
Cloudera Runtime 7.2.6

Streams Replication Manager Overview
Date published: 2019-09-13
Date modified: 2020-12-11

https://docs.cloudera.com/

https://docs.cloudera.com/


Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.



Cloudera Runtime | Contents | iii

Contents

Overview.................................................................................................................... 4

Key Features..............................................................................................................5

Main Use Cases.........................................................................................................6

Use Case Architectures............................................................................................ 7
Highly Available Kafka Architectures.................................................................................................................7

Active / Stand-by Architecture................................................................................................................. 7
Active / Active Architecture.....................................................................................................................8
Cross Data Center Replication................................................................................................................. 9

Cluster Migration Architectures......................................................................................................................... 10
On-premise to Cloud and Kafka Version Upgrade................................................................................10
Aggregation for Analytics...................................................................................................................... 12

Streams Replication Manager Architecture........................................................ 12
Streams Replication Manager Driver.................................................................................................................12

Connect workers..................................................................................................................................... 13
Connectors...............................................................................................................................................15
Task architecture and load-balancing.....................................................................................................17
Driver inter-node coordination............................................................................................................... 19

Streams Replication Manager Service............................................................................................................... 19

Understanding Replication Flows......................................................................... 20
Replication Flows Overview.............................................................................................................................. 20
Remote Topics.................................................................................................................................................... 21
Bi-directional Replication Flows........................................................................................................................22
Fan-in and Fan-out Replication Flows...............................................................................................................22



Cloudera Runtime Overview

Overview

Get familiar with Streams Replication Manager and its components.

Streams Replication Manager (SRM) is an enterprise-grade replication solution that enables fault tolerant, scalable
and robust cross-cluster Kafka topic replication. SRM provides the ability to dynamically change configurations
and keeps the topic properties in sync across clusters at high performance. SRM also delivers custom extensions
that facilitate installation, management and monitoring making SRM a complete replication solution that is built for
mission critical workloads. Streams Replication Manager consists of two main components. The Stream Replication
Engine and the Stream Replication Management Services.

Figure 1: Streams Replication Manager Overview

Stream Replication Engine

The Stream Replication Engine is a next generation multi-cluster and cross-datacenter replication
engine for Kafka clusters.

Stream Replication Management Services

Stream Replication Management Services are services powered by open source Cloudera extensions
which utilize the capabilities of the Stream Replication Engine. These services provide:

• Easy installation
• Lifecycle management

4



Cloudera Runtime Key Features

• Management and monitoring of replication flows across clusters

The Stream Replication Management Services includes the following custom extensions:

Cloudera SRM Driver

The Cloudera SRM Driver is a small wrapper around the Stream Replication Engine that adds the
extensions provided by Cloudera. It provides the ability to spin up SRM clusters and has a metrics
reporter. The driver is managed by Cloudera Manager and is represented by the Streams Replication
Manager Driver role.

Cloudera SRM Client

The Cloudera SRM Client provides users with command line tools that enable replication
management for topics and consumer groups. The command line tool associated with the Cloudera
SRM Client is called srm-control.

Cloudera SRM Service

The Cloudera SRM Service consist of a REST API and a Kafka Streams application to aggregate
and expose cluster, topic and consumer group metrics. The service is managed by Cloudera
Manager and is represented by the Streams Replication Manager Service role.

Key Features

SRM has the following main features.

Remote topics

Remote topics are replicated topics referencing a source cluster via a naming convention. For example, the “topic1”
topic from the “us-west” source cluster creates the “us-west.topic1” remote topic on the target cluster. SRM
automatically applies this configurable "replication policy" across your organization, enabling tooling to distinguish
remote topics from source topics. For more information regarding remote topics, see Understanding Replication
Flows.

Consistent semantics

Partitioning and record offsets are synchronized between replicated clusters to ensure consumers can migrate from
one cluster to another without losing data or skipping records.

Cross cluster configuration

Topic-level configuration properties are synced across clusters. For example, the cleanup policy (cleanup.policy),
or the log segment file size (segment.bytes), as well as other topic-level configurations are automatically synched to
remote topics. This simplifies managing topics across multiple Kafka clusters.

Consumer group checkpoints

In addition to data and configuration, SRM replicates consumer group progress via periodic checkpoints. At
configurable intervals, checkpoint records are emitted to downstream clusters, encoding the latest offsets for
whitelisted consumer groups and topic-partitions. As with topics, groups are matched against an allowlist which can
be updated dynamically with srm-control. Normally, consumer group offsets are not portable between Kafka clusters,
as offsets are not consistent between otherwise identical topic-partitions on different clusters. SRM’s checkpoint
records account for this by including offsets which are automatically translated from one cluster to another. This
offset translation feature works in both directions; a consumer group can be migrated from one cluster to another
(failover) and then back again (failback) without skipping records or losing progress.

5



Cloudera Runtime Main Use Cases

Automatic topic and partition detection

SRM monitors Kafka clusters for new topics, partitions, and consumer groups as they are created. These are
compared with configurable whitelists, which may include regular expressions.

Tooling to automate consumer migration

SRM tooling enables operators to translate offsets between clusters and to migrate consumer groups while preserving
state.

Centralized configuration for multi-cluster environments

SRM leverages a single top-level configuration file to enable replication across multiple Kafka clusters. Moreover,
command-line tooling can alter which topics and consumer groups are replicated in real-time.

Replication monitoring

Since cluster replication will mainly be used for highly critical Kafka applications, it is crucial for customers to be
able to easily and reliably monitor the Kafka cluster replications. The custom extensions included with SRM collect
and aggregate Kafka replication metrics and make them available through a REST API. This REST API is used by
Streams Messaging Manager (SMM) to display metrics. Customers could also use the REST API to implement their
own monitoring solution or plug it into third party solutions. The metrics make the state of cluster replication visible
to end users who then can take corrective action if needed.

Custom replication policies

The replication policy used by SRM defines the basic rules of how SRM replicates data. While the default replication
policy shipped with SRM is the Cloudera recommended and supported replication policy, custom developed
replication policies can be used. Developing and using your own replication policy enables you to gain full control
over how SRM replicates data.

Important:  Cloudera provides limited support for deployments that use a custom replication policies.
Additionally, understand that some key features including replication monitoring with the SRM Service will
not work if a custom replication policy is in use.

Related Information
Monitoring Cluster Replications Overview

Understanding Replication Flows

Main Use Cases

Learn about the main use cases of SRM.

Apache Kafka has become an essential component of enterprise data pipelines and is used for tracking clickstream
event data, collecting logs, gathering metrics, and being the enterprise data bus in a microservices based architectures.
Kafka supports internal replication to support data availability within a cluster. However with Kafka based
applications becoming critical, enterprises require that the data availability and durability guarantees span entire
cluster and site failures.

Replication of data across clusters and sites is key for the following use cases:
Disaster Recovery

Common enterprise use cases for cross-cluster replication is for guaranteeing business continuity in
the presence of cluster or data center-wide outages.

Aggregation for Analytics

Aggregate data from multiple streaming pipelines possibly across multiple data centers to run batch
analytics jobs that provide a holistic view across the enterprise.

6

https://docs.cloudera.com/runtime/7.2.6/monitoring-kafka-cluster-replications/topics/smm-monitoring-replications-overview.html


Cloudera Runtime Use Case Architectures

Data Deployment after Analytics

This is the opposite of the aggregation use case in which the data generated by the analytics
application in one cluster (say the aggregate cluster) is broadcast to multiple clusters possibly across
data centers for end user consumption.

Isolation

Due to performance or security reasons, data needs to be replicated between different environments
to isolate access. In many deployments the ingestion cluster is isolated from the consumption
clusters.

Geo Proximity

In geographically distributed access patterns where low latency is required, replication is used to
move data closer to the access location.

Cloud Migration

As more enterprises have an on-premise and cloud presence, Kafka replication can be used to
migrate data to the public or private cloud and back.

Legal and Compliance

Much like the isolation uses case, a policy driven replication is used to limit what data is accessible
in a cluster to meet legal and compliance requirements.

Use Case Architectures

Highly available and cluster migration architecture examples for SRM.

Highly Available Kafka Architectures
A highly available Kafka deployment must be able to survive a full single cluster outage while continuing to process
events without data loss. With SRM, you can implement highly available Apache Kafka deployments which either
follow an Active / Stand-by or an Active / Active model.

Active / Stand-by Architecture
Active / Stand-by architecture example for SRM.

In an Active / Stand-by scenario, you set up two Kafka clusters and configure SRM to replicate topics bi-directionally
between both clusters. A VIP or load balancer directs your producers to ingest messages into the active cluster from
which consumer groups are reading from.

Figure 2: Active / Stand-by Architecture Standard Operation

7



Cloudera Runtime Use Case Architectures

In case of a disaster, the VIP or load balancer directs the producers to the stand-by cluster. You can easily migrate
your consumer groups to start reading from the stand-by cluster or simply wait until the primary cluster is restored if
the resulting consumer lag is acceptable for your use case.

While the primary cluster is down, your producers are still able to ingest. Once the primary cluster is restored, SRM
automatically takes care of synchronizing both clusters making failback seamless.

Figure 3: Active / Stand-by Architecture Cluster Failure

Implementing an Active/Stand-by architecture is the logical choice when an existing disaster recovery site with
established policies is already available, and your goals include not losing ingest capabilities during a disaster and
having a backup in your disaster recovery site.

Active / Active Architecture
Active / Active architecture example for SRM.

In an Active / Active scenario, your producers can be load balanced to either your primary or secondary cluster. SRM
is configured to replicate topics bi-directionally between both clusters. What makes this architecture Active / Active,
is the fact that you now have consumers reading from both clusters at the same time, essentially acting like a cross-
cluster consumer group. In case of a disaster the VIP or load balancer directs the producers to the secondary cluster
and the secondary cluster consumer group is still able to process messages.While the primary cluster is down, your

8



Cloudera Runtime Use Case Architectures

producers are still able to ingest and your consumers are still able to process messages. This results in a 0 downtime
and hands-off failover in case of a disaster. Once the primary cluster is back online, SRM automatically takes care of
synchronizing both clusters and your primary consumer group resumes processing messages.

Figure 4: Active / Active Architecture

Cross Data Center Replication
Cross data center replication architecture example for SRM.

Certain applications not only require local high availability within one data center or one availability zone, but have to
be highly available across data centers too. You can use SRM to set up replication between Kafka clusters in different
data centers which results in messages being available to consumers in each of your data centers.

A load balancer directs your producers to the local data center or closest data center if the primary data center is
down. SRM is configured to replicate topics between all data centers. If you are using more than two data centers,
SRM is configured to create a “replication circle”, ensuring a single data center failure (for example us-north in the
example below) does not halt replication between the remaining clusters.

Figure 5: Cross Data Center Replication Architecture

9



Cloudera Runtime Use Case Architectures

Cluster Migration Architectures
Example cluster migration architectures.

On-premise to Cloud and Kafka Version Upgrade
On-premise to cloud and Kafka version upgrade example architectures for SRM.

If you have an on-premises Apache Kafka cluster that you want to migrate to the cloud, not only do you have to
migrate consumers and producers, you also have to migrate topics and their messages to the new cloud based cluster.

After you have set up replication through SRM, you only need to point your consumers to the new brokers before
you can start processing messages from the cloud cluster. This approach ensures that the historical data kept in the
on-premises Kafka cluster is migrated to the cloud cluster allowing you to replay messages directly from the cloud
without having to go back to your on-premises cluster.

Figure 6: Cluster Migration On-premise

10



Cloudera Runtime Use Case Architectures

Producers and Consumers are using the on-premises cluster while SRM is replicating messages.

Once you have migrated your cluster, producers, and consumers to the cloud, you can use SRM to turn-around the
replication direction and use the on-premises cluster as your DR cluster.

Figure 7: Cluster Migration Cloud

Producers and Consumers have been migrated to the cloud cluster and the on-premises cluster is used for disaster
recovery.

Kafka Version Upgrade

If you have to upgrade your Kafka cluster to a newer version and an in-place upgrade is not possible, you can use the
same migration approach to provision a new cluster, use SRM to replicate all existing topics and messages before
migrating your producers and consumers to interact with the new cluster.

11



Cloudera Runtime Streams Replication Manager Architecture

Aggregation for Analytics
Aggregation for analytics architecture example for SRM.

SRM can be used to aggregate data from multiple streaming pipelines, possibly across multiple data centers, to run
batch analytics jobs that provide a holistic view across the enterprise.

Figure 8: Aggregation for Analytics

Streams Replication Manager Architecture

Learn about the architecture of the Streams Replication Manager Driver and Service, which are two main components
(roles) that make up Streams Replication Manager

Streams Replication Manager Driver
The Streams Replication Manager Driver is responsible for executing the configured replication work between Kafka
clusters. This includes data replication, consumer group offset replication, and heartbeating.

12



Cloudera Runtime Streams Replication Manager Architecture

The Streams Replication Manager Driver role (SRM Driver) is built on top of the Kafka Connect framework and
utilizes a group of connectors to execute replication. While Kafka Connect is bound to a single Kafka cluster by
design, the SRM Driver must connect to multiple Kafka clusters. The SRM Driver achieves this by wrapping multiple
Connect workers in a single driver process. Specifically, for each possible replication between the configured
clusters, the SRM Driver spins up a separate Connect worker. The Connect workers join a Connect group which
is dedicated to a single replication in the target Kafka cluster. Afterwards, each Connect group creates a single
MirrorSourceConnector, a single MirrorCheckpointConnector and a single MirrorHeartbeatConnector. These
Connectors and the task instances they generate are responsible for different aspects of the replication work.

When SRM Driver High Availability is in use, the Connect workers that are tied to a specific replication, but are
running in different SRM Driver processes, coordinate through the Connect group protocol and balance the load.

Note:  The following diagram is a visual representation of the Driver's architecture and showcases the
different components of the Driver. In a running Driver, a single Connect worker can have a single, multiple,
or even no Connectors or tasks assigned to it. As a result of this, the Connector and task distribution shown
in this diagram does not fully reflect how Connectors and tasks are distributed in a running Driver. For more
information on how Connectors and tasks are distributed, see Task architecture and load-balancing.

Connect workers
Learn about the Connect workers created by the Streams Replication Manager Driver.

The Streams Replication Manager Driver role (SRM Driver) wraps multiple Connect workers in its process. Each
Connect worker corresponds to a possible replication flow. At startup, if a target is specified for the replication in
the Streams Replication Manager Driver Target Cluster property, a Connect worker is created for each possible
cluster pair based on the aliases present in Streams Replication Manager Cluster alias. This means that for each
possible replication, there is a running Connect worker, regardless of whether the replication is enabled. For
enabled replications, the Connect worker creates and manages all three Connectors (MirrorSourceConnector,
MirrorCheckpointConnector, and MirrorHeartbeatConnector). For disabled replication, the Connect worker only
creates and manages a MirrorHeartbeatConnector. The MirrorHeartbeatConnector is spun up to ensure that the
heartbeats topic is created on all clusters which might be the source of a replication flow.

The Connect workers always coordinate using the target Kafka cluster. They join a Connect group which is dedicated
to a specific replication. This means that even when there are multiple replications targeting the same cluster, the
replications are managed and load-balanced separately, through dedicated Connect groups.

13

https://docs.cloudera.com/runtime/7.2.6/srm-overview/topics/srm-arch-tasks-load-balancing.html


Cloudera Runtime Streams Replication Manager Architecture

Connect internal topics

SRM creates a separate Connect cluster as well as three internal Kafka topics for each replication. The internal topics
are used by the Connect clusters to store their state. These internal topics are all located in the target cluster of the
replication. The topic names reference the source cluster alias.

The three internal topics are as follows:

14



Cloudera Runtime Streams Replication Manager Architecture

• mm2-configs.[***SOURCE ALIAS***].internal

Stores the Connector and Task configurations. Expected to be a single partition topic with cleanup.policy=compa
ct. The records of the topic are generated based on SRM's configuration at startup. Losing the data does not cause
issues for SRM after the service is restarted.

• mm2-offsets.[***SOURCE ALIAS***].internal

Stores the committed source offsets of SRM. SRM uses this internal topic to track its progress in the replication of
the source topic. Expected to be a multi-partition topic with cleanup.policy=compact. The records of the topic are
crucial for tracking the state of replication. Losing the data causes SRM to restart the replication of source topics,
which leads to data duplication in the target cluster.

• mm2-status.[***SOURCE ALIAS***].internal

Stores the current status of Connectors and Tasks. Expected to be a multi-partition topic with cleanup.policy=c
ompact. The records of the topic are created for monitoring purposes and do not affect replication. Losing the data
does not cause issues for SRM after the service is restarted.

All three internal topics are created by SRM at startup with the expected configurations. Cloudera does not
recommend reconfiguring or deleting these topics manually. Doing so can cause issues with replication, which might
result in data loss. However, if the topics are created with an incorrect configuration, manual reconfiguration is
required. In a case like this, SRM must be stopped, and the topic properties must be updated with correct values.
Updating topic properties can be done with the kafka-configs tool.

Related Information
kafka-configs

Connectors
Learn about the different Connector implementations created by the Connect workers of the Streams Replication
Manager Driver.

The Streams Replication Manager Driver role (SRM Driver) employs multiple Connect workers to execute
replication, one per each replication. Inside the Connect workers, three separate Connector implementations are
utilized. These are the following:

• MirrorSourceConnector
• MirrorHeartbeatConnector
• MirrorCheckpointConnector

MirrorSourceConnector

The MirrorSourceConnector is responsible for replicating topics between the source and the target
cluster. The topics to be replicated are defined by allow and deny lists, which can be manipulated
using the srm-control tool.

In addition to replicating data, the MirrorSourceConnector also manages the offset sync topic in
the source cluster. When production into the target cluster is successful, the mapping between the
source offset and the target offset is written into an offset sync topic in the source cluster. The offset
sync topic is used by the MirrorCheckpointConnector.

15

https://docs.cloudera.com/runtime/7.2.6/kafka-managing/topics/kafka-manage-cli-configs.html


Cloudera Runtime Streams Replication Manager Architecture

MirrorHeartbeatConnector

The MirrorHeartbeatConnector is responsible for creating the heartbeats topic in the target cluster. It
also periodically produces heartbeats into the heartbeats topic. The purpose of the heartbeats topic is
twofold:

• It ensures that a topic is available at all times on the source clusters. This way, a replication
always has at least a single topic that it can pick up. This functions as a reliable smoke test for
the replication.

• It is used by the SRM Service to discover configured replications.

MirrorCheckpointConnector

The MirrorCheckpointConnector is responsible for replicating the committed group offsets between
the source and target clusters. The offsets are calculated based on the offset sync topic managed by
the MirrorSourceConnector. The offsets of the groups and the topic partitions that are replicated are
defined by allow and deny lists, which can be manipulated using the srm-control tool.

The offsets are written into the checkpoint topic in the target cluster. The contents of the checkpoint
topic can be exported with srm-control. Exported offsets can then be applied to the consumer groups
in the target cluster with the kafka-consumer-groups Kafka tool.

In addition to writing the mapped offsets into the checkpoint topic, the connector is also capable of
periodically applying the offsets to the consumer groups in the target cluster. This is done using the
Kafka Admin API.

16



Cloudera Runtime Streams Replication Manager Architecture

Task architecture and load-balancing
Learn how tasks are distributed and how load is balanced by the Streams Replication Manager Drivers that are
running in the same cluster.

Streams Replication Manager Driver roles (SRM Driver) of the same cluster share the load of the replications among
each other. They utilize the task load balancing of the Connect framework. Each Connector in a replication creates a
set of task configurations. The number of tasks depend on the replicated topic partitions, groups, and the Tasks Max
configuration of SRM. These task instances provide a way to parallelize the work in an SRM replication. After the
Connectors create the task configurations, the Connect framework distributes the tasks between the SRM Drivers.
More specifically, between the Connect workers running in the SRM Drivers corresponding to a specific replication
flow. The task instances are as follows:

MirrorSourceTask

The MirrorSourceTask is created by the MirrorSourceConnector. It is responsible for executing data replication. A
MirrorSourceTask wraps a consumer and a producer instance. The consumer instance is managed by the task. The
producer instance is managed by the Connect framework.

Each task receives its assignment from the MirrorSourceConnector as a list of topic partitions. These are assigned to
the consumer. The fetched records are then forwarded to the producer. The target topic name is generated based on
the ReplicationPolicy.

The number of MirrorSourceTasks created in a replication is based on the following formula:

 min(tasks.max, source_topic_partition_count)

In this formula, tasks.max corresponds to what Tasks Max is set to in SRM's configuration. The source_topic_partiti
on_count is the number of replicated topic partitions, which is based on the topic allow and deny lists configured with
the srm-control tool.

17



Cloudera Runtime Streams Replication Manager Architecture

MirrorCheckpointTask

The MirrorCheckpointTask is created by the MirrorCheckpointConnector. It responsible for executing the consumer
group offset sync. A MirrorCheckpointTask wraps an admin client and a producer instance. The admin client is
managed by the task. The producer instance is managed by the Connect framework.

Each task receives its assignment from the MirrorCheckpointConnector as a list of consumer groups. The assigned
consumer group offsets are periodically queried for the replicated topic partitions through the admin client, and are
written into the target cluster’s checkpoints topic. The replicated offsets can also be applied to the consumer groups in
the target cluster by setting sync.group.offsets.enabled to true.

The number of MirrorCheckpointTasks created in a replication flow is based on the following formula:

min(tasks.max, source_consumer_group_count)

In this formula, tasks.max corresponds to what Tasks Max is set to in SRM's configuration. The source_consu
mer_group_count is the number of replicated consumer groups, which is based on the group allow and deny lists
configured with the srm-control tool.

MirrorHeartbeatTask

The MirrorHeartbeatTask is created by the MirrorHeartbeatConnector. It is responsible for producing heartbeats
into the target cluster’s heartbeats topic. A MirrorHeartbeatTask wraps a producer instance that is managed by the
Connect framework. In each replication, there is a single MirrorHeartbeatTask instance.

Task load balancing

Multiple Connect workers participate in each replication. This typically means that each SRM Driver of the cluster
has one Connect worker dedicated to a specific replication.

After the Connect group is formed by the Connect workers, the Connectors are instantiated and task configurations
are generated. This results in three Connectors, a number of MirrorSourceTasks and MirrorCheckpointTasks, as
well as a MirrorHeartbeatTask. For a newly formed group, these Connectors and task instances are assigned to
the Connect workers in a round robin fashion. When the group already has an existing assignment, and there is
membership change (for example, a Connect worker joins or leaves the group), the Connectors and tasks are assigned
in a cooperative and incremental manner. This allows for the majority of the work to continue without interruption.

Unless there are no changes made to the task configurations, meaning that no new topics and groups are added to the
replication, the task definitions stay the same. However, based on Connect group membership changes, the tasks can
be moved between workers. With classic Connect, these tasks can be managed separately through an admin API, but
in the case of SRM, this API is not available, and tasks can only be restarted by restarting the SRM Driver cluster.

18



Cloudera Runtime Streams Replication Manager Architecture

Driver inter-node coordination
Learn about how different Streams Replication Manager Driver instances communicate with each other.

As per the Connect framework, members of a Connect group get updates from the group leader through Kafka, using
the Connect group protocol. In some cases, followers also need to be able to communicate with the group leader.
For this purpose, the Connect framework introduced a REST API. This API allows followers to push notifications
to the leader. This step is necessary when dynamic configuration changes occur in a Connector. In case of SRM,
configuration changes happen when new topics and groups are added to the replication. This can happen in two ways:

• New topics and groups appear in the source cluster that conform to the allow and deny lists of the replication.
• Allow and deny lists are added using the srm-control tool.

To support this necessary channel of communication inside SRM, each Driver spins up a REST server per replication
flow. With this implementation, each nested Connect worker is a fully functional, as per the original design of
Connect. These replication specific REST servers are configurable, for more information, see Configuring replication
specific Kafka Connect REST servers.

Related Information
Configuring replication specific Kafka Connect REST servers

Streams Replication Manager Service
The Streams Replication Manager Service is responsible for processing the metrics produced by the Streams
Replication Manager Drivers. Additionally, it provides a queryable REST API that you can use to monitor and track
replications.

Streams Replication Manager Driver roles (SRM Driver) produce raw metrics into the target Kafka clusters. Each
replication has a separate raw metric topic. Streams Replication Manager Service roles (SRM Service) run a Kafka
Streams application internally, which aggregates the raw metrics. The Streams application ensures that the metrics
processing work is load balanced between the SRM Service instances of the same cluster, and that the members of the
cluster can coordinate when serving REST API queries.

19

https://docs.cloudera.com/runtime/7.2.6/srm-configuration/topics/srm-conf-replication-rest-server.html


Cloudera Runtime Understanding Replication Flows

As a result of this architecture, the SRM Service can only report on replication flows targeting the Kafka cluster
which is targeted by the SRM Service.

Using the SRM Service REST API

The SRM Service offers a Swagger UI for exploring and querying the REST API. For a user-friendly UI solution,
Streams Messaging Manager (SMM) can be integrated with SRM. When SMM is configured to connect to SRM,
the Replications page becomes available on the SMM UI. This page displays the information available on the SRM
Service REST API. For more information on how you can integrate the two services see Configuring SMM for
monitoring Kafka cluster replications.

Related Information
Configuring SMM for monitoring Kafka cluster replications

Understanding Replication Flows

Get familiar with the concept of replications and replication flows and learn more about how they can be set up.

Replication Flows Overview
Get familiar with the concept of replications and replication flows.

20

https://docs.cloudera.com/runtime/7.2.6/monitoring-kafka-cluster-replications/topics/smm-configuration-for-monitoring-srm-replications.html


Cloudera Runtime Understanding Replication Flows

Replication involves sending records from a source cluster to a target cluster. In SRM a replication refers to a source
and target cluster pair, the direction in which data is flowing and the topics that are being replicated. Source target
cluster pairs can be specified in Cloudera Manager; they are notated source->target. Initially, when source->target
pairs are set up they are considered inactive, as no data is being replicated between them. To start replication users
need to specify which topics to replicate with the srm-control command line tool.

It is important to understand that replication in SRM is configured independently for each source->target cluster
pair. Moreover, configuration is done on a per topic basis. This means that each topic in a source cluster can have
a different direction or target that it is being replicated to. A set of topics in the source cluster can be replicated
to multiple target clusters while others are being replicated to only one target cluster. This allows users to set up
powerful, topic specific replication flows.

The term replication flow is used to specify all replications set up in a system. This document uses the term when
referring to the visual representation of SRM replications.

A basic example of a replication flow is when topics are being sent from one cluster to another cluster in a different
geographical location. Note that in this example there is only one replication or source->target pair. Moreover, only
one of the two topics on the source cluster are being replicated to the target cluster.

Figure 9: Simple Replication Flow Example

Remote Topics
Learn about SRM's remote topics.

In any replication flow, the selected source topics are replicated to remote topics on the target cluster. Remote topics
reference the source cluster via a naming convention. For example, the topic1 topic from the us-west source cluster
creates the us-west.topic1 remote topic on the target cluster.

Figure 10: Simple Replication Flow Example

Remote topics can themselves be replicated. In this case, the remote topic references all source and target clusters.
The prefix in the name will start with the cluster closest to the final target cluster. For example, the topic1 topic
replicated from the us-west source cluster to the us-east cluster and then to the eu-west cluster will be named us-east.
us-west.topic1.

Figure 11: Complex Replication Flow Example

21



Cloudera Runtime Understanding Replication Flows

Tip:  You might want to have your Kafka consumers read messages from both source and remote topics
simultaneously. To achieve this, Kafka consumers should include a wildcard topic name pattern. For example,
suppose that you want your consumer to read from topic1 located in us-west and its remote counterpart, us-
west.topic1, located in us-east. In such a case, you can use the .*topic1 pattern, which matches any topic that
ends with topic1.

Bi-directional Replication Flows
Learn more about bi-directional replication flows.

SRM understands cycles and will never replicate records in an infinite loop. This enables bi-directional replication
flows in which clusters are mutually replicated. In this case, records sent to one cluster will be replicated to the other
and the other way around. You can configure any number of clusters in this way.

Figure 12: Bi-directional Replication Flow

Fan-in and Fan-out Replication Flows
Learn about fan-in and fan-out replication flows.

You can construct fan-in replication flows, where records from multiple source clusters are aggregated in a single
target cluster.

Figure 13: Fan-in Replication Flow

22



Cloudera Runtime Understanding Replication Flows

Similarly, you can construct fan-out replication flows as well, where a single cluster is replicated to multiple target
clusters.

Figure 14: Fan-out Replication Flow

23


	Contents
	Overview
	Key Features
	Main Use Cases
	Use Case Architectures
	Highly Available Kafka Architectures
	Active / Stand-by Architecture
	Active / Active Architecture
	Cross Data Center Replication

	Cluster Migration Architectures
	On-premise to Cloud and Kafka Version Upgrade
	Aggregation for Analytics


	Streams Replication Manager Architecture
	Streams Replication Manager Driver
	Connect workers
	Connectors
	Task architecture and load-balancing
	Driver inter-node coordination

	Streams Replication Manager Service

	Understanding Replication Flows
	Replication Flows Overview
	Remote Topics
	Bi-directional Replication Flows
	Fan-in and Fan-out Replication Flows


