
Cloudera Runtime 7.2.7

Apache Hadoop YARN Reference
Date published: 2020-02-18
Date modified: 2021-02-10

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Tuning Apache Hadoop YARN.. 4
YARN tuning overview..4
Step 1: Worker host configuration...8
Step 2: Worker host planning.. 8
Step 3: Cluster size...9
Steps 4 and 5: Verify settings..9
Step 6: Verify container settings on cluster...9
Step 6A: Cluster container capacity...10
Step 6B: Container sanity checking...10
Step 7: MapReduce configuration..10
Step 7A: MapReduce sanity checking... 11
Set properties in Cloudera Manager.. 11
Configure memory settings.. 12

YARN Configuration Properties...13

Use the YARN REST APIs to manage applications... 15

Comparison of Fair Scheduler with Capacity Scheduler................................... 17
Why one scheduler?... 18
Scheduler performance improvements... 18
Feature comparison...19
Migration from Fair Scheduler to Capacity Scheduler..21

Cloudera Runtime Tuning Apache Hadoop YARN

Tuning Apache Hadoop YARN

YARN tuning overview
Abstract description of a YARN cluster and the goals of YARN tuning.

This topic applies to YARN clusters only, and describes how to tune and optimize YARN for your cluster.

Note: Download the Cloudera YARN tuning spreadsheet to help calculate YARN configurations. For a short
video overview, see Tuning YARN Applications.

This overview provides an abstract description of a YARN cluster and the goals of YARN tuning.

A YARN cluster is composed of host machines. Hosts provide memory
and CPU resources. A vcore, or virtual core, is a usage share of a host
CPU.

4

https://docs.cloudera.com/documentation/other/shared/yarn-tuning-guide.xlsx
https://youtu.be/lykWFhrGvJ4

Cloudera Runtime Tuning Apache Hadoop YARN

Tuning YARN consists primarily of optimally defining containers on
your worker hosts. You can think of a container as a rectangular graph
consisting of memory and vcores. Containers perform tasks.

Some tasks use a great deal of memory, with minimal processing on a
large volume of data.

5

Cloudera Runtime Tuning Apache Hadoop YARN

Other tasks require a great deal of processing power, but use less
memory. For example, a Monte Carlo Simulation that evaluates many
possible "what if?" scenarios uses a great deal of processing power on a
relatively small dataset.

The YARN ResourceManager allocates memory and vcores to use all
available resources in the most efficient way possible. Ideally, few or
no resources are left idle.

6

Cloudera Runtime Tuning Apache Hadoop YARN

An application is a YARN client program consisting of one or more
tasks. Typically, a task uses all of the available resources in the
container. A task cannot consume more than its designated allocation,
ensuring that it cannot use all of the host CPU cycles or exceed its
memory allotment.

Tune your YARN hosts to optimize the use of vcores and memory by
configuring your containers to use all available resources beyond those
required for overhead and other services.

YARN tuning has three phases. The phases correspond to the tabs in the YARN tuning spreadsheet.

1. Cluster configuration, where you configure your hosts.
2. YARN configuration, where you quantify memory and vcores.
3. MapReduce configuration, where you allocate minimum and maximum resources for specific map and reduce

tasks.

YARN and MapReduce have many configurable properties. The YARN tuning spreadsheet lists the essential subset
of these properties that are most likely to improve performance for common MapReduce applications.

7

https://docs.cloudera.com/documentation/other/shared/yarn-tuning-guide.xlsx

Cloudera Runtime Tuning Apache Hadoop YARN

Step 1: Worker host configuration
Define the configuration for a single worker host computer in your cluster

Step 1 is to define the configuration for a single worker host computer in your cluster.

As with any system, the more memory and CPU resources available, the faster the cluster can process large amounts
of data. A machine with 4 CPUs with HyperThreading, each with 6 cores, provides 48 vcores per host.

3 TB hard drives in a 2-unit server installation with 12 available slots in JBOD (Just a Bunch Of Disks) configuration
is a reasonable balance of performance and pricing at the time the spreadsheet was created. The cost of storage
decreases over time, so you might consider 4 TB disks. Larger disks are expensive and not required for all use cases.

Two 1-Gigabit Ethernet ports provide sufficient throughput at the time the spreadsheet was published, but 10-Gigabit
Ethernet ports are an option where price is of less concern than speed.

Step 2: Worker host planning
Allocate resources on each worker machine,

Start with at least 8 GB for your operating system, and 1 GB for Cloudera Manager. If services outside of Cloudera
Runtime require additional resources, add those numbers under Other Services.

The HDFS DataNode uses a minimum of 1 core and about 1 GB of memory. The same requirements apply to the
YARN NodeManager.

The spreadsheet lists several optional services:

• Impala daemon requires at least 16 GB for the daemon.
• HBase Region Servers requires 12-16 GB of memory.
• Solr server requires a minimum of 1 GB of memory.
• Kudu Tablet server requires a minimum of 1 GB of memory.

8

Cloudera Runtime Tuning Apache Hadoop YARN

Any remaining resources are available for YARN applications (Spark and MapReduce). In this example, 44 CPU
cores are available. Set the multiplier for vcores you want on each physical core to calculate the total available vcores.

Step 3: Cluster size
Having defined the specifications for each host in your cluster, enter the number of worker hosts needed to support
your business case.

To see the benefits of parallel computing, set the number of hosts to a minimum of 10.

Steps 4 and 5: Verify settings
Verify the memory and vcore settings.

Step 4 pulls forward the memory and vcore numbers from step 2. Step 5 shows the total memory and vcores for the
cluster.

Step 6: Verify container settings on cluster
You can change the values that impact the size of your containers.

The minimum number of vcores should be 1. When additional vcores are required, adding 1 at a time should result in
the most efficient allocation. Set the maximum number of vcore reservations to the size of the node.

Set the minimum and maximum reservations for memory. The increment should be the smallest amount that can
impact performance. Here, the minimum is approximately 1 GB, the maximum is approximately 8 GB, and the
increment is 512 MB.

9

Cloudera Runtime Tuning Apache Hadoop YARN

Step 6A: Cluster container capacity
Validate the minimum and maximum number of containers in your cluster, based on the numbers you entered

Step 6B: Container sanity checking
See whether you have over-allocated resources.

Step 7: MapReduce configuration
You can increase the memory allocation for the ApplicationMaster, map tasks, and reduce tasks.

The minimum vcore allocation for any task is always 1. The Spill/Sort memory allocation of 400 should be sufficient,
and should be (rarely) increased if you determine that frequent spills to disk are hurting job performance.

10

Cloudera Runtime Tuning Apache Hadoop YARN

The common MapReduce parameters mapreduce.map.java.opts, mapreduce.reduce.java.opts, and yarn.app.mapredu
ce.am.command-opts are configured for you automatically based on the HEAP TO CONTAINER SIZE RATIO.

Step 7A: MapReduce sanity checking
Verify at a glance that all of your minimum and maximum resource allocations are within the parameters you set.

Set properties in Cloudera Manager
When you are satisfied with the cluster configuration estimates, use the values in the spreadsheet to set the
corresponding properties in Cloudera Manager

11

Cloudera Runtime Tuning Apache Hadoop YARN

Table 1: Cloudera Manager Property Correspondence

Step YARN/MapReduce Property Cloudera Manager Equivalent

4 yarn.nodemanager.resource.cpu-vcores Container Virtual CPU Cores

4 yarn.nodemanager.resource.memory-mb Container Memory

6 yarn.scheduler.minimum-allocation-vcores Container Virtual CPU Cores Minimum

6 yarn.scheduler.maximum-allocation-vcores Container Virtual CPU Cores Maximum

6 yarn.scheduler.increment-allocation-vcores Container Virtual CPU Cores Increment

6 yarn.scheduler.minimum-allocation-mb Container Memory Minimum

6 yarn.scheduler.maximum-allocation-mb Container Memory Maximum

6 yarn.scheduler.increment-allocation-mb Container Memory Increment

7 yarn.app.mapreduce.am.resource.cpu-vcores ApplicationMaster Virtual CPU Cores

7 yarn.app.mapreduce.am.resource.mb ApplicationMaster Memory

7 mapreduce.map.cpu.vcores Map Task CPU Virtual Cores

7 mapreduce.map.memory.mb Map Task Memory

7 mapreduce.reduce.cpu.vcores Reduce Task CPU Virtual Cores

7 mapreduce.reduce.memory.mb Reduce Task Memory

7 mapreduce.task.io.sort.mb I/O Sort Memory

Configure memory settings
The memory configuration for YARN and MapReduce memory is important to get the best performance from your
cluster.

Several different settings are involved. The table below shows the default settings, as well as the settings that
Cloudera recommends, for each configuration option.

Table 2: YARN and MapReduce Memory Configuration

Cloudera Manager Property
Name

Cloudera Runtime Property
Name

Default Configuration Cloudera Tuning Guidelines

Container Memory Minimum yarn.scheduler.minimum-allocatio
n-mb

1 GB 0

Container Memory Maximum yarn.scheduler.maximum-alloc
ation-mb

64 GB amount of memory on largest host

Container Memory Increment yarn.scheduler.increment-allocat
ion-mb

512 MB Use a fairly large value, such as
128 MB

Container Memory yarn.nodemanager.resource.me
mory-mb

8 GB 8 GB

Map Task Memory mapreduce.map.memory.mb 1 GB 1 GB

Reduce Task Memory mapreduce.reduce.memory.mb 1 GB 1 GB

Map Task Java Opts Base mapreduce.map.java.opts -Djava.net.preferIPv4Stack=true -Djava.net.preferIPv4Stack=true -
Xmx768m

Reduce Task Java Opts Base mapreduce.reduce.java.opts -Djava.net.preferIPv4Stack=true -Djava.net.preferIPv4Stack=true -
Xmx768m

ApplicationMaster Memory yarn.app.mapreduce.am.resour
ce.mb

1 GB 1 GB

12

Cloudera Runtime YARN Configuration Properties

Cloudera Manager Property
Name

Cloudera Runtime Property
Name

Default Configuration Cloudera Tuning Guidelines

ApplicationMaster Java Opts Base yarn.app.mapreduce.am.comman
d-opt

-Djava.net.preferIPv4Stack=true -Djava.net.preferIPv4Stack=true -
Xmx768m

YARN Configuration Properties

This table provides information about the parameters listed in the yarn-site.xml file.

Parameter Value

hadoop.registry.zk.quorum c2185-node3.coelab.test.com:2181

yarn.acl.enable true

yarn.admin.acl yarn

yarn.am.liveness-monitor.expiry-interval-ms 600000

yarn.application.classpath $HADOOP_CLIENT_CONF_DIR,$HADOOP_COMMON_HOME/
,$HADOOP_COMMON_HOME/lib/,$HADOOP_HDFS_HOME/
,$HADOOP_HDFS_HOME/lib/,$HADOOP_YARN_HOME/*,
$HADOOP_YARN_HOME/lib/*

yarn.authorization-provider org.apache.ranger.authorization.yarn.authorizer.RangerYarnAuthorizer

yarn.cluster.scaling.recommendation.enable false

yarn.log-aggregation-enable true

yarn.log-aggregation-status.time-out.ms 600000

yarn.log-aggregation.IFile.remote-app-log-dir /tmp/logs

yarn.log-aggregation.IFile.remote-app-log-dir-suffix ifile

yarn.log-aggregation.TFile.remote-app-log-dir-suffix

yarn.log-aggregation.file-controller.IFile.class org.apache.hadoop.yarn.logaggregation.filecontroller.ifile.LogAggregationIndexedFileController

yarn.log-aggregation.file-controller.TFile.class org.apache.hadoop.yarn.logaggregation.filecontroller.tfile.LogAggregationTFileController

yarn.log-aggregation.file-formats IFile,TFile

yarn.log-aggregation.retain-seconds 604800

yarn.nm.liveness-monitor.expiry-interval-ms 600000

yarn.node-labels.enabled true

yarn.resourcemanager.address c2185-node3.coelab.test.com:8032

yarn.resourcemanager.admin.address c2185-node3.coelab.test.com:8033

yarn.resourcemanager.admin.client.thread-count 1

yarn.resourcemanager.am.max-attempts 2

yarn.resourcemanager.amliveliness-monitor.interval-ms 1000

yarn.resourcemanager.client.thread-count 50

yarn.resourcemanager.container.liveness-monitor.interval-ms 600000

yarn.resourcemanager.max-completed-applications 10000

yarn.resourcemanager.nm.liveness-monitor.interval-ms 1000

yarn.resourcemanager.nodes.exclude-path /var/run/cloudera-scm-agent/process/1546333423-yarn-
RESOURCEMANAGER/nodes_exclude.txt

yarn.resourcemanager.nodes.include-path /var/run/cloudera-scm-agent/process/1546333423-yarn-
RESOURCEMANAGER/nodes_allow.txt

13

Cloudera Runtime YARN Configuration Properties

Parameter Value

yarn.resourcemanager.placement-constraints.handler scheduler

yarn.resourcemanager.proxy-user-privileges.enabled true

yarn.resourcemanager.recovery.enabled true

yarn.resourcemanager.resource-tracker.address c2185-node3.coelab.test.com:8031

yarn.resourcemanager.resource-tracker.client.thread-count 50

yarn.resourcemanager.scheduler.address c2185-node3.coelab.test.com:8030

yarn.resourcemanager.scheduler.class org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler

yarn.resourcemanager.scheduler.client.thread-count 50

yarn.resourcemanager.scheduler.monitor.enable true

yarn.resourcemanager.store.class org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore

yarn.resourcemanager.webapp.address c2185-node3.coelab.test.com:8088

yarn.resourcemanager.webapp.cross-origin.enabled true

yarn.resourcemanager.webapp.https.address c2185-node3.coelab.test.com:8090

yarn.resourcemanager.work-preserving-recovery.enabled true

yarn.resourcemanager.zk-address c2185-node3.coelab.test.com:2181

yarn.resourcemanager.zk-timeout-ms 60000

yarn.scheduler.capacity.resource-calculator org.apache.hadoop.yarn.util.resource.DominantResourceCalculator

yarn.scheduler.configuration.store.class zk

yarn.scheduler.fair.allow-undeclared-pools true

yarn.scheduler.fair.assignmultiple true

yarn.scheduler.fair.continuous-scheduling-enabled false

yarn.scheduler.fair.continuous-scheduling-sleep-ms 5

yarn.scheduler.fair.dynamicmaxassign true

yarn.scheduler.fair.locality-delay-node-ms 2000

yarn.scheduler.fair.locality-delay-rack-ms 4000

yarn.scheduler.fair.maxassign -1

yarn.scheduler.fair.preemption false

yarn.scheduler.fair.preemption.cluster-utilization-threshold 0.8

yarn.scheduler.fair.sizebasedweight false

yarn.scheduler.fair.user-as-default-queue true

yarn.scheduler.increment-allocation-mb 512

yarn.scheduler.increment-allocation-vcores 1

yarn.scheduler.maximum-allocation-mb 2568

yarn.scheduler.maximum-allocation-vcores 2

yarn.scheduler.minimum-allocation-mb 1024

yarn.scheduler.minimum-allocation-vcores 1

yarn.service.classpath $HADOOP_CLIENT_CONF_DIR

yarn.service.framework.path /user/yarn/services/service-framework/7.1.1/service-dep.tar.gz

yarn.webapp.api-service.enable true

14

Cloudera Runtime Use the YARN REST APIs to manage applications

Parameter Value

yarn.webapp.filter-entity-list-by-user true

yarn.webapp.ui2.enable true

For information about the YARN configuration properties supported by Cloudera Manager, see Cloudera Manager
documentation.

Use the YARN REST APIs to manage applications

You can use the YARN REST APIs to submit, monitor, and kill applications.

Important: In a non-secure cluster, you must append a request with ?user.name=<user>.

Example: Get application data

• Without ?user.name=<user>:

curl http://localhost:19888/jobhistory/job/job_1516861688424_0001
Access denied: User null does not have permission to view job job_
1516861688424_0001

• With ?user.name=<user>:

curl http://localhost:19888/jobhistory/job/job_1516861688424_0001?user.name=hrt_1
{"job":{"submitTime":1516863297896,"startTime":1516863310110,"finishTime":1516863330610,
"id":"job_1516861688424_0001","name":"Sleepjob","queue":"default","user":"hrt_1",
"state":"SUCCEEDED","mapsTotal":1,"mapsCompleted":1,"reducesTotal":1,"reducesCompleted":1,
"uberized":false,"diagnostics":"","avgMapTime":10387,"avgReduceTime":536,"avgShuffleTime":4727,
"avgMergeTime":27,"failedReduceAttempts":0,"killedReduceAttempts":0,"successfulReduceAttempts":1,
"failedMapAttempts":0,"killedMapAttempts":0,"successfulMapAttempts":1,"acls":[{"name":"mapreduce.j
ob.acl-
view-job","value":" "},{"name":"mapreduce.job.acl-modify-job","value":" "}]}}

Get an Application ID

You can use the New Application API to get an application ID, which can then be used to submit an application. For
example:

curl -v -X POST 'http://localhost:8088/ws/v1/cluster/apps/new-application'

The response returns the application ID, and also includes the maximum resource capabilities available on the cluster.
For example:

 {
 application-id: application_1409421698529_0012",
 "maximum-resource-capability":{"memory":"8192","vCores":"32"}
 }

Set Up an Application .json File

Before you submit an application, you must set up a .json file with the parameters required by the application. This
is analogous to creating your own ApplicationMaster. The application .json file contains all of the fields you are
required to submit in order to launch the application.

The following is an example of an application .json file:

 {
 "application-id":"application_1404203615263_0001",
 "application-name":"test",

15

Cloudera Runtime Use the YARN REST APIs to manage applications

 "am-container-spec":
 {
 "local-resources":
 {
 "entry":
 [
 {
 "key":"AppMaster.jar",
 "value":
 {
 "resource":"hdfs://hdfs-namenode:9000/user/testuser/Dis
tributedShell/demo-app/AppMaster.jar",
 "type":"FILE",
 "visibility":"APPLICATION",
 "size": "43004",
 "timestamp": "1405452071209"
 }
 }
]
 },
 "commands":
 {
 "command":"{{JAVA_HOME}}/bin/java -Xmx10m org.apache.hadoop.yar
n.applications.distributedshell.ApplicationMaster --container_memory 10 --co
ntainer_vcores 1 --num_containers 1 --priority 0 1><LOG_DIR>/AppMaster.stdou
t 2><LOG_DIR>/AppMaster.stderr"
 },
 "environment":
 {
 "entry":
 [
 {
 "key": "DISTRIBUTEDSHELLSCRIPTTIMESTAMP",
 "value": "1405459400754"
 },
 {
 "key": "CLASSPATH",
 "value": "{{CLASSPATH}}<CPS>./*<CPS>{{HADOOP_CONF_DIR}}<C
PS>{{HADOOP_COMMON_HOME}}/share/hadoop/common/*<CPS>{{HADOOP_COMMON_HOME}}/s
hare/hadoop/common/lib/*<CPS>{{HADOOP_HDFS_HOME}}/share/hadoop/hdfs/*<CPS>{{
HADOOP_HDFS_HOME}}/share/hadoop/hdfs/lib/*<CPS>{{HADOOP_YARN_HOME}}/share/ha
doop/yarn/*<CPS>{{HADOOP_YARN_HOME}}/share/hadoop/yarn/lib/*<CPS>./log4j.pro
perties"
 },
 {
 "key": "DISTRIBUTEDSHELLSCRIPTLEN",
 "value": "6"
 },
 {
 "key": "DISTRIBUTEDSHELLSCRIPTLOCATION",
 "value": "hdfs://hdfs-namenode:9000/user/testuser/demo-app/
shellCommands"
 }
]
 }
 },
 "unmanaged-AM":"false",
 "max-app-attempts":"2",
 "resource":
 {
 "memory":"1024",
 "vCores":"1"
 },
 "application-type":"YARN",

16

Cloudera Runtime Comparison of Fair Scheduler with Capacity Scheduler

 "keep-containers-across-application-attempts":"false"
 }

Submit an Application

You can use the Submit Application API to submit applications. For example:

curl -v -X POST -d @example-submit-app.json -H "Content-type: application/js
on"'http://localhost:8088/ws/v1/cluster/apps'

After you submit an application the response includes the following field:

HTTP/1.1 202 Accepted

The response also includes the Location field, which you can use to get the status of the application (app ID). The
following is an example of a returned Location code:

Location: http://localhost:8088/ws/v1/cluster/apps/application_1409421698529
_0012

Monitor an Application

You can use the Application State API to query the application state. To return only the state of a running application,
use the following command format:

curl 'http://localhost:8088/ws/v1/cluster/apps/application_1409421698529_001
2/state'

You can also use the value of the Location field (returned in the application submission response) to check the
application status. For example:

curl -v 'http://localhost:8088/ws/v1/cluster/apps/application_1409421698529_
0012'

You can use the following command format to check the logs:

yarn logs -appOwner 'dr.who' -applicationId application_1409421698529_0012 |
 less

Kill an Application

You can also use the Application State API to kill an application by using a PUT operation to set the application state
to KILLED. For example:

curl -v -X PUT -H 'Accept: application/json' -H 'Content-Type: application/j
son' -d '{"state": "KILLED"}' 'http://localhost:8088/ws/v1/cluster/apps/appl
ication_1409421698529_0012/state'

Comparison of Fair Scheduler with Capacity Scheduler

This section provides information about choosing Capacity Scheduler, its benefits, and performance improvements
along with features comparison between Fair Scheduler and Capacity Scheduler.

17

Cloudera Runtime Comparison of Fair Scheduler with Capacity Scheduler

Why one scheduler?
Cloudera Data Platform (CDP) only supports the Capacity Scheduler in the YARN clusters.

Prior to the launch of CDP, Cloudera customers used one of the two schedulers (Fair Scheduler and Capacity
Scheduler) depending on which product they were using (CDH or HDP respectively).

The choice to converge to one scheduler in CDP was a hard one but ultimately rooted in our intention to reduce
complexity for our customers and at the same time help focus our future investments. Over the years, both the
schedulers have evolved greatly, to the point that Fair Scheduler borrowed almost all of the features from Capacity
Scheduler and vice-versa. Given this, we ultimately decided to put our weight behind Capacity Scheduler for all your
YARN clusters.

Those clusters that currently use the Fair scheduler must migrate to the Capacity Scheduler when moving to CDP.
Cloudera provides tools, documentation, and related help for such migrations.

Benefits of Using Capacity Scheduler

The following are some of the benefits when using Capacity Scheduler:

• Integration with Ranger
• Node partitioning/labeling
• Improvements to schedule on cloud-native environments, such as better bin-packing, autoscaling support, and so

on.
• Scheduling throughput improvements

• Global Scheduling Framework
• Lookup of multiple nodes at one time

Fore more details about Scheduling throughput improvements, see Scheduler Performance Improvements.

• Affinity/anti-affinity: run application X only on those nodes which run application Y and the other way around.
Do not run application X and application Y on the same node.

For information about the currently supported features, see Supported Features.

Scheduler performance improvements
Provides information about Global scheduling feature and its test results.

Improvements brought by Global Scheduling Improvements (YARN-5139)

Before the changes of global scheduling, the YARN scheduler was under a monolithic lock, which was
underperforming. Global scheduling largely improved the internal locking structure and the thread-model of how the
YARN scheduler works. The scheduler can now decouple placement decisions and change the internal data structure.
This can also enable to lookup multiple nodes at a time, which is used by auto-scaling and bin-packing policies on
cloud. For more information, see the design and implementation notes.

Based on the simulation, the test result of using Global Scheduling feature shows:

18

https://www.google.com/url?q=https://issues.apache.org/jira/secure/attachment/12825344/YARN-5139-Global-Schedulingd-esign-and-implementation-notes-v2.pdf&sa=D&ust=1589352876432000

Cloudera Runtime Comparison of Fair Scheduler with Capacity Scheduler

This is a simulated environment which has 20000 nodes and 47000 running applications. For more information about
these tests, see the performance report.

Performance test from YARN community

Microsoft published Hydra: a federated resource manager for data-center scale analytics (Carlo, et al) report which
highlights the scalability (Deployed YARN to more than 250k nodes, which includes five large federated cluster, each
of them having 50k nodes) and scheduling performance (each cluster’s scheduler can make more than 40k container
allocation per second) by using Capacity Scheduler. This is the largest known YARN deployment in the world.

We also saw performance numbers from other companies in the community in line with what we have tested using
simulators (thousands of container allocations per second for a cluster that has thousands of nodes).

Disclaimer: The performance number discussed above is related to the size of the cluster, workloads running on the
cluster, queue structure, healthiness (such as node manager, disk, and network), container churns, and so on. This
typically needs fine-tuning efforts for the scheduler and other cluster parameters to reach the ideal performance. This
is NOT a guaranteed number which can be achieved just by using CDP.

Feature comparison
The features of both schedulers have become similar over time. The current feature list and differences between the
two schedulers is listed in the tables.

Supported Features

Feature List Capacity Scheduler Fair Scheduler Comments

Queues Hierarchical Queues yes yes

Elastic Queue Capacity for
better resource sharing

yes yes

Percentage Based
Resource Configuration in
Queues

yes yes Percentages and absolute
resources settings cannot
be used simultaneous.

19

https://www.google.com/url?q=https://issues.apache.org/jira/secure/attachment/12831662/YARN-5139-Concurrent-scheduling-performance-report.pdf&sa=D&ust=1589352876433000
https://www.google.com/url?q=https://www.usenix.org/system/files/nsdi19spring_curino_prepub.pdf&sa=D&ust=1589352876434000

Cloudera Runtime Comparison of Fair Scheduler with Capacity Scheduler

Auto Queue Creation yes yes

User Mapping (user/group
to queue mapping)

yes yes

CLI/REST API support to
manage queues

yes yes

Move applications
between queues

yes yes

Dynamic Queue creation/
deletion/modification

yes yes

Reservation support in
queues

yes yes

Authorization Authorization control
(ACLs in Queues for
submit/manage/admin)

yes yes

Third party ACL control
(Ranger)

yes yes

Application Placement Node Labels support yes no

Hive placement integration yes yes

Node Attributes support yes no

Placement constraints
support

yes no Supported constraints
are limited in the current
implementation.

Node Locality yes yes

Locality Delay control yes yes

User limit quota
management

yes yes

AM resource quota
management

yes yes

Queue Priority yes no Indirectly managed
through queue weights.

Maximum and Minimum
allocation limit per
container unit

yes yes

Scheduling Asynchronous scheduling
support

yes yes Implementation differs
between the schedulers
and should not be treated
as equivalent.

Multiple resource types
support (CPU, Memory,
GPU, and so on)

yes yes

Queue Ordering Policies
(Fair, FIFO, and so on)

yes yes

Multiple container
assignments per heartbeat

yes yes

Preemption Inter Queue preemption
support

yes yes

Intra Queue preemption
support

yes yes

Reservation based
preemption

yes yes

20

Cloudera Runtime Comparison of Fair Scheduler with Capacity Scheduler

Queue Priority based
preemption

yes no Queue weights are
taken into account when
preempting decisions are
made.

Application

Support

First class Concept of
application

yes yes

Application priority yes yes

Application timeout yes yes

Moving Application across
queues

yes yes

High Availability stateful
application recovery

yes yes

Roadmap Features

Feature List Capacity Scheduler Fair Scheduler Comments

Queues Absolute Resource
Configuration in Queues

yes yes Percentages and absolute
resources settings cannot
be usedsimultaneously.

Application Placement Maximum number of
applications

no yes Indirectly managed
through AM resource
quotas.

Scheduling Application Size Based
Fairness

no yes

Migration from Fair Scheduler to Capacity Scheduler
Starting from the CDP CDP Private Cloud Base 7.1 release, Cloudera provides the fs2cs conversion utility, which
is a CLI application and is a part of the YARN CLI command. This utility helps to migrate from Fair Scheduler to
Capacity Scheduler.

For information about using the fs2cs conversion utility, the scheduler conversion process, and manual
configurations, see Migrating Fair Scheduler to Capacity Scheduler.

21

https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/yarn-scheduler-conversion/topics/yarn-fs2cs-overview.html

	Contents
	Tuning Apache Hadoop YARN
	YARN tuning overview
	Step 1: Worker host configuration
	Step 2: Worker host planning
	Step 3: Cluster size
	Steps 4 and 5: Verify settings
	Step 6: Verify container settings on cluster
	Step 6A: Cluster container capacity
	Step 6B: Container sanity checking
	Step 7: MapReduce configuration
	Step 7A: MapReduce sanity checking
	Set properties in Cloudera Manager
	Configure memory settings

	YARN Configuration Properties
	Use the YARN REST APIs to manage applications
	Comparison of Fair Scheduler with Capacity Scheduler
	Why one scheduler?
	Scheduler performance improvements
	Feature comparison
	Migration from Fair Scheduler to Capacity Scheduler

