Cloudera Runtime 7.1.6

Developing Apache Spark Applications

Date published: 2021-02-29
Date modified: 2021-03-19

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

18 oo [ox 1 o o TSR 5
Spark application MOE...........coouiiiiiie e 5
Spark execution MOUE..........coouiiiiiiiee e e 5
Developing and running an Apache Spark WordCount application................... 6
Using the Spark DataFrame APl ...t 9
Building Spark ApPPliCAtIONS........ccoiiiiiiiiiieie e 11
Best practices for building Apache Spark appliCations...........coereieriiieiie e 11
Building reusable modules in Apache Spark appliCations............coeoereeieirienerere e 11
Packaging different versions of libraries with an Apache Spark application............cccceeevrininninie i 13
USING SPArK SQL ..eieeeiieciiecie e se ettt sae et essaeeseesneeeseesneeenseens 13
SQLCONEXT AN HIVECONIEXL.......ccueeeeeeetireeiectese st seee e se et teseestesbeseeseessenteneeneesenneeseesessessessenes 14
QuUErYing fileS INLO 8 DALAFTAIMIE.c.eiiuirietereet ettt st b e bbbt et b et b e b e et st eb e e ebe e 15

SPAK SQL EXBMPIE.. ...ttt ettt ettt et e ekt s e bt e st s b et b e e b et e b e seeb e se ek e se ke seebesee bt se e st nb et sb e nre e 15
INtEraCting WIth HIVE VIBWS. ...ttt 17
Performance and storage considerations for Spark SQL DROP TABLE PURGE..........cccoceveieveiecccenceee, 17
TIMESTAMP compatibility for ParqUEL filES.........ccooiiriiireee e 18
Accessing Spark SQL through the Spark ShElL..........ccoeii e 20
Calling Hive user-defined functions (UDFS).........cccovvviieiie e, 20
USING SPark SErEaMING......cooeeiiieiieiie et sseesseeereesnee s 21
Spark Streaming and DYNaMIC AlTOCATON.co.iiiie it b e seen 22

Spark SrEaMING EXBMIPIE.....cc.oiiiiieiitiee ittt bt bt s e bt se e b e e e e e et et eaeebesaeebeebesbeseesba b es 22
Enabling fault-tolerant processing in Spark StreaminNg.........ccooeeieririniene e e 24
Configuring authentication for long-running Spark Streaming jObS..........cocooeiiierene e 25
Building and running a Spark Streaming appliCalion............cceoereeiriereneeere e eaea 25
Sample pom.xml file for Spark Streaming wWith Kafka............ccoooiiiiiininee s 27
Accessing external storage from Spark........cccocceveeieenieeecieese e 29
Accessing data stored in AmMazon S3 through SParK..........c.ccereiieineinie e 30
Examples of accessing Amazon S3 data from SPark..........cocceveerenninniensenese e 30

AccessiNg HiVe from SParkK.......ccccceeiee et 33

Accessing HDFS Files from Spark.......ccocevieieenie e 34

Accessing ORC Data in Hive TabIes.........ccccveiie e 34
Accessing ORC fIl€S FrOM SPArK......ccviiiiiiie ittt sr et e e e e e e e e e e e seesesnesneerenrenes 35
Predicate push-dowWn OPtiMiZELION..........c.cciiieierieeeee et st se e e e e e e e e reeressesnesreseesrenreeenes 36
Loading ORC data into DataFrames using predicate puSh-0OWN..........ccccovvorriirieiesese e 36
Optimizing queries using Partition PrUNING.........ccceeeruereereereeiereseseseseesre e ssessessesseseesesesessessessessessessessessensen 37
Enabling VECtOrized QUENY EXECULION..........cceieieirierieseesieie e et s sttt st et e e e se e e e e e nesreesesnesnesreseeseens 37
Reading HiVe ORC tADIES........ci i st r et s re st et sr e tetesee e e neeneenneneas 38

Accessing Avro data filesfrom Spark SQL applications..........ccccevveeeiennennnne 38

Accessing Parquet filesfrom Spark SQL applications..........cccceveeveveenieeiiieennnnns 40

USING SPArk MLITD ... 40
Running a Spark MLITD @XaMPIE.......ccociiiiiices et sttt st neeneeresnenne s 40
Enabling Native Acceleration FOr MLIID........cocieieceecseee e 40

Using custom libraries with Spark........ccooiiiiii e 41

Cloudera Runtime Introduction

Apache Spark enables you to quickly develop applications and process jobs.

Apache Spark is designed for fast application development and processing. Spark Coreis the underlying execution
engine; other services, such as Spark SQL, MLIib, and Spark Streaming, are built on top of the Spark Core.

Depending on your use case, you can extend your use of Spark into several domains, including the following:

e Spark DataFrames

» Spark SQL

« Cdling Hive user-defined functions from Spark SQL

e Spark Streaming

» Accessing HBase tables, HDFSfiles, and ORC data (Hive)
« Using custom libraries

Apache Spark Quick Start
Apache Spark Overview
Apache Spark Programming Guide

Apache Spark iswidely considered to be the successor to MapReduce for general purpose data processing on Apache
Hadoop clusters. Like MapReduce applications, each Spark application is a self-contained computation that runs user-
supplied code to compute aresult. Aswith MapReduce jobs, Spark applications can use the resources of multiple
hosts. However, Spark has many advantages over MapReduce.

In MapReduce, the highest-level unit of computation isajob. A job loads data, applies a map function, shuffles

it, applies areduce function, and writes data back out to persistent storage. In Spark, the highest-level unit of
computation is an application. A Spark application can be used for asingle batch job, an interactive session with
multiple jobs, or along-lived server continually satisfying requests. A Spark application can consist of more than just
asingle map and reduce.

MapReduce starts a process for each task. In contrast, a Spark application can have processes running on its behalf
even when it's not running a job. Furthermore, multiple tasks can run within the same executor. Both combine to
enable extremely fast task startup time as well asin-memory data storage, resulting in orders of magnitude faster
performance over MapReduce.

Spark application execution involves runtime concepts such as driver, executor, task, job, and stage. Understanding
these conceptsis vital for writing fast and resource efficient Spark programs.

At runtime, a Spark application maps to a single driver process and a set of executor processes distributed across the
hostsin acluster.

The driver process manages the job flow and schedules tasks and is available the entire time the application is
running. Typically, this driver process is the same as the client process used to initiate the job, although when run on
Y ARN, the driver can run in the cluster. In interactive mode, the shell itself is the driver process.

https://spark.apache.org/docs/2.0.0/quick-start.html
https://spark.apache.org/docs/2.0.1/
https://spark.apache.org/docs/2.0.0/programming-guide.html

Cloudera Runtime Developing and running an Apache Spark WordCount application

The executors are responsible for performing work, in the form of tasks, aswell asfor storing any data that you
cache. Executor lifetime depends on whether dynamic allocation is enabled. An executor has a number of slots for
running tasks, and will run many concurrently throughout its lifetime.

Spark driver

Job | | Job

Executor Executor Executor

| Task | | Task | | Task Task [Task

Invoking an action inside a Spark application triggers the launch of ajob to fulfill it. Spark examines the dataset
on which that action depends and formulates an execution plan. The execution plan assembles the dataset
transformationsinto stages. A stageis a collection of tasks that run the same code, each on a different subset of the
data.

Thistutorial describes how to write, compile, and run a simple Spark word count application in two of the languages
supported by Spark: Scala and Python. The Scala code was originally developed for a Cloudera tutorial written by
Sandy Ryza.

This example application is an enhanced version of WordCount, the canonical MapReduce example. In this version of
WordCount, the goal is to learn the distribution of letters in the most popular words in a corpus. The application:

1. Creates a SparkConf and SparkContext. A Spark application corresponds to an instance of the SparkContext class.
When running a shell, the SparkContext is created for you.

Gets aword frequency threshold.

Reads an input set of text documents.

Counts the number of times each word appears.

Filters out all words that appear fewer times than the threshold.

6. For the remaining words, counts the number of times each letter occurs.

oW

In MapReduce, this requires two MapReduce applications, as well as persisting the intermediate datato HDFS
between them. In Spark, this application requires about 90 percent fewer lines of code than one developed using the
MapReduce API.

1. Create an empty directory named sparkwordcount in your home directory, and enter it:

nmkdi r $HOVE/ spar kwor dcount
cd $HOVE/ spar kwor dcount

2. For the Scalaversion, create the ./com/cloudera/sparkwordcount subdirectories. For Python, skip this step.

nkdir -p cont cl ouder a/ spar kwor dcount

https://github.com/sryza/simplesparkapp
https://cwiki.apache.org/confluence/display/HADOOP2/WordCount
https://spark.apache.org/docs/1.5.0/api/scala/index.html#org.apache.spark.SparkConf
https://spark.apache.org/docs/1.5.0/api/scala/index.html#org.apache.spark.SparkContext

Cloudera Runtime Developing and running an Apache Spark WordCount application

3. Create the WordCount program in either Scala or Python, using the specified file names and paths:
» Scala (./com/cloudera/sparkwordcount/SparkWordCount.scala

i mport org.apache. spar k. Spar kCont ext
i nport org. apache. spark. Spar kCont ext . _
i mport org.apache. spar k. Spar kConf

obj ect Spar kWor dCount {
def main(args: Array[String]) {
/| create Spark context with Spark configuration
val sc = new Spar kCont ext (new Spar kConf (). set AppNane(" Spar kWor dCou

nt"))

/1 get threshold
val threshold = args(1).tolnt

/] read in text file and split each docunent into words
val tokenized = sc.textFile(args(0)).flatMap(_.split(" "))

// count the occurrence of each word
val wordCounts = tokenized. map((_, 1)).reduceByKey(_ +)

/[l filter out words with fewer than threshold occurrences
val filtered = wordCounts.filter(_. 2 >= threshol d)

/' count characters
val charCounts = filtered.flatMap(_. _1.toCharArray).map((_, 1)).re
duceByKey(_ +)

System out . printl n(charCounts. collect().nkString(", "))

}
}

* Python (./SparkWordCount.py):

i nport sys

from pyspark inport SparkContext, SparkConf

if nane_ =="_ main_":
create Spark context with Spark configuration
conf = SparkConf (). set AppNanme(" Spar kWor dCount ")
sc = Spar kCont ext (conf =conf)
get threshold

threshold = int(sys.argv[2])

read in text file and split each docunent into words
t okeni zed = sc.textFile(sys.argv[1]).flatMap(lanbda line: line.split("

"))

count the occurrence of each word
wor dCount s = tokeni zed. map(l anbda word: (word, 1)).reduceByKey(| anbda
vl, v2: vl +v2)

filter out words with fewer than threshold occurrences
filtered = wordCounts.filter(lanbda pair:pair[1] >= threshold)

count characters
charCounts = filtered.fl at Map(l anbda pair:pair[0]).map(lanbda c: c).m
ap(lambda c: (c, 1)).reduceByKey(lanmbda v1,v2:vl +v2)

list = charCounts.collect()
print repr(list)[1:-1]

Cloudera Runtime Developing and running an Apache Spark WordCount application

This tutorial uses Maven to compile and package the Scala program. Download the tutorial pom.xml file to the parent
$HOME/sparkwordcount directory and modify the sections listed below. For best practices using Maven to build
Spark applications, see Building Spark Applications on page 11.

4. Inthe application pom.xml file, include the Scala tools repo and plugin, and add Scala and Spark as dependencies:

<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<i d>scal a-t ool s. org</i d>
<name>Scal a-t ool s Maven2 Reposit ory</ name>
<url >http://scal a-tool s. org/repo-rel eases</url >
</ pl ugi nReposi tory>
</ pl ugi nReposi tori es>

<bui | d>
<sour ceDi rect ory>${ proj ect. basedi r} </ sourceDi rect ory>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. scal a-t ool s</ gr oupl d>
<artifactld>nmaven-scal a- pl ugi n</artifactld>
<versi on>2. 15. 2</ ver si on>
<executi ons>
<executi on>
<goal s>
<goal >conpi | e</ goal >
<goal >t est Conpi | e</ goal >
</ goal s>
</ execution>
</ executi ons>
</ pl ugi n>

<dependenci es>
<dependency>
<gr oupl d>or g. scal a- | ang</ gr oupl d>
<artifactld>scal a-library</artifactld>
<version>2.11. 12</ver si on>
<scope>pr ovi ded</ scope>
</ dependency>
<dependency>
<gr oupl d>or g. apache. spar k</ gr oupl d>
<artifactld>spark-core_2.11</artifactld>
<version>2.4.0.7.0.0.0</versi on>
<scope>pr ovi ded</ scope>
</ dependency>
</ dependenci es>

5. Make sure that you are in the parent $HOME/sparkwordcount directory, and then generate the application JAR as
follows:

nm/n package

This creates sparkwordcount-0.0.1-SNAPSHOT .jar in the target directory.

The input to the application is alarge text file in which each line contains al the words in a document, stripped of
punctuation. Put an input file in adirectory in an S3 bucket that is accessible by your Spark cluster. Y ou can use the
tutorial example input file.

6. Run the applications using spark-submit:
» Scalaon YARN with threshold 2:

spark-submt --class Spar kWrdCount \
--master yarn --depl oy-node client --executor-nenory 1g \

8

https://raw.githubusercontent.com/sryza/simplesparkapp/master/pom.xml
https://raw.githubusercontent.com/sryza/simplesparkapp/master/data/inputfile.txt

Cloudera Runtime Using the Spark DataFrame API

--conf "spark.yarn. access. hadoopFi | eSyst ens=s3a: // <BUCKET _NAME>" \
t ar get/ spar kwor dcount - 0. 0. 1- SNAPSHOT. j ar \
s3a: / / <BUCKET_NAME>/ <I NPUT_FI LENAVE> 2

e Python on YARN with threshold 2:

spark-submt --master yarn --depl oy-node client --executor-nenory 1g \
--conf "spark.yarn. access. hadoopFi | eSyst ens=s3a: // <BUCKET _NAME>" \
Spar kWor dCount . py s3a:// <BUCKET_NAME>/ <I NPUT_FI LENAVE> 2

If you used the example input file, the output is similar to the following:
Scala

19/ 07/ 24 09: 18:57 | NFO schedul er. DAGSchedul er: Job O finished: collect at
Spar kWor dCount . scal a: 25, took 10. 188651 s

(p,2), (t,2), (b,1), (h,1), (n,4), (f,1), (v.1), (r,2), (1,1), (e, 6), (a
4, (1), (u 1), (0,2), (c, 1)

Python:

19/ 07/ 24 09: 23: 55 | NFO schedul er. DAGSchedul er: Job O finished: collect a
t /home/ user/ spar kwor dcount / Spar kWor dCount . py: 26, took 11.762150 s
(ua, 4, (uc, 1), (ue, 6), (ui', 1), (uvo, 2, (uu, 1), (ub,
1, (uf', 1), (uvh, 1), (ul', 1), (un, 4, (up', 2), (ur', 2), (u
"t', 2), (u'v', 1)

A DataFrameis adistributed collection of data organized into named columns. It is conceptually equivaent to atable
inarelationa database or adataframein R or in the Python pandas library. Y ou can construct DataFrames from a
wide array of sources, including structured data files, Apache Hive tables, and existing Spark resilient distributed
datasets (RDD). The Spark DataFrame API is available in Scala, Java, Python, and R.

This section provides examples of DataFrame API use.
To list JSON file contents as a DataFrame:

1. Upload the people.txt and people.json example files to your object store:

hdf s dfs -put people.txt people.json s3a://<BUCKET NAME>/
2. Launch the Spark shell:

spar k-shell --conf "spark.yarn.access. hadoopFi | eSyst ens=s3a:
/ | <BUCKET NAME>/ "

3. At the Spark shell, type the following:

scal a> val df = spark.read.format("json").|oad("s3a://<BUCKET NAVE>/ peo
ple.json")

4, Using df.show, display the contents of the DataFrame:

scal a> df . show

https://raw.githubusercontent.com/apache/spark/branch-2.4/examples/src/main/resources/people.txt
https://raw.githubusercontent.com/apache/spark/branch-2.4/examples/src/main/resources/people.json

Cloudera Runtime Using the Spark DataFrame API

fecocodooocooo +
nul I'	M chael
30	Andy
19	Justin
foocoocdfoooocoo +

The following examples use Scala to access DataFrame df defined in the previous subsection:

/1 Select all rows, but increnent age by 1
scal a> df . sel ect (df ("name"), df("age") + 1).show()

fecooooc feccoocooc +
[name| (age + 1)|
fooocoooc feocococooooc +
| M chael | nul | |
[Andy| 31|
| Justin| 20|
fecooooc feccoocooc +

/1 Sel ect people ol der than 21

scala> df .filter(df ("age") > 21).show()
o oo g o oo dn

| age| nane|

e codo oo

| 30| Andy|

e

/1 Count people by age
scal a> df. groupBy("age").count().show)

de e e heae o +
| age| count |
Focoocqooococ +
| 19| 1|
[nul I'] 1]
| 30| 1
LSS LE S +

The following example uses the DataFrame API to specify a schemafor people.txt, and then retrieves names from a
temporary table associated with the schema:

val people = sc.textFile("s3a://<BUCKET NAME>/ peopl e. txt")

val schenmaString = "nane age"

i mport org.apache. spark.sql.types. {Struct Type, Struct Fi el d, Stri ngType}
i mport org.apache. spark. sql . Row

val schema = Struct Type(schenmaString.split(" ").map(fieldNane => StructField
(fieldName, StringType, true)))

val rowRDD = people.map(_.split(",")).map(p => Rowm(p(0), p(1).trim)

val peopl eDat aFrame = spar k. cr eat eDat aFr ame(r owRDD, schema)

peopl eDat aFr ane. cr eat eOr Repl aceTenpVi ew(" peopl e")
val results = spark.sql ("SELECT nane FROM peopl e")
results. map(t => "Nane: " + t(0)).collect().foreach(println)

This produces output similar to the following:
Nanme: M chael

Name: Andy
Nanme: Justin

10

Cloudera Runtime Building Spark Applications

Y ou can use Apache Maven to build Spark applications devel oped using Java and Scala.

For the Maven properties of CDH components, see Using the Cloudera Runtime Maven Repository.

Follow these best practices when building Apache Spark Scala and Java applications:

« Compile your applications against the same version of Spark that you are running.
e Build asingle assembly JAR ("Uber" JAR) that includes all dependencies. In Maven, add the Maven assembly
plug-in to build a JAR containing all dependencies:

<pl ugi n>
<artifactld>maven-assenbl y-pl ugi n</artifactld>
<confi guration>
<descri pt or Ref s>
<descri pt or Ref >j ar - wi t h- dependenci es</ descri pt or Ref >
</ descri pt or Ref s>
</ configuration>
<executions>
<execut i on>
<i d>nake- assenbl y</i d>
<phase>package</ phase>
<goal s>
<goal >si ngl e</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

This plug-in manages the merge procedure for all available JAR files during the build. Exclude Spark, Hadoop,
and Kafka classes from the assembly JAR, because they are already available on the cluster and contained in the
runtime classpath. In Maven, specify Spark, Hadoop, and Kafka dependencies with scope provided. For example:

<dependency>
<gr oupl d>or g. apache. spar k</ gr oupl d>
<artifactld>spark-core_2.11</artifactld>
<version>2.4.0.7.0.0.0</versi on>
<scope>pr ovi ded</ scope>

</ dependency>

Using existing Scala and Java classes inside the Spark shell requires an effective deployment procedure and
dependency management. For ssmple and reliable reuse of Scala and Java classes and complete third-party libraries,
you can use amodule, which is a self-contained artifact created by Maven. This module can be shared by multiple
users. This topic shows how to use Maven to create a module containing all dependencies.

11

https://maven.apache.org/
https://docs.cloudera.com/runtime/7.2.8/release-notes/topics/cdpdc-maven-repo.html

Cloudera Runtime Building Spark Applications

1. Use Maven to generate the project directory:

$ nvn archetype: generate - Dgroupl d=COM MYCOVPANY - Darti fact | d=MYLI BRARY \
- DarchetypeArti fact| d=naven- archet ype- qui ckstart -Di nteractiveMde=fal se

1. Prepare alocation for al third-party libraries that are not available through Maven Central but are required for the
project:

nkdir |ibs
cd libs

Download the required artifacts.

Use Maven to deploy the library JAR.

Add the library to the dependencies section of the POM file.

Repeat steps 2-4 for each library. For example, to add the JIDT library:

akrcwn

a. Download and decompress the zip file:

curl http://lizier.nmel/joseph/software/jidt/downl oad. php?fil e=i nfodynam c
s-dist-1.3.zip > infodynam cs-dist-1.3.zip
unzi p i nfodynam cs-dist-1.3.zip

b. Deploy thelibrary JAR:
$ nvn depl oy: depl oy-file \
-Durl=file:///$HOVE/ . nR2/repository -Dfile=libs/infodynam cs.jar \

-Dgroupld=org.jlizier.infodynam cs -Dartifactld=i nfodynamn cs - Dpackag
i ng=j ar -Dversion=1.3

c. Add thelibrary to the dependencies section of the POM file:

<dependency>
<groupl d>org.jlizier.infodynamn cs</groupl d>
<artifactld>i nfodynam cs</artifactld>
<ver si on>1. 3</ver si on>

</ dependency>

6. Add the Maven assembly plug-in to the plugins section in the pom.xml file.
7. Packagethelibrary JARsin amodule:

mvn cl ean package

1. Runthe Spark shell, providing the module JAR in the --jars option:

spark-shell --jars target/nylibrary-1.0- SNAPSHOT-| ar - wi t h- dependenci es. j ar

12

http://search.maven.org/
https://github.com/jlizier/jidt

Cloudera Runtime

Using Spark SQL

Environment

Runtime Information
Name

Java Home

Java Version

Scala Version

Spark Properties

. In the Environment tab of the Spark Web Ul application (http://DRIVER_HOST:4040/environment/), validate that
the spark.jars property contains the library. For example:

Value
Just/javasjdk.7.0_67-cloudera/jre
1.7.0_67 (Qracle Gorporation)

version 2.10.4

Name Value

spark.serializer org.apache.spark.serializer.KryoSerializer

spark.driver.host 172.26.26.126

spark.eventLog.enabled true

spark.driver.port 39021

spark.shuffle.service.enabled true

spark.driver.extralibraryPath Jopt/cloudera/parcels/CDH-5.5.1-1.cdh5.5.1.p0.11/lib/hadoop/lib/native

spark.repl.class.uri http://172.26.26.126:52069

spark.jars file:/var/lib/hadoop-hdis/mylibrary/target/mylibrary-1.0-SNAPSHOT-jar-with-dependencies.jar

3. Inthe Spark shell, test that you can import some of the required Java classes from the third-party library. For
example, if you usethe JIDT library, import MatrixUtils:

$ spark-shel |

scal a> inport infodynam cs.utils. MatrixUWils;

To useaversion of alibrary in your application that is different than the version of that library that is shipped with

Spark, use the Apache Maven Shade Plugin. This processis technically known as rel ocation, and often referred to as
shading.

See Relocating Classes for an example.

This section provides information about using Spark SQL.

Using SQL Context, Apache Spark SQL can read data directly from the file system. Thisis useful when the data you
are trying to analyze does not reside in Apache Hive (for example, JSON files stored in HDFS).

Using HiveContext, Spark SQL can also read data by interacting with the Hive MetaStore. If you already use Hive,
you should use HiveContext; it supports all Hive data formats and user-defined functions (UDFs), and it enables you
to have full access to the Hive parser. HiveContext extends SQL Context, so HiveContext supports all SQL Context
functionality.

There are two ways to interact with Spark SQL.:

« Interactive access using the Spark shell (see "Accessing Spark SQL through the Spark Shell” in this guide).
« From an application, operating through one of the following two APIs and the Spark Thrift server:

« JDBC, using your own Java code or the Beeline JDBC client
« ODBC, through the Simba ODBC driver

For more information about JDBC and ODBC access, see "Accessing Spark SQL through JDBC: Prerequisites’
and "Accessing Spark SQL through JDBC and ODBC" in this guide.

13

https://maven.apache.org/plugins/maven-shade-plugin/
https://maven.apache.org/plugins/maven-shade-plugin/examples/class-relocation.html

Cloudera Runtime Using Spark SQL

The following diagram illustrates the access process, depending on whether you are using the Spark shell or business
intelligence (BI) application:

The following diagram illustrates the access process, depending on whether you are using the Spark shell or business
intelligence (BI) application:

Bl Application
L @ ¢ @
JDBC / ODBC
Spark shell T2
SQLszext HNECT i Spark Thrift Server
@)
@ ® Hive Metastore @
HDFS

The following subsections describe how to access Spark SQL through the Spark shell, and through JDBC and ODBC.

Beeline Command Line Shell

Beginning in Spark 2.0, al Spark functionality, including Spark SQL, can be accessed through the SparkSessions
class, available as spark when you launch spark-shell. Y ou can create a DataFrame from an RDD, aHive table, or a
data source.

Note: Hive and Impalatables and related SQL syntax are interchangeable in most respects. Because Spark

E uses the underlying Hive infrastructure, with Spark SQL you write DDL statements, DML statements, and
queries using the Hive syntax. For interactive query performance, you can access the same tables through
Impala using impala-shell or the Impala JDBC and ODBC interfaces.

If you use spark-submit, use code like the following at the start of the program (this example uses Python):

from pyspark inport SparkContext, H veContext
sc = SparkCont ext (appNanme = "test")
sql Cont ext = Hi veCont ext (sc)

The host from which the Spark application is submitted or on which spark-shell or pyspark runs must have a Hive
gateway role defined in Cloudera Manager and client configurations deployed.

When a Spark job accesses a Hive view, Spark must have privileges to read the data files in the underlying Hive
tables. Currently, Spark cannot use fine-grained privileges based on the columns or the WHERE clause in the view

14

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-Beeline%E2%80%93CommandLineShell

Cloudera Runtime Using Spark SQL

definition. If Spark does not have the required privileges on the underlying data files, a SparkSQL query against the
view returns an empty result set, rather than an error.

If you have data files that are outside of a Hive or Impalatable, you can use SQL to directly read JSON or Parquet
filesinto a DataFrame.

df

sql Cont ext.sql ("SELECT * FROM json. INPUT DIR ")

df sqgl Cont ext . sql ("SELECT * FROM parquet. |INPUT DIR ")

This example demonstrates how to use spark.sgl to create and load two tables and select rows from the tables into two
DataFrames. The next steps use the DataFrame API to filter the rows for salaries greater than 150,000 from one of the
tables and shows the resulting DataFrame. Then the two DataFrames are joined to create a third DataFrame. Finally
the new DataFrameis saved to aHive table.

1. Copy the Hue sample_07.csv and sample_08.csv filesto your object store in alocation accessible by the Spark
cluster:

hdf s dfs -put /opt/cl ouderal parcel s/ COH |i b/ hue/ apps/ beeswax/ dat a/ sanpl e
_0* s3a://<BUCKET_NAME>/

2. Launch spark-shell:

spark-shell --conf "spark.yarn.access. hadoopFi | eSyst ens=s3a:
| | <BUCKET_NAME>"

3. Create Hive tables sample_07 and sample_08:

scal a> spark. sql (" CREATE EXTERNAL TABLE sanpl e_07 (code string, description
string,total _enp int,salary int) ROVNFORVAT DELI M TED FI ELDS TERM NATED B

Y '\t' STORED AS TextFil e LOCATI ON 's3a:// <BUCKET_NAME>/ s07/'")

scal a> spark. sql (" CREATE EXTERNAL TABLE sanpl e_08 (code string, descri pt

ion string,total _enp int,salary int) RONFORVAT DELI M TED FI ELDS TERM NA

TED BY '\t' STORED AS TextFil e LOCATI ON 's3a:// <BUCKET_NAME>/s08/'")

4. In another session, launch Begline:

beeline -u "jdbc: hive2://<H VESERVER2 HOST>: 10001/ def aul t; pri nci pal =hi ve/
_HOST@CLOUDERA. SI TE; t r anspor t Mode=ht t p; ht t pPat h=cl i servi ce"

5. In Bedling, show the Hive tables:

0: jdbc: hive2://hs2.cloudera.site:> show tabl es;

feccoocoocoon +- -+
| tab_nane |
Fococococoooe +- -+
| sanple_07 |
| sanple_08 |

15

Cloudera Runtime Using Spark SQL

6. Inthe Spark shell, load the data from the CSV filesinto the tables:

scal a> spark. sql ("LOAD DATA | NPATH ' s3a:// <BUCKET NAME>/ sanpl e_07. csVv'
OVERWRI TE | NTO TABLE sanpl e_07")
scal a> spark. sql ("LOAD DATA | NPATH ' s3a: // <BUCKET _NAME>/ sanpl e_08. csv'
OVERWRI TE | NTO TABLE sanpl e_08")

7. Create DataFrames containing the contents of the sample_07 and sample_08 tables:

scal a> val df_07
scal a> val df_08

spark. sql ("SELECT * from sanple_07")
spark. sql ("SELECT * from sanpl e_08")

8. Show all rowsin df_07 with salary greater than 150,000:

scal a> df _07.filter(df _07("salary") > 150000).show()

The output should be:
feccoooo frccoccococoocococooooo feccoococo focoooo +
[code| description|total enp|sal ary]|
foccoooo fooccoccococcocococooooo fooccooocooo Foccooo +
11- 1011] Chi ef executives]	299160 151370			
29-1022	Oral and nmexillof...	5040	178440	
29- 1023	Ot hodonti st s	5350] 185340		
29- 1024 Pr ost hodonti st s	380	169360]		
29- 1061	Anest hesi ol ogi st s	31030	192780	
29-1062	Fam	y and genera.. .	113250]	153640
29-1063	Internists, general	46260	167270	
29- 1064	Cbstetricians and.. .	21340] 183600]		
29- 1067 Sur geons	50260] 191410			
29- 1069	Physi ci ans and su. . .	237400 155150		
feccoooo feccoccocoooccocooooo feccoococs fecoooo +

9. Createthe DataFrame df 09 by joining df 07 and df 08, retaining only the code and description columns.
scala> val df _09 = df _07.join(df _08, df_07("code") === df _08("code")). se
| ect (df _07.col ("code"), df _07.col ("description"))
scal a> df _09. order By($"code". asc). show()

The new DataFrame looks like:

feccoooo feccoccococooccocooooo +
| code| descri ption|
fooocoooo feccococococococooocoocoooo +
| 00- 0000| Al'l Qccupati ons|
| 11- 0000|] Managenent occupa. . . |
| 11-1011] Chi ef executives]|
| 11- 1021| General and opera.. .|
| 11-1031] Legi sl at or s|

| 11-2011| Advertising and p...
| 11- 2021| Marketing managers|
| 11- 2022| Sal es manager s|
| 11-2031| Public relations ..
| 11- 3011| Admi ni strative se..
| 11- 3021| Conput er and i nfo..
| 11-3031| Financial managers
| 11- 3041| Conpensati on and ..
| 11- 3042| Trai ni ng and deve. .
| 11- 3049| Human resources m. .
| 11- 3051 I ndustri al produc..

I
I
I
I
|
|
I
| 11- 3061| Purchasi ng nmanagers|

16

Cloudera Runtime

Using Spark SQL

11- 3071	Transportation, s...
11-9011	Farm ranch, and ...
11-9012	Farmers and ranchers]

10. Save DataFrame df 09 as the Hive table sample_09:

scal a> df _09.wite.option("path", "s3a://<BUCKET_NAME>/ s09/"). saveAsTabl e(
"sanpl e_09")

11. In Bedline, show the Hive tables:

0: jdbc: hive2://hs2.cloudera.site:> show tabl es;

foocococooccoocoo +- -+
| tab_name |
feccoocococooo +- -+
| sanple 07 |
| sanple 08 |
| sanple_09 |
foocococooccoocoo +- -+

Hereis an equivaent program in Python, that you could submit using spark-submit:

from pyspark inport SparkContext, SparkConf, Hi veContext

i f

__nane__ =="__main__

create Spark context with Spark configuration
conf = SparkConf().set AppNane("Data Franme Joi n")
sc = Spar kCont ext (conf =conf)

sql Cont ext = Hi veCont ext (sc)

df _07 = sql Context.sql ("SELECT * from sanple_07")
df _07.filter(df _07.salary > 150000).show)

df _08 = sql Context.sqgl ("SELECT * from sanpl e_08")
tbls = sql Context.sqgl ("show tabl es")

tbls. show()

df _09 = df _07.join(df_08, df _07.code == df _08. code). sel ect (df _07. code, d
07. descri ption)

df _09. show()

df _09.wite.saveAsTabl e("sanpl e _09")

tbls = sql Context.sqgl ("show tabl es")

t bl s. show()

E Note: Instead of displaying the tables using Beeline, the show tables query isrun using the Spark SQL API.

When a Spark job accesses a Hive view, Spark must have privileges to read the data files in the underlying Hive
tables. Currently, Spark cannot use fine-grained privileges based on the columns or the WHERE clause in the view
definition. If Spark does not have the required privileges on the underlying data files, a SparkSQL query against the
view returns an empty result set, rather than an error.

17

Cloudera Runtime Using Spark SQL

The PURGE clausein the Hive DROP TABLE statement causes the underlying data files to be removed
immediately, without being transferred into a temporary holding area (such as the HDFS trashcan).

Although the PURGE clause is recognized by the Spark SQL DROP TABLE statement, this clauseis currently not
passed along to the Hive statement that performs the “drop table” operation behind the scenes. Therefore, if you know
the PURGE behavior isimportant in your application for performance, storage, or security reasons, do the DROP
TABLE directly in Hive, for example through the beel i ne shell, rather than through Spark SQL.

The immediate deletion aspect of the PURGE clause could be significant in cases such as:

« |If the cluster is running low on storage space and it is important to free space immediately, rather than waiting for
the HDFS trashcan to be periodically emptied.

 If the underlying datafiles reside on the Amazon S3 filesystem. Moving files to the HDFS trashcan from S3
involves physically copying the files, meaning that the default DROP TABLE behavior on S3 involves significant
performance overhead.

» If the underlying datafiles contain sensitive information and it isimportant to remove them entirely, rather than
leaving them to be cleaned up by the periodic emptying of the trashcan.

Impala stores and retrieves the TIMESTAMP values verbatim, with no adjustment for the time zone. When writing
Parquet files, Hive and Spark SQL both normalize all TIMESTAMP values to the UTC time zone. During a query,
Spark SQL assumes that all TIMESTAMP values have been normalized this way and reflect dates and timesin the
UTC time zone. Therefore, Spark SQL adjusts the retrieved date/time values to reflect the local time zone of the
server. SPARK-12297 introduces a configuration setting, spark.sql.parquet.int96TimestampConversion=true, that you
can set to change the interpretation of TIMESTAMP values read from Parquet files that were written by Impala, to
match the Impala behavior.

Note: This compatibility workaround only applies to Parquet files created by Impala and has no effect on
Parquet files created by Hive, Spark or other Java components.
The following sequence of examples show how, by default, TIMESTAMP values written to a Parquet table by an
Apache Impala SQL statement are interpreted differently when queried by Spark SQL, and vice versa.

Theinitial Parquet tableis created by Impala, and some TIMESTAMP values are written to it by Impala, representing
midnight of one day, noon of another day, and an early afternoon time from the Pacific Daylight Savings time zone.
(The second and third tables are created with the same structure and file format, for use in subsequent examples.)

[l ocal host:21000] > create table parquet table(t tinestanp) stored as parqu

et;

[l ocal host:21000] > create table parquet table2 like parquet _table stored as
par quet ;

[l ocal host:21000] > create table parquet _table3 like parquet_table stored as
par quet ;

[l ocal host:21000] > sel ect now);

S S S S S S S +

| now() |

fococococcoccoccoocoococoocooocoooos +

| 2018-03-23 14: 07:01. 057912000

e +

[l ocal host:21000] > insert into parquet table
> val ues ('2018-03-23"), (now()), ('2000-01-01 12:00:00');
[l ocal host:21000] > select t from parquet table order by t;

| 2000-01-01 12:00: 00 [
| 2018-03-23 00: 00: 00 [
| 2018-03-23 14:08:54. 617197000 |

18

Cloudera Runtime Using Spark SQL

By default, when this table is queried through the Spark SQL using spar k- shel | , the values are interpreted and
displayed differently. The time values differ from the Impalaresult set by either 4 or 5 hours, depending on whether
the dates are during the Daylight Savings period or not.

scal a> spark.sql ("select t fromjdr.parquet _table order by t").show(truncat

e=f al se);

dooccoococooocooccooocooooooooc +
| t I
o mm e e e e e e oo +

| 2000- 01- 01 04: 00: 00. 0 |
| 2018- 03-22 17: 00: 00. 0
| 2018- 03- 23 07: 08: 54. 617197|

Running the same Spark SQL query with the configuration setting spark.sgl.parquet.int96TimestampConversion=true
applied makes the results the same as from Impala:

$ spark-shell --conf spark.sql.parquet.int96Ti nestanpConver si on=true

ééél a> spark.sql ("select t fromjdr.parquet _table order by t").show(trunca
te=fal se);

Fococococococococococoocoooa +

| t I

feccoccococoococcooococooooc +

| 2000- 01- 01 12: 00: 00. 0 |
| 2018- 03- 23 00: 00: 00. 0
| 2018- 03- 23 14: 08: 54. 617197|

The compatibility considerations also apply in the reverse direction. The following examples show the same Parquet
values as before, this time being written to tables through Spark SQL.

$ spark-shell

scal a> spark.sql ("insert into jdr.parquet _table2 select t fromjdr.parque
t _table");

scal a> spark.sql ("select t fromjdr.parquet _table2 order by t").show(trun
cat e=f al se);

| 2000- 01- 01 04: 00:00.0 [
| 2018- 03-22 17: 00:00.0
| 2018- 03-23 07: 08: 54. 617197

Again, the configuration setting spark.sgl.parquet.int96TimestampConversion=true means that the values are both
read and written in away that is interoperable with Impala:

$ spark-shell --conf spark.sql.parquet.int96Ti mestanpConversion=true

scal a> spark.sqgl ("insert into jdr.parquet_table3 select t fromjdr.parquet
_table");

19

Cloudera Runtime Calling Hive user-defined functions (UDFs)

scal a> spark.sql ("select t fromjdr.parquet_table3 order by t").show(trunc

at e=f al se);

foccoccococoococcooococooooc +
| t |
focccoococoocococcoccooccoocooos +

| 2000- 01-01 12: 00:00.0 [
| 2018- 03-23 00: 00: 00. 0 [
| 2018- 03-23 14: 08: 54. 617197

Use the following steps to access Spark SQL using the Spark shell.
The following sample command launches the Spark shell on aYARN cluster:
spark-shell --num-executors 1 --executor-memory 512m --master yarn-client

To read data directly from the file system, construct a SQL Context. For an example that uses SQL Context and the
Spark DataFrame API to access a JSON file, see Using the Spark DataFrame API on page 9.

To read data by interacting with the Hive Metastore, construct a HiveContext instance (HiveContext extends
SQL Context). For an example of the use of HiveContext (instantiated as val sglContext), see "Accessing ORC Files
from Spark” in this guide.

Use the following stepsto call Hive user-defined functions.

Y ou can cal built-in Hive UDFs, UDAFs, and UDTFs and custom UDFs from Spark SQL applicationsif the
functions are available in the standard Hive JAR file. When using Hive UDFs, use HiveContext (not SQL Context).

The following interactive example reads and writes to HDFS under Hive directories, using hiveContext and the
built-in collect_list(col) UDF. The collect_list(col) UDF returns alist of objects with duplicates. In a production
environment, this type of operation runs under an account with appropriate HDFS permissions; the following example
uses hdfs user.

1. Launch the Spark Shell on aYARN cluster:

spark-shell --numexecutors 2 --executor-menory 512m --nmaster yarn-client

2. Invokethe Hive collect_list UDF:

scal a> spark.sql ("from Test Tabl e SELECT key, collect _list(value) group by
key order by key").collect.foreach(println)

Y ou can register custom functions in Python, Java, or Scala, and then use them within SQL statements.

When using a custom UDF, ensure that the .jar file for your UDF isincluded with your application, or use the --jars
command-line option to specify thefile.

20

Cloudera Runtime Using Spark Streaming

The following example uses a custom Hive UDF. This example uses the more limited SQL Context, instead of
HiveContext.

1. Launch spark-shell with hive-udf.jar as its parameter:

spar k-shell --jars <path-to-your-hive-udf>.jar
2. From spark-shell, define a function:

scal a> spark.sql (""“create tenporary function bal ance as ' org. package. hi
veudf . Bal anceFr onRechar gesAndOrders' """);

3. From spark-shell, invoke your UDF:
scal a> spark.sql ("""
create tabl e recharges_w th_bal ance_array as
sel ect
reseller _id,
phone_nunber,
phone_credit _id,
dat e_r echar ge,
phone_credit _val ue,
bal ance(orders, 'date _order', 'order_value', reseller_id, date_recharge,
phone_credit_val ue) as bal ance
from orders

")

This section provides information on using Spark streaming.

Before running a Spark Streaming application, Spark and Kafka must be deployed on the cluster.

Unless you are running ajob that is part of the Spark examples package installed by Cloudera Data Platform (CDP),
you must add or retrieve the CDP spark-streaming-kafka .jar file and associated .jar files before running your Spark
job.

Spark Streaming is an extension of core Spark that enables scalable, high-throughput, fault-tolerant processing of data
streams. Spark Streaming receives input data streams called Discretized Streams (DStreams), which are essentially

a continuous series of RDDs. DStreams can be created either from sources such as Kafka, Flume, and Kinesis, or by
applying operations on other DStreams.

Y ou can process data using complex algorithms expressed with high-level functions like map, reduce, join, and wind
ow, and send results to file systems, databases, and live dashboards.

For detailed information on Spark Streaming, see Spark Streaming Programming Guide in the Apache Spark
documentation.

Spark Streaming receives live input data streams and divides the data into batches, which are then processed by the
Spark engine to generate the final stream of results in batches:

21

https://spark.apache.org/docs/2.4.0/streaming-programming-guide.html

Cloudera Runtime Using Spark Streaming

input data batches of batches of
stream Spark input data Spark processed data
Streaming Engine [JL_1l >

Apache Spark has built-in support for the Apache Kafka 08 API. If you want to access a Kafka 0.10 cluster

using new Kafka 0.10 APIs (such as wire encryption support) from Spark streaming jobs, the spark-kafka-0-10-
connector package supports a Kafka 0.10 connector for Spark streaming. See the package readme file for additional
documentation.

The remainder of this subsection describes general steps for developers using Spark Streaming with Kafka on a
Kerberos-enabled cluster; it includes a sample pom.xml file for Spark Streaming applications with Kafka. For
additional examples, see the Apache GitHub example repositories for Scala, Java, and Python.

j Important: Dynamic Resource Allocation does not work with Spark Streaming.

Apache Streaming Programming Guide
Apache GitHub Scala Streaming Examples
Apache GitHub Java Streaming Examples
Apache GitHub Python Streaming Examples

Dynamic allocation is enabled by default, which means that executors are removed when idle. Dynamic allocation
conflicts with Spark Streaming operations.

In Spark Streaming, data comes in batches, and executors run whenever datais available. If the executor idle timeout
is less than the batch duration, executors are constantly added and removed. However, if the executor idle timeout

is greater than the batch duration, executors are never removed. Therefore, Cloudera recommends that you disable
dynamic allocation by setting spark.dynamicAllocation.enabled to false when running streaming applications.

This example uses Kafka to deliver a stream of words to a Python word count program.

1. Create a Kafkatopic wordcounttopic:

kaf ka-topi cs --create --zookeeper ZOOKEEPER SERVER: 2181 --topic wordcountt
opic --partitions 1 --replication-factor 1

2. Create a Kafkaword count Python program adapted from the Spark Streaming example kafka_wordcount.py. This
version divides the input stream into batches of 10 seconds and counts the words in each batch:

from__future__ inport print_function

i mport sys

from pyspark inport SparkCont ext
from pyspark. streani ng i nport Strean ngCont ext
from pyspar k. st reani ng. kaf ka i nport Kaf kaUtils

22

https://spark.apache.org/docs/2.0.0/streaming-programming-guide.html
https://github.com/apache/spark/tree/master/examples/src/main/scala/org/apache/spark/examples/streaming
https://github.com/apache/spark/tree/master/examples/src/main/java/org/apache/spark/examples/streaming
https://github.com/apache/spark/tree/master/examples/src/main/python/streaming
https://raw.githubusercontent.com/apache/spark/branch-2.4/examples/src/main/python/streaming/kafka_wordcount.py

Cloudera Runtime

Using Spark Streaming

3.

4.

5.

if nane_ =="_main__
if len(sys.argv) != 3:
print("Usage: kafka wordcount.py <zk> <topic>", fil e=sys.stderr)
sys.exit(-1)

sc = Spar kCont ext (appName=""Pyt honSt r eani ngKaf kaWwor dCount ")
ssc = Streani ngContext(sc, 10)

zkQuorum topic = sys.argv[1l:]
kvs = Kafkaltils.createStrean(ssc, zkQuorum "spark-strean ng-consuner

", {topic: 1})
lines = kvs. map(l anbda x: x[1])
counts = lines.flatMap(lanbda line: line.split(" ")).mp(lanbda word:

(word, 1)).reduceByKey(lanbda a, b: a+b)
counts. pprint()

ssc.start ()
ssc. awai t Ter m nati on()

Submit the application using spark-submit with dynamic allocation disabled and specifying your ZooK eeper
server and topic. To run locally, you must specify at least two worker threads: one to receive and one to process
data:

spark-submit --master yarn --depl oy-node client --conf "spark.dynam cAll
ocati on. enabl ed=f al se" --jars SPARK HOVE/ Il i b/ spar k-exanpl es. jar kafka_ wo
rdcount .. py ZOOKEEPER_SERVER 2181 wor dcountt opic

In a Cloudera Data Platform deployment, SPARK_HOME defaults to /opt/cloudera/parcel SCDH/lib/spark. The
shells are also available from /usr/bin.

In another window, start a Kafka producer that publishes to wordcounttopic:

kaf ka- consol e- producer --broker-1Iist KAFKA_BROKER 9092 --topic wordcountt
opi c

In the producer window, type the following:

hel |l o
hel |l o
hel |l o
hel |l o
hel |l o
hel |l o
gb
gb
gb
gb
gb
gb

23

Cloudera Runtime Using Spark Streaming

Important: Spark Streaming checkpoints do not work across Spark upgrades or application upgrades. If you
are upgrading Spark or your streaming application, you must clear the checkpoint directory.

For long-running Spark Streaming jobs, make sure to configure the maximum allowed failures in a given time period.
For example, to allow 3 failures per hour, set the following parameters (in spark-defaults.conf or when submitting the
joby):

spar k. yar n. maxAppAt t enpt s=3
spark. yarn.am at t enpt Fai | uresVal i di tyl nt erval =1h

If the driver host for a Spark Streaming application fails, it can lose data that has been received but not yet processed.
To ensure that no datais lost, you can use Spark Streaming recovery. Recovery uses a combination of awrite-ahead
log and checkpoints. Spark writesincoming datato HDFS as it is received and uses this datato recover state if a
failure occurs.

To enable Spark Streaming recovery:

1. Set the spark.streaming.receiver.writeAheadL og.enable parameter to true in the SparkConf object.
2. Create a StreamingContext instance using this SparkConf, and specify a checkpoint directory.

3. Usethe getOrCreate method in StreamingContext to either create a new context or recover from an old context
from the checkpoint directory:

from_future_ inport print_function

i mport sys

from pyspark inport SparkContext, SparkConf
from pyspark. streani ng i nport Strean ngCont ext
from pyspark. st ream ng. kaf ka i nport Kafkaltils

checkpoint = "hdfs://nsl1/user/systest/checkpoint"
Function to create and setup a new Stream ngCont ext
def functionToCreat eContext():

spar kConf = Spar kConf ()
spar kConf . set ("spar k. streamn ng. recei ver. w it eAheadlLog. enabl e", "true")
sc = Spar kCont ext (appName="Pyt honSt r eam ngKaf kaWr dCount ", conf =spar kConf

ssc = Streani ngContext(sc, 10)

zkQuorum topic = sys.argv[1l:]

kvs = Kafkaltils.createStrean(ssc, zkQuorum "spark-strean ng-consune
r', {topic: 1})

lines = kvs. map(l anbda x: x[1])

counts = lines.flatMap(lanbda line: line.split(" ")).map(lanbda word: (w
ord, 1)).reduceByKey(lanbda a, b: a+b)

counts. pprint()

ssc. checkpoi nt (checkpoi nt) # set checkpoint directory
return ssc
if __nane__ =="__main__
if len(sys.argv) != 3:
print("Usage: kafka wordcount.py <zk> <topic>", fil e=sys.stderr)
exit(-1)
ssc = Stream ngCont ext.get O Creat e(checkpoi nt, |anbda: functionToCrea
teContext())
ssc.start()

24

Cloudera Runtime Using Spark Streaming

ssc. awai t Ter m nati on()

For more information, see Checkpointing in the Apache Spark documentation.
To prevent datalossif areceiver fails, receivers must be able to replay data from the original data sourcesif required.

* TheKafkareceiver automatically replaysif the spark.streaming.receiver.writeAheadl og.enable parameter is set to
true.

« Thereceiverless Direct Kafka DStream does not require the spark.streaming.receiver.writeAheadl og.enable
parameter and can function without data loss, even without Streaming recovery.

« Both Flume receivers packaged with Spark replay the data automatically on receiver failure.

Long-running applications such as Spark Streaming jobs must be able to write data continuously, which means
that the user may need to delegate tokens possibly beyond the default lifetime. Thisworkload type requires passing
Kerberos principal and keytab to the spark-submit script using the --principal and --keytab parameters.

B Note: Only YARN cluster mode is supported with the --principal and --keytab parameters.

The keytab is copied to the host running the ApplicationMaster, and the Kerberos login is renewed periodicaly by
using the principal and keytab to generate the required delegation tokens needed for HDFS.

Note: For secure distribution of the keytab to the ApplicationMaster host, the cluster should be configured
B for TLS/SSL communication for YARN and HDFS encryption.

Use the following steps to build and run a Spark streaming job for Cloudera Data Platform (CDP).

Depending on your compilation and build processes, one or more of the following tasks might be required before
running a Spark Streaming job:

« |If you are using maven as a compile tool:

1. Add the Clouderarepository to your pom.xml file:

<r eposi tory>

<i d>cl ouder a</i d>

<name>C ouder a Repository</name>

<url >https://repository.cloudera.com artifactory/cl oudera-repos/</ur
| >
</repository>

2. Specify the Cloudera version number for Spark streaming Kafka and streaming dependencies to your pom.xml
file:

<dependency>
<gr oupl d>or g. apache. spar k</ gr oupl d>
<artifactld>spark-strean ng-kaf ka_2. 10</artifactld>
<versi on>2. 0. 0. 2. 4. 2. 0-90</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. apache. spar k</ gr oupl d>
<artifactld>spark-streanm ng_2.11</artifactld>
<version>2.4.0.7.0.0.0</versi on>
<scope>provi ded</ scope>

25

https://spark.apache.org/docs/2.4.0/streaming-programming-guide.html#checkpointing

Cloudera Runtime Using Spark Streaming

</ dependency>

Note that the correct version number includes the Spark version and the Cloudera Runtime version.

3. (Optiona) If you prefer to pack an uber .jar rather than use the default ("provided"), add the maven-shade-plug
in to your pom.xml file

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-shade- pl ugi n</artifactld>
<versi on>2. 3</versi on>
<executi ons>
<executi on>
<phase>package</ phase>
<goal s>
<goal >shade</ goal >
</ goal s>
</ execution>
</ executions>
<confi guration>
<filters>
<filter>
<artifact>*:*</artifact>
<excl udes>
<excl ude>META- | NF/ *. SF</ excl ude>
<excl ude>META- | NF/ *. DSA</ excl ude>
<excl ude>META- | NF/ *. RSA</ excl ude>
</ excl udes>
</filter>
</filters>
<fi nal Nane>uber-${project.artifactld}-${project.version}</finalN
ame>
</ configuration>
</ pl ugi n>

» Instructions for submitting your job depend on whether you used an uber .jar file or not:

« |If you kept the default .jar scope and you can access an external network, use --packages to download
dependenciesin the runtime library:

spark-submit --master yarn-client \

--numexecutors 1 \

- - packages org. apache. spar k: spar k- streani ng-kafka_2.10:2.0.0.2.4.2.0
-90 \

--repositories http://repo. hortonworks. conf content/repositories/re
| eases/ \

--cl ass <user-nai n-cl ass> \

<user-application.jar>\

<user arg |lists>

The artifact and repository locations should be the same as specified in your pom.xml file.

» If you packed the .jar fileinto an uber .jar, submit the .jar file in the same way as you would aregular Spark
application:

spar k-submit --master yarn-client \
--num executors 1 \
--cl ass <user-nai n-cl ass> \
<user - uber-application.jar> \
<user arg |lists>

1. Select or create a user account to be used as principal.

This should not be the kafka or spark service account.

26

Cloudera Runtime Using Spark Streaming

2. Generate a keytab for the user.
Create a Java Authentication and Authorization Service (JAAS) login configuration file: for example, key.conf.
4. Add configuration settings that specify the user keytab.

w

The keytab and configuration files are distributed using Y ARN local resources. Because they reside in the current
directory of the Spark YARN container, you should specify the location as ./v.keytab.

The following example specifies keytab location ./v.keytab for principa vagrant@example.com:

Kaf kad i ent {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e requi red
useKeyTab=t r ue
keyTab="./v. keyt ab"
st or eKey=true
useTi cket Cache=f al se
servi ceNanme="kaf ka"
princi pal ="vagr ant @GXAMPLE. COV';
i

5. Inyour spark-submit command, pass the JAAS configuration file and keytab aslocal resourcefiles, using the
--files option, and specify the JAAS configuration file options to the VM options specified for the driver and
executor:

spar k-subnmit \
--files key.conf#key. conf, v. keyt ab#v. keytab \
--driver-java-options "-Djava. security.auth.login.config=./key.conf" \
--conf "spark. executor. extraJavaOpti ons=-Dj ava. security.auth.|ogin.c
onfig=./key.conf" \

6. Passany relevant Kafka security optionsto your streaming application.
For exampl e, the KafkaWordCount example accepts PLAINTEXTSASL asthe last option in the command line:

Kaf kawbr dCount /vagr ant/ spar k- exanpl es.jar c6402: 2181 abc ts 1 PLAI NTEXT
SASL

<?xm version="1.0" encodi ng="UTF- 8" ?>
<project xm ns="http://maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="htt p:// nmaven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>t est </ gr oupl d>
<artifactld>spark-kaf ka</artifactld>
<versi on>1. 0- SNAPSHOT</ ver si on>

<repositories>
<reposi tory>
<i d>hort onwor ks</ i d>
<name>hor t onwor ks r epo</ name>
<url >http://repo. hortonworks. coni content/repositories/rel eases/
</url>
</repository>
</repositories>

<dependenci es>
<dependency>

27

Cloudera Runtime Using Spark Streaming

<gr oupl d>or g. apache. spar k</ gr oupl d>
<artifactld>spark-strean ng-kaf ka_2. 10</artifactld>
<versi on>2.0. 0. 2. 4. 2. 0-90</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. apache. spar k</ gr oupl d>
<artifactld>spark-streaning_2.10</artifactld>
<versi on>2.0.0. 2. 4. 2. 0-90</ versi on>
<scope>pr ovi ded</ scope>
</ dependency>
</ dependenci es>
<bui | d>
<def aul t Goal >package</ def aul t Goal >
<r esour ces>
<resour ce>
<di rect ory>src/ mai n/ resour ces</di rect ory>
<filtering>true</filtering>
</ resource>
<r esour ce>
<di rectory>src/test/resources</directory>
<filtering>true</filtering>
</ resource>
</ resources>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>naven-resources-plugin</artifactld>
<confi guration>
<encodi ng>UTF- 8</ encodi ng>
</ configuration>
<executions>
<execut i on>
<goal s>
<goal >copy-resour ces</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>
<pl ugi n>
<gr oupl d>net . al chi n81. naven</ gr oupl d>
<artifactld>scal a- maven- pl ugi n</artifactld>
<versi on>3. 2. 0</ ver si on>
<confi gurati on>
<r econpi | eMbde>i ncr enent al </ r econpi | eMbde>
<ar gs>
<arg>-target:jvm 1. 7</arg>
</ ar gs>
<j avacAr gs>
<j avacAr g>- sour ce</j avacAr g>
<j avacArg>1l. 7</j avacAr g>
<j avacAr g>-t ar get </ j avacAr g>
<j avacArg>1. 7</j avacAr g>
</ javacAr gs>
</ configuration>
<executions>
<executi on>
<i d>scal a- conpi | e</i d>
<phase>pr ocess-resour ces</ phase>
<goal s>
<goal >conpi | e</ goal >
</ goal s>
</ executi on>
<execut i on>
<i d>scal a-test-conpil e</id>

28

Cloudera Runtime Accessing external storage from Spark

<phase>pr ocess-t est-resources</ phase>
<goal s>
<goal >t est Conpi | e</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>
<pl ugi n>
<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifactld>maven-conpil er-plugi n</artifactld>
<confi guration>
<sour ce>1. 7</ sour ce>
<target>1.7</target>
</ configuration>

<executi ons>
<executi on>
<phase>conpi | e</ phase>
<goal s>
<goal >conpi | e</ goal >
</ goal s>
</ executi on>
</ executions>
</ pl ugi n>

<pl ugi n>
<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifactld>maven-shade- pl ugi n</artifactld>
<ver si on>2. 3</ ver si on>
<executi ons>
<executi on>
<phase>package</ phase>
<goal s>
<goal >shade</ goal >
</ goal s>
</ executi on>
</ executi ons>
<confi guration>
<filters>
<filter>
<artifact>*:*</artifact>
<excl udes>
<excl ude>META- | NF/ *. SF</ excl ude>
<excl ude>META- | NF/ *. DSA</ excl ude>
<excl ude>META- | NF/ *. RSA</ excl ude>
</ excl udes>
</filter>
</filters>
<fi nal Nane>uber-${project.artifactld}-${project.versi
on} </ fi nal Nane>
</ configuration>
</ pl ugi n>

</ pl ugi ns>

</ bui | d>
</ proj ect >

29

Cloudera Runtime Accessing external storage from Spark

Spark can access all storage sources supported by Hadoop, including alocal file system, HDFS, HBase, Amazon S3,
and Microsoft ADLS.

Spark supports many file types, including text files, RCFile, SequenceFile, Hadoop InputFormat, Avro, Parquet, and
compression of all supported files.

For developer information about working with external storage, see External Datasets in the upstream Apache Spark
RDD Programming Guide.

Important: Cloudera components writing data to S3 are constrained by the inherent limitation of Amazon
S3 known as “eventual consistency”. For more information, see Data Storage Considerations.

To access data stored in Amazon S3 from Spark applications, use Hadoop file APIs (SparkContext.hadoopFile, Java
HadoopRDD.saveA sHadoopFile, SparkContext.newAPIHadoopRDD, and JavaHadoopRDD.saveAsNewA PIHadoop
File) for reading and writing RDDs, providing URLSs of the form s3a.//BUCKET_NAME/path/to/file. Y ou can read
and write Spark SQL DataFrames using the Data Source API.

Make sure that your environment is configured to allow access to the buckets you need. Y ou must also configure the
spark.yarn.access.hadoopFileSystems parameter to include the buckets you need to access. Y ou can do this using the
Spark client configuration, or at runtime as a command line parameter.

For example:

Client configuration (/etc/spar k/conf/spar k-defaults.conf)

spar k. yarn. access. hadoopFi | eSyst ens=s3a: // bucket 1, s3a: // bucket 2

spark-shell
spar k-shell --conf "spark.yarn.access. hadoopFi | eSyst ens=s3a://bu
cket 1, s3a:// bucket 2"

spar k-submit

spark-subnit --conf "spark.yarn.access. hadoopFi | eSystens=s3a://b
ucket 1, s3a:// bucket 2"

The following examples demonstrate basic patterns of accessing datain S3 using Spark. The examples show the setup
steps, application code, and input and output files located in S3.

Run aword count application on afile stored in Amazon S3 (sonnets.txt in this example):

30

https://spark.apache.org/docs/2.4.0/rdd-programming-guide.html#external-datasets
https://www.cloudera.com/documentation/director/cloud/topics/cloud_de_best_practices.html#concept_kqh_ny3_vz
https://docs.cloudera.com/management-console/cloud/environments/topics/mc-environments.html

Cloudera Runtime Accessing external storage from Spark

Services v Resource Groups ~ *

Amazon S3 » dev-env » test-data

Overview

Q, Type a prefix and press Enter to search. Press ESC to clear.

[| Namew

| [B sonnets.txt

Scala
val sonnets = sc.textFile("s3a://dev-env/test-datal/sonnets.txt")
val counts = sonnets.flatMap(line => Iline.split(" ")).mp(word =>
(word, 1)).reduceByKey(_+)
counts. saveAsText Fi | e("s3a://dev-env/test-datal/sonnets-wordcoun
t")
Python

sonnets = sc.textFile("s3a://dev-env/test-datal/sonnets.txt")

counts = sonnets.flatMp(lanbda line: line.split(" ")).mp(lanbda
word: (word, 1)).reduceByKey(lanbda v1,v2: vl + v2)

count s. saveAsText Fi |l e("s3a://dev-env/test-datal/ sonnets-wordco

unt")

Yielding the output:

31

Cloudera Runtime Accessing external storage from Spark

Services v Resource Groups ~ *

Amazon S3 > dev-env b test-gata > sonnets-wordcount

Overview ‘

Q. Type a prefix and press Enter to search. Press ESC to clear.

Name «

[_SUCCESS

[part-00000

O O o

[part-00001

Reading and Writing Data Sources From and To Amazon S3

The following example illustrates how to read atext file from Amazon S3 into an RDD, convert the RDD to a
DataFrame, and then use the Data Source API to write the DataFrame into a Parquet file on Amazon S3:

1. Read atext filein Amazon S3:

val sanple_data = sc.textFile("s3a://dev-env-dataltest-datal/sanpl e_data.
csv")

2. Map linesinto columns:

i mport org.apache. spark. sql . Row
val rdd_sanple = sanple_data.map(_.split('\t')).mp(e # Rowme(0), e(1),
e(2).trimtolnt, e(3).trimtolnt))

32

Cloudera Runtime Accessing Hive from Spark

3. Create aschemaand apply to the RDD to create a DataFrame:

scal a> i nport org. apache. spark.sql.types.{Struct Type, StructField, Strin
gType, |ntegerType};
scal a> val schema = Struct Type(Array(
StructFi el d("code", StringType, f al se),
Struct Fi el d("description", StringType, fal se),
StructField("total _enp", | ntegerType, fal se),
StructFi el d("sal ary", | nt eger Type, fal se)))
scal a> val df_sanpl e = spark. creat eDat aFrane(rdd_sanpl e, scheng)

4. Write DataFrame to a Parquet file:

df _sanple.wite. parquet("s3a://dev-env-dataltest-datalsanpl e_dat a- par que

)

EIWST Services v Resource Groups ~ *

Amazon 83 > dev-env > test-data > sample_data-parquet

Overview ‘

Q, Type a prefix and press Enter to search. Press ESG to clear.

MName «

[4 _SuccEss

O 0O

[part-00000-141978e3-7b26-463c-a5af-2c08a7dea671-c000.snappy.parquet

[] [@ part-00001-14f978e3-7b26-463c-a5af-2c08a7dea671-c000.snappy.parquet

The files are compressed with the default snappy compression.

Accessing Hive from Spark

The host from which the Spark application is submitted or on which spark-shell or pyspark runs must have a Hive
gateway role defined in Cloudera Manager and client configurations deployed.

When a Spark job accesses a Hive view, Spark must have privileges to read the data files in the underlying Hive
tables. Currently, Spark cannot use fine-grained privileges based on the columns or the WHERE clause in the view

33

Cloudera Runtime Accessing HDFS Files from Spark

definition. If Spark does not have the required privileges on the underlying data files, a SparkSQL query against the
view returns an empty result set, rather than an error.

This section contains information on running Spark jobs over HDFS data.

To add a compression library to Spark, you can use the --jars option. For an example, see "Adding Librariesto Spark"
in this guide.

To save a Spark RDD to HDFS in compressed format, use code similar to the following (the example uses the GZip
algorithm):

rdd. saveAsHadoopFi | e("/t np/ spar k_conpressed”,

"org. apache. hadoop. mapr ed. Text Qut put For mat ",

conpr essi onCodecC ass="or g. apache. hadoop. i 0. conpr ess.
&i pCodec")

For more information about supported compression algorithms, see " Configuring HDFS Compression™ in the HDP
Data Storage guide.

When accessing an HDFS file from PySpark, you must set HADOOP_CONF_DIR in an environment variable, asin
the following example:

$ export HADOOP_CONF_DI R=/ et ¢/ hadoop/ conf

$ pyspark

$ >>>lines = sc.textFil e("hdfs://nanenode. exanpl e. com 8020/t np/ PySpar kTest / f
ile-01")

If HADOOP_CONF_DIR isnot set properly, you might see an error similar to the following:

2016- 08- 22 00: 27: 06, 046| t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThr ead| Py4J
JavaError: An error occurred while calling z:org. apache. spark. api . pyt hon. Pyt
honRDD. col | ect AndSer ve.

2016- 08-22 00: 27: 06, 047| t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThread| : or
g. apache. hadoop. security. AccessControl Excepti on: SIMPLE authentication is no
t enabled. Avail abl e:[TOKEN, KERBEROS]

2016- 08- 22 00: 27: 06, 047|t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThread| at s
un. refl ect. Nati veConstructor Accessor |l npl . new nst anceO(Nati ve Met hod)

2016- 08-22 00: 27: 06, 047|t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThr ead| at
sun. refl ect. Nati veConstruct or Accessor | npl . new nst ance(Nati veConst ruct or Acces
sorlnpl . java: 57)

2016-08-22 00: 27: 06, 048]t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThr ead| at
{code}

Apache Spark in CDP supports the Optimized Row Columnar (ORC) file format, a self-describing, type-aware,
column-based file format that is one of the primary file formats supported in Apache Hive.

Cloudera Runtime Accessing ORC Datain Hive Tables

ORC reduces 1/0 overhead by accessing only the columns that are required for the current query. It requires
significantly fewer seek operations because al columns within a single group of row data (known as a"stripe") are
stored together on disk.

Spark ORC data source supports ACID transactions, snapshot isolation, built-in indexes, and complex data types
(such as array, map, and struct), and provides read and write access to ORC files. It leverages the Spark SQL Catalyst
engine for common optimizations such as column pruning, predicate push-down, and partition pruning.

This subsection has several examples of Spark ORC integration, showing how ORC optimizations are applied to user
programs.

ORC File Format
Apache Hive ACID Transactions

Use the following steps to access ORC files from Apache Spark.

To start using ORC, you can define a SparkSession instance:

i mport org. apache. spark. sqgl . Spar kSessi on
val spark = SparkSession. builder().getO Create()
i mport spark.inplicits.

The following example uses data structures to demonstrate working with complex types. The Person struct data type
has a name, an age, and a sequence of contacts, which are themselves defined by names and phone numbers.

1. Define Contact and Person data structures:

case class Contact(nanme: String, phone: String)
case class Person(nane: String, age: Int, contacts: Seq[Contact])

2. Create 100 Person records:

val records = (1 to 100).map { i =>;

Person(s"name_$i", i, (0 to 1).map { m=> Contact(s"contact_$n', s"ph
one_s$n') })
}

In the physical file, these records are saved in columnar format. When accessing ORC files through the
DataFrame API, you see rows.

3. To write person records as ORC files to a directory hamed “ people”, you can use the following command:

records.toDF().wite.format("orc").save("people")

4. Read the objects back:

val people = sqgl Context.read.format("orc").| oad("people.json")

5. For reuse in future operations, register the new "people" directory as temporary table “people”:

peopl e. cr eat eOr Repl aceTenpVi ew " peopl e")

35

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC#LanguageManualORC-FileStructure
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions

Cloudera Runtime Accessing ORC Datain Hive Tables

6. After you register the temporary table “people’, you can query columns from the underlying table:

spar k. sql (" SELECT name FROM peopl e WHERE age < 15").count ()

In this example the physical table scan loads only columns name and age at runtime, without reading the contacts
column from the file system. This improves read performance.

Y ou can aso use Spark DataFrameReader and DataFrameWriter methods to access ORC files.

Apache Spark DataFrameReader M ethods
Apache Spark DataFrameWriter Methods

The columnar nature of the ORC format helps avoid reading unnecessary columns, but it is still possible to read
unnecessary rows. The examplein this subsection reads all rows in which the age value is between 0 and 100, even
though the query requested rows in which the age valueisless than 15 ("...WHERE age < 15"). Such full table
scanning is an expensive operation.

ORC avoids this type of overhead by using predicate push-down, with three levels of built-in indexes within each file:
filelevel, stripe level, and row level:

» File-level and stripe-level statistics are in the file footer, making it easy to determine if the rest of the file must be
read.

* Row-level indexesinclude column statistics for each row group and position, for finding the start of the row
group.

ORC uses these indexes to move the filter operation to the data loading phase by reading only data that potentially

includes required rows.

This combination of predicate push-down with columnar storage reduces disk 1/O significantly, especially for larger
datasets in which I/O bandwidth becomes the main bottleneck to performance.

ORC predicate push-down is enabled by default in Spark SQL.

DataFrames are similar to Spark RDDs but have higher-level semantics built into their operators. This allows
optimization to be pushed down to the underlying query engine.

Hereisthe Scala APl version of the SELECT query used in the previous section, using the DataFrame API:

val spark = SparkSession. builder().getO Create()
val people = spark.read. format("orc").| oad("peopl ePartiti oned")
peopl e.filter(people("age") < 15).sel ect("nane").show)

DataFrames are not limited to Scala. ThereisaJava APl and a Python API binding:

from pyspark. sql inport SparkSession

spark = SparkSession. bui |l der. get Or Creat e()

peopl e = spark.read. format ("orc").| oad("peopl ePartiti oned")
peopl e. filter(people.age < 15). sel ect ("nane").show)

36

https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/sql/DataFrameReader.html
https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/sql/DataFrameWriter.html

Cloudera Runtime Accessing ORC Datain Hive Tables

When predicate push-down optimization is not applicable—for example, if al stripes contain records that match the
predicate condition—a query with a WHERE clause might need to read the entire data set. This becomes a bottleneck
over alarge table. Partition pruning is another optimization method; it exploits query semanticsto avoid reading large
amounts of data unnecessarily.

Partition pruning is possible when data within atable is split across multiple logical partitions. Each partition
corresponds to a particular value of a partition column and is stored as a subdirectory within the table root directory
on HDFS. Where applicable, only the required partitions (subdirectories) of atable are queried, thereby avoiding
unnecessary 1/0.

Spark supports saving datain a partitioned layout seamlessly, through the partitionBy method available during data
source write operations. To partition the "people" table by the “age”’ column, you can use the following command:

people.wite.format ("orc").partitionBy("age").save("peopl ePartitioned")

Asaresult, records are automatically partitioned by the age field and then saved into different directories: for
example, peoplePartitioned/age=1/, peoplePartitioned/age=2/, and so on.

After partitioning the data, subseguent queries can omit large amounts of 1/0 when the partition column is referenced
in predicates. For example, the following query automatically locates and loads the file under peopl ePartitioned/ag
e=20/and omits al others:

val peopl ePartitioned = spark.read.format("orc").|oad("peopl ePartitioned")
peopl ePartitioned. creat eO Repl aceTenpVi ew " peopl ePartiti oned")
spark. sql ("SELECT * FROM peopl ePartiti oned WHERE age = 20")

Vectorized query execution is afeature that greatly reduces the CPU usage for typical query operations such as scans,
filters, aggregates, and joins. Vectorization is also implemented for the ORC format. Spark also uses Whole Stage
Codegen and this vectorization (for Parquet) since Spark 2.0.

Use the following steps to implement the new ORC format and enable vectorization for ORC files with SparkSQL.

In the Cloudera Data Platform (CDP) Management Console, go to Data Hub Clusters.
Find and select the cluster you want to configure.

Click thelink for the Cloudera Manager URL.

Goto Clusters <Cluster Name>Spark serviceConfiguration .

Select the ScopeGateway and CategoryAdvanced filters.

Add the following properties to Spark Client Advanced Configuration Snippet (Safety Valve) for spark-conf/
spark-defaults.conf:

o 0k~ wbdhpE

e spark.sgl.orc.enabled=true — Enables the new ORC format to read/write Spark data source tables and files.
» gpark.sgl.hive.convertM etastoreOrc=true — Enables the new ORC format to read/write Hive tables.

» gpark.sgl.orc.char.enabled=true — Enables the new ORC format to use CHAR typesto read Hive tables.
By default, STRING types are used for performance reasons. Thisis an optional configuration for Hive
compatibility.
7. Click Save Changes, and then restart Spark and any other components that require a restart.

37

Cloudera Runtime Accessing Avro data files from Spark SQL applications

For existing Hive tables, Spark can read them without createOrReplaceTempView. If thetableis stored as ORC
format (the default), predicate push-down, partition pruning, and vectorized query execution are also applied
according to the configuration.

spark. sql ("SELECT * FROM hi veTabl e WHERE age = 20")

Spark SQL supports loading and saving DataFrames from and to a variety of data sources. With the spark-avro
library, you can process data encoded in the Avro format using Spark.

The spark-avro library supports most conversions between Spark SQL and Avro records, making Avro afirst-class
citizen in Spark. The library automatically performs the schema conversion. Spark SQL reads the data and converts it
to Spark'sinternal representation; the Avro conversion is performed only during reading and writing data.

By default, when pointed at a directory, read methods silently skip any files that do not have the .avro extension.
To include all files, set the avro.mapred.ignore.inputs.without.extension property to false. See Configuring Spark
Applications.

To set the compression type used on write, configure the spark.sgl.avro.compression.codec property:
sql Cont ext . set Conf ("spark. sql . avr o. conpr essi on. codec", " CODEC")

The supported CODEC values are uncompressed, snappy, and deflate. Specify the level to use with deflate
compression in spark.sgl.avro.deflate.level.

The spark-avro library supports writing and reading partitioned data. Y ou pass the partition columns to the writer.

Specify the record name and namespace to use when writing to disk by passing recordName and recordNamespace as
optional parameters.

Y ou can write SQL queriesto query aset of Avrofiles. First, create atemporary table pointing to the directory
containing the Avro files. Then query the temporary table:

sql Cont ext . sql (" CREATE TEMPORARY TABLE TABLE_NAME
USI NG com dat abri cks. spark.avro OPTIONS (path "I NPUT_DIR"))
df = sql Context.sql ("SELECT * FROM TABLE_NAME")

The spark-avro library supports conversion for all Avro datatypes:
» boolean -> BooleanType

e int->IntegerType

e long->LongType

38

https://docs.cloudera.com/runtime/7.2.8/running-spark-applications/topics/spark-configure-apps.html
https://docs.cloudera.com/runtime/7.2.8/running-spark-applications/topics/spark-configure-apps.html

Cloudera Runtime Accessing Avro data files from Spark SQL applications

+ float -> FloatType

e double-> DoubleType

* bytes-> BinaryType

e string -> StringType

 record -> StructType

e enum-> StringType

e array -> ArrayType

* map->MapType

« fixed -> BinaryType

The spark-avro library supports the following union types:

e union(int, long) -> LongType
« union(float, double) -> DoubleType
e union(any, null) -> any

The library does not support complex union types.

All doc, aliases, and other fields are stripped when they are loaded into Spark.

Every Spark SQL type is supported:

* BooleanType -> boolean
* IntegerType->int

e LongType->long

e FloatType-> float

* DoubleType-> double
e BinaryType -> bytes

e StringType -> string

e StructType -> record

e ArrayType-> array

* MapType->map

* ByteType->int

e ShortType->int

* DecimaType-> string

e BinaryType -> bytes

e TimestampType -> long

Because Spark is converting data types, keep the following in mind:

« Enumerated types are erased - Avro enumerated types become strings when they are read into Spark, because
Spark does not support enumerated types.

» Unions on output - Spark writes everything as unions of the given type along with anull option.

» Avro schema changes - Spark reads everything into an internal representation. Even if you just read and then write
the data, the schema for the output is different.

« Spark schemareordering - Spark reorders the elementsin its schema when writing them to disk so that the
elements being partitioned on are the last elements.

39

Cloudera Runtime Accessing Parquet files from Spark SQL applications

Spark SQL supports loading and saving DataFrames from and to a variety of data sources and has native support for
Parquet.

To read Parquet filesin Spark SQL, use the spark.read.parquet("PATH") method.
To write Parquet filesin Spark SQL, use the DataFrame.write.parquet("PATH") method.

To set the compression type, configure the spark.sgl.parquet.compression.codec property:
spar k. conf . set ("spark. sql . par quet . conpr essi on. codec", " CODEC")

The supported CODEC values are: uncompressed, gzip, 1zo, and snappy. The default is gzip.

Currently, Spark looks up column data from Parquet files by using the names stored within the datafiles. Thisis
different than the default Parquet lookup behavior of Impala and Hive. If datafiles are produced with a different
physical layout due to added or reordered columns, Spark still decodes the column data correctly. If the logical layout
of the table is changed in the metastore database, for example through an ALTER TABLE CHANGE statement that
renames a column, Spark still looks for the data using the now-nonexistent column name and returns NUL L s when it
cannot locate the column values. To avoid behavior differences between Spark and Impala or Hive when modifying
Parquet tables, avoid renaming columns, or use Impala, Hive, or a CREATE TABLE AS SELECT statement to
produce a new table and new set of Parquet files containing embedded column names that match the new layout.

MLlibis Spark's machine learning library. For information on MLIib, see the Machine Learning Library (MLIib)
Guide.

To try Spark MLIib using one of the Spark example applications, do the following:
1. Download Movielens sample data and copy it to HDFS:

$ wget --no-check-certificate \

https://raw. gi t hubuser cont ent. conf apache/ spar k/ branch-2. 4/ data/m |i b/ sam
pl e_novi el ens_dat a. t xt

$ hdfs dfs -copyFronLocal sanple_noviel ens_data.txt /user/hdfs

2. Runthe Spark MLIib Moviel ens example application, which cal culates recommendations based on movie
reviews:

$ spark-submit --master local --class org.apache. spark. exanples.mlib. M
Vi eLensALS \

SPARK_HOVE/ | i b/ spar k- exanpl es.jar \

--rank 5 --numterations 5 --lanbda 1.0 --kryo sanpl e _novi el ens_dat a. t xt

MLlIib algorithms are compute intensive and benefit from hardware acceleration. To enable native acceleration for
MLlIib, perform the following tasks.

40

Cloudera Runtime

Using custom libraries with Spark

» Install the appropriate libgfortran 4.6+ package for your operating system. No compatible version is available for

RHEL 6.

RHEL 7.1
SLES 11 SP3
Ubuntu 12.04
Ubuntu 14.04
Debian 7.1

libgfortran

libgfortran3
libgfortran3
libgfortran3

libgfortran3

» Install the GPL Extras parcel or package.

4.8.x
4.7.2
46.3
484

4.7.2

Y ou can verify that native acceleration is working by examining logs after running an application. To verify native
acceleration with an MLIib example application:

1. Dothestepsin "Running a Spark MLIib Example."
2. Check thelogs. If native libraries are not loaded successfully, you see the following four warnings before the final

line, where the RMSE is printed:

15/07/12 12:33: 01 WARN BLAS: Failed to |oad inplenentation from comgit
hub. fommi | . netli b. Nati veSyst enBLAS

15/07/12 12:33: 01 WARN BLAS: Failed to |oad inplenentation from comgith
ub. fonmi | . netlib. Nati veRef BLAS
15/07/12 12:33: 01 WARN LAPACK: Failed to load inplenentation from com gi
thub. formmi | . netlib. Nati veSyst enLAPACK

15/07/12 12:33: 01 WARN LAPACK: Failed to load inplenentation from comgit

hub. fomm | . net| i b. Nati veRef LAPACK

Test RVBE = 1.5378651281107205.

Y ou see this on a system with no libgfortran. The same error occurs after installing libgfortran on RHEL 6
becauseit installs version 4.4, not 4.6+.

After installing libgfortran 4.8 on RHEL 7, you should see something like this:

15/07/12 13:32: 20 WARN BLAS: Failed to |oad i nplenentation from comgit
hub. fommi | . netli b. Nati veSyst enBLAS

15/07/12 13:32: 20 WARN LAPACK: Failed to load inplenentation from com gi
thub. fomm | . netlib. Nati veSyst enLAPACK

Test RMSE = 1.5329939324808561.

Spark comes equipped with a selection of libraries, including Spark SQL, Spark Streaming, and MLIib.

If you want to use a custom library, such as a compression library or Magellan, you can use one of the following two

spark-submit script options:

* The--jars option, which transfers associated .jar files to the cluster. Specify alist of comma-separated .jar files.
» The--packages option, which pullsfiles directly from Spark packages. This approach requires an internet

connection.

41

Cloudera Runtime Using custom libraries with Spark

For example, you can use the --jars option to add codec files. The following example adds the LZO compression
library:

spark-submit --driver-nenory 1G\
--executor-nenory 1G\
--master yarn-client \
--jars /usr/ hdp/2.6.0. 3-8/ hadoop/|ib/hadoop-12z0-0.6.0.2.6.0.3-8.jar \

test _read wite. py
For more information about the two options, see Advanced Dependency Management on the Apache Spark
"Submitting Applications' web page.
E Note:
If you launch a Spark job that references a codec library without specifying where the codec resides, Spark

returns an error similar to the following:

Caused by: java.lang. !l egal Argurment Excepti on: Conpressi on codec com
. hadoop. conpressi on. | zo. LzoCodec not found.

To address this issue, specify the codec file with the --jars option in your job submit command.

Submitting Applications: Advanced Dependency Management

42

https://spark.apache.org/docs/2.0.0/submitting-applications.html#advanced-dependency-management

	Contents
	Introduction
	Spark application model
	Spark execution model
	Developing and running an Apache Spark WordCount application
	Using the Spark DataFrame API
	Building Spark Applications
	Best practices for building Apache Spark applications
	Building reusable modules in Apache Spark applications
	Packaging different versions of libraries with an Apache Spark application

	Using Spark SQL
	SQLContext and HiveContext
	Querying files into a DataFrame
	Spark SQL example
	Interacting with Hive views
	Performance and storage considerations for Spark SQL DROP​ ​ T​ABLE​ PUR​GE
	TIME​STAMP compatibility for Parquet files
	Accessing Spark SQL through the Spark shell

	Calling Hive user-defined functions (UDFs)
	Using Spark Streaming
	Spark Streaming and Dynamic Allocation
	Spark Streaming Example
	Enabling fault-tolerant processing in Spark Streaming
	Configuring authentication for long-running Spark Streaming jobs
	Building and running a Spark Streaming application
	Sample pom.​xml file for Spark Streaming with Kafka

	Accessing external storage from Spark
	Accessing data stored in Amazon S3 through Spark
	Examples of accessing Amazon S3 data from Spark

	Accessing Hive from Spark
	Accessing HDFS Files from Spark
	Accessing ORC Data in Hive Tables
	Accessing ORC files from Spark
	Predicate push-down optimization
	Loading ORC data into DataFrames using predicate push-down
	Optimizing queries using partition pruning
	Enabling vectorized query execution
	Reading Hive ORC tables

	Accessing Avro data files from Spark SQL applications
	Accessing Parquet files from Spark SQL applications
	Using Spark MLlib
	Running a Spark MLlib example
	Enabling Native Acceleration For MLlib

	Using custom libraries with Spark

