Cloudera Runtime 7.1.6

Running Apache Spark Applications

Date published: 2021-02-29
Date modified: 2021-03-19

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

18 oo [ox 1 o o TSR 5
Running your first Spark appliCation...........cccccveiieiieiiiee e 5
Running sample Spark appliCations..........cccoeveeiiiiiniieee e 7
Configuring Spark APPlICAtIONS........cciieiiieiie e 8
Configuring Spark application properties in spark-defaultS.CoNf..........ccoovviriirrincir e 9
Configuring Spark application 10gging ProPErtiES........c.ccvrerrereeriee ettt s 9
Submitting Spark appliCatioNns...........cccveiieiiieeiie e 10
spark-submit COMMENG OPLIONS.........cciieiiiire e reese et e et st te st s e et e e se e e e e e e e eseeseeseerenresaesnenreneenes 10

SPArk ClUSLEr EXECULION OVEIVIEW.......cueeueeeeeeeteete e stes e steseetes e s eeeses e s e esessesaestesteseeseentesseneeneeseeseeneesessessessenseses 11
Canary test for pyspark COMMANG.........ccceueiieeeriie s e e s et re st seestetesee e esae e e e enensesneenens 12
Fetching Spark Maven dePeNUENCIES.........c.cvieiiiieriere e ettt st e e sa e e e e e e s eneeneeneenesrenreans 12
Accessing the SPark HIStONY SEIVE ..ottt e e s e s restesbesaenteneesrens 13
Running Spark applications on YARN......cccoooiiiiiii e 13
Spark 0N YARN deplOoyMENt MOAES........coiiuiiiiiieieie ettt sttt s e e ebe b st b sbesbe e 13
Submitting Spark ApPlicationS t0 YARNottt et ebe e b b nne 15
Monitoring and Debugging Spark ApPPliCaLIONS..........c.oiireriereeeee e e 15
Example: Running SParkPi 0N YARNttt et s e e ae e saen 16
Configuring Spark 0on YARN APPHCATIONS......cuciuerieieieieeeerere sttt e e sbesbe b sne 16
DY 0= o T o= o o= o) FO TR 17
Submitting Spark applicationsS USING LiVY....cccveoeeiiriiienie e 18
Configuring the LiVY TRETE SEIVEN ..ottt s s 18
Connecting to the Apache Livy Tl SEIVEN ..o 19

USING LiVY WIth SPAK.....c.eouiiieiie bbb bbb 21

Using Livy with interaCtive NOLENOOKS...........coiviirieirieisieesese ettt 21

Using the Livy APl 10 run SPark JODS.......c.oociiiiiiie e 22
Running an interactive session With the LIVY APl........coee e 23

Livy Objects fOr iNtEraCtive SESSIONS.......c..eiriiiiiiirii ettt sttt 24

Setting Python path variables fOr LiVY.... .ot 25

Livy API reference for iNteraCtive SESSIONS.......coucirririierieiriee sttt 26

Submitting batch applications USING the LiVY APL.......co s 28

LiVY DEICH ODJECL...... ittt bbb e 29

Livy APl reference for DaICH JODS...........oiiiiriiee e 29

USING PYSPAIK ...ttt sttt e e e enne s 30
Running PySpark in a virtual €NVIFONMENL...........cccceiiieiieiiseseseeseeee e e s sre et see et sae e e e e eneenessessesnens 30

Running Spark Python appliCalions..........ccuciiieeriiesiseseseesesieseeseeeses e re e e sresresteseestenteseeeesaenneseesessessnssens 31

Automating Spark Jobs with Oozie Spark Action

Cloudera Runtime Introduction

Y ou can run Spark applications locally or distributed across a cluster, either by using an interactive shell or by
submitting an application. Running Spark applicationsinteractively is commonly performed during the data-
exploration phase and for ad hoc analysis.

Y ou can:

« Submit interactive statements through the Scala, Python, or R shell, or through a high-level notebook such as
Zeppelin.
» Use APIsto create a Spark application that runs interactively or in batch mode, using Scala, Python, R, or Java.

Because of alimitation in the way Scala compiles code, some applications with nested definitions running in
an interactive shell may encounter a Task not serializable exception. Cloudera recommends submitting these
applications.

To run applications distributed across a cluster, Spark requires a cluster manager. In CDP, Cloudera supports
only the YARN cluster manager. When run on YARN, Spark application processes are managed by the YARN
ResourceManager and NodeManager roles. Spark Standalone is not supported.

To launch Spark applications on a cluster, you can use the spark-submit script in the /bin directory on a gateway host.
Y ou can aso use the API interactively by launching an interactive shell for Scala (spark-shell), Python (pyspark), or
SparkR. Note that each interactive shell automatically creates SparkContext in avariable called sc, and SparkSession
in avariable called spark. For more information about spark-submit, see the Apache Spark documentation Submitting
Applications.

Alternately, you can use Livy to submit and manage Spark applications on acluster. Livy is a Spark service that
allowslocal and remote applications to interact with Apache Spark over an open source REST interface. Livy offers
additional multi-tenancy and security functionality. For more information about using Livy to run Spark Applications,
see Submitting Spark applications using Livy on page 18.

i Important:

By default, CDH is configured to permit any user to access the Hive Metastore. However, if you have
modified the value set for the configuration property hadoop.proxyuser.hive.groups, which can be modified in
Cloudera Manager by setting the Hive Metastore Access Control and Proxy User Groups Override property,
your Spark application might throw exceptions when it is run. To address this issue, make sure you add the
groups that contain the Spark users that you want to have access to the metastore when Spark applications are
run to this property in Cloudera Manager:

1. Inthe Cloudera Manager Admin Console Home page, click the Hive service.

2. OntheHive service page, click the Configuration tab.

3. Inthe Search well, type hadoop.proxyuser.hive.groups to locate the Hive Metastore Access Control and
Proxy User Groups Override property.

4. Click the plussign (+), enter the groups you want to have access to the metastore, and then click Save
Changes. You must restart the Hive Metastore Server for the changes to take effect by clicking the restart
icon at the top of the page.

The simplest way to run a Spark application is by using the Scala or Python shells.

https://spark.apache.org/docs/latest/submitting-applications.html
https://spark.apache.org/docs/latest/submitting-applications.html

Cloudera Runtime Running your first Spark application

1. To start one of the shell applications, run one of the following commands:
* Scaa

$ /bin/ spark-shel |

Spark context Wb Ul avail abl e at

Spark context available as 'sc' (master = yarn, app id = ...).
Spark session avail able as 'spark'.

Wl cone to

L/ 1 1 I\ \ version ...

Usi ng Scal a version 2.11.12 (OpenJDK 64-Bit Server VM Java 1.8.0 _191)
Type in expressions to have them eval uat ed.
Type :help for nore information.

scal a>

e Python:

$ / bi n/ pyspark

Python 2.7.5 (default, Sep 12 2018, 05:31: 16)

[GCC 4.8.5 20150623 (Red Hat 4.8.5-36)] on |inux2

Type "hel p", "copyright", "credits" or "license" for nore infornation.

Wel cone to

/I 1 /_\ version ...

Using Python version 2.7.5 (default, Sep 12 2018 05: 31: 16)
Spar kSessi on avail abl e as ' spark'.
>>>

SPARK_HOME defaults to /opt/cloudera/parcel S CDH/lib/spark in parcel installations. In a Cloudera Manager
deployment, the shells are al'so available from /usr/bin.

For acomplete list of shell options, run spark-shell or pyspark with the -h flag.
2. Torun the classic Hadoop word count application, copy an input file to HDFS:

hdf s df s - copyFronLocal | NPUT s3a:// <BUCKET_NAME>/

3. Within ashell, run the word count application using the following code examples, substituting for
NAMENODE_HOST, PATH/TO/INPUT, and PATH/TO/OUTPUT:
Scala:

scal a> val nyfile = sc.textFile("s3a://<BUCKET NAME>/ PATH TQ' | NPUT")

scal a> val counts = nyfile.flatMap(line => line.split(" ")).map(word => (
word, 1)).reduceByKey(_ + _

scal a> count s. saveAsText Fi |l e("s3a: // <BUCKET_NAVE>/ PATH TQ QUTPUT")

Python:

>>> nmyfile = sc.textFile("s3a://BUCKET_NAME/ PATH TQ | NPUT")

Cloudera Runtime Running sample Spark applications

>>> counts = nyfile.flatMap(lanbda Iine: line.split(" ")).mp(lanbda word:
(word, 1)).reduceByKey(lanbda v1,v2: vl + v2)
>>> counts. saveAsText Fi |l e("s3a:// <BUCKET_NAME>/ PATH TQ' QUTPUT")

Y ou can use the following sample Spark Pi and Spark WordCount sample programs to validate your Spark
installation and explore how to run Spark jobs from the command line and Spark shell.

Y ou can test your Spark installation by running the following compute-intensive example, which calculates pi by
“throwing darts’ at acircle. The program generates points in the unit square ((0,0) to (1,1)) and counts how many
points fall within the unit circle within the square. The result approximates pi.

Follow these steps to run the Spark Pi example:

1. Authenticate using kinit:

Ki ni t <USERNANVE>

2. Run the Apache Spark Pi job in yarn-client mode, using code from org.apache.spark:

spar k-submit --class org. apache. spar k. exanpl es. Spar kPi \
--master yarn-client \
--numexecutors 1\
--driver-nenory 512m\
--executor-nmenory 512m\
--executor-cores 1\

Cloudera Runtime Configuring Spark Applications

exanpl es/j ar s/ spar k- exanpl es*. jar 10

Commonly used options include the following:

--class
The entry point for your application: for example, org.apache.spark.examples.SparkPi.

--master
The master URL for the cluster: for example, spark://23.195.26.187:7077.

--deploy-mode
Whether to deploy your driver on the worker nodes (cluster) or locally as an external client (default
isclient).

--conf
Arbitrary Spark configuration property in key=value format. For values that contain spaces, enclose
“key=value’ in double quotation marks.

<application-jar>

Path to abundled jar file that contains your application and all dependencies. The URL must be
globally visible inside of your cluster: for instance, an hdfs:// path or afile:// path that is present on
all nodes.

<application-arguments>
Arguments passed to the main method of your main class, if any.

Y our job should produce output similar to the following. Note the value of pi in the output.

17/ 03/ 22 23:21:10 | NFO DAGSchedul er: Job 0 finished: reduce at SparkPi.s
cal a: 38, took 1.302805 s
Pi is roughly 3.1445191445191445

You can also view job status in a browser by navigating to the Y ARN ResourceManager Web Ul and viewing job
history server information. (For more information about checking job status and history, see "Tuning Spark" in
this guide.)

Y ou can specify Spark application configuration properties as follows:

» Pass properties using the --conf command-line switch; for example;

spark-subm t \

--class com cl ouder a. exanpl e. Yar nExanpl e \

--master yarn \

--depl oy-node cluster \

--conf "spark.eventLog. dir=hdfs:///user/spark/eventlog" \
i b/ yarn-exanple.jar \

10

» Specify propertiesin spark-defaults.conf.
» Pass properties directly to the SparkConf used to create the SparkContext in your Spark application; for example:

 Scda

val conf = new SparkConf (). set("spark.dynam cAl |l ocation.initial Executors
Il’ n 5")

Cloudera Runtime Configuring Spark Applications

val sc = new Spar kCont ext (conf)

e Python:

from pyspark inport SparkConf, SparkContext

from pyspark. sql inmport SQ.Context

conf = (SparkConf().setAppNanme(' Application nane'))

conf. set (' spar k. hadoop. avro. mapred. i gnore.inputs.w thout.extension',
‘fal se')

sc = SparkCont ext (conf = conf)

sql Cont ext = SQ.Cont ext (sc)

The order of precedence in configuration propertiesis:

1. Properties passed to SparkConf.
2. Arguments passed to spark-submit, spark-shell, or pyspark.
3. Properties set in spark-defaults.conf.

For more information, see Spark Configuration.

Specify propertiesin the spark-defaults.conf file in the form property=value.

To create acomment, add a hash mark (#) at the beginning of aline. Y ou cannot add comments to the end or middle
of aline.

This example shows an example excerpt of a spark-defaults.conf file:

spar k. aut hent i cat e=f al se

spark.driver.|og.df sDir=/user/spark/driverLogs

spark. driver.| og. persi st ToDf s. enabl ed=t rue

spar k. dynani cAl | ocati on. enabl ed=tr ue

spar k. dynam cAl | ocati on. execut or | dl eTi neout =60

spar k. dynami cAl | ocati on. mi nExecut or s=0

spar k. dynami cAl | ocati on. schedul er Backl ogTi meout =1

spar k. event Log. enabl ed=t r ue
spark.io.encryption. enabl ed=fal se

spark. | i neage. enabl ed=true

spar k. net wor k. cr ypt 0. enabl ed=f al se

spark. serializer=org. apache. spark. serializer.KryoSerializer
spar k. shuf fl e. servi ce. enabl ed=true

spar k. shuf fl e. servi ce. port=7337

spar k. ui . enabl ed=true

spark. ui . ki | I Enabl ed=true

spar k. yarn. access. hadoopFi | eSyst ens=s3a: // bucket 1, s3a:// bucket 2

Cloudera recommends placing configuration properties that you want to use for every application in spark-
defaults.conf. See Application Properties for more information.

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Cloudera Runtime Submitting Spark applications

To configure only the logging threshold level, follow the procedure in Configuring Logging Thresholds. To configure
any other logging property, do the following:

In the Cloudera Data Platform (CDP) Management Console, go to Data Hub Clusters.

Find and select the cluster you want to configure.

Click thelink for the Cloudera Manager URL.

Go to the Spark service.

Click the Configuration tab.

Select Scope Gateway .

Select Category Advanced .

Locate the Spark Client Advanced Configuration Snippet (Safety Valve) for spark-conf/logdj.properties property.

Specify log4j properties. If more than one role group appliesto this configuration, edit the value for the
appropriate role group. See Modifying Configuration Properties Using Cloudera Manager.

10. Enter a Reason for change, and then click Save Changes to commit the changes.
11. Deploy the client configuration.

© © N ok wDdPRE

To submit an application consisting of a Python file or a compiled and packaged Java or Spark JAR, use the spark-su
bmit script.

spar k-submit --OPTI ON VALUE \
APPLI CATI ON JAR | PYTHON FI LE [APPLI CATI ON ARGUMENTS]

Example: Running SparkPi on Y ARN demonstrates how to run one of the sample applications, SparkPi, packaged
with Spark. It computes an approximation to the value of pi.

APPLICATION JAR Path to a JAR file containing a Spark application. For the client deployment mode, the path
must point to aloca file. For the cluster deployment mode, the path can be either alocal file or
aURL globally visible inside your cluster; see Advanced Dependency Management.

PYTHON FILE Path to a Python file containing a Spark application. For the client deployment mode, the path
must point to alocd file. For the cluster deployment mode, the path can be either alocal file or
aURL globally visible inside your cluster; see Advanced Dependency Management.

APPLICATION ARGUMENTS Arguments to pass to the main method of your application.

Y ou specify spark-submit options using the form --OPTION VALUE instead of --OPTION=VALUE . (Use a space
instead of an equals sign.)

10

https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management
https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management

Cloudera Runtime Submitting Spark applications

Option Description

class For Java and Scala applications, the fully qualified classname of the class containing the main
method of the application. For example, org.apache.spark.examples.SparkPi.

conf Spark configuration property in KEY=VALUE format. For values that contain spaces, surround
"KEY=VALUE" with quotes (as shown).

deploy-mode Deployment mode: cluster and client. In cluster mode, the driver runs on worker hosts. In client

mode, the driver runslocally as an external client. Use cluster mode with production jobs;
client mode is more appropriate for interactive and debugging uses, where you want to see your
application output immediately. To see the effect of the deployment mode when running on
YARN, see Deployment Modes.

Defaullt: client.

driver-class-path

Configuration and classpath entries to pass to the driver. JARs added with --jars are
automatically included in the classpath.

driver-cores

Number of cores used by the driver in cluster mode.
Default: 1.

driver-memory

Maximum heap size (represented as a VM string; for example 1024m, 2g, and so on) to
allocate to the driver. Alternatively, you can use the spark.driver.memory property.

files

Comma-separated list of filesto be placed in the working directory of each executor. For the
client deployment mode, the path must point to alocal file. For the cluster deployment mode,
the path can be either alocal file or aURL globally visible inside your cluster; see Advanced
Dependency Management.

jars

Additional JARsto be loaded in the classpath of drivers and executorsin cluster mode or in

the executor classpath in client mode. For the client deployment mode, the path must point to a
local file. For the cluster deployment mode, the path can be either alocal file or a URL globally
visibleinside your cluster; see Advanced Dependency Management.

master

The location to run the application.

packages

Comma-separated list of Maven coordinates of JARSs to include on the driver and executor
classpaths. The local Maven, Maven central, and remote repositories specified in repositories
are searched in that order. The format for the coordinates is groupld:artifactid:version.

py-files

Comma-separated list of .zip, .egg, or .py filesto place on PY THONPATH. For the client
deployment mode, the path must point to alocal file. For the cluster deployment mode, the
path can be either alocal file or aURL globally visible inside your cluster; see Advanced
Dependency Management.

repositories

Comma-separated list of remote repositories to search for the Maven coordinates specified in
packages.

Table 2: Master Values

Master Description

local Run Spark locally with one worker thread (that is, no parallelism).

local[K] Run Spark locally with K worker threads. (Ideally, set this to the number of cores on your host.)

local[*] Run Spark locally with as many worker threads as logical cores on your host.

yarn Runusing a YARN cluster manager. The cluster location is determined by
HADOOP_CONF_DIR or YARN_CONF_DIR. See Configuring the Environment.

Spark cluster execution overview

Spark orchestrates its operations through the driver program. When the driver program is run, the Spark framework
initializes executor processes on the cluster hosts that process your data. The following occurs when you submit a

Spark application to a cluster:

1. Thedriver islaunched and invokes the main method in the Spark application.

11

https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management
https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management
https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management
https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management
https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management

Cloudera Runtime Submitting Spark applications

2. Thedriver requests resources from the cluster manager to launch executors.
The cluster manager launches executors on behalf of the driver program.

4. Thedriver runsthe application. Based on the transformations and actions in the application, the driver sends tasks
to executors.

5. Tasksare run on executors to compute and save results.
If dynamic alocation is enabled, after executors are idle for a specified period, they are released.

7. When driver's main method exits or calls SparkContext.stop, it terminates any outstanding executors and rel eases
resources from the cluster manager.

w

o

The following example shows asimple pyspar k session that refers to the SparkContext, calls the collect() function
which runs a Spark 2 job, and writes data to HDFS. This sequence of operations helps to check if there are obvious
configuration issues that prevent Spark jobs from working at all. For the HDFS path for the output directory,
substitute a path that exists on your own system.

$ hdfs dfs -nkdir /user/systest/spark
$ pyspark

Spar kSessi on avail abl e as 'spark'.

>>> strings = ["one","two", "three"]

>>> 52 = sc.parallelize(strings)

>>> 53 = s2. map(| anbda word: word. upper())

>>> s3.col |l ect()

['ONE', 'TWO, 'THREE]

>>> s3. saveAsText Fil e(' hdfs:///user/systest/spark/canary test')
>>> quit()

$ hdfs dfs -Is /user/systest/spark

Found 1 itemns

dr wxr - xr - x - systest supergroup 0 2016-08-26 14:41 /user/systest/
spar k/ canary_t est

$ hdfs dfs -1s /user/systest/spark/canary_test

Found 3 itens

STW-r--T1-- 3 systest supergroup 0 2016-08-26 14:41 /user/systest/
spar k/ canary_t est/ SUCCESS

STWr--T1-- 3 systest supergroup 4 2016-08-26 14:41 /user/systest/
spar k/ canary_t est/part-00000

STWTI--T-- 3 systest supergroup 10 2016-08-26 14:41 /user/systest/

spar k/ canary_test/part-00001

$ hdfs dfs -cat /user/systest/spark/canary_test/part-00000
ONE

$ hdfs dfs -cat /user/systest/spark/canary test/part-00001
TWO

THREE

The Maven coordinates are a combination of groupld, artifactld and version. The groupld and artifactld are the same
as for the upstream Apache Spark project. For example, for spark-core, groupld is org.apache.spark, and artifactld is
spark-core_2.11, both the same as the upstream project. The version is different for the Cloudera packaging: see the
release notes for the exact name depending on which release you are using.

12

Cloudera Runtime Running Spark applications on YARN

Y ou can access the Spark History Server for your Spark cluster from the Cloudera Data Platform (CDP) Management
Console interface.

1. Inthe Management Console, navigate to your Spark cluster (Data Hub Clusters<Cluster Name>).
2. Select the Gateway tab.
3. Click the URL for Spark History Server.

When Spark applications run on a Y ARN cluster manager, resource management, scheduling, and security are
controlled by YARN.

In YARN, each application instance has an ApplicationMaster process, which isthe first container started for that
application. The application is responsible for requesting resources from the ResourceManager. Once the resources
are alocated, the application instructs NodeM anagers to start containers on its behalf. ApplicationMasters eliminate
the need for an active client: the process starting the application can terminate, and coordination continues from a
process managed by YARN running on the cluster.

In cluster mode, the Spark driver runsin the ApplicationMaster on a cluster host. A single processinaYARN
container is responsible for both driving the application and requesting resources from Y ARN. The client that
launches the application does not need to run for the lifetime of the application.

13

Cloudera Runtime Running Spark applicationson YARN

YARN Resource
Manager

YARMN Container

Client

Launeh application

:
z

Issue application commands
Launch Spark Executor

h
YARN NodeManager

YARM Container YARN Container

Cluster mode is not well suited to using Spark interactively. Spark applications that require user input, such as spark-
shell and pyspark, require the Spark driver to run inside the client process that initiates the Spark application.

Client Deployment Mode

In client mode, the Spark driver runs on the host where the job is submitted. The ApplicationMaster is responsible
only for requesting executor containers from Y ARN. After the containers start, the client communicates with the
containers to schedule work.

14

Cloudera Runtime

Running Spark applicationson YARN

Client application

Apphration commands

YARMN Container

Issue application commands
Launch Spark Executor

YARN Resource
Manager

h

YARN NodeManager

YARM Container

YARN Container

-"_--

Table 3: Deployment Mode Summary

Mode

Driver runsin

‘ YARN Client Mode

Client

‘ YARN Cluster Mode

ApplicationMaster

Requests resources

ApplicationMaster

ApplicationMaster

Starts executor processes

YARN NodeManager

Y ARN NodeManager

Persistent services

Y ARN ResourceManager and NodeManagers

YARN ResourceManager and NodeManagers

Supports Spark Shell

Yes

No

Submitting Spark Applications to YARN

To submit an application to Y ARN, use the spark-submit script and specify the --master yarn flag. For other spark-su
bmit options, see spark-submit command options on page 10.

Monitoring and Debugging Spark Applications

To obtain information about Spark application behavior you can consult Y ARN logs and the Spark web application
Ul. These two methods provide complementary information. For information how to view logs created by Spark
applications and the Spark web application Ul, see Monitoring Spark Applications.

15

https://docs.cloudera.com/cloudera-manager/7.4.0/monitoring-and-diagnostics/topics/cm-monitoring-spark-applications.html

Cloudera Runtime Running Spark applications on YARN

These examples demonstrate how to use spark-submit to submit the SparkPi Spark example application with various
options. In the examples, the argument passed after the JAR controls how close to pi the approximation should be.

In a CDP deployment, SPARK _HOME defaults to /opt/cloudera/parcel CDH/lib/spark. The shells are aso available
from /bin.

To run SparkPi in cluster mode:

spark-submt --class org.apache. spark. exanpl es. SparkPi --master yarn \
--depl oy-node cluster /opt/clouderalparcel s/ COH j ars/ spark-exanpl es*.jar 10

The command prints status until the job finishes or you presscont r ol - C. Terminating the spark-submit processin
cluster mode does not terminate the Spark application asit does in client mode. To monitor the status of the running
application, run yarn application -list.

To run SparkPi in client mode:

spark-submt --class org.apache. spark. exanpl es. SparkPi --master yarn \
--depl oy-npde client SPARK HOWE/ | i b/ spark-exanpl es.jar 10

1. Unpack the Python examples archive:

sudo su gunzi p SPARK HOVE/ |li b/ python.tar. gz
sudo su tar xvf SPARK HOWE/ | i b/ python.tar

2. Runthepi.py file:

spark-submt --master yarn --depl oy-node cl uster SPARK HOVE/ i b/ pi.py 10

In addition to spark-submit Options, options for running Spark applications on Y ARN are listed in spark-submit on
Y ARN Options.

archives Comma-separated list of archives to be extracted into the working directory of each executor.
For the client deployment mode, the path must point to alocal file. For the cluster deployment
mode, the path can be either alocal file or aURL globally visibleinside your cluster; see
Advanced Dependency Management.

executor-cores Number of processor cores to allocate on each executor. Alternatively, you can use the spark.ex
ecutor.cores property.

executor-memory Maximum heap size to allocate to each executor. Alternatively, you can use the spark.execut
or.memory property.

num-executors Total number of YARN containers to allocate for this application. Alternatively, you can use
the spark.executor.instances property. If dynamic allocation is enabled, the initia number of
executors is the greater of this value or the spark.dynamicAllocation.initial Executors value.

16

https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management

Cloudera Runtime Running Spark applicationson YARN

Description

queue YARN queue to submit to. For more information, see Assigning Applications and Queries to
Resource Pools.

Default: default.

During initial installation, Cloudera Manager tunes properties according to your cluster environment.

In addition to the command-line options, the following properties are available;

Property Description

spark.yarn.driver.memoryOverhead Amount of extra off-heap memory that can be requested from YARN per driver. Combined
with spark.driver.memory, thisisthe total memory that Y ARN can useto create aJVM for a
driver process.

spark.yarn.executor.memoryOverhead Amount of extra off-heap memory that can be requested from YARN, per executor process.
Combined with spark.executor.memory, thisis the total memory YARN can use to create a
JVM for an executor process.

Dynamic allocation

Dynamic alocation allows Spark to dynamically scale the cluster resources allocated to your application based on the
workload. When dynamic allocation is enabled and a Spark application has a backlog of pending tasks, it can request
executors. When the application becomes idle, its executors are released and can be acquired by other applications.

In Cloudera Data Platform (CDP), dynamic allocation is enabled by default. The table below describes properties to
control dynamic alocation.

To disable dynamic allocation, set spark.dynamicAllocation.enabled to false. If you use the --num-executors
command-line argument or set the spark.executor.instances property when running a Spark application, the number of
initial executorsisthe greater of spark.executor.instances or spark.dynamicAllocation.initial Executors.

For more information on how dynamic allocation works, see resource alocation policy.

When Spark dynamic resource allocation is enabled, all resources are alocated to the first submitted job available
causing subsequent applications to be queued up. To allow applications to acquire resources in parallel, alocate
resources to pools and run the applications in those pools and enable applications running in pools to be preempted.

If you are using Spark Streaming, see the recommendation in Spark Streaming and Dynamic Allocation.

Table 5: Dynamic Allocation Properties

Property Description

spark.dynamicAllocation.executorldieTimeout | The length of time executor must be idle before it is removed.

Default: 60 s.
spark.dynamicAllocation.enabled Whether dynamic alocation is enabled.
Default: true.
spark.dynamicAllocation.initial Executors Theinitial number of executors for a Spark application when dynamic allocation is enabled. If

spark.executor.instances (or its equivalent command-line argument, --num-executors) is set to a
higher number, that number is used instead.

Default: 1.
spark.dynamicAllocation.minExecutors The lower bound for the number of executors.

Default: 0.
spark.dynamicAllocation.maxExecutors The upper bound for the number of executors.

Default: Integer. MAX_VALUE.

17

Cloudera Runtime Submitting Spark applications using Livy

spark.dynamicAllocation.schedul erBacklog The length of time pending tasks must be backlogged before new executors are requested.
Timeout Default: 1s.

Apache Livy isa Spark service that allows local and remote applications to interact with Apache Spark over a REST
interface.

Y ou can use Livy to submit and manage Spark jobs on a cluster. Livy extends Spark capabilities, offering additional
multi-tenancy and security features. Applications can run code inside Spark without needing to maintain alocal Spark
context.

Featuresinclude the following:

* Jobs can be submitted from anywhere, using the REST API.

« Livy supports user impersonation: the Livy server submits jobs on behalf of the user who submits the requests.
Multiple users can share the same server ("user impersonation” support). Thisisimportant for multi-tenant
environments, and it avoids unnecessary permission escalation.

« Livy supports security features such as Kerberos authentication and wire encryption.

* REST APIsare backed by SPNEGO authentication, which the requested user should get authenticated by
Kerberos at first.

* RPCsbetween Livy Server and Remote SparkContext are encrypted with SASL.
* TheLivy server uses keytabs to authenticate itself to Kerberos.

Livy supports programmatic and interactive access to Spark with Scala. For example, you can:

* Usean interactive notebook to access Spark through Livy.

« Develop aScala, Java, or Python client that usesthe Livy API. The Livy REST API supports full Spark
functionality including SparkSession, and SparkSession with Hive enabled.

* Runaninteractive session, provided by spark-shell, PySpark, or SparkR REPLSs.
« Submit batch applications to Spark.

Code runsin a Spark context, either locally or in YARN; YARN cluster mode is recommended.

The Apache Livy Thrift Server provides a JDBC endpoint for submitting Spark SQL queries. The Livy Thrift
Server is disabled by default. The following instructions demonstrate how to enable and configure it using Cloudera
Manager.

The Livy Thrift Server is supported in Cloudera Data Platform 7.1.0 and higher. The Thrift Server is part of the Livy
Server. Thereis no separate process.

The Livy Thrift Server inherits the security configuration of the Livy Server. It uses Kerberos for authentication and
TLSfor encryption if configured. There is no separate security configuration for the Thrift server.

1. On the Cloudera Manager home page, click the three-dot menu icon next to the Livy service, and then click
Configuration.

18

Cloudera Runtime Submitting Spark applications using Livy

2. Inthe Search field, enter thrift to filter the configuration options and display the Thrift Server configuration
settings.
Enable the Livy Thrift Server by checking the box labeled Enable Livy Thrift Server.

If you want to change the transport mode or port number, modify the Livy Thrift Server Transport Mode and Livy
Thrift Server Port settings.

Enter areason for the change in the provided field at the bottom of the page, and then click Save Changes.
Return to the Cloudera Manager home page, and then click the stale configuration icon next to the Livy service.
Click the Restart Stale Services button.

Make sure that Re-deploy client configuration is checked, and then click Restart Now.

After the command completes, click Finish.

Eal S

© © N o u

If you want to further configure the Livy Thrift Server, use the Livy Server Advanced Configuration Snippet (Safety
Valve) for livy-conf/livy.conf:

1. On the Cloudera Manager home page, click the three-dot menu icon next to the Livy service, and then click
Configuration.

2. Inthe Search field, enter livy.conf to filter the configuration options and display the advanced configuration text
box.

3. Enter configuration key pairs, one per line, using the syntax <PARAMETER> = <VALUE>. For example:

livy.server.thrift.limt.connections. per.user = 10
livy.server.thrift.limt.connections. per.ipaddress = 100
livy.server.thrift.limt.connections.per.user.ipaddress = 10

These parameters limit the number of connections to the Thrift server by user, by 1P address, and by the
combination of both.

Enter areason for the change in the provided field at the bottom of the page, and then click Save Changes.
Return to the Cloudera Manager home page, and then click the stale configuration icon next to the Livy service.
Click the Restart Stale Services button.

Make sure that Re-deploy client configuration is checked, and then click Restart Now.

After the command completes, click Finish.

© N A

Y ou can connect to the Apache Livy Thrift Server using the Beeline client that isincluded with Apache Hive.

The Livy Thrift Server is disabled by default. Make sure that you have enabled it before proceeding. For instructions,
see Configuring the Livy Thrift Server.

Theinformation required to form a JDBC URL isincluded in the Livy client configuration file, /etc/livy/conf/livy-
client.conf. Make sure that you are on a gateway cluster host managed by Cloudera Manager to ensure that the client
configuration isincluded. Y ou can designate a cluster host as a Livy client by assigning it the Gateway role in the
Livy service configuration. For more information about role assignments, see Managing Roles.

19

https://docs.cloudera.com/cloudera-manager/7.4.0/managing-clusters/topics/cm-managing-roles.html

Cloudera Runtime Submitting Spark applications using Livy

1. Onahost designated asaLivy Gateway, view the /etc/livy/conf/livy-client.conf file and note the values of the
following configuration parameters:

livy.uri
Thisisthe URI for the Livy server. The hostname in this URI is the hostname to use for the Thrift
server connection.
livy.server.thrift.port
Thisisthe port to use in the JIDBC connection URL.
livy.server thrift.transport.mode
This specifies the transport mode (either binary or http).

2. Note: If you are using a cluster with security enabled, you must authenticate with your user principal
B using kinit before running beeline. If Kerberos authentication is not used, then the “-u <user> -p
<password>" options for beeline should be used to connect as a particular user.

Determine the JDBC connection URL using the following table:

Connection Mode JDBC Connection URL

binary jdbc:hive2://<livy_host>:<port>/
<database>

binary with Kerberos jdbc:hive2://<livy_host>:<port>/

<database>;principal=livy/
<livy_host>@<REALM>

binary with Kerberosand TLS jdbc:hive2://<livy_host>:<port>/
<database>;principal=livy/
<livy_host>@<REALM>;sd=true;sd TrustStore=<path_to_truststore>

http jdbc:hive2://<livy _host>:<port>/
<database>;transportM ode=http; httpPath=cliservice

http with Kerberos jdbc:hive2://<livy _host>:<port>/
<database>;principa=HTTP/
<livy_host>@<REALM>;transportM ode=http; httpPath=cliservice

http with Kerberosand TLS jdbc:hive2://<livy_host>:<port>/
<database>;principa=HTTP/
<livy_host>@<REALM>;sdl=true;sd TrustStore=<path_to_truststore>;
\

trustStorePassword=<truststore_password>;transportM ode=http; httpPath=cliservice

3. Run the beeline command.

20

Cloudera Runtime Submitting Spark applications using Livy

4. At the Beeline prompt, enter !connect <jdbc_url>

Y ou can set configuration options by appending ?<configuration_list> to the JDBC connection URL. Separate
multiple options with a semi-colon (;). Supported options are:

e livy.session.driverMemory

e livy.session.driverCores

* livy.session.executorMemory

* livy.session.executorCores
 livy.session.numExecutors

* livy.session.queue

e livy.session.name

* livy.session.heartbeatTimeoutinSecond

For example:

beel i ne> ! connect jdbc: hive2://cdp0l. exanpl e. com 10090/ db01?l i vy. sessi on
.driverMenory=4g; |ivy. session.driver Cores=2

Using Livy with Spark

Scala Support
Livy supports Scalaversions 2.10 and 2.11.

For default Scala builds, Spark 2.0 with Scala2.11, Livy automatically detects the correct Scala version and
associated jar files.

If you require a different Spark-Scala combination, such as Spark 2.0 with Scala 2.10, set livy.spark.scalaVersion to
the desired version so that Livy usestheright jar files.

Using Livy with interactive notebooks

Y ou can submit Spark commands through Livy from an interactive Apache Zeppelin notebook:

loT Data Analysis L IEIC I ° TR
Mornal N mans 50 4300 89 52 £0.7]] o
Morrnal N miles] 4300 -91.05 41,72 o o 1
Narrnal N fraod "0 4300 -91.47 41,74 (]] o
Lare Departum N milos 80 4300 -81.50 4.7 o o
Ursaate following distance N milos e 4 300 -8877 40.76 [+] 1 1
nagl . Nagl * nagl 5
select eventType, isCertified, hoursbriven from enricneatvents

slect sventType, count(") ccourences From enrichedivEnts Jrou select isfertified, counmt(®) mavislations from enrichedEvents group by eventTyps, isCertified, hoursOriven
by evertType where eventType in {“Unsafe toll distonce™, “Overspeed”, “Lane

Deporture”, “Unsafe following dlstonce™) growe by talertified LR BN RS R 4+ sottings v
B W& e = & = | sotings =

B A ¢ . 4 - seftings~ @5ucked QSrean 0 Expardel @ e Typ

@Omuped (O Sumched

@ coourerces
1200 N BY
1.000
N
50
¥

Overipesd Unasste following detance

21

Cloudera Runtime Submitting Spark applications using Livy

When you run code in a Zeppelin notebook using the %livy directive, the notebook offloads code execution to Livy

and Spark:
TARM Cluster
::I

Exacular

Zeppelin .

" . S[BL?"EF ‘HTTF' Responss . LW}" . R:g;_dm
vy par ok
rlerpreler) HTTP Regquest Server Executor /

For more information about Zeppelin and Livy, see the CDP Apache Zeppelin guide.

Using the Livy API to run Spark jobsis similar to using the original Spark API.
The following two examples calculate Pi.
Calculate Pi using the Spark API:

def sanpl e(p):
X, y = random(), randon()
return 1 if x*x + y*y < 1 else 0
count = sc.parallelize(xrange(0, NUM SAMPLES)). map(sanple) \
.reduce(l anbda a, b: a + h)

Cadlculate Pi using the Livy API:

def f(_):

X = random() * 2 - 1

y = randon() * 2 - 1

return 1 if x ** 2 +y ** 2 <=1 else 0

def pi_job(context):

count = context.sc.parallelize(range(1l, sanples + 1), slices).map(f).re
duce(add)

return 4.0 * count / sanples

There are two main differences between the two APIs:

* When using the Spark API, the entry point (SparkContext) is created by user who wrote the code. When using the
Livy API, SparkContext is offered by the framework; the user does not need to createit.

« Theclient submits code to the Livy server through the REST API. The Livy server sends the code to a specific
Spark cluster for execution.

Architecturally, the client creates aremote Spark cluster, initializes it, and submits jobs through REST APIs. The
Livy server unwraps and rewraps the job, and then sends it to the remote SparkContext through RPC. While the job
runs the client waits for the result, using the same path. The following diagram illustrates the process:

22

Cloudera Runtime Submitting Spark applications using Livy

YARM Cluster

Executor

Client 1 HTTP Response Li"“"-}"
(Spark Pi JDh}J HTTP Reguest Server ; Executor

Running an interactive session with Livy issimilar to using Spark shell or PySpark, but the shell does not run locally.
Instead, it runsin aremote cluster, transferring data back and forth through a network.

The Livy REST API supports GET, POST, and DELETE calls for interactive sessions.

The following example shows how to create an interactive session, submit a statement, and retrieve the result of the
statement; the return ID could be used for further queries.

1. Create an interactive session. The following POST request starts a new Spark cluster with aremote Spark
interpreter; the remote Spark interpreter is used to receive and run code snippets, and return the resullt.

POST / sessi ons
host = 'http://Ilocal host: 8998'

data = {'kind': 'spark'}
headers = {' Content-Type': 'application/json'}
r = requests. post(host + '/sessions', data=json.dunps(data), heade

r s=headers)
r.json()

{u'state': u'starting', uid: 0, ukind: u spark'}

2. Submit astatement. The following POST request submits a code snippet to a remote Spark interpreter, and returns
astatement ID for querying the result after execution is finished.

PCST / sessi ons/{sessi onl d}/statenents

data = {'code': 'sc.parallelize(l to 10).count()"'}

r = requests. post(statenents_url, data=json.dunps(data), header
s=header s)

r.json()

{u' output': None, u'state': u'running', u'id: 0}

23

Cloudera Runtime Submitting Spark applications using Livy

3. Get theresult of a statement. The following GET request returns the result of a statement in JSON format, which
you can parse to extract elements of the result.

CET /sessions/{sessionl d}/statenments/{statenentld}
statement _url = host + r.headers['location']
r = requests.get(statenment _url, headers=headers)

pprint.pprint(r.json())
{uid: 0,
u'output': {u'data': {u'text/plain': u' res0: Long = 10'},
u' execution_count': O,
u'status': u'ok'},
u'state': u'available'}
The remainder of this section describes Livy objects and REST API callsfor interactive sessions.

Livy objects for interactive sessions
See the following tables for Livy objects properties for interactive sessions.

Session Object
A session object represents an interactive shell:

Table 6: Session Object

Property Description Type

name Name of the session string

id A non-negative integer that represents a int
specific session of interest

appld Application ID for this session string

owner Remote user who submitted this session string

proxyUser User ID to impersonate when running string

kind Session kind (see the "kind" table below for session kind
values)

log Log file data list of strings

state Session state (see the "state” table below for string
values)

applnfo Detailed application information key=value map

The following values are valid for the kind property in a session object:

Table 7: Session Kind

Value Description

spark Interactive Scala Spark session
pyspark Interactive Python 2 Spark session
pyspark3 Interactive Python 3 Spark session
sparkr Interactive R Spark session

The following values are valid for the state property in a session object:

24

Cloudera Runtime

Submitting Spark applications using Livy

Table 8: Session Object State

Value ‘ Description ‘
not_started Session has not started

starting Session is starting

idle Session iswaiting for input

busy Session is executing a statement

shutting_down Session is shutting down

error Session terminated due to an error

dead Session exited

success Session successfully stopped

A statement object represents the result of an execution statement.

Table 9: Statement Object

Property ‘ Description ‘ Type

id A non-negative integer that represents a integer
specific statement of interest

state Execution state (see the following "state" table | statement state
for values)

output Execution output (see the following "output" statement output
table for values)

The following values are valid for the state property in a statement object:

Table 10: Statement Object State

value ‘ Description ‘
waiting Statement is queued, execution has not started

running Statement is running

available Statement has a response ready

error Statement failed

cancelling Statement is being cancelled

cancelled Statement is cancelled

The following values are valid for the output property in a statement object:

Table 11: Statement Object Output

Property

status

‘ Description

Execution status, such as "starting”, "idle", or
“available".

‘ Type
string

execution_count

Execution count

integer (monotonically increasing)

data

Statement output

An object mapping a mime type to the result.
If the mime type is application/json, the value
isaJSON value.

Setting Python path variables for Livy

Cloudera Runtime Submitting Spark applications using Livy

To change the Python executable used by a Livy session, follow the instructions for your version of Python.
pyspark
Livy reads the path from the PY SPARK_PYTHON environment variable (this is the same as PySpark).

o If Livy isrunning in local mode, simply set the environment variable (this is the same as PySpark).
» If theLivy session isrunning in yarn-cluster mode, setspark.yarn.appMasterEnv.PY SPARK_PYTHON in the
SparkConf file, so that the environment variable is passed to the driver.

pyspark3
Livy reads the path from environment variable PY SPARK3_PY THON.

e If Livy isrunning in local mode, simply set the environment variable.

e |f theLivy session isrunning in yarn-cluster mode, setspark.yarn.appMasterEnv.PY SPARK3 PYTHON in Spar
kConf file, so that the environment variable is passed to the driver.

Livy APl reference for interactive sessions
GET

GET /sessions returns al active interactive sessions.

|

Request Parameter Description Type

size Number of sessionsto fetch

from Starting index for fetching sessions int
int

Response Description Type
from Starting index of fetched sessions int
total Number of sessions fetched int
sessions Session list list

The following response shows zero active sessions:
{"from':0,"total":0,"sessions":[]}

GET /sessions/{ sessionld} returns information about the specified session.
GET /sessions/{ sessionl d} /state returns the state of the specified session:

Response Description Type

id A non-negative integer that represents a int
specific session

|

state Current state of the session string

GET /sessions/{ sessionld} /logs retrieves log records for the specified session.

o o

from Offset int

|

size Maximum number of log records to retrieve int

Response Description Type

id A non-negative integer that represents a int
specific session

|

from Offset from the start of the log file int

26

Cloudera Runtime

Submitting Spark applications using Livy

Response ‘ Description ‘ Type ‘
size Number of log records retrieved int
log Log records list of strings

GET /sessions/{ sessionl d} /statements returns all the statementsin a session.

‘ Description

Statements

statement object (for more information see
"Livy Objects for Interactive Sessions")

‘ Description

Statement

statement object

POST

POST /sessions creates a new interactive Scala, Python, or R shell in the cluster.

Request Parameter ‘ Description ‘ Type ‘
kind Session kind (required) session kind
proxyUser User ID to impersonate when starting the string

session
jars Jar filesto be used in this session list of strings
pyFiles Python files to be used in this session list of strings
files Other filesto be used in this session list of strings
driverMemory Amount of memory to use for the driver string

process
driverCores Number of coresto use for the driver process | int
executorMemory Amount of memory to use for each executor string

process
executorCores Number of coresto use for each executor int

process
numExecutors Number of executorsto launch for thissession | int
archives Archivesto be used in this session list of strings
queue The name of the YARN queue to which the string

job should be submitted
name Name of the session. Thisisan optiona string

parameter. The session cannot be created if

another session with the same name already

exists.
conf Spark configuration properties Map of key=value
heartbeat Timeoutl nSecond Timeout in second to which session be int

orphaned
Response ‘ Description ‘ Type ‘
session object (for more information see"Livy | The created session session object

Objectsfor Interactive Sessions")

27

Cloudera Runtime Submitting Spark applications using Livy

The following response shows a PySpark session in the process of starting:
{"id":0,"state":"starting","kind":"pyspark","log":[]}

POST /sessiong/{ sessionld} /statements runs a statement in a session.

Request Parameter Description Type

code The code to execute string

Description

statement object (for more information see Result of an execution statement statement object
"Livy Objects for Interactive Sessions")

POST /sessions/{ sessionld} /statements/{ statementld} /cancel cancels the specified statement in the session.

Description

cancellation message Reports "cancelled” string

DELETE

DELETE /sessions/{ sessionld} terminates the session.

Submitting batch applications using the Livy API

About this task

Spark provides a spark-submit command for submitting batch applications. Livy provides equivalent functionality
through REST APIs, using job specifications specified in a JSON document.

The following example shows a spark-submit command that submits a SparkPi job, followed by an example that uses
Livy POST requests to submit the job. The remainder of this subsection describes Livy objects and REST API syntax.
For additional examples and information, see the readme.rst file at https.//github.com/hortonworks/livy-rel ease/
releases/tag/HDP-2.6.0.3-8-tag.

The following command uses spark-submit to submit a SparkPi job:

./ bi n/ spark-submit \
--cl ass org. apache. spark. exanpl es. SparkPi \
--master yarn \
--depl oy-node cluster \
--executor-nmenory 20G \
/ pat h/ t o/ exanpl es. jar 1000

To submit the SparkPi job using Livy, complete the following steps. Note: the POST request does not upload local
jarsto the cluster. Y ou should upload required jar filesto HDFS before running the job. Thisis the main difference
between the Livy APl and spark-submit.

Procedure

1. Form aJSON structure with the required job parameters:

{ "classNanme": "org.apache. spark. exanpl es. Spar kPi ",
"execut or Menory": "20g",
"args": [2000],
"file": "/path/to/exanples.jar"

}

28

Cloudera Runtime

Submitting Spark applications using Livy

2. Specify master and deploy mode in the livy.conf file.
3. To submit the SparkPi application to the Livy server, usetheaPOST /batches request.
4. The Livy server helps launch the application in the cluster.
Livy batch object
Batch session APIs operate on batch objects, defined as follows:
Property Description Type
id A non-negative integer that represents a int
specific batch session
appld The application ID for this session String
applnfo Detailed application info Map of key=value
log Log records list of strings
state Batch state string
Livy API reference for batch jobs
GET /batches returns al active batch sessions.
Request Parameters Description Type
from Starting index used to fetch sessions int
size Number of sessionsto fetch int
Response Description Type
from Starting index of fetched sessions int
total Number of sessions fetched int
sessions List of active batch sessions list
GET /batches/{ batchld} returns the batch session information as a batch object.
GET /batches/{ batchl d} /state returns the state of batch session:
Response Description Type
id A non-negative integer that represents a int
specific batch session
state The current state of batch session string
GET /batches/{ batchld} /log retrieves log records for the specified batch session.
Request Parameters Description Type
from Offset into log file int
size Max number of log lines to return int
Response Description Type
id A non-negative integer that represents a int
specific batch session
from Offset from start of the log file int
size Number of log records returned int
log Log records list of strings

29

Cloudera Runtime

Using PySpark

POST /batches creates a new batch environment and runs a specified application:

Request Body Description

Type

file File containing the application to run path
(required)
proxyUser User ID to impersonate when running the job | string
className Application Java or Spark main class string
args Command line arguments for the application | list of strings
jars Jar filesto be used in this session list of strings
pyFiles Python files to be used in this session list of strings
files Other filesto be used in this session list of strings
driverMemory Amount of memory to use for the driver string
process
driverCores Number of coresto use for the driver process | int
executorMemory Amount of memory to use for each executor string
process
executorCores Number of coresto use for each executor int
numExecutors Number of executors to launch for this session | int
archives Archives to be used in this session list of strings
queue The name of the Y ARN queue to which the string
job should be submitted
name Name of this session string
conf Spark configuration properties Map of key=val
Response Description Type
batch object (for more information see"Livy | The created batch object batch object
Batch Object")

DELETE /batches/{ batchld} terminates the Batch job.

Using PySpark

Apache Spark provides APIsin non-JVM languages such as Python. Many data scientists use Python because it has a
rich variety of numerical libraries with a statistical, machine-learning, or optimization focus.

Running PySpark in a virtual environment

For many PySpark applications, it is sufficient to use --py-files to specify dependencies. However, there are times
when --py-filesisinconvenient, such as the following scenarios:

» A large PySpark application has many dependencies, including transitive dependencies.
« A large application needs a Python package that requires C code to be compiled before installation.
e Youwant to run different versions of Python for different applications.

For these situations, you can create a virtual environment as an isolated Python runtime environment. CDP supports
Virtua Env for PySpark in both local and distributed environments, easing the transition from alocal environment to a

distributed environment.

30

Cloudera Runtime Using PySpark

E Note:
Thisfeatureis currently only supported in Y ARN mode.

Accessing Spark with Java and Scala offers many advantages: platform independence by running inside the VM,
self-contained packaging of code and its dependenciesinto JAR files, and higher performance because Spark itself
runsin the VM. Y ou lose these advantages when using the Spark Python API.

Managing dependencies and making them available for Python jobs on a cluster can be difficult. To determine which
dependencies are required on the cluster, you must understand that Spark code applications run in Spark executor
processes distributed throughout the cluster. If the Python transformations you define use any third-party libraries,
such as NumPy or nltk, Spark executors require access to those libraries when they run on remote executors.

After the Python packages you want to use are in a consistent location on your cluster, set the appropriate
environment variables to the path to your Python executables as follows:

» Specify the Python binary to be used by the Spark driver and executors by setting the PY SPARK_PYTHON
environment variable in spark-env.sh. Y ou can also override the driver Python binary path individually using the
PY SPARK_DRIVER_PYTHON environment variable. These settings apply regardless of whether you are using
yarn-client or yarn-cluster mode.

Make sure to set the variables using the export statement. For example:
export PYSPARK PYTHON=${ PYSPARK PYTHON: - <PATH TO PYTHON EXECUTABLE>}

This statement uses shell parameter expansion to set the PY SPARK _PY THON environment variable to
<PATH_TO_PYTHON_EXECUTABLE> if it isnot set to something else already. If it is already set, it preserves
the existing value.

Here are some example Python binary paths:

« Anaconda parcel: /opt/cloudera/parcel Sy Anaconda/bin/python
e Virtua environment: /PATH/TO/VIRTUALENV/bin/python

« If you are using yarn-cluster mode, in addition to the above, also set spark.yarn.appMasterEnv.PY SPARK_PYTH
ON and spark.yarn.appMasterEnv.PY SPARK_DRIVER_PYTHON in spark-defaults.conf (using the safety valve)
to the same paths.

In Cloudera Manager, set environment variables in spark-env.sh and spark-defaults.conf as follows:
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Go to the Spark service.

Click the Configuration tab.

Search for Spark Service Advanced Configuration Snippet (Safety Valve) for spark-conf/spark-env.sh.

Add the spark-env.sh variables to the property.

Search for Spark Client Advanced Configuration Snippet (Safety Valve) for spark-conf/spark-defaults.conf.
Add the spark-defaults.conf variables to the property.

Enter a Reason for change, and then click Save Changes to commit the changes.

Restart the service.

Deploy the client configuration.

© o N U MWD

31

https://www.numpy.org/
https://www.nltk.org/
https://www.gnu.org/software/bash/manual/bash.html#Shell-Parameter-Expansion

Cloudera Runtime Using PySpark

In acommon situation, a custom Python package contains functionality you want to apply to each element of an
RDD. Y ou can use amap() function call to make sure that each Spark executor imports the required package, before
calling any of the functions inside that package. The following shows a simple example:

def inport_ny_special _package(Xx):
i mport ny.speci al . package
return x

int_rdd = sc.parallelize([1, 2, 3, 4])
i nt_rdd. map(l anbda x: inport_my_special _package(x))
i nt_rdd. col | ect()

Y ou create asimple RDD of four elements and call it int_rdd. Then you apply the function import_my_specia
|_package to every element of the int_rdd. This function imports my.special .package and then returns the origina
argument passed to it. Calling this function as part of amap() operation ensures that each Spark executor imports
my.special .package when needed.

If you only need asingle file inside my.special .package, you can direct Spark to make this available to all executors
by using the --py-files option in your spark-submit command and specifying the local path to thefile. Y ou can also
specify this programmatically by using the sc.addPyFiles() function. If you use functionality from a package that
spans multiple files, you can make an egg for the package, because the --py-files flag also accepts a path to an egg
file.

If you have a self-contained dependency, you can make the required Python dependency available to your executors
in two ways:

» |If you depend on only asinglefile, you can use the --py-files command-line option, or programmatically add the
file to the SparkContext with sc.addPyFiles(path) and specify the local path to that Python file.

« |If you have a dependency on a self-contained module (a module with no other dependencies), you can create
an egg or zip file of that module and use either the --py-files command-line option or programmatically add the
module to theSparkContext with sc.addPyFiles(path) and specify the local path to that egg or zip file.

B Note: Librariesthat are distributed using the Python “wheel” mechanism cannot be used with the --py-files
option.

Some operations rely on complex packages that also have many dependencies. Although such a packageis too
complex to distribute asa*.py file, you can create an egg for it and all of its dependencies, and send the egg file to
executors using the --py-files option.

If you are running a heterogeneous cluster, with machines of different CPU architectures, sending egg filesis
impractical because packages that contain native code must be compiled for asingle specific CPU architecture.
Therefore, distributing an egg for complex, compiled packages like NumPy, SciPy, and pandas often fails. Instead
of distributing egg files, install the required Python packages on each host of the cluster and specify the path to the
Python binaries for the worker hoststo use.

Installing and maintaining Python environments can be complex but allows you to use the full Python package
ecosystem. Ideally, a sysadmin installs the Anaconda distribution or sets up avirtual environment on every host of
your cluster with your required dependencies.

If you are using Cloudera Manager, you can deploy the Anaconda distribution as a parcel asfollows:

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

32

https://pypi.python.org/pypi/setuptools
https://www.anaconda.com/download
https://virtualenv.pypa.io/en/latest/
http://docs.anaconda.com/anaconda/user-guide/tasks/cloudera/

Cloudera Runtime Automating Spark Jobs with Oozie Spark Action

1. Addthefollowing URL https://repo.anaconda.com/pkgs/misc/parcels to the Remote Parcel Repository URLs as
described in "Parcel Configuration Settings.”

2. Download, distribute, and activate the parcel as described in "Managing Parcels."

Anacondaisinstalled in PARCEL DIRECTORY/Anaconda, where PARCEL DIRECTORY is/opt/cloudera/parcels
by default, but can be changed in parcel configuration settings. The Anaconda parcel is supported by Continuum
Analytics.

If you are not using Cloudera Manager, you can set up avirtual environment on your cluster by running commands
on each host using Cluster SSH, Parallel SSH, or Fabric. Assuming each host has Python and pip installed, use

the following commands to set up the standard data stack (NumPy, SciPy, scikit-learn, and pandas) in avirtua
environment on a RHEL 6-compatible system:

Install python-devel:
yuminstall python-devel

Install non-Python dependencies required by Sci Py that are not installed
by default:
yuminstall atlas atlas-devel |apack-devel bl as-devel

install virtual env:
pip install virtual env

create a new virtual env:
vi rtual env. MYNEVEENV

activate the virtual env:
source MYNEWENV/ bi n/ acti vat e

install packages in MYNEVENV:

pip install nunpy
pip install scipy
pip install scikit-learn
pip install pandas

Y ou can use Apache Spark as part of a complex workflow with multiple processing steps, triggers, and
interdependencies. Y ou can automate Apache Spark jobs using Oozie Spark action.

Spark2 must be installed on the node where the Oozie server isinstalled.

If you use Apache Spark as part of acomplex workflow with multiple processing steps, triggers, and
interdependencies, consider using Apache Oozie to automate jobs. Oozie is aworkflow engine that executes
sequences of actions structured as directed acyclic graphs (DAGs). Each action isan individual unit of work, such as
a Spark job or Hive query.

The Oozie "Spark action” runs a Spark job as part of an Oozie workflow. The workflow waits until the Spark job
completes before continuing to the next action.

For additional information about Spark action, see Oozie Spark Action Extension in the Apache Oozie
documentation. For general information about Oozie, see Overview of Qozie.

33

https://repo.anaconda.com/pkgs/misc/parcels/
https://www.continuum.io/
https://www.continuum.io/
http://sourceforge.net/projects/clusterssh/
http://code.google.com/p/parallel-ssh/
http://docs.fabfile.org/en/1.10/
https://oozie.apache.org/docs/5.1.0/DG_SparkActionExtension.html
https://docs.cloudera.com/runtime/7.2.8/configuring-oozie/topics/oozie-introduction.html

Cloudera Runtime Automating Spark Jobs with Oozie Spark Action

E Note:
Support for yarn-client execution mode for Oozie Spark action will be removed in afuture release. Oozie will
continue to support yarn-cluster execution mode for Oozie Spark action.

1. Setup .jar file exclusions.

Oozie distributesits own libraries on the ShareLib, which are included on the classpath. These .jar files may
conflict with each other if some components require different versions of alibrary. Y ou can use the oozie.action
.sharelib.for.<action_type>.exclude=<value> property to address these scenarios.

Spark uses older jackson-* .jar versions than Oozie, which creates a runtime conflict in Oozie for Spark and
generates a NoClassDefFoundError error. This can be resolved by using the oozie.action.sharelib.for.<action ty
pe>.exclude=<value> property to exclude the cozie/jackson.* .jar files from the classpath. Libraries matching the
regex pattern provided as the property value will not be added to the distributed cache.

B Note: spark2 ShareLib directory will not be created. The named spark directory is used for spark2 libs.

Examples
The following examples show how to use a ShareLib exclude on a Java action.
Actual Sharelib content:

/ user/ oozi e/ share/lib/lib_20180701/oozie/lib-one-1.5.jar

[user/ ooziel/share/lib/lib 20180701/ oozie/lib-two-1.5.jar

[user/ooziel/share/lib/lib 20180701/ javal/lib-one-2.6.jar

[user/ ooziel/share/lib/lib_20180701/javal/lib-two-2.6.jar

[user/ ooziel/share/lib/lib_ 20180701/ ava/ conponent - connect or. j ar

* % X * *

Setting the oozie.action.sharelib.for.java.exclude property to oozie/lib-one.* = results in the following distributed
cache content:

* [user/ooziel/share/lib/lib_20180701/oozie/lib-two-1.5.jar

* [user/ooziel/share/lib/lib_20180701/javal/lib-one-2.6.jar

* [user/ooziel/share/lib/lib_20180701/javal/lib-two-2.6.jar

* [user/ooziel/share/lib/lib 20180701/ ava/ conponent - connector. j ar

Setting the oozie.action.sharelib.for.java.exclude property to oozie/lib-one.* |component-connector.jar= resultsin
the following distributed cache content:

* [user/ooziel/share/lib/lib_20180701/ oozie/lib-two-1.5.]ar
* [user/ooziel/share/lib/lib_20180701/javal/lib-one-2.6.jar
* [user/ooziel/share/lib/lib_20180701/javal/lib-two-2.6.jar

2. Run the Oozie shareliblist command to verify the configuration. Y ou should see spark in the results.
0ozi e adm n —shareliblist spark

The following examples show aworkflow definition XML file, an Oozie job configuration file, and a Python script
for running a Spark2-Pi job.

Sample Workflow.xml file for spark2-Pi:

<wor kf | ow app xm ns='uri: oozi e: wor kf | ow: 0. 5' nane="' Spar kPyt honPi ' >
<start to='spark-node' />

<action name='spar k- node' >
<spark xm ns="uri: oozie: spark-action:0.1">

34

Cloudera Runtime Automating Spark Jobs with Oozie Spark Action

<j ob-tracker >${j obTracker}</job-tracker>
<nane- node>${ naneNode} </ nane- node>
<mast er >${ nast er } </ mast er >
<name>Pyt hon- Spar k- Pi </ nane>
<j ar>pi . py</jar>

</ spar k>

<ok to="end" />

<error to="fail" />

</ action>

<kil'l nanme="fail">
<message>Wor kfl ow fail ed, error nessage [${wi:errorMessage(wf:
| ast Error Node())}] </ nessage>
</kill>
<end name='end' />
</ wor kf | ow app>

Sample Job.propertiesfile for spark2-Pi:

naneNode=hdf s: // host: 8020

j obTracker =host : 8050

gqueueNane=def aul t

exanpl esRoot =exanpl es

00zi e. use. system | i bpat h=t rue

oozi e. wf . appl i cati on. pat h=${ naneNode}/ user/ ${user . nane}/ ${ exanpl esRoot }/ app
s/ pyspar k

mast er =yar n- cl ust er

oozi e. action. sharelib. for.spark=spar k2

Sample Python script, lib/pi.py:

i mport sys

fromrandom i nport random

from operator inport add

from pyspark inport SparkCont ext

if nanme_ == " min__

Usage: pi [partitions]

sc = Spar kCont ext (appName="Pyt hon- Spar k- Pi ")
partitions = int(sys.argv[1l]) if len(sys.argv) > 1 else 2
n = 100000 * partitions

def f(_):

X = randonm() * 2 - 1

y = random() * 2 - 1

return 1 if x ** 2 +y ** 2 <1 else 0

count = sc.parallelize(range(1l, n + 1), partitions). map(f).reduce(add)
print("Pi is roughly %" % (4.0 * count / n))

sc. stop()

When using Oozie Spark action, Oozie jobs may fail with the following error if there are .jar file conflicts between
the "oozie" Sharelib and the "spark" Sharel.ib.

2018-06-04 13:27: 32,652 WARN Spar kActi onExecut or: 523 - SERVER] XXXX] USER] XXX
X] CGROUP[-] TOKEN[] APP[XXXX] JOB[0000000- <XXXXX>-00zi e-o00zi -W ACTI ON[00000
00- <XXXXXX>- 00zi e- oozi - W& par k2] Launcher exception: Attenpt to add (hdfs://

35

Cloudera Runtime Automating Spark Jobs with Oozie Spark Action

XXXX/ user/ oozi e/ share/lib/lib_XXXXX/ oozi e/ aws-j ava- sdk-kns-1.10.6.jar) nul ti
ple times to the distributed cache.

java.lang. |11 egal Argunment Exception: Attenpt to add (hdfs://XXXXX/ user/ oozi e/
share/lib/lib 20170727191559/ oozi e/ aws-j ava- sdk-kns-1.10.6.jar) nultiple ti
mes to the distributed cache.

at org. apache. spark. depl oy. yarn. C i ent $anonf un$pr epar eLocal Resour ces$13%a
nonf un$appl y$8. appl y(d i ent. scal a: 632)

at org. apache. spark. depl oy. yarn. C i ent $anonf un$pr epar eLocal Resour ces13anon
fun$appl y$8. appl y(C i ent. scal a: 623)

at scal a. col | ection. nut abl e. ArraySeq. f oreach(ArraySeq. scal a: 74)

at org. apache. spark. depl oy. yarn. C i ent $anonf un$pr epar eLocal Resour ces$13. ap
ply(dient.scal a: 623)

at org. apache. spark. depl oy. yarn. i ent $anonf un$pr epar eLocal Resour ces$13. a
ppl y(Cdient.scal a: 622)

at scal a.col l ection.imutable.List.foreach(List.scal a: 381)

at org. apache. spark. depl oy. yarn. d i ent. preparelLocal Resources(d i ent. scal a: 62
2)

at org. apache. spark. depl oy. yarn. d i ent. creat eCont ai ner LaunchContext (Cient.s
cal a: 895)

at org. apache. spark. depl oy. yarn. dient.submtApplication(Cient.scala:171)
at org. apache. spark. depl oy.yarn.dient.run(Cient.scal a: 1231)

at org.apache. spark. deploy.yarn.Cient$. main(dient.scal a: 1290)

at org. apache. spark. depl oy.yarn.dient. mai n(Client.scal a)

at sun.reflect.NativeMet hodAccessor | npl.invokeO(Native Method)

at sun.refl ect.NativeMet hodAccessor | npl.invoke(NativeMet hodAccessorlnpl.ja
va: 62)

at sun.refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egati ngMet hodAccessor |
nmpl . j ava: 43)

at java.lang.refl ect. Met hod. i nvoke(Met hod. j ava: 498)

at org. apache. spar k. depl oy. Spar kSubni t $. or gdapache$spar k$depl oy$Spar kSubni t
$runMai n(Spar kSubni t . scal a: 750)

at org. apache. spark. depl oy. Spar kSubni t $. doRunMai n$1(Spar kSubmi t . scal a: 187)
at org.apache. spark. depl oy. Spar kSubmi t $. submi t (Spar kSubmi t. scal a: 212)

at org.apache. spark. depl oy. Spar kSubni t $. mai n(Spar kSubmi t . scal a: 126)

at org. apache. spar k. depl oy. Spar kSubm t . nmai n(Spar kSubmi t . scal a)

at org. apache. oozi e. acti on. hadoop. Spar kMai n. r unSpar k(Spar kMai n. j ava: 311)

at org.apache. oozi e. acti on. hadoop. Spar kMai n. run(Spar kMai n. j ava: 232)

at org. apache. oozi e. acti on. hadoop. Launcher Mai n. run(Launcher Mai n. j ava: 58)

at org. apache. oozi e. acti on. hadoop. Spar kMai n. nai n(Spar kMai n. j ava: 62)

at sun.refl ect. Nati veMet hodAccessor | npl.invokeO(Native Method)

at sun.refl ect. NativeMet hodAccessor |l npl.invoke(NativeMet hodAccessorl npl.jav
a: 62)

at sun.refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egati ngMet hodAccess
orlnpl.java: 43)

at java.lang.refl ect. Met hod. i nvoke(Met hod. j ava: 498)

at org. apache. oozi e. acti on. hadoop. Launcher Mapper . map(Launcher Mapper . j ava: 2
37)

at org. apache. hadoop. mapr ed. MapRunner . r un(MapRunner . j ava: 54)

at org. apache. hadoop. mapr ed. MapTask. r und dMapper (MapTask. j ava: 453)

at org. apache. hadoop. mapr ed. MapTask. run(MapTask. j ava: 343)

at org.apache. hadoop. mapr ed. Yar nChi | d$2. run(YarnChi | d. j ava: 170)

at java.security.AccessController.doPrivil eged(Native Met hod)

at javax.security.auth. Subject. doAs(Subj ect.java: 422)

at org. apache. hadoop. security. User G oupl nf ormat i on. doAs(User G- oupl nf ormati o
n.j ava: 1866)

at org.apache. hadoop. mapred. Yar nChi | d. mai n(YarnChi | d. j ava: 164)

Run the following commands to resolve thisissue.

E Note:
Y ou may need to perform a backup before running the rm commands.

hadoop fs -rm/user/oozie/share/lib/lib_<ts>/spark/aws*

36

Cloudera Runtime Automating Spark Jobs with Oozie Spark Action

hadoop fs -rm/user/oozie/share/lib/lib_<ts>/spark/azure*

hadoop fs -rm/user/oozie/share/lib/lib_<ts>/spark/hadoop-aws*

hadoop fs -rm/user/ooziel/share/lib/lib_<ts>/spark/hadoop-azure*

hadoop fs -rm/user/ooziel/share/lib/lib_<ts>/spark/ ok*

hadoop fs -nv /user/oozie/share/lib/lib_<ts>/oozieljackson* /user/ooziel/sha
re/lib/lib _<ts>/oozie.old

Next, run the following command to update the Oozie ShareL ib:

oozi e admin -oozie http://<oozie-server-hostnane>: 11000/ oozi e -shareli bu
pdat e

37

	Contents
	Introduction
	Running your first Spark application
	Running sample Spark applications
	Configuring Spark Applications
	Configuring Spark application properties in spar​k-de​faul​ts.c​onf
	Configuring Spark application logging properties

	Submitting Spark applications
	spar​k-su​bmit command options
	Spark cluster execution overview
	Canary test for pysp​ark command
	Fetching Spark Maven dependencies
	Accessing the Spark History Server

	Running Spark applications on YARN
	Spark on YARN deployment modes
	Submitting Spark Applications to YARN
	Monitoring and Debugging Spark Applications
	Example: Running SparkPi on YARN
	Configuring Spark on YARN Applications
	Dynamic allocation

	Submitting Spark applications using Livy
	Configuring the Livy Thrift Server
	Connecting to the Apache Livy Thrift Server
	Using Livy with Spark
	Using Livy with interactive notebooks
	Using the Livy API to run Spark jobs
	Running an interactive session with the Livy API
	Livy objects for interactive sessions
	Setting Python path variables for Livy
	Livy API reference for interactive sessions

	Submitting batch applications using the Livy API
	Livy batch object
	Livy API reference for batch jobs

	Using PySpark
	Running PySpark in a virtual environment
	Running Spark Python applications

	Automating Spark Jobs with Oozie Spark Action

