payload, the insert statement must include values for the following extra columns:

__key

Although you can set the value of this metadata column to null, using a meaningful key value to
avoid unbalanced partitions is recommended. Any binary value is valid.

__partition

Use null unless you want to route the record to a particular partition. Using a nonexistent partition
value results in an error.

__offset

You cannot set this value, which is fixed at -1.

__timestamp

You can set this value to a meaningful timestamp, represented as the number of milliseconds since
epoch. Optionally, you can set this value to null or -1, which means that the Kafka broker strategy
sets the timestamp column.

34

Cloudera Runtime Apache Hive-Kafka integration

Related Information
Apache Kafka Documentation

Write transformed Hive data to Kafka
You can change streaming data and include the changes in a stream. You extract a Kafka input topic, transform the
record in Hive, and load a Hive table back into a Kafka record.

About this task

This task assumes that you already queried live data from Kafka. When you transform the record in the Hive
execution engine, you compute a moving average over a window of one minute. The resulting record that you write
back to another Kafka topic is named moving_avg_wiki_kafka_hive.

.

Procedure

1. Create an external table to represent the Hive data that you want to load into Kafka.

CREATE EXTERNAL TABLE moving_avg_wiki_kafka_hive
(`channel` string, `namespace` string,`page` string, `timestamp` timestamp
 , avg_delta double)
STORED BY 'org.apache.hadoop.hive.kafka.KafkaStorageHandler'
TBLPROPERTIES
 ("kafka.topic" = "moving_avg_wiki_kafka_hive",
 "kafka.bootstrap.servers"="kafka.hostname.com:9092",
 -- STORE AS AVRO IN KAFKA
 "kafka.serde.class"="org.apache.hadoop.hive.serde2.avro.AvroSerDe");

2. Insert data that you select from the Kafka topic back into the Kafka record.

INSERT INTO TABLE moving_avg_wiki_kafka_hive
SELECT `channel`, `namespace`, `page`, `timestamp`,
 AVG(delta) OVER (ORDER BY `timestamp` ASC ROWS BETWEEN 60 PRECEDING AND
 CURRENT ROW) AS avg_delta,
 null AS `__key`, null AS `__partition`, -1 AS `__offset`, to_epoch_milli
(CURRENT_TIMESTAMP) AS `__timestamp`
FROM l15min_wiki;

The timestamps of the selected data are converted to milliseconds since epoch for clarity.

Related Information
Query live data from Kafka

Set consumer and producer properties as table properties
You can use Kafka consumer and producer properties in the TBLPROPERTIES clause of a Hive query. By prefixing
the key with kafka.consumer or kafka.producer, you can set the table properties.

Procedure

For example, if you want to inject 5000 poll records into the Kafka consumer, use the following syntax.

ALTER TABLE kafka_table SET TBLPROPERTIES ("kafka.consumer.max.poll.records"
="5000");

35

https://kafka.apache.org/0110/documentation.html

Cloudera Runtime Apache Hive-Kafka integration

Kafka storage handler and table properties
You use the Kafka storage handler and table properties to specify the query connection and configuration.

Kafka storage handler

You specify 'org.apache.hadoop.hive.kafka.KafkaStorageHandler' in queries to connect to, and transform a Kafka
topic into, a Hive table. In the definition of an external table, the storage handler creates a view over a single Kafka
topic. For example, to use the storage handler to connect to a topic, the following table definition specifies the storage
handler and required table properties: the topic name and broker connection string.

CREATE EXTERNAL TABLE kafka_table
 (`timestamp` timestamp , `page` string, `newPage` boolean,
 added int, deleted bigint, delta double)
 STORED BY 'org.apache.hadoop.hive.kafka.KafkaStorageHandler'
 TBLPROPERTIES
 ("kafka.topic" = "test-topic", "kafka.bootstrap.servers"="localhost:90
92");

You set the following table properties forwith the Kafka storage handler:
kafka.topic

The Kafka topic to connect to

kafka.bootstrap.servers

The broker connection string

Storage handler-based optimizations

The storage handler can optimize reads using a filter push-down when you execute a query such as the following
time-based lookup supported on Kafka 0.11 or later:

SELECT COUNT(*) FROM kafka_table
 WHERE `__timestamp` > 1000 * to_unix_timestamp(CURRENT_TIMESTAMP - int
erval '10' MINUTES) ;

The Kafka consumer supports seeking on the stream based on an offset, which the storage handler leverages to push
down filters over metadata columns. The storage handler in the example above performs seeks based on the Kafka
record __timestamp to read only recently arrived data.

The following logical operators and predicate operators are supported in the WHERE clause:

Logical operators: OR, AND

Predicate operators: <, <=, >=, >, =

The storage handler reader optimizes seeks by performing partition pruning to go directly to a particular partition
offset used in the WHERE clause:

SELECT COUNT(*) FROM kafka_table
 WHERE (`__offset` < 10 AND `__offset` > 3 AND `__partition` = 0)
 OR (`__partition` = 0 AND `__offset` < 105 AND `__offset` > 99)
 OR (`__offset` = 109);

The storage handler scans partition 0 only, and then read only records between offset 4 and 109.

Kafka metadata

In addition to the user-defined payload schema, the Kafka storage handler appends to the table some additional
columns, which you can use to query the Kafka metadata fields:

36

Cloudera Runtime Connecting Hive to BI tools using a JDBC/ODBC driver

__key

Kafka record key (byte array)

__partition

Kafka record partition identifier (int 32)

__offset

Kafka record offset (int 64)

__timestamp

Kafka record timestamp (int 64)

The partition identifier, record offset, and record timestamp plus a key-value pair constitute a Kafka record. Because
the key-value is a 2-byte array, you must use SerDe classes to transform the array into a set of columns.

Table Properties

You use certain properties in the TBLPROPERTIES clause of a Hive query that specifies the Kafka storage handler.

Property Description Required Default

kafka.topic Kafka topic name to map the table
to

Yes null

kafka.bootstrap.servers Table property indicating the
Kafka broker connection string

Yes null

kafka.serde.class Serializer and Deserializer class
implementation

No org.apache.hadoop.hive.serde2.JsonSerDe

hive.kafka.poll.timeout.ms Parameter indicating Kafka
Consumer poll timeout period in
milliseconds. (This is independent
of internal Kafka consumer
timeouts.)

No 5000 (5 Seconds)

hive.kafka.max.retries Number of retries for Kafka
metadata fetch operations

No 6

hive.kafka.metadata.poll.timeout.ms Number of milliseconds before
consumer timeout on fetching
Kafka metadata

No 30000 (30 Seconds)

kafka.write.semantic Writer semantic with
allowed values of NONE,
AT_LEAST_ONCE,
EXACTLY_ONCE

No AT_LEAST_ONCE

Connecting Hive to BI tools using a JDBC/ODBC driver

To query, analyze, and visualize data stored in Data Hub or in the CDP Private Cloud Base using drivers provided by
Cloudera, you connect Apache Hive to Business Intelligence (BI) tools.

About this task
How you connect to Hive depends on a number of factors: the location of Hive inside or outside the cluster, the
HiveServer deployment, the type of transport, transport-layer security, and authentication. HiveServer is the server
interface that enables remote clients to execute queries against Hive and retrieve the results using a JDBC or ODBC
connection.

Before you begin

• Choose a Hive authorization model.

37

Cloudera Runtime Connecting Hive to BI tools using a JDBC/ODBC driver

• Configure authenticated users for querying Hive through JDBC or ODBC driver. For example, set up a Ranger
policy.

Procedure

1. Obtain the Hive database driver in one of the following ways:

• For an ODBC connection: Get the Cloudera ODBC driver from the Cloudera Downloads page.
• For a JDBC connection in CDP Private Cloud Base: Download and extract the Cloudera Hive JDBC driver

from the Cloudera Downloads page.
• For a JDBC connection in CDP Public Cloud: Using the CDW service, in a Virtual Warehouse in the CDW

service, select Hive, and from the more options menu, click Download JDBC JAR to download to Apache
Hive JDBC jar.

For a JDBC connection in Data Hub, download and extract the Cloudera JDBC driver from the Cloudera
Downloads page.

2. Depending on the type of driver you obtain, proceed as follows:

• ODBC driver: follow instructions on the ODBC driver download site, and skip the rest of the steps in this
procedure.

• JDBC driver: add the driver to the classpath of your JDBC client, such as Tableau. For example, check the
client documentation about where to put the driver.

3. Find the JDBC URL for HiveServer using one of a number methods. For example:

• Using the CDW service in a Virtual Warehouse, from the options menu of your Virtual Warehouse, click Copy
 JDBC URL.

• In Cloudera Manager (CM), click Clusters Hive click Actions, and select Download Client Configuration.

Unpack hive_on_tez-clientconfig.zip, open beeline-site.xml, and copy the value of beeline.hs2.jdbc.url.hiv
e_on_tez . This value is the JDBC URL. For example

jdbc:hive2://my_hiveserver.com:2181/;serviceDiscoveryMode=zooKeeper; \
 zooKeeperNamespace=hiveserver2

4. In the BI tool, such as Tableau, configure the JDBC connection using the JDBC URL and driver class name, com.
cloudera.hive.jdbc.HS2Driver.

Specify the JDBC connection string
You construct a JDBC URL to connect Hive to a BI tool.

38

https://www.cloudera.com/downloads.html
https://www.cloudera.com/downloads.html
https://www.cloudera.com/downloads.html
https://www.cloudera.com/downloads.html

Cloudera Runtime Connecting Hive to BI tools using a JDBC/ODBC driver

About this task
In CDP Private Cloud Base, if HiveServer runs within the Hive client (embedded mode), not as a separate process,
the URL in the connection string does not need a host or port number to make the JDBC connection. If HiveServer
does not run within your Hive client, the URL must include a host and port number because HiveServer runs as a
separate process on the host and port you specify. The JDBC client and HiveServer interact using remote procedure
calls using the Thrift protocol. If HiveServer is configured in remote mode, the JDBC client and HiveServer can use
either HTTP or TCP-based transport to exchange RPC messages.

Procedure

1. Create a minimal JDBC connection string for connecting Hive to a BI tool.

• Embedded mode: Create the JDBC connection string for connecting to Hive in embedded mode.
• Remote mode: Create a JDBC connection string for making an unauthenticated connection to the Hive default

database on the localhost port 10000.

Embedded mode: "jdbc:hive://"
Remote mode: "jdbc:hive://myserver:10000/default", "", "");

2. Modify the connection string to change the transport mode from TCP (the default) to HTTP using the transpor
tMode and httpPath session configuration variables.
 jdbc:hive2://myserver:10000/default;transportMode=http;httpPath=myendpoint.com;

You need to specify httpPath when using the HTTP transport mode. <http_endpoint> has a corresponding HTTP
endpoint configured in hive-site.xml.

3. Add parameters to the connection string for Kerberos authentication.
jdbc:hive2://myserver:10000/default;principal=prin.dom.com@APRINCIPAL.DOM.COM

JDBC connection string syntax
The JDBC connection string for connecting to a remote Hive client requires a host, port, and Hive database name.
You can optionally specify a transport type and authentication.

jdbc:hive2://<host>:<port>/<dbName>;<sessionConfs>?<hiveConfs>#<hiveVars>

Connection string parameters

The following table describes the parameters for specifying the JDBC connection.

JDBC Parameter Description Required

host The cluster node hosting HiveServer. yes

port The port number to which HiveServer listens. yes

dbName The name of the Hive database to run the
query against.

yes

sessionConfs Optional configuration parameters for the
JDBC/ODBC driver in the following format:
<key1>=<value1>;<key2>=<key2>...;

no

hiveConfs Optional configuration parameters for Hive on
the server in the following format: <key1>=<
value1>;<key2>=<key2>; ...

The configurations last for the duration of the
user session.

no

39

https://cwiki.apache.org/confluence/display/Hive/AdminManual+Configuration#AdminManualConfiguration-ConfiguringHive

Cloudera Runtime Connecting Hive to BI tools using a JDBC/ODBC driver

JDBC Parameter Description Required

hiveVars Optional configuration parameters for Hive
variables in the following format: <key1>=<
value1>;<key2>=<key2>; ...

The configurations last for the duration of the
user session.

no

TCP and HTTP Transport

The following table shows variables for use in the connection string when you configure HiveServer. The JDBC
client and HiveServer can use either HTTP or TCP-based transport to exchange RPC messages. Because the default
transport is TCP, there is no need to specify transportMode=binary if TCP transport is desired.

transportMode Variable Value Description

http Connect to HiveServer2 using HTTP transport.

binary Connect to HiveServer2 using TCP transport.

The syntax for using these parameters is:

jdbc:hive2://<host>:<port>/<dbName>;transportMode=http;httpPath=<http_endpoi
nt>; \
 <otherSessionConfs>?<hiveConfs>#<hiveVars>

User Authentication

If configured in remote mode, HiveServer supports Kerberos, LDAP, Pluggable Authentication Modules (PAM), and
custom plugins for authenticating the JDBC user connecting to HiveServer. The format of the JDBC connection URL
for authentication with Kerberos differs from the format for other authentication models. The following table shows
the variables for Kerberos authentication.

User Authentication Variable Description

principal A string that uniquely identifies a Kerberos user.

saslQop Quality of protection for the SASL framework. The level of quality is
negotiated between the client and server during authentication. Used by
Kerberos authentication with TCP transport.

user Username for non-Kerberos authentication model.

password Password for non-Kerberos authentication model.

The syntax for using these parameters is:

jdbc:hive://<host>:<port>/<dbName>;principal=<HiveServer2_kerberos_principal
>;<otherSessionConfs>?<hiveConfs>#<hiveVars>

Transport Layer Security

HiveServer2 supports SSL and Sasl QOP for transport-layer security. The format of the JDBC connection string for
SSL uses these variables:

SSL Variable Description

ssl Specifies whether to use SSL

sslTrustStore The path to the SSL TrustStore.

40

Cloudera Runtime Using JdbcStorageHandler to query RDBMS

trustStorePassword The password to the SSL TrustStore.

The syntax for using the authentication parameters is:

jdbc:hive2://<host>:<port>/<dbName>; \
ssl=true;sslTrustStore=<ssl_truststore_path>;trustStorePassword=<truststo
re_password>; \
<otherSessionConfs>?<hiveConfs>#<hiveVars>

When using TCP for transport and Kerberos for security, HiveServer2 uses Sasl QOP for encryption rather than SSL.

Sasl QOP Variable Description

principal A string that uniquely identifies a Kerberos user.

saslQop The level of protection desired. For authentication, checksum, and
encryption, specify auth-conf. The other valid values do not provide
encryption.

The JDBC connection string for Sasl QOP uses these variables.

jdbc:hive2://FQDN.EXAMPLE.COM:10000/default;principal=hive/_H
OST@EXAMPLE.COM;saslQop=auth-conf

The _HOST is a wildcard placeholder that gets automatically replaced with the fully qualified domain name (FQDN)
of the server running the HiveServer daemon process.

Using JdbcStorageHandler to query RDBMS

Using the JdbcStorageHandler, you can connect Hive to a MySQL, PostgreSQL, Oracle, DB2, or Derby data source.
You can then create an external table to represent the data, and query the table.

About this task

This task assumes you are a CDP Private Cloud Base user. You create an external table that uses the
JdbcStorageHandler to connect to and read a local JDBC data source.

Procedure

1. Load data into a supported SQL database, such as MySQL, on a node in your cluster, or familiarize yourself with
existing data in the your database.

2. Create an external table using the JdbcStorageHandler and table properties that specify the minimum information:
database type, driver, database connection string, user name and password for querying hive, table name, and
number of active connections to Hive.

CREATE EXTERNAL TABLE mytable_jdbc(
 col1 string,
 col2 int,
 col3 double
)
STORED BY 'org.apache.hive.storage.jdbc.JdbcStorageHandler'
TBLPROPERTIES (
 "hive.sql.database.type" = "MYSQL",
 "hive.sql.jdbc.driver" = "com.mysql.jdbc.Driver",
 "hive.sql.jdbc.url" = "jdbc:mysql://localhost/sample",
 "hive.sql.dbcp.username" = "hive",
 "hive.sql.dbcp.password" = "hive",
 "hive.sql.table" = "MYTABLE",

41

Cloudera Runtime Set up JDBCStorageHandler for Postgres

 "hive.sql.dbcp.maxActive" = "1"
);

3. Query the external table.

SELECT * FROM mytable_jdbc WHERE col2 = 19;

Set up JDBCStorageHandler for Postgres

If you use Enterprise PostgreSQL as the backend HMS database, you need to put the JDBCStorageHandler JAR in a
central place.

About this task

The Postgres Enterprise server comes with its own JDBC driver. The driver file is installed in the Hive lib directory.
When you execute a query as a YARN application, the Class not found exception is thrown on worker nodes. The
YARN container cannot include the jar file in the classpath unless you place the JAR in a central location.

Place the JAR in aux jars or provide the path to aux jars.

Procedure

1. In CDP Private Cloud Base, click Cloudera Manager Clusters and select the Hive service, for example, HIVE.

2. Click Configuration and search for Hive Auxiliary JARs Directory.

3. Specify a directory value for the Hive Aux JARs property if necessary, or make a note of the path.

4. Upload the JAR to the specified directory on all HiveServer instances.

42

	Contents
	Introduction to HWC
	Introduction to HWC execution modes
	Spark Direct Reader mode
	JDBC execution mode

	Automating mode selection
	Configuring Spark Direct Reader mode
	Configuring JDBC execution mode
	Kerberos configurations for HWC
	Configuring external file authorization
	Reading managed tables through HWC
	Writing managed tables through HWC
	API operations
	HWC supported types mapping
	Catalog operations
	Read and write operations
	Commit transaction in Spark Direct Reader mode
	Close HiveWarehouseSession operations
	Use HWC for streaming
	HWC API Examples
	Hive Warehouse Connector Interfaces

	Submit a Scala or Java application
	Submit a Python app

	Apache Hive-Kafka integration
	Create a table for a Kafka stream
	Querying Kafka data
	Query live data from Kafka

	Perform ETL by ingesting data from Kafka into Hive
	Writing data to Kafka
	Write transformed Hive data to Kafka

	Set consumer and producer properties as table properties
	Kafka storage handler and table properties

	Connecting Hive to BI tools using a JDBC/ODBC driver
	Specify the JDBC connection string
	JDBC connection string syntax

	Using JdbcStorageHandler to query RDBMS
	Set up JDBCStorageHandler for Postgres

