
Cloudera Runtime 7.2.8

Accessing Apache HBase
Date published: 2020-02-29
Date modified: 2023-04-05

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Use the HBase shell.. 4
Virtual machine options for HBase Shell.. 4
Script with HBase Shell... 4

Use the HBase command-line utilities.. 5

Use the HBase APIs for Java.. 11

Use the HBase REST server..12
Installing the REST Server using Cloudera Manager..12
Using the REST API.. 12
Using the REST proxy API... 19

Use the Apache Thrift Proxy API.. 20

Use the Hue HBase app... 25
Configure the HBase thrift server role...26

Cloudera Runtime Use the HBase shell

Use the HBase shell

You can use the HBase Shell from the command line interface to communicate with HBase. In CDP, you can create
a namespace and manage it using the HBase shell. Namespaces contain collections of tables and permissions,
replication settings, and resource isolation.

In CDP, you need to SSH into an HBase node before you can use the HBase Shell. For example, to SSH into an
HBase node with the IP address 10.10.10.10, you must use the command:

ssh <USERNAME>@10.10.10.10

Note: You must use your IPA password for authentication.

After you have started HBase, you can access the database in an interactive way by using the HBase Shell, which is
a command interpreter for HBase which is written in Ruby. Always run HBase administrative commands such as the
HBase Shell, hbck, or bulk-load commands as the HBase user (typically hbase).

hbase shell

You can use the following commands to get started with the HBase shell:

• To get help and to see all available commands, use the help command.
• To get help on a specific command, use help "command". For example:

hbase> help "create"

• To remove an attribute from a table or column family or reset it to its default value, set its value to nil. For
example, use the following command to remove the KEEP_DELETED_CELLS attribute from the f1 column of
the users table:

hbase> alter 'users', { NAME => 'f1', KEEP_DELETED_CELLS => nil }

• To exit the HBase Shell, type quit.

Virtual machine options for HBase Shell
You can set variables for the virtual machine running HBase Shell, by using the HBASE_SHELL_OPTS environment
variable. This example sets several options in the virtual machine.

This example sets several options in the virtual machine.

$ HBASE_SHELL_OPTS="-verbose:gc -XX:+PrintGCApplicationStoppedTime -XX:+Prin
tGCDateStamps
 -XX:+PrintGCDetails -Xloggc:$HBASE_HOME/logs/gc-hbase.log" ./bin/hbase
 shell

Script with HBase Shell
You can use HBase shell in your scripts. You can also write Ruby scripts for use with HBase Shell. Example Ruby
scripts are included in the hbase-examples/src/main/ruby/ directory.

4

Cloudera Runtime Use the HBase command-line utilities

The non-interactive mode allows you to use HBase Shell in scripts, and allow the script to access the exit status of the
HBase Shell commands. To invoke non-interactive mode, use the -n or --non-interactive switch. This small example
script shows how to use HBase Shell in a Bash script.

#!/bin/bash
echo 'list' | hbase shell -n
status=$?
if [$status -ne 0]; then
 echo "The command may have failed."
fi

Successful HBase Shell commands return an exit status of 0. However, an exit status other than 0 does not necessarily
indicate a failure, but should be interpreted as unknown. For example, a command may succeed, but while waiting
for the response, the client may lose connectivity. In that case, the client has no way to know the outcome of the
command. In the case of a non-zero exit status, your script should check to be sure the command actually failed
before taking further action.

You can use the get_splits command, which returns the split points for a given table:

hbase> get_splits 't2'
Total number of splits = 5

=> ["", "10", "20", "30", "40"]

Use the HBase command-line utilities

Besides the HBase Shell, HBase includes several other command-line utilities, which are available in the hbase/bin/
directory of each HBase host. This topic provides basic usage instructions for the most commonly used utilities.

PerformanceEvaluation

The PerformanceEvaluation utility allows you to run several preconfigured tests on your cluster and reports its
performance. To run the PerformanceEvaluation tool, use the bin/hbase pecommand.

$ hbase pe

Usage: java org.apache.hadoop.hbase.PerformanceEvaluation \
 <OPTIONS> [-D<property=value>]* <command> <nclients>

Options:
 nomapred Run multiple clients using threads (rather than use mapred
uce)
 rows Rows each client runs. Default: One million
 size Total size in GiB. Mutually exclusive with --rows. Default:
 1.0.
 sampleRate Execute test on a sample of total rows. Only supported by r
andomRead.
 Default: 1.0
 traceRate Enable HTrace spans. Initiate tracing every N rows. Defaul
t: 0
 table Alternate table name. Default: 'TestTable'
 multiGet If >0, when doing RandomRead, perform multiple gets instead
 of single
 gets.
 Default: 0
 compress Compression type to use (GZ, LZO, ...). Default: 'NONE'
 flushCommits Used to determine if the test should flush the table. Defau
lt: false
 writeToWAL Set writeToWAL on puts. Default: True

5

Cloudera Runtime Use the HBase command-line utilities

 autoFlush Set autoFlush on htable. Default: False
 oneCon all the threads share the same connection. Default: False
 presplit Create presplit table. Recommended for accurate perf analy
sis (see
 guide). Default: disabled
 inmemory Tries to keep the HFiles of the CF inmemory as far as possi
ble. Not
 guaranteed that reads are always served from memory. Defa
ult: false
 usetags Writes tags along with KVs. Use with HFile V3. Default:
false
 numoftags Specify the no of tags that would be needed. This works o
nly if usetags
 is true.
 filterAll Helps to filter out all the rows on the server side there
by not returning
 anything back to the client. Helps to check the server si
de performance.
 Uses FilterAllFilter internally.
 latency Set to report operation latencies. Default: False
 bloomFilter Bloom filter type, one of [NONE, ROW, ROWCOL]
 valueSize Pass value size to use: Default: 1024
 valueRandom Set if we should vary value size between 0 and 'valueSiz
e'; set on read
 for stats on size: Default: Not set.
 valueZipf Set if we should vary value size between 0 and 'valueSize'
 in zipf form:
 Default: Not set.
 period Report every 'period' rows: Default: opts.perClientRunRo
ws / 10
 multiGet Batch gets together into groups of N. Only supported by ran
domRead.
 Default: disabled
 addColumns Adds columns to scans/gets explicitly. Default: true
 replicas Enable region replica testing. Defaults: 1.
 splitPolicy Specify a custom RegionSplitPolicy for the table.
 randomSleep Do a random sleep before each get between 0 and entered v
alue. Defaults: 0
 columns Columns to write per row. Default: 1
 caching Scan caching to use. Default: 30

 Note: -D properties will be applied to the conf used.
 For example:
 -Dmapreduce.output.fileoutputformat.compress=true
 -Dmapreduce.task.timeout=60000
Command:
 append Append on each row; clients overlap on keyspace so some c
oncurrent
 operations
 checkAndDelete CheckAndDelete on each row; clients overlap on keyspace so
 some concurrent
 operations
 checkAndMutate CheckAndMutate on each row; clients overlap on keyspace so
 some concurrent
 operations
 checkAndPut CheckAndPut on each row; clients overlap on keyspace so s
ome concurrent
 operations
 filterScan Run scan test using a filter to find a specific row based
 on it's value
 (make sure to use --rows=20)
 increment Increment on each row; clients overlap on keyspace so some
 concurrent
 operations

6

Cloudera Runtime Use the HBase command-line utilities

 randomRead Run random read test
 randomSeekScan Run random seek and scan 100 test
 randomWrite Run random write test
 scan Run scan test (read every row)
 scanRange10 Run random seek scan with both start and stop row (max 10
rows)
 scanRange100 Run random seek scan with both start and stop row (max 100
 rows)
 scanRange1000 Run random seek scan with both start and stop row (max 1000
 rows)
 scanRange10000 Run random seek scan with both start and stop row (max 1
0000 rows)
 sequentialRead Run sequential read test
 sequentialWrite Run sequential write test
Args:
 nclients Integer. Required. Total number of clients (and HRegionS
ervers)
 running: 1 <= value <= 500
Examples:
 To run a single client doing the default 1M sequentialWrites:
 $ bin/hbase org.apache.hadoop.hbase.PerformanceEvaluation sequentialWrite 1
 To run 10 clients doing increments over ten rows:
 $ bin/hbase org.apache.hadoop.hbase.PerformanceEvaluation --rows=10 --noma
pred increment 10

LoadTestTool

The LoadTestTool utility load-tests your cluster by performing writes, updates, or reads on it. To run the LoadTest
Tool, use the bin/hbase ltt command. To print general usage information, use the -h option.

$ bin/hbase ltt -h

Options:
 -batchupdate Whether to use batch as opposed to separate
 updates for every column
 in a row
 -bloom <arg> Bloom filter type, one of [NONE, ROW, ROWC
OL]
 -compression <arg> Compression type, one of [LZO, GZ, NONE, SN
APPY, LZ4]
 -data_block_encoding <arg> Encoding algorithm (e.g. prefix compress
ion) to use for data blocks
 in the test column family, one of
 [NONE, PREFIX, DIFF, FAST_DIFF, PREFIX_T
REE].
 -deferredlogflush Enable deferred log flush.
 -encryption <arg> Enables transparent encryption on the test
 table, one of [AES]
 -families <arg> The name of the column families to use se
parated by comma
 -generator <arg> The class which generates load for the too
l. Any args for this class
 can be passed as colon separated after c
lass name
 -h,--help Show usage
 -in_memory Tries to keep the HFiles of the CF inmemory
 as far as possible. Not
 guaranteed that reads are always served fro
m inmemory
 -init_only Initialize the test table only, don't do
 any loading

7

Cloudera Runtime Use the HBase command-line utilities

 -key_window <arg> The 'key window' to maintain between reads
 and writes for concurrent
 write/read workload. The default is 0.
 -max_read_errors <arg> The maximum number of read errors to tol
erate before terminating all
 reader threads. The default is 10.
 -mob_threshold <arg> Desired cell size to exceed in bytes that
will use the MOB write path
 -multiget_batchsize <arg> Whether to use multi-gets as opposed to sep
arate gets for every
 column in a row
 -multiput Whether to use multi-puts as opposed to s
eparate puts for every
 column in a row
 -num_keys <arg> The number of keys to read/write
 -num_regions_per_server <arg> Desired number of regions per region serv
er. Defaults to 5.
 -num_tables <arg> A positive integer number. When a number n
 is specified, load test tool
 will load n table parallely. -tn parameter
value becomes table name prefix.
 Each table name is in format <tn>_1...<tn>
_n
 -read <arg> <verify_percent>[:<#threads=20>]
 -reader <arg> The class for executing the read requests
 -region_replica_id <arg> Region replica id to do the reads from
 -region_replication <arg> Desired number of replicas per region
 -regions_per_server <arg> A positive integer number. When a number n
 is specified, load test tool
 will create the test table with n regions p
er server
 -skip_init Skip the initialization; assume test table
 already exists
 -start_key <arg> The first key to read/write (a 0-based ind
ex). The default value is 0.
 -tn <arg> The name of the table to read or write
 -update <arg> <update_percent>[:<#threads=20>][:<#whether
 to ignore nonce collisions=0>]
 -updater <arg> The class for executing the update requests
 -write <arg> <avg_cols_per_key>:<avg_data_size>[:<#thr
eads=20>]
 -writer <arg> The class for executing the write requests
 -zk <arg> ZK quorum as comma-separated host names w
ithout port numbers
 -zk_root <arg> name of parent znode in zookeeper

wal

The wal utility prints information about the contents of a specified WAL file. To get a list of all WAL files, use the
HDFS command hadoop fs -ls -R /hbase/WALs. To run the wal utility, use the bin/hbase wal command. Run it
without options to get usage information.

hbase wal
usage: WAL <filename...> [-h] [-j] [-p] [-r <arg>] [-s <arg>] [-w <arg>]
 -h,--help Output help message
 -j,--json Output JSON
 -p,--printvals Print values
 -r,--region <arg> Region to filter by. Pass encoded region name; e.g.
 '9192caead6a5a20acb4454ffbc79fa14'
 -s,--sequence <arg> Sequence to filter by. Pass sequence number.
 -w,--row <arg> Row to filter by. Pass row name.

8

Cloudera Runtime Use the HBase command-line utilities

hfile

The hfile utility prints diagnostic information about a specified hfile, such as block headers or statistics. To get a
list of all hfiles, use the HDFS command hadoop fs -ls -R /hbase/data. To run the hfile utility, use the bin/hbase hf
ilecommand. Run it without options to get usage information.

$ hbase hfile

usage: HFile [-a] [-b] [-e] [-f <arg> | -r <arg>] [-h] [-i] [-k] [-m] [-p]
 [-s] [-v] [-w <arg>]
 -a,--checkfamily Enable family check
 -b,--printblocks Print block index meta data
 -e,--printkey Print keys
 -f,--file <arg> File to scan. Pass full-path; e.g.
 hdfs://a:9000/hbase/hbase:meta/12/34
 -h,--printblockheaders Print block headers for each block.
 -i,--checkMobIntegrity Print all cells whose mob files are missing
 -k,--checkrow Enable row order check; looks for out-of-order
 keys
 -m,--printmeta Print meta data of file
 -p,--printkv Print key/value pairs
 -r,--region <arg> Region to scan. Pass region name; e.g.
 'hbase:meta,,1'
 -s,--stats Print statistics
 -v,--verbose Verbose output; emits file and meta data
 delimiters
 -w,--seekToRow <arg> Seek to this row and print all the kvs for this
 row only

hbck

The hbck utility checks and optionally repairs errors in HFiles.

Warning: Running hbck with any of the -fix or -repair commands is dangerous and can lead to data loss.
Contact Cloudera support before running it.

To run hbck, use the bin/hbase hbck command. Run it with the -h option to get more usage information.

NOTE: As of HBase version 2.0, the hbck tool is significantly changed.
In general, all Read-Only options are supported and can be be used
safely. Most -fix/ -repair options are NOT supported. Please see usage
below for details on which options are not supported.

Usage: fsck [opts] {only tables}
 where [opts] are:
 -help Display help options (this)
 -details Display full report of all regions.
 -timelag <timeInSeconds> Process only regions that have not experienced
 any metadata updates in the last <timeInSeconds> seconds.
 -sleepBeforeRerun <timeInSeconds> Sleep this many seconds before checking
 if the fix worked if run with -fix
 -summary Print only summary of the tables and status.
 -metaonly Only check the state of the hbase:meta table.
 -sidelineDir <hdfs://> HDFS path to backup existing meta.
 -boundaries Verify that regions boundaries are the same between META and
 store files.
 -exclusive Abort if another hbck is exclusive or fixing.

 Datafile Repair options: (expert features, use with caution!)

9

Cloudera Runtime Use the HBase command-line utilities

 -checkCorruptHFiles Check all Hfiles by opening them to make sure the
y are valid
 -sidelineCorruptHFiles Quarantine corrupted HFiles. implies -checkCorru
ptHFiles

 Replication options
 -fixReplication Deletes replication queues for removed peers

 Metadata Repair options supported as of version 2.0: (expert features, use
 with caution!)
 -fixVersionFile Try to fix missing hbase.version file in hdfs.
 -fixReferenceFiles Try to offline lingering reference store files
 -fixHFileLinks Try to offline lingering HFileLinks
 -noHdfsChecking Don't load/check region info from HDFS. Assumes hbas
e:meta region info is good. Won't check/fix any HDFS issue, e.g. hole, orpha
n, or overlap
 -ignorePreCheckPermission ignore filesystem permission pre-check

NOTE: Following options are NOT supported as of HBase version 2.0+.
 UNSUPPORTED Metadata Repair options: (expert features, use with caution!)
 -fix Try to fix region assignments. This is for backwards
compatiblity
 -fixAssignments Try to fix region assignments. Replaces the old -fix
 -fixMeta Try to fix meta problems. This assumes HDFS region inf
o is good.
 -fixHdfsHoles Try to fix region holes in hdfs.
 -fixHdfsOrphans Try to fix region dirs with no .regioninfo file in hdfs
 -fixTableOrphans Try to fix table dirs with no .tableinfo file in hdfs
 (online mode only)
 -fixHdfsOverlaps Try to fix region overlaps in hdfs.
 -maxMerge <n> When fixing region overlaps, allow at most <n> regions
 to merge. (n=5 by default)
 -sidelineBigOverlaps When fixing region overlaps, allow to sideline big
overlaps
 -maxOverlapsToSideline <n> When fixing region overlaps, allow at most <
n> regions to sideline per group. (n=2 by default)
 -fixSplitParents Try to force offline split parents to be online.
 -removeParents Try to offline and sideline lingering parents and keep
 daughter regions.
 -fixEmptyMetaCells Try to fix hbase:meta entries not referencing any
region (empty REGIONINFO_QUALIFIER rows)

 UNSUPPORTED Metadata Repair shortcuts
 -repair Shortcut for -fixAssignments -fixMeta -fixHdfsHoles -
fixHdfsOrphans -fixHdfsOverlaps -fixVersionFile -sidelineBigOverlaps -fixRef
erenceFiles-fixHFileLinks
 -repairHoles Shortcut for -fixAssignments -fixMeta -fixHdfsHoles

clean

After you have finished using a test or proof-of-concept cluster, the hbase clean utility can remove all HBase-related
data from ZooKeeper and HDFS.

Warning: The hbase clean command destroys data. Do not run it on production clusters, or unless you are
absolutely sure you want to destroy the data.

To run the hbase clean utility, use the bin/hbase clean command. Run it with no options for usage information.

$ bin/hbase clean

Usage: hbase clean (--cleanZk|--cleanHdfs|--cleanAll)
Options:

10

Cloudera Runtime Use the HBase APIs for Java

 --cleanZk cleans hbase related data from zookeeper.
 --cleanHdfs cleans hbase related data from hdfs.
 --cleanAll cleans hbase related data from both zookeeper and hdfs.

Use the HBase APIs for Java

You can use the Apache HBase Java API to communicate with Apache HBase. The Java API is one of the most
common ways to communicate with HBase.

The following sample uses Apache HBase APIs to create a table and put a row into that table. The table name,
column family name, qualifier (or column) name, and a unique ID for the row are defined. Together, these define a
specific cell. Next, the table is created and the text “Hello, World!” is inserted into this cell.

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.util.Bytes;

public class CreateAndPut {
 private static final TableName TABLE_NAME = TableName.valueOf("test_tabl
e_example");
 private static final byte[] CF_NAME = Bytes.toBytes("test_cf");
 private static final byte[] QUALIFIER = Bytes.toBytes("test_column");
 private static final byte[] ROW_ID = Bytes.toBytes("row01");
 public static void createTable(final Admin admin) throws IOException {
 if(!admin.tableExists(TABLE_NAME)) {
 TableDescriptor desc = TableDescriptorBuilder.newBuilder(TABLE_
NAME)
 .setColumnFamily(ColumnFamilyDescriptorBuilder.of(CF_N
AME))
 .build();
 admin.createTable(desc);
 }
 }

 public static void putRow(final Table table) throws IOException {
 table.put(new Put(ROW_ID).addColumn(CF_NAME, QUALIFIER, Bytes.toByte
s("Hello, World!")));
 }
 public static void main(String[] args) throws IOException {
 Configuration config = HBaseConfiguration.create();

 try (Connection connection = ConnectionFactory.createConnection(co
nfig); Admin admin = connection.getAdmin()) {
 createTable(admin);

 try(Table table = connection.getTable(TABLE_NAME)) {
 putRow(table);
 }
 }
 }
}

Related Information
HBase API reference documentation

11

https://hbase.apache.org/2.2/apidocs/index.html

Cloudera Runtime Use the HBase REST server

Use the HBase REST server

You can use the Apache HBase REST server to interact with the Apache HBase. This is a very good alternative if you
do not want to use the Java API. Interactions happen using URLs and the REST API. REST uses HTTP to perform
various actions, and this makes it easy to interface with the operational database using a wide array of programming
languages.

You can use the REST server to create, delete tables, and perform other operations that have the REST end-points.
You can configure SSL for encryption between the client and the REST server. This helps you to ensure that your
operations are secure during data transmission.

Using the REST server enables you access your data across different network boundaries. For example, if you have
an CDP operational database Data Hub cluster running inside a private network and don’t want to expose it to your
company’s public network, the REST server can work as a gateway between the private and public networks.

Installing the REST Server using Cloudera Manager
You can use the HBase REST API to interact with HBase services, tables, and regions using HTTP endpoints. You
must manually install the REST Server only in a CDP Private Cloud Base deployment. The REST Server service is
automatically added to the Data Hub cluster in a CDP Public Cloud deployment.

About this task

Install the REST Server using Cloudera Manager in your CDP Private Cloud Base deployment.

Procedure

1. Click the Clusters tab.

2. Select ClustersHBASE.

3. Click the Instances tab.

4. Click Add Role Instance.

5. Under HBase REST Server, click Select Hosts.

6. Select one or more hosts to serve the HBase Rest Server role. Click Continue.

7. Select the HBase Rest Server roles. Click Actions For Selected Start.

Using the REST API
The HBase REST Server exposes endpoints that provide CRUD (create, read, update, delete) operations for each
HBase process, as well as tables, regions, and namespaces.

For a given endpoint, the HTTP verb controls the type of operation (create, read, update, or delete).

12

Cloudera Runtime Use the HBase REST server

Note: curl Command Examples

The examples in these tables use the curl command, and follow these guidelines:

• The HTTP verb is specified using the -X parameter.
• For GET queries, the Accept header is set to text/xml, which indicates that the client (curl) expects to

receive responses formatted in XML. You can set it to application/json to receive JSON responses instead.
• For PUT, POST, and DELETE queries, the Content-Type header should be set only if data is also being

sent with the -d parameter. If set, it should match the format of the data being sent, to enable the REST
server to deserialize the data correctly.

• If you are using a Data Hub cluster, you must provide the basic authentication parameters in your REST
query string to access the REST server end-point. For example, curl -vi -X GET \

-H "Accept: text/xml" -u "<USER>:<MY_WORKLOAD_PASSWORD>" \

For more details about the curl command, see the documentation for the curl version that ships with your
operating system.

In CDP, all REST queries are routed through the Apache Knox gateway. In your REST query, ensure that the
hostname points to the gateway node and cdp-proxy-api endpoint as shown in these examples.

Table 1: Cluster-Wide Endpoints

Endpoint HTTP Verb Description Example

/version/cluster GET Version of HBase running on this
cluster curl -L -v \

-u "<MY_WORKLOA
D_USERNAME:MY_WO
RKLOAD_PASSWORD>
" \
"https://<gatewa
y_node>/cdp-prox
y-api/hbase/vers
ion/cluster"

/status/cluster GET Cluster status
curl -vi -X GET
\
-H "Accept: te
xt/xml" \
-u "<MY_WORKLOAD
_USERNAME:MY_WOR
KLOAD_PASSWORD>"
 \
"https://<gat
eway_node>/cdp-p
roxy-api/hbase/s
tatus/cluster"

/ GET List of all nonsystem tables
curl -vi -X GET
\
-H "Accept: te
xt/xml" \
-u "<MY_WORKLO
AD_USERNAME:MY_W
ORKLOAD_PASSWORD
>" \
"https://<gatew
ay_node>/cdp-pro
xy-api/hbase"

13

Cloudera Runtime Use the HBase REST server

Table 2: Namespace Endpoints

Endpoint HTTP Verb Description Example

/namespaces GET List all namespaces.
curl -vi -X GET
\
-H "Accept: te
xt/xml" \
-u "<MY_WORKLO
AD_USERNAME:MY_W
ORKLOAD_PASSWORD
>" \
"https://<gatew
ay_node>/cdp-pro
xy-api/hbase/nam
espaces/"

/namespaces/namespace GET Describe a specific namespace.
curl -vi -X GET
\
-H "Accept: te
xt/xml" \
-u "<MY_WORKLO
AD_USERNAME:MY_W
ORKLOAD_PASSWORD
>" \
"https://<gatew
ay_node>/cdp-pro
xy-api/hbase/nam
espaces/special_
ns"

/namespaces/namespace POST Create a new namespace.
curl -vi -X POST
 \
-H "Accept: t
ext/xml" \
-u "<MY_WORKL
OAD_USERNAME:MY_
WORKLOAD_PASSWOR
D>" \
"https://<gate
way_node>/cdp-pr
oxy-api/hbase/na
mespaces/special
_ns"

/namespaces/namespace/tables GET List all tables in a specific
namespace. curl -vi -X GET

\
-H "Accept: te
xt/xml" \
-u "<MY_WORKLO
AD_USERNAME:MY_W
ORKLOAD_PASSWORD
>" \
"https://<gatew
ay_node>/cdp-pro
xy-api/hbase/nam
espaces/special_
ns/tables"

/namespaces/namespace PUT Alter an existing namespace.
Currently not used. curl -vi -X PUT

\
-H "Accept: te
xt/xml" \
-u "<MY_WORKLO
AD_USERNAME:MY_W
ORKLOAD_PASSWORD
>" \
"https://<gatew
ay_node>/cdp-pro
xy-api/hbase/nam
espaces/special_
ns"

/namespaces/namespace DELETE Delete a namespace. The
namespace must be empty. curl -vi -X DELE

TE \
-H "Accept: tex
t/xml" \
-u "<MY_WORKLOA
D_USERNAME:MY_WO
RKLOAD_PASSWORD>
" \
"https://<gatewa
y_node>/cdp-prox
y-api/hbase/name
spaces/special_n
s"

14

Cloudera Runtime Use the HBase REST server

Table 3: Table Endpoints

Endpoint HTTP Verb Description Example

/table/schema GET Describe the schema of the
specified table. curl -vi -X GET

\
-H "Accept: te
xt/xml" \
-u "<MY_WORKLO
AD_USERNAME:MY_W
ORKLOAD_PASSWORD
>" \
"https://<gatew
ay_node>/cdp-pro
xy-api/hbase/use
rs/schema"

/table/schema POST Create a new table, or replace an
existing table's schema with the
provided schema.

curl -vi -X POST
 \
-H "Accept: t
ext/xml" \
-H "Content-T
ype: text/xml" \
-d '<?xml versi
on="1.0" encodin
g="UTF-8"?><Tabl
eSchema name="us
ers"><ColumnSche
ma name="cf" /><
/TableSchema>' \
-u "<MY_WORKLOA
D_USERNAME:MY_WO
RKLOAD_PASSWORD>
" \
"https://<gatewa
y_node>/cdp-prox
y-api/hbase/user
s/schema"

/table/schema UPDATE Update an existing table with the
provided schema fragment. curl -vi -X PUT

\
-H "Accept: te
xt/xml" \
-H "Content-Ty
pe: text/xml" \
-d '<?xml versio
n="1.0" encoding
="UTF-8"?><Table
Schema name="use
rs"><ColumnSchem
a name="cf" KEEP
_DELETED_CELLS="
true" /></TableS
chema>' \
-u "<MY_WORKLO
AD_USERNAME:MY_W
ORKLOAD_PASSWORD
>" \
"https://<gatew
ay_node>/cdp-pro
xy-api/hbase/use
rs/schema"

/table/schema DELETE Delete the table. You must use the
 table/schema endpoint, not just
table/.

curl -vi -X DELE
TE \
-H "Accept: tex
t/xml" \
-u "<MY_WORKLOA
D_USERNAME:MY_WO
RKLOAD_PASSWORD>
" \
"https://<gatewa
y_node>/cdp-prox
y-api/hbase/user
s/schema"

/table/regions GET List the table regions.
curl -vi -X GET
\
-H "Accept: te
xt/xml" \
-u "<MY_WORKLO
AD_USERNAME:MY_W
ORKLOAD_PASSWORD
>" \
"https://<gatew
ay_node>/cdp-pro
xy-api/hbase/use
rs/schema"

15

Cloudera Runtime Use the HBase REST server

Table 4: Endpoints for Get Operations

Endpoint HTTP Verb Description Example

/table/row/column:qualifier/timestampGET Get the value of a single row.
Values are Base-64 encoded.

Latest version:

curl -vi -X GET
\
-H "Accept: te
xt/xml" \
-u "<MY_WORKLO
AD_USERNAME:MY_W
ORKLOAD_PASSWORD
>" \
"https://<gatew
ay_node>/cdp-pro
xy-api/hbase/use
rs/row1"

Specific timestamp:

curl -vi -X GET
\
-H "Accept: te
xt/xml" \
-u "<MY_WORKLO
AD_USERNAME:MY_W
ORKLOAD_PASSWORD
>" \
"https://<gatew
ay_node>/cdp-pro
xy-api/hbase/use
rs/row1/cf:a/145
8586888395"

16

Cloudera Runtime Use the HBase REST server

Endpoint HTTP Verb Description Example

Get the value of a single column.
Values are Base-64 encoded.

Latest version:

curl -vi -X GET
\
-H "Accept: te
xt/xml" \
-u "<MY_WORKLO
AD_USERNAME:MY_W
ORKLOAD_PASSWORD
>" \
"https://<gatew
ay_node>/cdp-pro
xy-api/hbase/use
rs/row1/cf:a"

Specific version:

curl -vi -X GET
\
-H "Accept: te
xt/xml" \
-u "<MY_WORKLO
AD_USERNAME:MY_W
ORKLOAD_PASSWORD
>" \
"https://<gatew
ay_node>/cdp-pro
xy-api/hbase/use
rs/row1/cf:a"

/table/row/column:qualifier?
v=number_of_versions

Multi-Get a specified number of
versions of a given cell. Values
are Base-64 encoded.

curl -vi -X GET
\
-H "Accept: te
xt/xml" \
-u "<MY_WORKLO
AD_USERNAME:MY_W
ORKLOAD_PASSWORD
>" \
"https://<gatew
ay_node>/cdp-pro
xy-api/hbase/use
rs/row1/cf:a?v=2
"

17

Cloudera Runtime Use the HBase REST server

Table 5: Endpoints for Scan Operations

Endpoint HTTP Verb Description Example

/table/scanner/ PUT Get a Scanner object. Required
by all other Scan operations.
Adjust the batch parameter to the
number of rows the scan should
return in a batch. See the next
example for adding filters to your
Scanner. The scanner endpoint
URL is returned as the Location
in the HTTP response. The other
examples in this table assume that
the Scanner endpoint is http://
example.com:20550/users/scanne
r/145869072824375522207.

curl -vi -X PUT
\
-H "Accept: te
xt/xml" \
-H "Content-Ty
pe: text/xml" \
-d '<Scanner bat
ch="1"/>' \
-u "<MY_WORKLOAD
_USERNAME:MY_WOR
KLOAD_PASSWORD>"
 \
"https://<gat
eway_node>/cdp-p
roxy-api/hbase/u
sers/scanner/"

/table/scanner/ PUT To supply filters to the Scanner
object or configure the Scanner in
any other way, you can create a
text file and add your filter to the
file. For example, to return only
rows for which keys start with
u123 and use a batch size of 100:

<Scanner batch="
100">
 <filter>
 {
 "type":
 "PrefixFilter",
 "value":
"u123"
 }
 </filter>
</Scanner>

Pass the file to the -d argument of
the curl request.

curl -vi -X PUT
\
-H "Accept: te
xt/xml" \
-H "Content-Ty
pe:text/xml" \
-d @filter.txt \
-u "<MY_WORKLOAD
_USERNAME:MY_WOR
KLOAD_PASSWORD>"
 \
"https://<gat
eway_node>/cdp-p
roxy-api/hbase/u
sers/scanner/"

/table/scanner/scanner_id GET Get the next batch from the
scanner. Cell values are byte-
encoded. If the scanner is
exhausted, HTTP status 204 is
returned.

curl -vi -X GET
\
-H "Accept: te
xt/xml" \
"<MY_WORKLOAD_
USERNAME:MY_WORK
LOAD_PASSWORD>"
\
-u "https://<g
ateway_node>/cdp
-proxy-api/hbase
/users/scanner/1
4586907282437552
2207"

/table/scanner/scanner_id DELETE Deletes the scanner and frees the
resources it was using. curl -vi -X DELE

TE \
-H "Accept: tex
t/xml" \
-u "<MY_WORKLOA
D_USERNAME:MY_WO
RKLOAD_PASSWORD>
" \
"https://<gatewa
y_node>/cdp-prox
y-api/hbase/user
s/scanner/145869
072824375522207"

18

Cloudera Runtime Use the HBase REST server

Table 6: Endpoints for Put Operations

Endpoint HTTP Verb Description Example

/table/row_key/ PUT Write a row to a table. The row,
column qualifier, and value must
each be Base-64 encoded. To
encode a string, you can use the
base64 command-line utility.
To decode the string, use base
64 -d. The payload is in the --
data argument, so the /users/f
akerow value is a placeholder.
Insert multiple rows by adding
them to the <CellSet> element.
You can also save the data to be
inserted to a file and pass it to the
-d parameter with the syntax -d @
filename.txt.

XML:

curl -vi -X PUT
\
-H "Accept: te
xt/xml" \
-H "Content-Ty
pe: text/xml" \
-d '<?xml versio
n="1.0" encoding
="UTF-8" standal
one="yes"?><Cell
Set><Row key="cm
93NQo="><Cell co
lumn="Y2Y6ZQo=">
dmFsdWU1Cg==</Ce
ll></Row></CellS
et>' \
-u "<MY_WORKL
OAD_USERNAME:MY_
WORKLOAD_PASSWOR
D>" \
"https://<gate
way_node>/cdp-pr
oxy-api/hbase/us
ers/FAKEROW"

JSON:

curl -vi -X PUT
\
-H "Accept: ap
plication/json"
\
-H "Content-Ty
pe: application/
json" \
-d '{"Row":[{"ke
y":"cm93NQo=", "
Cell": [{"column
":"Y2Y6ZQo=", "$
":"dmFsdWU1Cg=="
}]}]}'' \

Using the REST proxy API
After configuring and starting HBase on your cluster, you can use the HBase REST Proxy API to stream data into
HBase, from within another application or shell script, or by using an HTTP client such as wget or curl.

The REST Proxy API is slower than the Java API and may have fewer features. This approach is simple and does not
require advanced development experience to implement. However, like the Java and Thrift Proxy APIs, it uses the
full write path and can cause compactions and region splits.

19

Cloudera Runtime Use the Apache Thrift Proxy API

Specified addresses without existing data create new values. Specified addresses with existing data create new
versions, overwriting an existing version if the row, column:qualifier, and timestamp all match that of the existing
value.

curl -H "Content-Type: text/xml" http://localhost:8000/test/testrow/test:tes
tcolumn

The REST Proxy API does not support writing to HBase clusters that are secured using Kerberos.

For full documentation and more examples, see the REST Proxy API documentation.

Use the Apache Thrift Proxy API

The Apache Thrift library provides cross-language client-server remote procedure calls (RPCs), using Thrift bindings.

Prepare Thrift server and client before using Thrift Proxy API

A Thrift binding is client code generated by the Apache Thrift Compiler for a target language (such as Python)
that allows communication between the Thrift server and clients using that client code. HBase includes an Apache
Thrift Proxy API, which allows you to write HBase applications in Python, C, C++, or another language that Thrift
supports. The Thrift Proxy API is slower than the Java API and may have fewer features. To use the Thrift Proxy
API, you need to configure and run the HBase Thrift server on your cluster. You also need to install the Apache Thrift
compiler on your development system.

After the Thrift server is configured and running, generate Thrift bindings for the language of your choice, using an
IDL file. An HBase IDL file named HBase.thrift is included as part of HBase. After generating the bindings, copy the
Thrift libraries for your language into the same directory as the generated bindings. In the following Python example,
these libraries provide the thrift.transport and thrift.protocol libraries. These commands show how you might generate
the Thrift bindings for Python and copy the libraries on a Linux system.

After installation of the thrift compiler, verify that the thrift compiler version is newer than 0.9.0 by running the
thrift -version command. You need to find the Hbase.thrift file from the HBase node or copy it to co-locate
with the Thrift compiler. Perform the following steps:

mkdir HBaseThrift
cd HBaseThrift/
thrift -gen py /path/to/Hbase.thrift
mv gen-py/* .
rm -rf gen-py/
mkdir thrift
cp -rp ~/Downloads/thrift/lib/py/src/* ./thrift/

As a result, the HBase thrift Python bindings appears as follows:

HbaseThrift/
|-- hbased
| |-- constants.py
| |-- Hbase.py
| |-- Hbase-remote
| |-- __init__.py
| `-- ttypes.py
|-- __init__.py
`-- thrift
 |-- compat.py
 |-- ext
 | |-- binary.cpp
 | |-- binary.h
 | |-- compact.cpp
 | |-- compact.h

20

http://hbase.apache.org/book.html#_rest
http://thrift.apache.org/docs/install/
http://thrift.apache.org/docs/install/

Cloudera Runtime Use the Apache Thrift Proxy API

 | |-- endian.h
 | |-- module.cpp
 | |-- protocol.h
 | |-- protocol.tcc
 | |-- types.cpp
 | `-- types.h
 |-- __init__.py
 |-- protocol
 | |-- __init__.py
 | |-- TBase.py
 | |-- TBinaryProtocol.py
 | |-- TCompactProtocol.py
 | |-- THeaderProtocol.py
 | |-- TJSONProtocol.py
 | |-- TMultiplexedProtocol.py
 | |-- TProtocolDecorator.py
 | `-- TProtocol.py
 |-- server
 | |-- __init__.py
 | |-- THttpServer.py
 | |-- TNonblockingServer.py
 | |-- TProcessPoolServer.py
 | `-- TServer.py
 |-- Thrift.py
 |-- TMultiplexedProcessor.py
 |-- transport
 | |-- __init__.py
 | |-- sslcompat.py
 | |-- THeaderTransport.py
 | |-- THttpClient.py
 | |-- TSocket.py
 | |-- TSSLSocket.py
 | |-- TTransport.py
 | |-- TTwisted.py
 | `-- TZlibTransport.py
 |-- TRecursive.py
 |-- TSCons.py
 |-- TSerialization.py
 `-- TTornado.py

Introduction to example codes

Choose the right class and functions along with the right configurations for HBase.

Classes and functions

• Transport level: TBufferedTransport, TFramedTransport, TSaslTransport, and THttpClient.
• Protocol level: TBinaryProtocol and TCompactProtocol.

Configurations for HBase thrift

HBase thrift configurations

Property Default value (secured) Default value (unsecured) Description

hbase.thrift.support.proxyuser true true Use this to allow proxy users
on the thrift gateway, which
is mainly needed for doAs
functionality.

21

Cloudera Runtime Use the Apache Thrift Proxy API

Property Default value (secured) Default value (unsecured) Description

hbase.regionserver.thrift.framed true true Use framed transport. When
using the THsHaServer or
TNonblockingServer,
framed transport is always used
irrespective of this configuration
value.

hbase.regionserver.thrift.compact true true Use the TCompactProtocol
instead of the default
TBinaryProtocol.
TCompactProtocol is a
binary protocol that is more
compact than the default and
typically more efficient.

hbase.regionserver.thrift.http true true Use this to enable HTTP server
usage on thrift, which is mainly
needed for doAs functionality.

hbase.thrift.security.qop auth_conf none If this is set, HBase Thrift Server
authenticates its clients. HBase
Proxy User Hosts and Groups
must be configured to allow
specific users to access HBase
through Thrift Server.

hbase.thrift.ssl.enabled true false Encrypt communication between
clients and HBase Thrift Server
over HTTP using Transport Layer
Security (TLS) (formerly known
as Secure Socket Layer (SSL)).

Example-1 THttpClient in Secure Cluster

Let us consider that the cluster is secured with the configuration properties mentioned in the HBase thrift
configurations table under the Default value (secured) column.

Before proceeding, ensure that the following applications are installed on your system.

• python 3.6.8 and python 3-devel
• pip 21.3.1
• virtualenv 20.17.1

Perform the following steps:

1. Install virtualenv using pip3.

pip3 install virtualenv

2. Create a new virtual environment named PY3ENV.

virtualenv py3env

3. Activate the virtual environment.

source py3env/bin/activate

4. Install the required Python packages and their specific versions. Consider you are inside the python3 virtual
environment.

pip3 install kerberos==1.3.1 pure-sasl==0.6.2 setuptools==59.6.0 six==1.
16.0 wheel==0.37.1

22

Cloudera Runtime Use the Apache Thrift Proxy API

This ensures that you have all the necessary dependencies and packages installed to proceed with your project.

from thrift.transport import THttpClient
from thrift.protocol import TBinaryProtocol
from hbase.Hbase import Client
from subprocess import call
import ssl
import kerberos
import os

Get the env parameters
def get_env_params():
 # Replace with your own parameters
 hostname='your_hbase_thrift_hostname'
 cert_file="your_cert_file"
 key_file="your_key_file"
 ca_file="your_ca_file"
 key_pw='your_key_pw'
 keytab_file='your_keytab'
 principal = 'your_principal'
 return hostname,cert_file,key_file,ca_file,keytab_file,principal,key_pw

#Check if a valid Kerberos ticket is already present in the cache
def check_kerberos_ticket():
 ccache_file = os.getenv('KRB5CCNAME')
 if ccache_file:
 ccache = CCache.load_ccache(ccache_file)
 if ccache.get_principal() and not ccache.get_principal().is_anonymou
s():
 return True
 return False

Obtain a Kerberos ticket by running kinit from keytab
def kinit(keytab_file,principal):
 call(['kinit', '-kt', keytab_file, principal])
Authenticate with Kerberos
def kerberos_auth():
 __, krb_context = kerberos.authGSSClientInit("HTTP")
 kerberos.authGSSClientStep(krb_context, "")
 negotiate_details = kerberos.authGSSClientResponse(krb_context)
 headers = {'Authorization': 'Negotiate ' + negotiate_details, 'Content-T
ype': 'application/binary'}
 return headers

Initializete an SSL context with certificate verification enabled
def get_ssl_context():
 ssl_context = ssl.create_default_context()
 ssl_context.load_cert_chain(certfile=cert_file,keyfile=key_file,passwo
rd=key_pw)
 ssl_context.load_verify_locations(cafile=ca_file)
 return ssl_context
if __name__ == '__main__':
 hostname,cert_file,key_file,ca_file,keytab_file,principal,key_pw=get_env
_params()
 # Check if a valid Kerberos ticket is not in the cache, then kinit.
 if not check_kerberos_ticket():
 kinit(keytab_file,principal)

create a THttpClient instance with the SSL context and custom headers
 httpClient = THttpClient.THttpClient('https://' + hostname + ':9090/', s
sl_context=get_ssl_context())
 httpClient.setCustomHeaders(headers=kerberos_auth())

23

Cloudera Runtime Use the Apache Thrift Proxy API

Initialize TBinaryProtocol with THttpClient
 protocol = TBinaryProtocol.TBinaryProtocol(httpClient)

Create HBase client
 client = Client(protocol)
Retrieve list of HBase tables
 tables = client.getTableNames()
 print(tables)
Close connection
 httpClient.close()

Example-2 THttpClient in Unsecure Cluster

Let us consider that the cluster is unsecured with the configuration properties mentioned in the HBase thrift
configurations table under the Default value (unsecured) column.

from thrift.transport import THttpClient
from thrift.protocol import TBinaryProtocol
from hbase.Hbase import Client
Replace with your own parameters
hostname = 'your_hbase_thrift_server_hostname'

Initialize THttpClient
httpClient = THttpClient.THttpClient('http://' + hostname + ':9090/')

Initialize TBinaryProtocol with THttpClient
protocol = TBinaryProtocol.TBinaryProtocol(httpClient)

Create HBase client
client = Client(protocol)

Retrieve list of HBase tables
tables = client.getTableNames()
print(tables)

Close connection
httpClient.close()

Example-3 TSaslClientTransport in Secure Cluster without HTTP

If you do not use THttpClient and want to use TSaslClientTransport for legacy compatibility reasons,
ensure that you set hbase.regionserver.thrift.http property to false. The other settings could be same as the
configuration properties mentioned in the HBase thrift configurations table under the Default value (secured) column.

from thrift.transport import TSocket
from thrift.transport import TTransport
from thrift.protocol import TBinaryProtocol
from thrift.protocol import TCompactProtocol
from hbase import Hbase

'''
Assume you already kinit the hbase principal, or you can use the function
 in example-1 to kinit.
'''
Replace with your own parameters
thrift_host = 'your_hbase_thrift_server_hostname'
thrift_port = 9090

Initialize TSocket and TTransport
socket = TSocket.TSocket(thrift_host, thrift_port)

24

Cloudera Runtime Use the Hue HBase app

transport=TTransport.TSaslClientTransport(socket,host=thrift_host,service='
hbase',mechanism='GSSAPI')

Initialize TCompactProtocol with TTransport
protocol = TCompactProtocol.TCompactProtocol(transport)

Create HBase client
client = Hbase.Client(protocol)

Open connection and retrieve list of HBase tables
transport.open()
tables = client.getTableNames()
print(tables)

Close connection
transport.close()

Cloudera recommends you to use the HTTP options (Example-1 and Example-2). You can consider the Example-3
for legacy compatibility issues where some old applications might not rewrite the codes. This is because Hue is using
HTTP mode to interact with HBase thrift, and if you disable the HTTP mode, Hue might not work properly with
HBase.

Known bugs while using TSaslClientTransport with Kerberos enabled CDP versions

Upstream JIRA HBASE-21652, where a bug is introduced related to Kerberos principal handling. The affected
versions are CDP 7.1.6 and earlier. The versions containing the fix are 7.1.7, 7.2.11, and later.

Related Information
Using the HBase Thrift Interface, Part 1

Using the HBase Thrift Interface, Part 2

Python interaction with HBase Thrift proxy in Secured Cluster

Apache Thrift document

Use the Hue HBase app

Hue is a web-based interactive query editor that enables you to interact with data warehouses. You can use the HBase
Browser application in Hue to create and browse HBase tables.

The HBase Hue app enables you to insert a new row or bulk upload CSV files, TSV files, and type data into your
table. You can also insert columns into your row. If you need more control or data about your cell, you can use the
full editor to edit a cell.

25

https://issues.apache.org/jira/browse/HBASE-21652
https://blog.cloudera.com/blog/2013/09/how-to-use-the-hbase-thrift-interface-part-1/
https://blog.cloudera.com/blog/2013/12/how-to-use-the-hbase-thrift-interface-part-2-insertinggetting-rows/
https://community.cloudera.com/t5/Community-Articles/Python-interaction-with-HBase-Thrift-proxy-in-Kerberos-SSL/ta-p/324704
https://thrift.apache.org/

Cloudera Runtime Use the Hue HBase app

If you are using the HBase Thrift interface, Hue fits in between the Thrift Server and the HBase client, and the Thrift
Server assumes that all HBase operations come from the hue user and not the client. To ensure that users in Hue are
only allowed to perform HBase operations assigned to their own credentials, and not those of the hue user, you must
enable doAs Impersonation for the HBase Browser Application.

Related Information
Hue

Configure the HBase thrift server role
You must configure the Thrift Server Role to access certain features such as the Hue HBase browser.

About this task
The Thrift Server role is not added by default when you install HBase, but it is required before you can use certain
other features such as the Hue HBase browser. To add the Thrift Server role:

Procedure

1. Go to the HBase service.

2. Click the Instances tab.

3. Click the Add Role Instances button.

4. Select the host(s) where you want to add the Thrift Server role (you only need one for Hue) and click Continue.
The Thrift Server role should appear in the instances list for the HBase server.

5. Select the Thrift Server role instance.

6. Select Actions for Selected > Start.

26

https://gethue.com/

	Contents
	Use the HBase shell
	Virtual machine options for HBase Shell
	Script with HBase Shell

	Use the HBase command-line utilities
	Use the HBase APIs for Java
	Use the HBase REST server
	Installing the REST Server using Cloudera Manager
	Using the REST API
	Using the REST proxy API

	Use the Apache Thrift Proxy API
	Use the Hue HBase app
	Configure the HBase thrift server role

