Cloudera Runtime 7.2.8

Configuring HDFS ACLs

Date published: 2020-02-20
Date modified: 2021-03-25

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

]S AN o SRS 4
Configuring ACLS 0N HDFS........oo ettt st et 4
Using CLI commandsto create and list ACLS.......ccovevveeiinnienee e 4
F O I =g o =S SRR 5
ACLS ON HDFS fEALUMNES......oeee ettt 8
Use cases for ACLS ON HDFS.........oo e 9
Enable authorization for HDFS Weh UlS.......cccoiiviiiececeecece e 11

Enable authorization for additional HDFS WED UIS...........ccooeceeeeeeeesesessseeessesossseessssssssseessssssssseessssssssoee 12

Configuring HSTS for HDFS WED UIS......cuoiiiiiiieiereee ettt st sne e 12

Cloudera Runtime HDFSACLs

HDFS ACLs

Y ou can use Access Control Lists (ACLs) on the Hadoop Distributed File System (HDFS). ACLs extend the HDFS
permission model to support more granular file access based on arbitrary combinations of users and groups.

Configuring ACLs on HDFS

ACLs are enabled by default. Y ou can use Cloudera Manager to disable ACLs based on your requirements.

Procedure

Go to the Cloudera Manager Admin Console and navigate to the HDFS service.

Click the Configuration tab.

Select Scope > Service _name.

Select Category > Security .

L ocate the Enable Access Control Lists property and clear its checkbox to disable the HDFS ACLs.
Enter a Reason for change, and then click Save Changes to commit the changes.

Restart the NameNode.

N o oM~ wbhPRE

Using CLI commands to create and list ACLs

Y ou can use the sub-commands setfacl and getfacl to create and list ACLs on HDFS.These commands are modeled
after the same Linux shell commands.

o setfacl
Sets ACLsfor files and directories.

Example:

-setfacl [-bkR] {-nm -x} <acl_spec> <path>

-setfacl --set <acl _spec> <path>
Options:
Table 1. ACL Options

Option Description

-b Remove all entries, but retain the base ACL entries. The entries
for User, Group, and Others are retained for compatibility with
Permission Bits.

-k Remove the default ACL.

-R Apply operationsto al files and directories recursively.

-m Modify the ACL. New entries are added to the ACL, and existing
entries are retained.

-X Remove the specified ACL entries. All other ACL entries are
retained.

Cloudera Runtime ACL examples

Option Description

--set Fully replace the ACL and discard all existing entries. The acl_spec
must include entries for User, Group, and Others for compatibility
with Permission Bits.

<acl_spec> A comma-separated list of ACL entries.
<path> The path to the file or directory to modify.
Examples:

hdf s dfs -setfacl -muser:hadoop:rw /file

hdfs dfs -setfacl -x user:hadoop /file

hdfs dfs -setfacl -b /file

hdfs dfs -setfacl -k /dir

hdfs dfs -setfacl --set user::rw,user:hadoop:rw,group::r--,other::r-- /
file

hdfs dfs -setfacl -R -m user: hadoop:r-x /dir

hdf s dfs -setfacl -mdefault:user:hadoop:r-x /dir

Exit Code:

Returns 0 on success and non-zero on error.
e getfac

Displaysthe ACLs of files and directories. If adirectory has adefault ACL, getfacl aso displaysthe default ACL.
Usage:

-getfacl [-R] <path>
Options:

Table 2: getfacl Options

Option Description

-R List the ACLsof al filesand directories recursively.
<path> The path to the file or directory to list.
Examples:

hdfs dfs -getfacl /file
hdfs dfs -getfacl -R /dir

Exit Code:

Returns 0 on success and non-zero on error.

ACL examples

Access Control Lists (ACLs) on HDFS help in addressing access-related issues better than Permission Bits.

Drawbacks of Permission Bits

Before the implementation of ACls, the HDFS permission model was equivalent to traditional UNIX Permission Bits.
In this model, permissions for each file or directory are managed by a set of three distinct user classes: Owner, Group,
and Others. There are three permissions for each user class. Read, Write, and Execute. Thus, for any file system
object, its permissions can be encoded in 3* 3=9 bits. When a user attempts to access afile system object, HDFS

5

Cloudera Runtime ACL examples

enforces permissions according to the most specific user class applicable to that user. If the user is the owner, HDFS
checks the Owner class permissions. If the user is not the owner, but is a member of the file system object’s group,
HDFS checks the Group class permissions. Otherwise, HDFS checks the Others class permissions.

Thismodel can sufficiently address alarge number of security requirements. For example, consider a sales
department that would like a single user -- Bruce, the department manager -- to control all modificationsto sales
data. Other members of the sales department need to view the data, but must not be allowed to modify it. Everyone
elsein the company (outside of the sales department) must not be allowed to view the data. This requirement can be
implemented by running chmod 640 on the file, with the following outcome:

SITWT----- 1 brucesal es22K Nov 18 10: 55 sal es-dat a

Only Bruce can modify the file, only members of the sales group can read the file, and no one else can access thefile
in any way.

Suppose new requirements arise as a result of which users Bruce, Diana, and Clark are allowed to make
modifications. Permission Bits cannot address this requirement, because there can be only one owner and one group,
and the group is already used to implement the read-only requirement for the sales team. A typical workaround is

to set the file owner to a synthetic user account, such as "salesmgr,” and allow Bruce, Diana, and Clark to use the
"salesmgr" account through sudo or similar impersonation mechanisms. The drawback with this workaround is that it
forces complexity on end-users, requiring them to use different accounts for different actions.

Consider another example where the sales staff and all the executives require accessto the sales data. Thisis another
reguirement that Permission Bits cannot address, because there is only one group, and it is aready used by sales. A
typical workaround isto set the file's group to a new synthetic group, such as "salesandexecs," and add all users of
"sales' and all users of "execs' to that group. The drawback with this workaround isthat it requires administrators to
create and manage additional users and groups.

The preceding examples indicate that Permission Bits cannot address permission requirements that differ from the
natural organizational hierarchy of users and groups. ACL s enable you to address these requirements more naturally
by allowing multiple users and multiple groups to have different sets of permissions.

The following examples explain how you can use ACLs and address different requirements related to access
permissions.

In addition to an ACL that is enforced during permission checks, adefault ACL isalso available. A default ACL can
only be applied to adirectory -- not to afile. Default ACLs have no direct effect on permission checks for existing
child files and directories, but instead define the ACL that new child files and directories will receive when they are
created.

Suppose we have a"monthly-sales-data" directory that is further subdivided into separate directories for each
month. We will set adefault ACL to guarantee that members of the "execs" group automatically get access to new
subdirectories as they get created each month.

e Set adefault ACL on the parent directory:
> hdfs dfs -setfacl -mdefault:group: execs:r-x /nonthly-sal es-data
e Make subdirectories:

> hdfs dfs -nkdir /nonthly-sal es-data/JAN
> hdfs dfs -nkdir /nonthly-sal es-data/ FEB

* Verify that HDFS has automatically applied the default ACL to the subdirectories:

> hdfs dfs -getfacl -R /nonthly-sal es-data
file: /nonthly-sal es-data

Cloudera Runtime

ACL examples

owner: bruce
group: sales

user: :rwx
group::r-x
other::---

defaul t:user::rw
def aul t: group::r-x
def aul t: group: execs: r-x
def aul t: mask: : r-x
defaul t:other::---

file: /nonthly-sal es-dat a/ FEB
owner: bruce

group: sales

user: :rwx

group::r-x

group: execs: r-x
mask: : r-x

other::---
defaul t: user::rwx
defaul t:group::r-x

def aul t: group: execs: r-x
defaul t: mask: :r-x
default:other::---

file: /nonthly-sal es-data/JAN
owner: bruce

group: sales

user: :rwx

group::r-x

group: execs: r-x

mask: :r-x

other::---
defaul t: user::rwx
defaul t:group::r-x

def aul t: group: execs: r-x
defaul t: mask: :r-x
default:other::---

Suppose there is aneed to immediately block access to an entire sub-tree for a specific user. Applying anamed user
ACL entry to theroot of that sub-tree is the fastest way to accomplish this without accidentally revoking permissions
for other users.

Add an ACL entry to block user Diana's access to "monthly-sales-data’:

> hdfs dfs -setfacl -muser:diana:--- /nonthly-sal es-data

Run getfacl to check the results:

> hdfs dfs -getfacl /nonthly-sal es-data

file: /nonthly-sal es-data
owner: bruce

group: sales

user: :rwx
user:di ana: - - -

group: :r-x

mask: :r-x

other::---
defaul t: user::rwx

def aul t: group::r-x

def aul t: group: execs: r-x

Cloudera Runtime ACLS on HDFS features

def aul t: mask: : r-x
defaul t:other::---

It isimportant to keep in mind the order of evaluation for ACL entries when a user attempts to access afile system
object:

* If the user isthefile owner, the Owner Permission Bits are enforced.

* Elseg if the user has anamed user ACL entry, those permissions are enforced.

e Elsg, if the user isamember of thefile's group or any named group in an ACL entry, then the union of
permissions for all matching entries are enforced. (The user may be amember of multiple groups.)
« If none of the above are applicable, the Other Permission Bits are enforced.

In this example, the named user ACL entry accomplished our goal because the user is not the file owner and the
named user entry takes precedence over all other entries.

ACLs on HDFS support features such as associating with any files or directories, access through multiple user-facing
endpoints, backward compatibility with Permission Bits and so on.

POSIX ACL Implementation

ACLs on HDFS have been implemented with the POSIX ACL model. If you have ever used POSIX ACLs on aLinux
file system, the HDFS ACL s work the same way.

Compatibility and Enforcement

HDFS can associate an optional ACL with any file or directory. All HDFS operations that enforce permissions
expressed with Permission Bits must also enforce any ACL that is defined for the file or directory. Any existing
logic that bypasses Permission Bits enforcement also bypasses ACLs. This includes the HDFS super-user and setting
dfs.permissionsto "false”" in the configuration.

Access Through Multiple User-Facing Endpoints

HDFS supports operations for setting and getting the ACL associated with afile or directory. These operations
are accessible through multiple user-facing endpoints. These endpoints include the FsShell CLI, programmatic
mani pulation through the FileSystem and FileContext classes, WebHDFS, and NFS.

User Feedback: CLI Indicator for ACLs

The plus symbol (+) is appended to the listed permissions of any file or directory with an associated ACL. To view,
usethels -l command.

Backward-Compatibility

The implementation of ACL s is backward-compatible with existing usage of Permission Bits. Changes applied via
Permission Bits (chmod) are also visible as changes in the ACL. Likewise, changes applied to ACL entriesfor the
base user classes (Owner, Group, and Others) are also visible as changes in the Permission Bits. Permission Bit and
ACL operations manipulate a shared model, and the Permission Bit operations can be considered a subset of the ACL
operations.

Low Overhead

The addition of ACLswill not cause a detrimental impact to the consumption of system resources in deployments that
choose not to use ACLs. Thisincludes CPU, memory, disk, and network bandwidth.

Using ACL s does impact NameNode performance. It is therefore recommended that you use Permission Bits, if
adequate, before using ACLs.

ACL Entry Limits

The number of entriesin asingle ACL is capped at a maximum of 32. Attemptsto add ACL entries over the
maximum will fail with a user-facing error. Thisis done for two reasons: to simplify management, and to limit

8

Cloudera Runtime Use cases for ACLson HDFS

resource consumption. ACLs with avery high number of entriestend to become difficult to understand, and may
indicate that the requirements are better addressed by defining additional groups or users. ACLswith avery high
number of entries also require more memory and storage, and take longer to evaluate on each permission check. The
number 32 is consistent with the maximum number of ACL entries enforced by the "ext" family of file systems.

Snapshots

Within a snapshot, all ACLs are frozen at the moment that the snapshot was created. ACL changes in the parent of the
snapshot are not applied to the snapshot.

Tooling

Tooling that propagates Permission Bits will propagate ACLs. Thisincludesthecp -p shell command and distcp -p.

Depending on your requirements, you can configure ACLs on HDFS to ensure that the right users and groups have
the required access permissions to your data.

The following examplesindicate different use cases for configuring ACLs on HDFS:

In this use case, multiple users require Read access to afile. None of the users are the owner of thefile. The users are
not members of a common group, so it isimpossible to use group Permission Bits.

This use case can be addressed by setting an access ACL containing multiple named user entries:

ACLs on HDFS supports the foll owi ng use cases:

In this use case, multiple groups require Read and Write access to afile. Thereis no group containing all of the group
members, so it isimpossible to use group Permission Bits.

This use case can be addressed by setting an access ACL containing multiple named group entries:

group: sal es: rw
group: execs: rw

In this use case, Hive contains a partitioned table of sales data. The partition key is"country". Hive persists
partitioned tables using a separate subdirectory for each distinct value of the partition key, so the file system structure
in HDFS looks like this:

user
“-- hive

“-- war ehouse
“-- sales

| -- country=CN
| -- country=CB
“-- country=US

All of these files belong to the "salesadmin® group. Members of this group have Read and Write accessto al
files. Separate country groups can run Hive queries that only read data for a specific country, such as"sales CN",
"sdles GB", and "sales US". These groups do not have Write access.

This use case can be addressed by setting an access ACL on each subdirectory containing an owning group entry and
anamed group entry:

count ry=CN

Cloudera Runtime Use cases for ACLson HDFS

group: : rwx
group: sales_CN: r-x

country=GB
group: : rwx
group: sales_GB:r-x

count r y=US
group: : rwx
group: sal es_US: r-x

Note that the functionality of the owning group ACL entry (the group entry with no name) is equivalent to setting
Permission Bits.

Note:
E Storage-based authorization in Hive does not currently consider the ACL permissionsin HDFS. Rather, it
verifies access using the traditional POSIX permissions model.

In this use case, afile system administrator or sub-tree owner would like to define an access policy that will be
applied to the entire sub-tree. This access policy must apply not only to the current set of files and directories, but also
to any new files and directories that are added later.

This use case can be addressed by setting a default ACL on the directory. The default ACL can contain any arbitrary
combination of entries. For example:

defaul t:user::rw

defaul t: user: bruce: rw
defaul t: user:diana:r- -
defaul t: user:cl ark: rw
defaul t:group::r--
defaul t: group: sal es: :rw
def aul t: group: execs: : rw
default:others::---

It isimportant to note that the default ACL gets copied from the directory to newly created child files and directories
at time of creation of the child file or directory. If you change the default ACL on a directory, that will have no effect
on the ACL of the files and subdirectories that already exist within the directory. Default ACL s are never considered
during permission enforcement. They are only used to define the ACL that new files and subdirectories will receive
automatically when they are created.

HDFS ACL s support deployments that may want to use only Permission Bits and not ACL s with named user and
group entries. Permission Bits are equivalent to aminimal ACL containing only 3 entries. For example:

user::rw
group::r--
others::---

In this use case, adeeply nested file system sub-tree was created as world-readable, followed by a subsequent
requirement to block access for a specific user to al filesin that sub-tree.

This use case can be addressed by setting an ACL on the root of the sub-tree with a named user entry that strips all
access from the user.

For thisfile system structure:

dirl
T--dir2

10

Cloudera Runtime Enable authorization for HDFS web Uls

“o- dir3
|-- filel
|-- file2
Co- file3

Setting the following ACL on "dir2" blocks access for Bruceto "dir3,""filel,""file2," and "file3":
user: bruce: - --

More specifically, the removal of execute permissions on "dir2" means that Bruce cannot access "dir2", and therefore
cannot see any of its children. This also means that access is blocked automatically for any new files added under
"dir2". If a"filed" is created under "dir3", Bruce will not be able to accessiit.

In this use case, multiple named users or named groups require full access to a shared directory, such as"/tmp".
However, Write and Execute permissions on the directory also give users the ability to delete or rename any files
in the directory, even files created by other users. Users must be restricted so that they are only allowed to delete or
rename files that they created.

This use case can be addressed by combining an ACL with the sticky bit. The sticky bit is existing functionality that
currently works with Permission Bits. It will continue to work as expected in combination with ACLSs.

Y ou can enforce authorization for the following HDFS web Uls: the NameNode, DataNode, and JournalNode.

Y ou must have Kerberos authentication for HTTP web consoles and Hadoop Secure Authorization enabled. When
both configurations are set, only the hdfs user can access the HDFS web Uls by default. Any other user who attempts
to access the web Ul will encounter an error because the user is not authorized to access the page.

For users and groups other than hdfs to access the web Uls, you must add them to hdfs-site.xml with an HDFS
Service Advanced Configuration Snippet (Safety Valve).

1. Inthe Cloudera Manager Admin Console, go to Clusters <HDFS SERVICE> .

2. Navigate to the Configurations tab and search for the following property: HDFS Service Advanced Configurat
ion Snippet (Safety Valve) for hdfs-sitexml.

3. Add avalue for the dfs.cluster.administrators property.
For example, a sample property might look like this:

« Name: dfs.cluster.administrators

« Description: ACL for admins, this configuration is used to control who can access the default servletsin the
namenode and so on. The value should be a comma separated list of users and groups. The user list comes first
and is separated by a space followed by the group list. For example, userl,user2 groupl,group2. Both users

and groups are optional. So "userl", " groupl", "", "userl groupl", "userl,user2 groupl,group2" are al valid.
Y ou must note the leading spacein " groupl”. *' grants access to all users and groups, for example, ”, ' 'and'
**aredl valid.
These values would allow the users and groups to the following web Uls: NameNode, DataNode, and
JournalNode.

Note: You can view the Service Monitor Kerberos Principal by navigating to Cloudera Management
Service Configuration and searching for Role-Specific Kerberos Principal.

4. Savethe configuration.

11

Cloudera Runtime Enable authorization for HDFS web Uls

5. Restart dl stale HDFS services.

Y ou can enforce authorization for the following HDFS web Ul servlets, which may contain sensitive data: /jmx, /sta
ck, /conf, and /metrics. When you enforce authorization for the servlets, only the userslisted in the dfs.cluster.admi
nistrators property can access them.

Cloudera Manager requires access to the /jmx and /metrics servlets and uses the HTTP user as well as the Service
Monitor Kerberos Principal to access them. Make sure to add both users to dfs.cluster.administrators, as mentioned in
Enable authorization for HDFS web Uls on page 11.

1. Inthe Cloudera Manager Admin Console, go to Clusters <HDFS SERVICE> .

2. Navigate to the Configurations tab and search for the following property: HDFS Service Advanced Configurat
ion Snippet (Safety Valve) for hdfs-sitexml.

3. Add the hadoop.security.instrumentation.requires.admin property and set its value to true.
4. Save the configuration.
5. Restart all stale HDFS services.

Configuring the HTTP Strict Transport Security (HSTS) for HDFS ensures that a web browser does not load the
service information using HTTP. Additionally, all attemptsto load the information using HTTP will automatically be
converted to HTTPS.

1. Gotothe HDFS service.
2. Click Configuration.
3. Setthe HSTS credentialsin Cluster-wide Advanced Configuration Snippet (Safety Valve) for core-site.xml.

<property>

<nanme>hadoop. htt p. header. Stri ct - Transport - Securi t y</ nanme>
<val ue>max- age=63072000; i ncl udeSubDonwai ns; pr el oad</ val ue>
</ property>

4. Restart the HDFS service.

12

	Contents
	HDFS ACLs
	Configuring ACLs on HDFS
	Using CLI commands to create and list ACLs
	ACL examples
	ACLS on HDFS features
	Use cases for ACLs on HDFS
	Enable authorization for HDFS web UIs
	Enable authorization for additional HDFS web UIs
	Configuring HSTS for HDFS Web UIs

