Cloudera Runtime 7.2.8

Using Apache Phoenix to Store and Access
Data

Date published: 2020-02-29
Date modified: 2021-03-25

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

M apping Apache Phoenix schemas to Apache HBase namespaces..................... 4
ENable NamMESPaCce MADDING.......c ettt sttt sttt sttt sttt se bt e bt s e bt sb et b et b et b et eb e e eb et et e ne et e e b e 4
Associating tables of a schema to a namespace...........cccccvevecvee e ccee e 5
Associate table in a customized Kerberos environmMeENt...........ccoeieirieineeneiese e 5
Associate a table in a non-customized environment without Kerberos...........cccovvvrviniinninsisenecnecns 6
Using secondary indexing in Apache PROENiX.........ccccecceeiiieeiiiecciee e 6
Use strongly consistent indexing with Apache PhOBNIX.........coooiiirinnee e 7
Migrate existing tables to use strongly cONSIStENt INAEXING........cccoreriririre e 8
Using transactions in Apache PROBNIX........cocooiiee e 9
Configure tranSaCiON SUPPOI.........c.crueuerieerieerieistee sttt ese ettt b e bbb bbbt bt e bt st e et ne b e 9
Create and modify tables with transaction SUPPOIT..........coeerirrirrireeee e 11
Using JDBC API with Apache PhoeniX.........ccoevviieeiie i 12
Connecting to Apache Phoenix Query Server using the JDBC Clint........cccvvvievevesieviereeeececeeese e 13
ConNECt t0 PROENIX QUEY SEIVEN.......ciueieeeeieeceeeeeeestestesteste s e stesse e seeseseesessessessessessesteseeseessensessensesensessensens 13
Connect to Phoenix Query Server through APache KNOX.......ccceceveeieeirieeie e s s seese e s sss e see e eene s 14
Using non-JDBC drivers with Apache PhoeniX.........ccccooveeviieiieeccie e, 15
Using Apache Phoenix-Spark CONNECLON.......c.ccvevveviriiiesin e 16
Configure Phoenix-Spark connector using Cloudera Managerouveereirieeneeneneseese s 16
Phoenix-Spark conNector USAgE EXAMPIES..........ciiiiriiiriirieeeie ettt b bbbt naenes 17
Using Apache Phoenix-HivVe CONNECLONcccccveieeiieciee e 19
Configure Phoenix-Hive connector using Cloudera Manager..........cccueeiereererereeieeeeeesesesesesreseseeseeseesseseens 20
Apache Phoenix-Hive USAgE EXAMPIES.........ccciiiiirieie e ste st e e e ettt see st e e te e e e e e e e eneenennes 20

Limitations of PhOENiX-HIVE CONNECLON..........cuiiiiiiii ettt st et st s s e e s b saaesbessabe s sbeesnesebeas 22

Cloudera Runtime Mapping Apache Phoenix schemas to Apache HBase namespaces

Y ou can map a Apache Phoenix schemato an Apache HBase namespace to gain multitenancy featuresin Apache
Phoenix.

Important: You must configure this feature only in a CDP Private Cloud Base deployment. Thisfeatureis
configured automatically in a CDP Public Cloud deployment.

Apache HBase namespaces are alogical grouping of tables, similar to adatabase in arelational database system.
Apache HBase, the underlying storage engine for Apache Phoenix, has namespaces to support multi-tenancy features.
Multitenancy helps an Apache HBase user or administrator to perform access control and quota management tasks.
Namespaces enabl e tighter control of where a particular data set is stored on the Apache HBase RegionsServers.

Y ou can enable namespace mapping by configuring a set of properties using Cloudera Manager.

After you set the properties to enable the mapping of Phoenix schemas to HBase namespaces, reverting the property
settings renders the Phoenix database unusable. Test or carefully plan the Phoenix to HBase namespace mappings
before implementing them.

Important: Clouderarecommends that you enable namespace mapping. If you decide not to enable this
feature, you can skip the following steps.

To enable Phoenix schema mapping to a non-default HBase namespace:

1. Gotothe HBase service.

2. Click the Configuration tab.

3. Select Scope (Service-Wide) .

4, Locate the HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-sitexml property or search
for it by typing its name in the Search box.

5. Add the following property values:
Name: phoenix.schema.isNamespaceM appingEnabled

Description: Enables mapping of tables of a Phoenix schemato a non-default HBase namespace. To enable
mapping of a schemato a hon-default namespace, set the value of this property to true. The default setting for this
property isfalse.

Value: true
Name: phoenix.schema.mapSystemT ablesToNamespace

Description: With true setting (default): After namespace mapping is enabled with the other property, all system
tables, if any, are migrated to a namespace called system. With fal se setting: System tables are associated with the
default namespace.
Vaue: true

6. Select Scope Gateway .

Cloudera Runtime Associating tables of a schemato a namespace

7. Locate the HBase Client Advanced Configuration Snippet (Safety Valve) for hbase-site.xml property or search for
it by typing its name in the Search box.

8. Add the following property values:
Name: phoenix.schema.isNamespaceM appingEnabled

Description: Enables mapping of tables of a Phoenix schemato a non-default HBase namespace. To enable
mapping of the schema to a non-default namespace, set the value of this property to true. The default setting for
this property isfalse.

Value: true
Name: phoenix.schema.mapSystemT ablesToNamespace

Description: With true setting (default): After namespace mapping is enabled with the other property, al system
tables, if any, are migrated to a namespace called system.With fal se setting: System tables are associated with the
default namespace.

Vaue: true
9. Enter aReason for change, and then click Save Changes to commit the changes.
10. Restart the role and service when Cloudera Manager prompts you to restart.

Note: If you do not want to map Phoenix system tables to namespaces because of compatibility issues
with your current applications, set the phoenix.schema.mapSystemTablesToNamespace property to false.

Important: You must use thisfeature only in a CDP Private Cloud Base deployment. Thisfeatureis
configured automatically in a CDP Public Cloud deployment.

After you enable namespace mapping on a Phoenix schema that already has tables, you can migrate the tables to an
HBase namespace. The namespace directory that contains the migrated tables inherits the schema name.

For example, if the schema name s storel, then the full path to the namespace is $hbase.rootdir/data/storel. System
tables are migrated to the namespace automatically during the first connection after enabling namespace properties.

Y ou can run a command to associate a table in a customized environment without K erberos.

In a Kerberos-secured environment, you must have admin privileges (user hbase) to complete the following task.

* Runacommand to migrate atable of a schemato a namespace, using the following command syntax for the
options that apply to your environment:

phoeni x- psql
ZooKeeper _host names: 2181

: zookeeper . znode. par ent

: principal _nanme

: HBase headl ess_keytab | ocati on
; Tenant | d=tenant _|d

; Current SCN=current _SCN

-m

schema_nane. t abl e_nane

Cloudera Runtime Using secondary indexing in Apache Phoenix

Y ou can run a command to associate atable in a non-customized environment without K erberos.

* Run the following command to associate atable:

phoeni x- psql ZooKeeper host nane -m Schenma_nane. t abl e_nane

Apache Phoenix uses a secondary index to serve queries. An index tableis an Apache Phoenix table that storesthe
reference copy of some or al the datain the main table.

Y ou can use a secondary index to access data from its primary data access path. When you use a secondary index, the
indexed column qualifiers or rows form a unique row key that allows you to do point lookups and range scans.

Apache Phoenix supports global and local secondary indexes. Global indexesis used for all typical use cases. You
can use local indexes for specific use cases where you want the primary and the index table to be present in the same
Apache HBase region.

» Useglobal indexes for read-heavy use cases. Use the covered-global index to save on read-time overheads. Global
indexes are used to co-locate related information.

» Uselocal indexes for write-heavy use cases. Use the functional-local index on arbitrary expressions to query
specific combinations of index queries. A local index is an in-partition index that is optimized for writes but
requires more data to be read to answer a query.

Note: If your tableislarge, you can use the ASYNC keyword with CREATE INDEX to create an index
asynchronously. ASY NC uses a MapReduce job to distribute index workload, and every single mapper works
with each data table region and writes to the index region. Therefore freeing up critical resources during
indexing.

The following tables list the index type and index scope with a description and example for each index type:

Covered Include the data that you want to access from the primary tablein the
index rows. The query does not have to access the primary table once
the index entry is found.

Benefits: Save read-time overhead by only accessing the index entry.
In the following example, column v3isincluded in the index to avoid
the query to access the primary table to retrieve this information.
Example

The following command creates indexes on the v1 and v2 columns and
include the v3 column as well:

CREATE | NDEX my_i ndex ON exp_table (
vl, v2) | NCLUDE(v3);

Cloudera Runtime Using secondary indexing in Apache Phoenix

Index type Description

Functional Create an index on arbitrary expressions. When your query uses the
expression, theindex is used to retrieve the results instead of the data
table.

Benefits: Useful for certain combinations of index queries.
Example

Run the following command to create a functional index so that you
can perform case insensitive searches on the combined first name and
last name of a person:

CREATE | NDEX UPPER NAME ON EMP (UPPE
R(FI RST_NAME| |' ' | | LAST_NAVE));

Search on the combined first name and last name using the following
command:

SELECT EMP_|I D FROM EMP VHERE UPPER(F
| RST_NAVE||' ' || LAST_NAME) =' EXP_NAME

Table 2:

Index scope Description

Global Y ou can use this when you have read-heavy use cases. Each global
index is stored in its own table, and thereforeiit is not co-located with
the data table.

A Global index is acovered index. It is used for queries only when all
columnsin that query areincluded in that index.

Example

Run the following command to create a global index:

CREATE | NDEX my_i ndex ON exp_table (
vi);

Local Y ou can use this for write-heavy use cases. Each local index is stored
within the data table.

Example

Run the following command to create alocal index:

CREATE LOCAL | NDEX my_i ndex ON exp_t
able (vl);

Use strongly consistent indexing with Apache Phoenix

Strongly consistent indexing is a three-phase indexing algorithm that ensures that the index table is alwaysin sync
with the data table.

Strongly consistent indexing ensures that the data read from the index table is consistent at read time for read
operations. An index table row is repaired using the corresponding data table row if necessary at read time. When the
writesto atable are fast, an additional write phase is used without impacting the write performance.

The following table illustrates the design of the three-phase indexing:

Cloudera Runtime

Using secondary indexing in Apache Phoenix

Table 3:

Operation Strongly consistent index

READ

1
2.

Reads the index rows and checks its status
Repairs unverified rows using the underlying data table

WRITE

1

Sets the status of the existing index rows as unverified and writes
the new index rows with status as unverified

Writes to the underlying data table rows

Deletes the exisiting index rows and sets the status oif the new
rows as verified

DELETE

N

Sets the status of index table rows as unverified
Deletes the underlying data table rows
Deletes the index table rows

Newly created Apache Phoenix tablesin Cloudera Runtime 7.1.6 and higher use strongly consistent indexing by
default. You can use the index upgrade tool to upgrade your Apache Phoenix tables to use the strongly consistent

indexing.

Migrate existing tables to use strongly consistent indexing

Y ou can use the index upgrade tool to rebuild your indexes. After you run thistool, your existing tables use the

strongly consistent global index.

About this task

If you have Apache Phoenix tables that you migrated from Cloudera Runtime 7.1.5 or lower to Cloudera Runtime
7.1.6 or higher, you must convert the tables to use the strongly consistent index using the index upgrade tool.

Procedure

1. Perform the following as the HBase user, or as a user with HBase root privileges (global RXWCA).
2. Runthefollowing command for each table that has global indexes.

hbase org. apache. phoeni x. mapr educe. i ndex. | ndexUpgr adeTool -o [***UPGRADE /

ROLLBACK* **]

Parameters:

e -0: Type whether you want to upgrade or rollback.

-tb [***TABLE NAME***]
-1 f [***/ TMP/ | NDEX- UPGRADE- TOOL. LOGH * *]

e -th: Type the table name that you want to upgrade or rollback.
e -If: Typethe path where you want to store the index upgrade tool log file.

Cloudera Runtime Using transactions in Apache Phoenix

3. After the conversion isfinished, it is highly recommended to rebuild the indexes. Use the following commands for
each index.

hbase org. apache. phoeni x. mapr educe. i ndex. | ndexTool -s [***SCHEMA NAME***]
-dt [***DATA TABLE NAME***] -it[***| NDEX NAME***] -op /tnp/phoeni x_i ndex

hbase org. apache. phoeni x. mapr educe. i ndex. | ndexTool -fi -s [***SCHEMA
NAME***] -dt [***DATA TABLE NAME***] -it[***| NDEX NAMVE***] -op /tnp/ph
oeni x_i ndex

Parameters:

* -s: Type the schema name. Optional for default schema.

e -dt: Type the data table name.

e -it: Typetheindex name.

« -op: Type the path where you want to store the index upgrade tool log file.

Note: These commands start the MapReduce jobs in the background, which might take alonger time and
E cause significant load on the cluster.

X-row, X-table transaction support enables support for complex distributed transactions. Transaction support enables
you to run atomic database operations, meaning your database operations must either be completed or terminated. A
transaction may contain a set of database operations where each one is carried out atomically without interfering with
others.

Y ou can perform complex transactions that span multiple rows and tables and implement traditional star schema,
wide-columns, or both. Transactions are |ock-free and handle any write-write conflicts for you without your
intervention.

This two-phase commit capability isimplemented using ANSI SQL semantics which is the same as used in other
databases like MySQL or PostgreSQL, but thisimplementation benefits from the near-linear scalability of Apache
HBase and Apache Phoenix, and do not have upper-bound on the number of transactions, size of rows/table, or size
per table like other databases.

Note: Y ou cannot convert atransactional table back to a non-transactional table. Ensure that you only
Ij convert those tables that you know will use transactions.

Before you can start using transactions, you must first add the Apache Omid service and configure Apache Phoenix to
enable transactions. Apache Omid provides the transaction management capability in Apache Phoenix.

« If your cluster is Kerberized, ensure that you run the kinit command as hbase user before adding the Apache Omid
service to the cluster. Ensure you have valid Kerberos credentials.

« You can list the Kerberos credentials using the klist command, and you can obtain credentials using the kinit
command.

» Ensure that you have read/write permissions to write to Apache HBase tables in the cluster. Apache Omid creates
and writesto OMID_COMMIT_TABLE and OMID_TIMESTAMP_TABLE during a transaction.

Cloudera Runtime Using transactions in Apache Phoenix

Add the Apache Omid service, and configure Apache Phoenix using Cloudera Manager.

On the Home > Status tab, click " tothe right of the cluster name and select Add a Service. A list of service
types display. Y ou can add one type of service at atime.

2. Select Omid and click Continue.
3. Click Finish to complete adding the Omid service. Y ou return to the Cloudera Manager home page.

4. Verify the new serviceis started properly by checking the health status of the new service. If the Health Statusis
Good, then the service started properly.

ow OMid | Actons-

Health Tests (

Heaalthy OMID_TS0: 1. Concerning OMID_TS0: 0. Total OMID_TS0: 1

Percent haalthy: 100.00%. Percent healthy or concerning. 100.00%

Status Summary

After the Omid service has started, go to the HBase service.
Click the Configuration tab.

Select Scope > Gateway .

Select Category > Advanced.

Locate the HBase Client Advanced Configuration Snippet property or search for HBase Client Advanced Config
uration Snippet (Safety Valve) for hbase-site.xml:

Click View as XML and add the following property value:

© © N o u»

<property>
<nanme>phoeni x. t ransact i ons. enabl ed</ nane>

10

Cloudera Runtime Using transactions in Apache Phoenix

<val ue>t rue</val ue>
</ property>
10. Enter a Reason for change, and then click Save Changesto commit the changes.
11. Restart the role and service when Cloudera Manager prompts you to restart.

Y ou can create new tables with transaction support enabled or alter an existing table to enable transaction support on
that table.

To enable transaction support, you must use the TRANSACTIONAL=true parameter when creating atable, followed
by the COMMIT command at the end of your transaction.

» Create atable with transaction support enabled.

CREATE TABLE NEW TABLE (I D I NT) TRANSACTI ONAL=t rue; TRANSACTI ON_PROVI DER
=OMD;

Note: TRANSACTION_PROVIDER isan optional parameter. Omid is used as the default transaction
provider if this parameter is not specified.

e Set autocommit to off before you start atransaction.
The following example shows you how to turn off autocommit and then upsert avalue into NEW_TABLE.

j dbc: phoeni x: > l'aut ocommit of f

Aut oconmit status: false

j dbc: phoeni x: > upsert into NEWTABLE val ues(1,'ph');
1 row affected (0.015 seconds)

j dbc: phoeni x: > sel ect * from NEW TABLE;

Foem e m -t
| Al B |
fooodmocodb
| 11 ph |
e -

1 row selected (0. 144 seconds)

j dbc: phoeni x: > upsert into NEW TABLE val ues(2,' ph');
1 row affected (0.001 seconds)

j dbc: phoeni x: > ! conmi t

« Modify atable to enable transactions on the table.

ALTER TABLE EXI STI NG_TABLE SET TRANSACTI ONAL=t r ue;

The following example shows you how to do a transaction on atable when transaction support is enabled:

lautocomit off -- Turn off autoconmt

SELECT * FROM exanpl e_table; -- Transaction starts here. Other transactions
cannot see your updates yet

UPSERT | NTO exanpl e_tabl e VALUES (1,'A");

SELECT count (*) FROM exanpl e_tabl e WHERE e=1; -- You can see an uncomited
r ow

DELETE FROM ny_ot her _t abl e WHERE e=2;

11

Cloudera Runtime Using JDBC API with Apache Phoenix

lcommit -- Other transactions can now see the updates

Y ou will see an exception if you try to commit arow that is conflicting with another transaction. In the following
example, you will see an exception when you try and commit the first transaction after committing the second
transaction because the second transaction updates the same row.

UPSERT | NTO NEW TABLE VALUES (1,'a');
Now, when you do a commit on the same row. Row 1 in the following example, you will see an error.

UPSERT | NTO NEW TABLE VALUES (1,'b');
lcommit

Y ou see an exception similar to the following:

j ava. sqgl . SQ_LExcepti on: ERROR 523 (42900): Transaction aborted due to conflic
t wth other nmutations. Conflict detected for transacti on 155612256680000000
0.

Y ou can create and interact with Apache HBase tables using Phoenix DDL/DML statements through its standard
JDBC API. Apache Phoenix JDBC driver can be easily embedded in any application that supports JDBC.

Apache Phoenix enables you to use the standard JDBC API to create and access Apache HBase tables. Y ou can use
JDBC APIswith Apache Phoenix instead of native Apache HBase client APIsto create tables, insert, and query data.

Apache Phoenix tables have a 1:1 relationship with Apache HBase tables. Y ou can choose to create a new table using
an Apache Phoenix DDL statement such as CREATE TABLE, or create aview on an existing Apache HBase table
using the VIEW statement.

Important: Modifying an Apache Phoenix table using Apache HBase native API is not supported. Doing
thisleads to errors, inconsistent indexes, incorrect query results, or sometimes to corrupt data.

To use the Apache Phoenix JDBC driver, you must embed the driver in your application that supports JDBC. Apache
Phoenix has two kinds of JDBC drivers.

e A thick driver communicates directly with Apache HBase. The thick driver, therefore, needs access to al the
nodes in the Apache HBase cluster.

« A thindriver communicates with Apache HBase through Phoenix Query Server (PQS) and requires access only to
PQS. Use the thin driver to connect to PQS through Apache Knox or connect to PQS directly.

In an operational database Data Hub cluster, Data Lake (SDX cluster) provides security dependencies such as Apache
Knox. Your JDBC URL string would depend on whether you want to connect directly or through Apache Knox.
Before you try connecting to Apache Phoenix, check if you arein the list of allowed usersin Apache Ranger allowed
to access Apache Phoenix and Apache HBase.

Based on whether you want to use the thick or thin driver, you need the JAR files for the Apache HBase client, the
Apache Phoenix client, and the PQS client.

For the thick driver, you need:

e hbase-client-[***VERS ON***].jar
e hbase-site.xml

Note: You must add the cluster's current hbase-site.xml to the application classpath. Y ou can get the hbase-
Ij sitexml by doing an SSH to the cluster node with the hbase-gateway role. Y ou can copy the hbase-site.xml
file from the following path /etc/hbase/hbase-site.xml or /etc/hbase/conf/hbase-site.xml.

12

Cloudera Runtime Using JDBC API with Apache Phoenix

For the thin driver, you need:
» phoenix-queryserver-client-[***VERS ON***].jar
Y ou can get these JAR files from the following locations:

» Go to /opt/cloudera/parcel yCDH/lib/phoenix/ on an operational database cluster node with the phoenix-gateway
role

or
« Download the JAR files from the Cloudera Repository

When using the thin driver, your applications interact with the Phoenix Query Server using the Avatica APl and
Google Protocol Buffers serialization format.

JDBC driver location

Use the /opt/cloudera/parcel SCDH/lib/phoenix/[*** PHOENI X VERS ON***] jar file present in your deployment
location. For example, /opt/cloudera/parcel SCDH/lib/phoenix/phoenix-5.0.0.7.2.0.0-128-client.jar

URL syntax for the thick JDBC driver
To connect to Apache Phoenix using the thick JDBC driver, you must use the following JDBC URL syntax:

j dbc: phoeni x: [*** ZOOKEEPER_QUORUM: * *] : [*** ZOOKEEPER_PORT***] :
[*** ZOOKEEPER HBASE_PATH* * *]

The zookeeper_quorum and zookeeper port parameters are optional if you have added the operational database
Apache HBase cluster's current hbase-site.xml to the application classpath.
Apart from the JDBC driver, the following drivers are supported:

* ODBCdriver
e Python driver for Phoenix

Y ou can interact with Apache Phoenix using your client and Apache Phoenix Query Server (PQS).

PQS isautomatically configured when you create an Operational Database Data Hub cluster. There are two waysin
which you can use the thin client to interact with Phoenix:

e Connect to PQS directly
« Connect to PQS using the Apache Knox gateway

Y ou can connect to Phoenix Query Server (PQS) using the JDBC thin client without using a gateway such as Apache
Knox. Y ou must use the JDBC URL syntax to form the URL and connect to PQS.

Ensure that you have access to Apache Phoenix and Apache HBase, and you have the required permissions
configured in Ranger to connect to PQS.

Ensure that you have safely noted down your Kerberos principal and keytab information used to connect to PQS.

Y ou can use the JIDBC URL syntax to form the URL and connect to PQS.

13

https://repository.cloudera.com/artifactory/cloudera-repos/org/apache/phoenix/

Cloudera Runtime Using JDBC API with Apache Phoenix

» To connect to the PQS directly, you must use the JDBC URL syntax as shown here: jdbc:phoenix:thin:[key=value
[;key=value...]]

Y ou must provide the correct URL, serialization, and authentication key-values to interact with the Phoenix Query
Server. For more information about optional parameters, see Client Reference.

j dbc: phoeni x: thin:url=http://1 ocal host: 8765; seri al i zati on=PROTOBUF; aut henti
cat i on=SPENGO,
princi pal =[*** PRI Nl CPAL@EXAMPLE. COMF**] ; keyt ab=[*** PATH TO THE KEYTAB

FI LE***]

Y ou can connect to Phoenix Query Server (PQS) using the JDBC thin client through the Apache Knox gateway.
Apache Knox requires your thin client connection to be over HTTPS.

Ensure that you have access to Apache Phoenix and Apache HBase, and you have the required permissions
configured in Ranger to connect to PQS.

« Get the PQS Knox endpoint to connect to PQS from the CDP Data Hub user interface. Goto Data Hub cluster
Endpoints ClouderaManager Info Endpoints Phoenix Query Server .

B cCloudera Manager Info

CM-AFI PAM

Phoenix Query Server

PAM

(=3 HE=3 [|=
AAE

Resource Manager PAM

WebHDFS PAM

(=]
3

* Usethe JDBC URL inthe following sytax to connect to PQS through the Apache Knox gateway:

jdbc:phoenix:thin:url=https.//[*** KNOX ENDPOINT* **]:[*** PORT***]/[*** CLUSTER NAME***]/
cdp-proxy-api/avatical;serialization=PROT OBUF;authentication=BA S| C;avatica_user=[***WORKLOAD
USERNAME*];avatica_password=[***WORKLOAD PASSWORD***];truststore=[*** PATH TO THE KNOX
TRUSTSTORE .JKSFILE***];truststore_password=[*** TRUSTSTORE PASSWORD***]

The standard Oracle Java JDK distribution includes a default truststore (cacerts) that contains root certificates

for many well-known CAs, including Symantec. Rather than using the default truststore, Cloudera recommends
using the alternative truststore, jssecacerts. The aternative truststore is created by copying cacerts to that filename
(jssecacerts). Certificates can be added to this truststore when needed for additional roles or services. This
aternative truststore is loaded by Hadoop daemons at startup. Password (if there is one for the truststore) stored in

14

https://calcite.apache.org/avatica/docs/client_reference.html

Cloudera Runtime Using non-JDBC drivers with Apache Phoenix

aplaintext file readable by all (OS filesystem permissions set to 0440). For more information about truststores, see
Understanding Keystores and Truststores.

Note: The user name and password are for the Apache Knox gateway, and the authentication must always
be set to BASIC. The truststore and truststore_password the Knox public certificate.

j dbc: phoeni x: thin:url=https://[***HTTPS: // PQS. KNOX. ENDPQOl NT: 8443/ GATEWAY/
CDP- PROXY- API / AVATI CA/ ***] : [***8765***]

/[*** CLUSTEROPDB* **] / cdp- pr oxy- api / avati ca/ ; seri al i zat i on=PROTOBUF;

aut henti cati on=BASI C, avati ca_user =[** * WORKL OADUSERNAME* * *]

;avati ca_passwor d=[** * WORKL QADPASSWORD* * * |

;truststore=[***/ HOVE/ PATH TRUSTSTORE. JKS***] ; tr ust st ore_passwor d

=[*** TRUSTSTOREPASSWORD* * * |

Based on your application development requirements, you can obtain one of the other non-JDBC drivers.
Thelist of supported programming languages to access data stored in your operational database:

* Apache Groovy

« C

o C++

« Go

* Java

e Jython
e Python
 PHP

» Scala

Y ou can aso use REST for API support.
The following drivers are supported:
ODBC driver

Use the Database Open Database Connectivity (ODBC) interface to access the operational database. The ODBC
driver is provided by Cloudera as an additional download, but you can also use ODBC drivers from third-party
providers.

Y ou can download the Phoenix ODBC Driver from here: Phoenix ODBC Connector for CDP Operational Database.
Note

Y ou must have a Cloudera Enterprise Support Subscription to download the ODBC driver.

Python driver for Phoenix

Download the Python Driver for Apache Phoenix from the Apache Phoenix website. For more information, see
Python Driver for Phoenix.

Other driversthat are not supported by Cloudera

Y ou can use other non-JDBC Drivers for Phoenix as add-ons, but they are not supported by Cloudera. Y ou can find

compatible client drivers by searching on the web for avatica and the name of an application programming language
that you want to use. For example, Apache Phoenix/Avatica SQL driver for Go language. For more information and
linksto driver download, see Apache Calcite Avatica.

15

https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/security-encrypting-data-in-transit/topics/cm-security-create-key-trust.html
https://www.cloudera.com/downloads/connectors/phoenix/odbc/1-0-8-1011.html
http://phoenix.apache.org/python.html
https://calcite.apache.org/avatica/docs/

Cloudera Runtime Using Apache Phoenix-Spark connector

Y ou can use the Phoenix ODBC driver and the C# client library to develop .Net applications that interact with
Phoenix Query Server.

The applications that you develop will interact with the Phoenix Query Server using the Avatica APl and Google
Protocol Buffers serialization format.

Y ou can use the Apache Phoenix-Spark connector on your secure clusters to perform READ and WRITE operations.
The Phoenix-Spark connector allows Spark to load Phoenix tables as Resilient Distributed Datasets (RDDs) or
DataFrames and lets you save them back to Phoenix.

Connect to a secure cluster

Y ou can connect to a secured cluster using the Phoenix JDBC connector. Enter the following syntax in the shell:

j dbc: phoeni x: [*** ZOOKEEPER HOSTNANES* **] : [*** ZOOKEEPER PORT***] : [*** ROOT
ZNODE***] : [*** PRI NCl PAL NANE***]: [***KEYTAB FI LE LOCATI ON***]

For example:

j dbc: phoeni x: hl. cdh. | ocal , h2. cdh. | ocal , h3. cdh. | ocal : 2181: / hbase- secur e: user
l@dh. LOCAL: / User s/ user 1/ keyt abs/ nyuser . headl ess. keyt ab

Y ou need Principal and keytab parameters only if you have not done the kinit before starting the job and want
Phoenix to log you in automatically.

Considerations for setting up Spark

« Before you can use Phoenix-Spark connector for your Spark programs, you must configure your Maven settings
to have arepository that points to the repository at https.//repository.cloudera.com/artifactory/public/org/apache/
phoenix/phoenix-spark/ and use the dependency:

<dependency>
<gr oupl d>or g. apache. phoeni x</ gr oupl d>
<artifactl|d>phoeni x-spark</artifactld>
<version>5. 1. 0- cdh7</ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

Go to the Spark service.
Click the Configuration tab.
Select Scope Gateway .
Select Category Advanced .

Locate the Spark Client Advanced Configuration Snippet (Safety Valve) for spark-conf/spark-defaults.conf
property or search for it by typing its name in the Search box.

a s wbdpeE

16

https://repository.cloudera.com/artifactory/public/org/apache/phoenix/phoenix-spark/
https://repository.cloudera.com/artifactory/public/org/apache/phoenix/phoenix-spark/

Cloudera Runtime Using Apache Phoenix-Spark connector

6. Add the following properties to ensure that all required Phoenix and HBase platform dependencies are available
on the classpath for the Spark executors and drivers:

Phoenix client JARs:

spar k. execut or . extraCl assPat h=phoeni x-client-[***VERSI ON***] . j ar
spar k. driver. extrad assPat h=phoeni x-client-[***VERSI ON***] . j ar

7. Enter aReason for change, and then click Save Changes to commit the changes.
8. Restart the role and service when Cloudera Manager prompts you to restart.

IE Note: You can enable your IDE by adding the following provided dependency to your build:

<dependency>
<gr oupl d>or g. apache. phoeni x</ gr oupl d>
<artifactl|d>phoeni x-spark</artifactld>
<ver si on>${ phoeni x. ver si on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

Y ou can refer to the following Phoenix-Spark connector examples:

* Reading Phoenix tables
e Saving Phoenix tables
e Using PySpark to READ and WRITE tables

For example, you have a Phoenix table with the following DDL, you can use one of the following methods to load the
table:

« AsaDataFrame using the Data Source API
» AsaDataFrame using a configuration object
* Asan RDD using a Zookeeper URL

CREATE TABLE TABLEL (1D BI G NT NOT NULL PRI MARY KEY, COL1 VARCHAR)
UPSERT | NTO TABLEL (1D, COL1) VALUES (1, 'test _row.1');
UPSERT | NTO TABLEL (1D, COL1) VALUES (2, 'test _row 2'):

Example: Load a DataFrame using the Data Source API

i mport org. apache. spar k. Spar kCont ext
i mport org.apache. spark. sql . SQLCont ext
i mport org. apache. phoeni x. spark. _

val sc = new SparkContext("local", "phoenix-test")
val sql Context = new SQ.Cont ext (sc)

val df = sqgl Context.| oad(
"org. apache. phoeni x. spar k",
Map("tabl e" -> "TABLE1l", "zkUrl" -> "phoeni x-server:2181")

)

df
filter(df("COL1") === "test _row 1" && df ("1D') === 1L)

17

Cloudera Runtime Using Apache Phoenix-Spark connector

.select(df("ID"))
. show

Example: Load as a DataFrame directly using a Configuration object

i mport org. apache. hadoop. conf. Confi guration
i mport org.apache. spar k. Spar kCont ext

i mport org.apache. spark. sql . SQLCont ext

i mport org.apache. phoeni x. spark. _

val configuration = new Configuration()
/1 Can set Phoeni x-specific settings, requires 'hbase. zookeeper. quorun

val sc = new SparkContext("local", "phoenix-test")
val sql Context = new SQ.Cont ext (sc)

/1 Loads the colums 'ID and 'CO.L1'" from TABLE1 as a Dat aFrane
val df = sql Cont ext. phoeni xTabl eAsDat aFr ame(
"TABLEL1", Array("ID', "COL1"), conf = configuration

)

df . show
Example: Load as an RDD using a Zookeeper URL

i mport org. apache. spar k. Spar kCont ext
i mport org.apache. spark. sql . SQLCont ext
i mport org.apache. phoeni x. spark. _

val sc = new SparkContext("local", "phoenix-test")

/1 Loads the colums 'ID and 'CO.L1'" from TABLE1L as an RDD
val rdd: RDD[Map[String, AnyRef]] = sc.phoeni xTabl eAsRDD(
"TABLEL1", Seq("ID', "COL1"), zkUrl = Sone("phoeni x-server:2181")

)
rdd. count ()

val firstld = rddl.first()("ID").aslnstanceX [Long]
val firstCol = rddl.first()("CO.1").aslnstanceX [String]

Y ou can refer to the following examples for saving RDDs and DataFrames.
Example: Saving RDDs

For example, you have a Phoenix table with the following DDL, you can save it as an RDD.

CREATE TABLE OUTPUT_TEST TABLE (id BI G NT NOT NULL PRI MARY KEY, col 1l VARCHAR
, col2 | NTEGER) ;

The saveToPhoenix method is an implicit method on RDD[Product], or an RDD of Tuples. The data types must
correspond to one of the Java types supported by Phoenix.

i mport org.apache. spar k. Spar kCont ext
i mport org. apache. phoeni x. spark. _

val sc = new SparkContext("local", "phoenix-test")
val dataSet = List((2L, "1", 1), (2L, "2", 2), (3L, "3", 3))
sc

.parallelize(dataSet)

18

https://phoenix.apache.org/language/datatypes.html

Cloudera Runtime Using Apache Phoenix-Hive connector

. saveToPhoeni x(
"OUTPUT_TEST_TABLE",
Seq(n | DI , n Co_lll , n CO_ZII) ,
zkUrl = Sonme(" phoeni x-server:2181")

)

Example: Saving DataFrames

The save is method on DataFrame allows passing in a data source type. Y ou can use org.apache.phoenix.spark, and
must also passin atable and zkUrl parameter to specify which table and server to persist the DataFrame to. The
column names are derived from the DataFrame’ s schema field names, and must match the Phoenix column names.
The save method also takes a SaveM ode option, for which only SaveMode.Overwrite is supported. For example, you
have atwo Phoenix tables with the following DDL, you can save it as a DataFrames.

With Spark’ s DataFrame support, you can use pyspark to READ and WRITE from Phoenix tables.
Example: Load a DataFrame

Given atable TABLEL and a Zookeeper url of localhost:2181, you can load the table as a DataFrame using the
following Python code in pyspark:

df = sql Context.read \
.format ("org. apache. phoeni x. spark") \
.option("table", "TABLE1") \
.option("zkUrl", "local host:2181") \
.1 oad()

Example: Save a DataFrame

Given the same table and Zookeeper URL s above, you can save a DataFrame to a Phoenix table using the following
code:

df .wite \
.format ("org. apache. phoeni x. spark") \
.node("overwrite") \
.option("table", "TABLE1") \
.option("zkUrl", "local host:2181") \
. save()

Note: The functions phoenixTableAsDataFrame, phoenixTableAsRDD and saveToPhoenix all support

B optionally specifying a conf Hadoop configuration parameter with custom Phoenix client settings, aswell as
an optional zkUrl parameter for the Phoenix connection URL. If zkUrl isn’t specified, it’'s assumed that the
hbase.zookeeper.quorum property has been set in the conf parameter. Similarly, if no configuration is passed
in, zkUrl must be specified.

This connector enables you to access the Phoenix data from Hive without any data transfer. So the Business
Intelligence (BI) logic in Hive can access the operational data available in Phoenix.

Using this connector, you can run a certain type of queriesin Phoenix more efficiently than using Hive or other
applications, however, thisis not a universal tool that can run all types of queries. In some cases, Phoenix can run
queries faster than the Phoenix Hive integration and vice versa. In others, you can run this tool to perform operations
like many to many joins and aggregations which Phoenix would otherwise struggle to effectively run on its own. This
integration is better suited for performing online analytical query processing (OLAP) operations than Phoenix.

19

Cloudera Runtime Using Apache Phoenix-Hive connector

Another use case for this connector is transferring the data between these two systems. Y ou can use this connector to
simplify the data movement between Hive and Phoenix, since an intermediate form of the data (for example, a.CSV
file) is not required. The automatic movement of structured data between these two systems is the major advantage of
using thistool. Y ou should be aware that for moving alarge amount of data from Hive to Phoenix CSV bulk load is
preferable due to performance reasons.

Y ou must configure Phoenix-Hive connector before you can access Phoenix data from Hive.

Ensure that you have the phoenix-hive-version.jar. Y ou can find this JAR file in the /opt/cloudera/parcel ' CDH/lib/
phoenix_connectors/ path on the Apache Phoenix node, or you can download it from the Cloudera respository. If you
use Hive-Tez, you must configure both the Hive and Hive-Tez services.

To configure the Phoenix-Hive connector using Cloudera Manager:

Go to the Hive service.
Click the Configuration tab.
Select Scope Hive Cluster (Service-Wide) .
Select Category Advanced .
Locate the Hive Auxiliary JARs Directory property or search for it by typing its name in the Search box.
Add the following auxiliary path directory: /JUSR/LOCAL/PHOENIX-HIVE
Important: You must manually create the /USR/LOCAL/PHOENIX-HIVE directory, and copy the /opt/

cloudera/parcel yCDHY/lib/phoenix_connectors/phoenix-hive-[***VERS ON* **]-shaded.jar on every node
in the cluster that runs Hive-on-Tez Server or Hive Metastore.

o gk wbdhpE

Ensur that you have the required permissions the access and write to the phoenix-hive directory and the JAR file
that you copy into it must be accessible by hive:hive user.

Note: You can use any directory instead of /USR/LOCAL/PHOENIX-HIVE that Hive can read or place
IE the JAR filein the existing Hive Auxiliary Directory if one already exists.

7. Enter aReason for change, and then click Save Changes to commit the changes.
8. Restart the role and service when Cloudera Manager prompts you to restart.

If you have installed Hive-Tez, repeat the configuration steps for Hive-Tez as well.

Y ou can refer to the following Phoenix-Hive connector examples:

» Creating atable
« Loading data
e Querying data

20

Cloudera Runtime

Creating a table

Creating an external Hive table requires an existing table in Phoenix. Hive manages only the Hive metadata.
Dropping an external table from Hive deletes only the Hive metadata, but the Phoenix table is not deleted.

Use the create external table command to create an EXTERNAL Hivetable.

create external table ext_table (
ilint,
sl string,
f1 float,
dl deci mal

)
STORED BY ' or g. apache. phoeni x. hi ve. Phoeni xSt or ageHandl er'
TBLPROPERTI ES (

"phoeni x. t abl e. nane" = "ext _table",

"phoeni x. zookeeper. quorunt’ = "l ocal host",

"phoeni x. zookeeper . znode. parent” = "/hbase",

"phoeni x. zookeeper.client.port" = "2181",
"phoeni x. ronkeys" = "i 1",

"phoeni x. col um. mappi ng" = "il:il1, sil:s1, f1:f1, di:d1"

)
Following are the parameters that you could use when creating an external table:

Parameter Default Value Description

phoenix.table.name The same name as the Hive table Name of the existing Phoenix table

phoenix.zookeeper.quorum localhost Specifies the ZooK eeper quorum for HBase

phoenix.zookeeper.znode.parent /hbase Specifies the ZooK eeper parent node for
HBase

phoenix.zookeeper.client.port 2181 Specifies the ZooK eeper port

phoenix.rowkeys N/A Thelist of columns to be the primary key in a
Phoenix table

phoenix.column.mapping N/A M appings between column names for Hive
and Phoenix

Loading data
Useinsert statement to load data to the Phoenix table through Hive.

insert into table T values (....);
insert into table T select cl1,c2,c3 from source_tabl e;

Querying data

Y ou can use HiveQL for querying datain a Phoenix table. A Hive query on a single table can be as fast as running the
guery in the Phoenix CLI with the following property settings:

hi ve. f et ch. t ask. conver si on=nore and hi ve. exec. paral |l el =t rue

Following are some of the parameters that you could use when querying the data:

Parameter Default Value Description

hbase.scan.cache 100 Read row sizefor a unit request

hbase.scan.cacheblock false Whether or not cache block

split.by.stats fase If true, mappers use table statistics. One
mapper per guide post.

21

Using Apache Phoenix-Hive connector

Cloudera Runtime

Using Apache Phoenix-Hive connector

Par ameter Default Value

Description

[hive-table-name].reducer.count 1 Number of reducers. In Tez mode, this affects
only single-table queries. See Limitations.
[phoenix-table-name].query.hint N/A Hint for Phoenix query (for example,

NO_INDEX)

Limitations of Phoenix-Hive connector

Following are some of the limitations of Phoenix-Hive connector:

Only 4K character specification is allowed to specify afull table. If the volume of the datais huge, then thereisa

possibility to lose the metadata information.

Thereisadifference in the way timestamp is saved in Phoenix and Hive. Phoenix uses binary format, whereas

Hive uses atext format to store data.
Hive LLAP is not supported.

22

	Contents
	Mapping Apache Phoenix schemas to Apache HBase namespaces
	Enable namespace mapping

	Associating tables of a schema to a namespace
	Associate table in a customized Kerberos environment
	Associate a table in a non-customized environment without Kerberos

	Using secondary indexing in Apache Phoenix
	Use strongly consistent indexing with Apache Phoenix
	Migrate existing tables to use strongly consistent indexing

	Using transactions in Apache Phoenix
	Configure transaction support
	Create and modify tables with transaction support

	Using JDBC API with Apache Phoenix
	Connecting to Apache Phoenix Query Server using the JDBC client
	Connect to Phoenix Query Server
	Connect to Phoenix Query Server through Apache Knox

	Using non-JDBC drivers with Apache Phoenix
	Using Apache Phoenix-Spark connector
	Configure Phoenix-Spark connector using Cloudera Manager
	Phoenix-Spark connector usage examples

	Using Apache Phoenix-Hive connector
	Configure Phoenix-Hive connector using Cloudera Manager
	Apache Phoenix-Hive usage examples
	Limitations of Phoenix-Hive connector

