Cloudera Runtime 7.2.7

Using Apache Phoenix to Store and Access
Data

Date published: 2020-02-29
Date modified: 2021-02-04

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Mapping Phoenix schemas to HBase Nnamespaces.........cccccevevvevevenvciecneesieenienns 4
ENable NamMESPaCce MADDING.......c ettt sttt sttt sttt sttt se bt e bt s e bt sb et b et b et b et eb e e eb et et e ne et e e b e 4
Associating tables of a schema to a namespace...........cccccvevecvee e ccee e 5
Associate table in a customized Kerberos enVirONmMENt....... ..o sees 5
Associate a table in a non-customized environment Without Kerberos............covovveeinneeennseeesnseenenenas 6
Using JDBC API with Apache PhOeniX.......cccoviiieiiiiiienie e 6
Connecting to Apache Phoenix Query Server using the JDBC client................. 7
ConNeCt t0 PHOENIX QUENY SEIVEN......ccuiuireitereetirieitreei sttt sttt b e bt b e b b s s b se b e b e e e b e e b et eb e s ebenbeseneenes 7
Connect to Phoenix Query Server through ApPache KNOX.........ceeiieirieineinieeseese e 8
USING NON-JDBC ArIVENS.....eiececee ettt sttt 9
Using Apache Phoenix-Spark CONNECLONcccoviiiiiiiniie e 9
Configure Phoenix-Spark connector using Cloudera Manager...........ccoeeeererenesienie e snens 10
Phoenix-Spark conNECtOr USAJE EXAMPIES..........cii ittt s e e sae b b 11
Using Apache Phoenix-Hive CONNECLONccocveieeiieeren e 13
Configure Phoenix-Hive connector using Cloudera Managercoueveeririeenieenieerieeseeeseeeseeeseeeseeeenes 14
Apache PhoenixX-Hive USBgE EXBMPIES.........ccoi ittt ettt 14

Limitations of PhOENIiX-HiVE COMNECLON..........ciiiceieiieie et e et e st e e sttt e s ere e s s ee e e s st e e s ssaeeeseseeessabessssseessaresesssseess 15

Cloudera Runtime Mapping Phoenix schemas to HBase namespaces

Y ou can map a Phoenix schemato an HBase namespace to gain multitenancy featuresin Phoenix.

Important: You must configure this feature only in a CDP Private Cloud Base deployment. Thisfeatureis
configured automatically in a CDP Public Cloud deployment.

HBase, the underlying storage engine for Phoenix, has namespaces to support multi-tenancy features. Multitenancy
helps an HBase user or administrator to perform access control and quota management tasks. Also, namespaces
enable tighter control of where a particular data set is stored on RegionsServers.

Y ou can enable namespace mapping by configuring a set of properties using Cloudera Manager.

After you set the properties to enable the mapping of Phoenix schemas to HBase namespaces, reverting the property
settings renders the Phoenix database unusable. Test or carefully plan the Phoenix to HBase namespace mappings
before implementing them.

Important: Clouderarecommends that you enable namespace mapping. If you decide not to enable this
feature, you can skip the following steps.

To enable Phoenix schema mapping to a non-default HBase namespace:

1. Gotothe HBase service.

2. Click the Configuration tab.

3. Select Scope (Service-Wide) .

4, Locate the HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-sitexml property or search
for it by typing its name in the Search box.

5. Add the following property values:
Name: phoenix.schema.isNamespaceM appingEnabled

Description: Enables mapping of tables of a Phoenix schemato a non-default HBase namespace. To enable
mapping of a schemato a hon-default namespace, set the value of this property to true. The default setting for this
property isfalse.

Value: true
Name: phoenix.schema.mapSystemT ablesToNamespace

Description: With true setting (default): After namespace mapping is enabled with the other property, all system
tables, if any, are migrated to a namespace called system. With fal se setting: System tables are associated with the
default namespace.
Vaue: true

6. Select Scope Gateway .

7. Locate the HBase Client Advanced Configuration Snippet (Safety Valve) for hbase-site.xml property or search for
it by typing its name in the Search box.

Cloudera Runtime Associating tables of a schemato a namespace

8. Add the following property values:
Name: phoenix.schema.isNamespaceM appingEnabled

Description: Enables mapping of tables of a Phoenix schemato a non-default HBase namespace. To enable
mapping of the schema to a non-default namespace, set the value of this property to true. The default setting for
this property isfalse.

Vaue: true
Name: phoenix.schema.mapSystemT ablesToNamespace

Description: With true setting (default): After namespace mapping is enabled with the other property, all system
tables, if any, are migrated to a namespace called system.With false setting: System tables are associated with the
default namespace.

Value: true
9. Enter a Reason for change, and then click Save Changes to commit the changes.
10. Restart the role and service when Cloudera Manager prompts you to restart.

Note: If you do not want to map Phoenix system tables to namespaces because of compatibility issues
with your current applications, set the phoenix.schema.mapSystemTablesToNamespace property to false.

Important: You must use this feature only in a CDP Private Cloud Base deployment. Thisfeature is
configured automatically in a CDP Public Cloud deployment.

After you enable namespace mapping on a Phoenix schemathat already has tables, you can migrate the tablesto an
HBase namespace. The namespace directory that contains the migrated tables inherits the schema name.

For example, if the schema nameis storel, then the full path to the namespace is $hbase.rootdir/data/storel. System
tables are migrated to the namespace automatically during the first connection after enabling namespace properties.

Y ou can run a command to associate atable in a customized environment without K erberos.

In a Kerberos-secured environment, you must have admin privileges (user hbase) to complete the following task.

¢ Runacommand to migrate atable of a schemato a namespace, using the following command syntax for the
options that apply to your environment:

phoeni x- psql
ZooKeeper _host nanes: 2181

: zookeeper . znode. par ent

> princi pal _nane

: HBase_headl ess_keytab | ocati on
; Tenant | d=tenant _|d

; Current SCN=current SCN

-m

schena_nane. t abl e_name

Cloudera Runtime Using JDBC API with Apache Phoenix

Y ou can run a command to associate atable in a non-customized environment without K erberos.

* Run the following command to associate atable:

phoeni x- psql ZooKeeper host nane -m Schenma_nane. t abl e_nane

Y ou can create and interact with Apache HBase tables using Phoenix DDL/DML statements through its standard
JDBC API. Apache Phoenix JDBC driver can be easily embedded in any application that supports JDBC.

Apache Phoenix enables you to use the standard JDBC API to create and access Apache HBase tables. Y ou can use
JDBC APIswith Apache Phoenix instead of native Apache HBase client APIsto create tables, insert, and query data.

Apache Phoenix tables have a 1:1 relationship with Apache HBase tables. Y ou can choose to create a new table using
an Apache Phoenix DDL statement such as CREATE TABLE, or create aview on an existing Apache HBase table
using the VIEW statement.

Important: Modifying an Apache Phoenix table using Apache HBase native API is not supported. Doing
thisleads to errors, inconsistent indexes, incorrect query results, or sometimes to corrupt data.

To use the Apache Phoenix JDBC driver, you must embed the driver in your application that supports JDBC. Apache
Phoenix has two kinds of JDBC drivers.

* A thick driver communicates directly with Apache HBase. The thick driver, therefore, needs access to all the
nodes in the Apache HBase cluster.

e A thindriver communicates with Apache HBase through Phoenix Query Server (PQS) and requires access only to
PQS. Use the thin driver to connect to PQS through Apache Knox or connect to PQS directly.

In an operational database Data Hub cluster, Data Lake (SDX cluster) provides security dependencies such as Apache
Knox. Your JDBC URL string would depend on whether you want to connect directly or through Apache Knox.
Before you try connecting to Apache Phoenix, check if you arein the list of alowed usersin Apache Ranger allowed
to access Apache Phoenix and Apache HBase.

Based on whether you want to use the thick or thin driver, you need the JAR files for the Apache HBase client, the
Apache Phoenix client, and the PQS client.

For the thick driver, you need:

e hbase-client-[***VERS ON***].jar
* hbase-sitexml

sitexml by doing an SSH to the cluster node with the hbase-gateway role. Y ou can copy the hbase-site.xml
file from the following path /etc/hbase/hbase-site.xml or /etc/hbase/conf/hbase-site.xml.

E Note: You must add the cluster's current hbase-site.xml to the application classpath. Y ou can get the hbase-

For the thin driver, you need:
« phoenix-queryserver-client-[***VERS ON***].jar
Y ou can get these JAR files from the following locations:

» Go to /opt/cloudera/parcel SCDH/lib/phoenix/ on an operational database cluster node with the phoenix-gateway
role

or

Cloudera Runtime Connecting to Apache Phoenix Query Server using the JDBC client

* Download the JAR files from the Cloudera Repository

When using the thin driver, your applications interact with the Phoenix Query Server using the Avatica APl and
Google Protocol Buffers serialization format.

JDBC driver location

Use the /opt/cloudera/parcel S CDH/lib/phoenix/[*** PHOENI X VERS ON***] jar file present in your deployment
location. For example, /opt/cloudera/parcel sCDH/lib/phoenix/phoenix-5.0.0.7.2.0.0-128-client.jar

URL syntax for the thick JDBC driver
To connect to Apache Phoenix using the thick JDBC driver, you must use the following JDBC URL syntax:

j dbc: phoeni x: [*** ZOOKEEPER QUORUM: * *] : [*** ZOOKEEPER PORT* * *] :
[*** ZOOKEEPER HBASE_PATH* * *]

The zookeeper_quorum and zookeeper port parameters are optional if you have added the operational database
Apache HBase cluster's current hbase-sitexml to the application classpath.
Apart from the JDBC driver, the following drivers are supported:

« ODBCdriver
e Python driver for Phoenix

Y ou can interact with Apache Phoenix using your client and Apache Phoenix Query Server (PQS).

PQS isautomatically configured when you create an Operational Database Data Hub cluster. There are two waysin
which you can use the thin client to interact with Phoenix:

e Connect to PQS directly
¢ Connect to PQS using the Apache Knox gateway

Y ou can connect to Phoenix Query Server (PQS) using the JDBC thin client without using a gateway such as Apache
Knox. Y ou must use the JIDBC URL syntax to form the URL and connect to PQS.

Ensure that you have access to Apache Phoenix and Apache HBase, and you have the required permissions
configured in Ranger to connect to PQS.

Ensure that you have safely noted down your Kerberos principal and keytab information used to connect to PQS.

Y ou can use the JIDBC URL syntax to form the URL and connect to PQS.

« To connect to the PQS directly, you must use the JIDBC URL syntax as shown here: jdbc:phoenix:thin:[key=value
[;key=value...]]

Y ou must provide the correct URL, serialization, and authentication key-values to interact with the Phoenix Query
Server. For more information about optional parameters, see Client Reference.

https://repository.cloudera.com/artifactory/cloudera-repos/org/apache/phoenix/
https://calcite.apache.org/avatica/docs/client_reference.html

Cloudera Runtime Connecting to Apache Phoenix Query Server using the JDBC client

j dbc: phoeni x: thin:url=http://1 ocal host: 8765; seri al i zati on=PROTOBUF; aut henti
cat i on=SPENGO,
princi pal =[*** PRI Nl CPAL@EXAMPLE. COMF**] ; keyt ab=[*** PATH TO THE KEYTAB

FI LE***]

Y ou can connect to Phoenix Query Server (PQS) using the JDBC thin client through the Apache Knox gateway.
Apache Knox requires your thin client connection to be over HTTPS.

Ensure that you have access to Apache Phoenix and Apache HBase, and you have the required permissions
configured in Ranger to connect to PQS.

« Get the PQS Knox endpoint to connect to PQS from the CDP Data Hub user interface. Goto Data Hub cluster
Endpoints ClouderaManager Info Endpoints Phoenix Query Server .

B cCloudera Manager Info

CM-API
Phoenix Query Server
Resource Manager PAM Open
WebHDFS PAM Open

* Usethe JDBC URL inthe following sytax to connect to PQS through the Apache Knox gateway:

jdbc:phoenix:thin:url=https.//[*** KNOX ENDPOINT* **]:[*** PORT***]/[*** CLUSTER NAME***]/
cdp-proxy-api/avatical;serialization=PROT OBUF;authentication=BA S| C;avatica_user=[***WORKLOAD
USERNAME*];avatica_password=[***WORKLOAD PASSWORD***];truststore=[*** PATH TO THE KNOX
TRUSTSTORE .JKSFILE***];truststore_password=[*** TRUSTSTORE PASSWORD***]

The standard Oracle Java JDK distribution includes a default truststore (cacerts) that contains root certificates

for many well-known CAs, including Symantec. Rather than using the default truststore, Cloudera recommends
using the alternative truststore, jssecacerts. The aternative truststore is created by copying cacerts to that filename
(jssecacerts). Certificates can be added to this truststore when needed for additional roles or services. This
aternative truststore is loaded by Hadoop daemons at startup. Password (if there is one for the truststore) stored in
aplaintext file readable by all (OS filesystem permissions set to 0440). For more information about truststores, see
Understanding Keystores and Truststores.

Note: The user name and password are for the Apache Knox gateway, and the authentication must always
be set to BASIC. The truststore and truststore_password the Knox public certificate.

j dbc: phoeni x:thin:url=https://https://pgs. knox. endpoi nt: 8443/ gat eway/ cdp- pro
Xy-api /avati ca/: 8765/ cl ust er opdb/ cdp- proxy- api / avati ca/; seri al i zati on=PROTOB
UF; aut hent i cati on=BASI C,

https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/security-encrypting-data-in-transit/topics/cm-security-create-key-trust.html

Cloudera Runtime Using non-JDBC drivers

avat i ca_user =WORKLQADUSERNAME; avat i ca_passwor d=WORKLQADPASSWORD; t r ust st or e=/
hone/ pat h/ truststore.jks;truststore_passwor d=TRUSTSTOREPASSWORD

Based on your application development requirements, you can obtain one of the other non-JDBC drivers.
The list of supported programming languages to access data stored in your operational database:
e Apache Groovy

« C

o C++

e Go

* Java

+ Jython
* Python
 PHP

» Scda

Y ou can aso use REST for API support.
The following drivers are supported:
ODBC driver

Use the Database Open Database Connectivity (ODBC) interface to access the operational database. The ODBC
driver is provided by Cloudera as an additional download, but you can also use ODBC drivers from third-party
providers.

Y ou can download the Phoenix ODBC Driver from here: https://www.cloudera.com/downloads/hdp.html.
Note

Y ou must have a Cloudera Enterprise Support Subscription to download the ODBC driver.

Python driver for Phoenix

Download the Python Driver for Apache Phoenix from the Apache Phoenix website. For more information, see http://
phoenix.apache.org/python.html.

Other drivers that are not supported by Cloudera

Y ou can use other non-JDBC Drivers for Phoenix as add-ons, but they are not supported by Cloudera. Y ou can find
compatible client drivers by searching on the web for avatica and the name of an application programming language
that you want to use. For example, Apache Phoenix/Avatica SQL driver for Go language. For more information and
links to driver download, see https://calcite.apache.org/avatica/docs/.

Y ou can use the Phoenix ODBC driver and the C# client library to develop .Net applications that interact with
Phoenix Query Server.

The applications that you develop will interact with the Phoenix Query Server using the Avatica APl and Google
Protocol Buffers serialization format.

Y ou can use the Apache Phoenix-Spark connector on your secure clusters to perform READ and WRITE operations.
The Phoenix-Spark connector allows Spark to load Phoenix tables as Resilient Distributed Datasets (RDDs) or
DataFrames and lets you save them back to Phoenix.

https://www.cloudera.com/downloads/hdp.html
http://phoenix.apache.org/python.html
http://phoenix.apache.org/python.html
https://calcite.apache.org/avatica/docs/

Cloudera Runtime Using Apache Phoenix-Spark connector

Connect to a secure cluster

Y ou can connect to a secured cluster using the Phoenix JDBC connector. Enter the following syntax in the shell:

j dbc: phoeni x: <ZK host nanes>: <ZK port>: <root znode>: <pri nci pal name>: <keyt ab
file |l ocation>

j dbc: phoeni x: hl. cdh. | ocal , h2. cdh. | ocal , h3. cdh. | ocal : 2181: / hbase- secur e: us
erl@dh. LOCAL: / User s/ user 1/ keyt abs/ nyuser . headl ess. keyt ab

Y ou need Principal and keytab parameters only if you have not run the kinit command before starting the job and
want Phoenix to log you in automatically.

Considerations for setting up Spark

« Before you can use Phoenix-Spark connector for your Spark programs, you must configure your maven settings
to have arepository that points to the password protected repository at https://repository.cloudera.com/artifactory/
public/org/apache/phoenix/phoenix-spark/ and use the dependency:

<dependency>
<gr oupl d>or g. apache. phoeni x</ gr oupl d>
<artifact!|d>phoeni x-spark</artifactld>
<ver si on>5. 0. 0- cdh7</ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

Y ou can access the Maven repository using your Enterprise Support Subscription credentials.

Go to the Spark service.
Click the Configuration tab.
Select Scope Gateway .
Select Category Advanced .

Locate the Spark Client Advanced Configuration Snippet (Safety Valve) for spark-conf/spark-defaults.conf
property or search for it by typing its name in the Search box.

6. Add the following properties to ensure that all required Phoenix and HBase platform dependencies are available
on the classpath for the Spark executors and drivers:

o wbd PR

Phoenix client JARs:

spar k. execut or . ext raCl assPat h=phoeni x-client-[***VERSI ON***] . | ar
spark. driver. extraC assPat h=phoeni x-client-[***VERSI ON***] . | ar

7. Enter aReason for change, and then click Save Changes to commit the changes.
8. Restart the role and service when Cloudera Manager prompts you to restart.

10

https://repository.cloudera.com/artifactory/public/org/apache/phoenix/phoenix-spark/
https://repository.cloudera.com/artifactory/public/org/apache/phoenix/phoenix-spark/

Cloudera Runtime Using Apache Phoenix-Spark connector

E Note: You can enable your IDE by adding the following provided dependency to your build:

<dependency>
<gr oupl d>or g. apache. phoeni x</ gr oupl d>
<artifactl|d>phoeni x-spark</artifactld>
<ver si on>${ phoeni x. ver si on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

Y ou can refer to the following Phoenix-Spark connector examples:

* Reading Phoenix tables
» Saving Phoenix tables
e Using PySpark to READ and WRITE tables

For example, you have a Phoenix table with the following DDL, you can use one of the following methods to load the
table:

* AsaDataFrame using the Data Source API
« AsaDataFrame using a configuration object
* Asan RDD using a Zookeeper URL

CREATE TABLE TABLEL (1D BI G NT NOT NULL PRI MARY KEY, COL1 VARCHAR);
UPSERT | NTO TABLEL (1D, COL1) VALUES (1, 'test row 1');
UPSERT | NTO TABLEL (1D, COL1) VALUES (2, 'test _row 2'):

Example: Load a DataFrame using the Data Source API

i mport org.apache. spar k. Spar kCont ext
i mport org. apache. spark. sqgl . SQLCont ext
i mport org.apache. phoeni x. spark. _

val sc = new SparkContext("local", "phoenix-test")
val sql Context = new SQ.Cont ext (sc)

val df = sqgl Context. | oad(
"or g. apache. phoeni x. spar k",
Map("tabl e" -> "TABLE1l", "zkUrl" -> "phoeni x-server:2181")

)

df
filter(df ("COL1") === "test_row 1" && df ("ID"') === 1L)
.select(df ("I D"))
. show

Example: Load as a DataFrame directly using a Configuration object

i mport org. apache. hadoop. conf. Confi guration
i mport org. apache. spar k. Spar kCont ext

i mport org.apache. spark. sql . SQLCont ext

i mport org. apache. phoeni x. spark. _

val configuration = new Configuration()
/1 Can set Phoeni x-specific settings, requires 'hbase. zookeeper. quorumn

11

Cloudera Runtime Using Apache Phoenix-Spark connector

val sc = new SparkContext("local", "phoenix-test")
val sql Context = new SQ.Cont ext (sc)

// Loads the columms 'ID and 'COL1' from TABLEl as a Dat aFrane
val df = sql Cont ext. phoeni xTabl eAsDat aFr ame(

"TABLEl1", Array("ID', "CO.1"), conf = configuration
)

df . show
Example: Load as an RDD using a Zookeeper URL

i mport org. apache. spar k. Spar kCont ext
i mport org.apache. spark. sql . SQLCont ext
i mport org.apache. phoeni x. spark. _

val sc = new SparkContext("local", "phoenix-test")

// Loads the colums 'ID and 'COL1" from TABLE1 as an RDD
val rdd: RDD[Map[String, AnyRef]] = sc.phoeni xTabl eAsRDD(
"TABLE1", Seq("ID', "COL1"), zkUrl = Some("phoenix-server:2181")

)
rdd. count ()

val firstld = rddl.first()("1D").aslnstanceO [Long]
val firstCol = rddl.first()("COL1"). aslnstanceO[String]

Y ou can refer to the following examples for saving RDDs and DataFrames.
Example: Saving RDDs

For example, you have a Phoenix table with the following DDL, you can save it as an RDD.

CREATE TABLE OUTPUT_TEST TABLE (id Bl GINT NOT NULL PRI MARY KEY, col 1 VARCHAR
, col 2 | NTEGER) ;

The saveToPhoenix method is an implicit method on RDD[Product], or an RDD of Tuples. The data types must
correspond to one of the Java types supported by Phoenix.

i mport org.apache. spar k. Spar kCont ext
i mport org. apache. phoeni x. spark. _

val sc = new SparkContext("local", "phoenix-test")
val dataSet = List((1L, "21", 1), (2L, "2", 2), (3L, "3", 3))
sc

.parallelize(dataSet)
. saveToPhoeni x(
" OQUTPUT_TEST_TABLE",
Seq(III DI, "CO_l", n CO_ZII) ,
zkUrl = Some(" phoeni x-server:2181")

)

Example: Saving DataFrames

The save is method on DataFrame allows passing in a data source type. Y ou can use org.apache.phoenix.spark, and
must also passin atable and zkUrl parameter to specify which table and server to persist the DataFrameto. The
column names are derived from the DataFrame’ s schema field names, and must match the Phoenix column names.

12

https://phoenix.apache.org/language/datatypes.html

Cloudera Runtime Using Apache Phoenix-Hive connector

The save method also takes a SaveM ode option, for which only SaveM ode.Overwrite is supported. For example, you
have atwo Phoenix tables with the following DDL, you can save it as a DataFrames.

With Spark’ s DataFrame support, you can use pyspark to READ and WRITE from Phoenix tables.
Example: Load a DataFrame

Given atable TABLEL and a Zookeeper url of localhost:2181, you can load the table as a DataFrame using the
following Python code in pyspark:

df = sql Context.read \
.format ("org. apache. phoeni x. spark”) \
.option("table", "TABLE1") \
.option("zkUWl", "local host:2181") \
.1 oad()

Example: Save a DataFrame

Given the same table and Zookeeper URL s above, you can save a DataFrame to a Phoenix table using the following
code:

df .write \
.format ("org. apache. phoeni x. spark") \
. mode("overwite") \
.option("table", "TABLE1") \
.option("zkUWl", "local host:2181") \
. save()

Note: The functions phoenixTableAsDataFrame, phoenixTableAsRDD and saveToPhoenix all support

E optionally specifying a conf Hadoop configuration parameter with custom Phoenix client settings, aswell as
an optional zkUrl parameter for the Phoenix connection URL. If zkUrl isn’t specified, it’s assumed that the
hbase.zookeeper.quorum property has been set in the conf parameter. Similarly, if no configuration is passed
in, zkUrl must be specified.

This connector enables you to access the Phoenix data from Hive without any data transfer. So the Business
Intelligence (BI) logic in Hive can access the operational data available in Phoenix.

Using this connector, you can run a certain type of queriesin Phoenix more efficiently than using Hive or other
applications, however, thisis not a universal tool that can run all types of queries. In some cases, Phoenix can run
queries faster than the Phoenix Hive integration and vice versa. In others, you can run this tool to perform operations
like many to many joins and aggregations which Phoenix would otherwise struggle to effectively run on its own. This
integration is better suited for performing online analytical query processing (OLAP) operations than Phoenix.

Another use case for this connector is transferring the data between these two systems. Y ou can use this connector to
simplify the data movement between Hive and Phoenix, since an intermediate form of the data (for example, a.CSV
file) is not required. The automatic movement of structured data between these two systems is the major advantage of
using thistool. Y ou should be aware that for moving alarge amount of data from Hive to Phoenix CSV bulk load is
preferable due to performance reasons.

13

Cloudera Runtime Using Apache Phoenix-Hive connector

Y ou must configure Phoenix-Hive connector before you can access Phoenix data from Hive. To configure the
Phoenix-Hive connector using Cloudera Manager:

Go to the Hive service.
Click the Configuration tab.
Select Scope Hive Cluster (Service-Wide) .
Select Category Advanced .
Locate the Hive Auxiliary JARs Directory property or search for it by typing its name in the Search box.
Add the following auxiliary path directory: /USR/LOCAL/PHOENIX-HIVE
Important: You must manually create the /USR/LOCAL/PHOENIX-HIVE directory, and copy the /opt/

cloudera/parcel SCDH/lib/phoenix_connectors/phoenix-hive-[*** VERS ON***]-shaded.jar on every node
in the cluster that runs Hive-on-Tez Server or Hive Metastore.

o 0k~ wbdPE

Ensur that you have the required permissions the access and write to the phoenix-hive directory and the JAR file
that you copy into it must be accessible by hive:hive user.

Note: You can use any directory instead of /USR/LOCAL/PHOENIX-HIVE that Hive can read or place
B the JAR filein the existing Hive Auxiliary Directory if one already exists.

7. Enter aReason for change, and then click Save Changes to commit the changes.
8. Restart the role and service when Cloudera Manager prompts you to restart.

Y ou can refer to the following Phoenix-Hive connector examples:

» Credting atable
e Loading data
e Querying data

Creating an external Hive table requires an existing table in Phoenix. Hive manages only the Hive metadata.
Dropping an external table from Hive deletes only the Hive metadata, but the Phoenix table is not deleted.

Use the create external table command to create an EXTERNAL Hive table.

create external table ext_table (
ilint,
sl string,
f1 float,
dl deci nal

STORED BY ' org. apache. phoeni x. hi ve. Phoeni xSt or ageHand| er'
TBLPROPERTI ES (

"phoeni x. t abl e. nane" = "ext _tabl e"

"phoeni x. zookeeper. quorumt = "l ocal host",

"phoeni x. zookeeper. znode. parent"” = "/hbase"

"phoeni x. zookeeper.client.port" = "2181",
"phoeni x. ronwkeys" = "i 1",

"phoeni x. col um. mappi ng" = "il:il, sl:s1, f1l:f1, di:d1"

14

Cloudera Runtime

1
Following are the parameters that you could use when creating an external table:

Parameter Default Value Description

phoenix.table.name The same name as the Hive table Name of the existing Phoenix table

phoenix.zookeeper.quorum localhost Specifies the ZooK eeper quorum for HBase

phoenix.zookeeper.znode.parent /hbase Specifies the ZooK eeper parent node for
HBase

phoenix.zookeeper.client.port 2181 Specifies the ZooK eeper port

phoenix.rowkeys N/A Thelist of columnsto be the primary key in a
Phoenix table

phoenix.column.mapping N/A Mappings between column names for Hive
and Phoenix

Loading data
Use insert statement to load data to the Phoenix table through Hive.

insert into table T values (....);
insert into table T select cl, c2 c3 from source_tabl e;

Querying data

Y ou can use HiveQL for querying datain a Phoenix table. A Hive query on asingle table can be as fast as running the
query in the Phoenix CLI with the following property settings:

hi ve. fetch. t ask. conver si on=nore and hi ve. exec. paral |l el =t rue

Following are some of the parameters that you could use when querying the data:

hbase.scan.cache 100 Read row size for a unit request

hbase.scan.cacheblock false Whether or not cache block

split.by.stats fase If true, mappers use table statistics. One
mapper per guide post.

[hive-table-name].reducer.count 1 Number of reducers. In Tez mode, this affects

only single-table queries. See Limitations.

[phoenix-table-name].query.hint N/A Hint for Phoenix query (for example,
NO_INDEX)

Limitations of Phoenix-Hive connector

Following are some of the limitations of Phoenix-Hive connector;

e Only 4K character specification is allowed to specify afull table. If the volume of the datais huge, then thereisa
possibility to lose the metadata information.

e Thereisadifferencein the way timestamp is saved in Phoenix and Hive. Phoenix uses binary format, whereas
Hive uses atext format to store data.

* HiveLLAPisnot supported.

15

Using Apache Phoenix-Hive connector

	Contents
	Mapping Phoenix schemas to HBase namespaces
	Enable namespace mapping

	Associating tables of a schema to a namespace
	Associate table in a customized Kerberos environment
	Associate a table in a non-customized environment without Kerberos

	Using JDBC API with Apache Phoenix
	Connecting to Apache Phoenix Query Server using the JDBC client
	Connect to Phoenix Query Server
	Connect to Phoenix Query Server through Apache Knox

	Using non-JDBC drivers
	Using Apache Phoenix-Spark connector
	Configure Phoenix-Spark connector using Cloudera Manager
	Phoenix-Spark connector usage examples

	Using Apache Phoenix-Hive connector
	Configure Phoenix-Hive connector using Cloudera Manager
	Apache Phoenix-Hive usage examples
	Limitations of Phoenix-Hive connector

